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Abstract

A latin square L of order n is said to be row-complete, and is denoted by
RCLS(n), if the ordered pairs (L;j, Li ;1) are all distinct for 1 < ¢ < n and
1 € j < n — 1. Row-complete latin squares are also called roman squares , and
are used in statistics in the design of sequential experiments. In the language of

statistics, an RCLS(n) is a belanced repeated measurements (n,n,n) design .

In 1949, Williams provided a simple construction for an RCLS(2m) for every
m, but the situation for odd orders has proven to be much more difficult. In the
last 30 years or so, various authors have given constructions of RCLS for certain

odd orders, but the state of knowledge has nevertheless remained somewhat sparse.

In this thesis, two new methods of construction for RCLS are given. The first, a
product construction, yields infinitely many new orders for which RCLS are known
to exist. The second construction, which is the highlight of this thesis, is a direct
construction of an RCLS for any odd composite order other than 9. Since RCLS
of order 9 and of even order have previously been constructed, this proves that
RCLS of every composite order exist.

In addition, a new result is given on the related concept of quasi-complete latin
squares (QCLS). Specifically, it is shown that complete sets of mutually orthogonal
QCLS(p) exist for every prime p. Such sets were previously known to exist only

for primes p < 13.
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Chapter 1

Introduction

1.1 RCLS - Applications and History

A latin square L of order n is an n x n array of n symbols (usually the numbers 1
to n or 0 to » — 1) such that each symbol occurs exactly once in each row and in
each column. .L is said to be row-complete (or is sometimes called a roman square),
and is denoted by RCLS(n), if the ordered pairs (L;j, L; ;+1) are all distinct for
l1<i<nandl <j < n-—1 In the language of statistics, an RCLS(n) is a
balanced repeated measurements (n,n,n) design (see e.g. [13]). In connection to
graph theory, an RC LS(n) gives rise to a decomposition of the complete directed
graph on n vertices into n edge-disjoint Hamiltonian paths [17].

Row-complete latin squares are used in statistics in the design of sequential
experiments (see [4, 19] or {7, Section 2.3]). For example, suppose adjacent plots
of land in a square array are to receive different treatments in an agricultural
experiment to determine the relative effectiveness of the treatments. The entries of
a latin square may correspond to the treatments applied to the plots of land, but

1



CHAPTER 1. INTRODUCTION 2

treatments applied to adjacent plots of land might interact, and so the latin square

should be row-complete in order to balance out these interactions.

Another example is in the field of psychology. Suppose n subjects are each
taking part in a series of n psychological tests. The performance of a subject on a
given test might be influenced by both the number of tests the subject has already
taken (e.g. fatigue may set in) and the immediately preceding test. The first of
these influences can be compensated for by letting the i** subject take the tests in
the order given by the i** row of a latin square, and the second, by ensuring the

latin square is row-complete.

In 1949, Williams [19] provided a simple construction for an RCLS(2m) for
every m, but the situation for odd orders has proven to be much more difficult. An
RCLS(1) exists trivially, and it is known that there are no RCLS of orders 3, 5 or
7. In 1968, Mendelsohn [17) found an RCLS(21), the first non-trivial RCLS of odd
order ever constructed. Over the next 15 years, various authors gave constructions

for RCLS of orders 9, 15, 25, 27, 33, 39, 55 and 57 (see [2, 8, 13, 16, 18]).

It is known that an RC LS(n) exists whenever there exists a sequenceable group
of order n, that is, a group with identity ¢ whose elements can be ordered as
g1 = €,gz, ..., gn, 50 that the partial products g;g; --- g; are all distinct for 1 <1 < n
(the ordering is then said to be a sequencing of the group) [12]. Sequencings for
the two non-abelian groups of order 27 are known (see [1, 16]), and the non-abelian
groups of order pq, where p < q are odd primes with p | ¢ — 1, were sequenced by
Keedwell [15] in 1981 whenever p has 2 as a primitive root. This latter result gave
the first infinite class of odd order RCLS (e.g. take p = 3 and note that there are
infinitely many primes congruent to 1 (mod 3)).

Two latin squares A and B of order n are orthogonal if the ordered pairs
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(Aij, Bij) are all distinct for 1 < 4,5 < n, and the latin squares A, A,, ..., A, are
called mutually orthogonal if each pair of them is orthogonal. Heinrich [14] proved
in 1979 that if there exist & mutually orthogonal RCLS(n) and if there exists an
RCLS(k), then an RCLS(nk) also exists. In 1991, Dénes and Keedwell [8] general-
ized results of Heinrich [14] to show that if there exists a non-abelian sequenceable
group of order n and p is the smallest prime factor of n, then there exist p — 1
mutually orthogonal RCLS(n). This result, along with the results of Heinrich and
Keedwell above, gave more orders for which RCLS can be constructed, the smallest
being 11 - 23 -9 = 2277 (obtained by taking p =11, ¢ = 23, n = pq and k = 9).

All of the orders of known RCLS prior to this thesis have come from the above-
mentioned results.

1.2 New Results in This Thesis

In Chapter 2 it is proved that if an RCLS(m) and a sequencing of a group of order
n both exist, then so does an RCLS(mn). This product construction provides
infinitely many new orders for which RCLS can be constructed, the smallest of
which is 9 -21 = 189 (obtained by taking m =9 and n =21 = 3 -7).

The main result of this thesis, a direct construction for an RCLS of any odd
composite order other than 9, is presented in Chapter 3. Since RCLS of order
9 and of even order have previously been constructed, this proves that RCLS of
every composite order exist.

The related concept of quasi-complete latin squares (QCLS) is discussed in
Chapter 4, where it is shown that complete sets of mutually orthogonal QCLS(p)

exist for every prime p. Such sets were previously known only for primes p < 13.



Chapter 2

A Product Construction

In this chapter, a construction of an RCLS(mn) is given using an RCLS(m) and a
sequencing of a group of order n, where m and n are assumed to be odd (since, as
noted in Section 1.1, even order RC LS have already been constructed). This yields
infinitely many new orders for which row-complete latin squares can be constructed.

2.1 Sequenceable Groups and Property P

Two latin squares A and B of the same order and defined on the same set of symbols
will be said to have property P if whenever A;; = B;; then Ai; = B;;.

The results of Heinrich in [14] provide the following theorem.

Theorem 2.1 ([8, Theorem 1.4]) Let a,,a;,...,a, be a sequencing of a group G
of order n, and let b = ay,b; = aya,,...,b, = a1a2+--a, t:z the corresponding
partial products. If hy, b, ..., h, and ky, ks, ..., k, are orderings of the elements of G
such that hykit, hak3?, ..., hok 7t is also an ordering of the elements of G, then the
arrays H and K defined by H;; = h;b; and K;; = kib; are orthogonal RCLS(n).

4



CHAPTER 2. A PRODUCT CONSTRUCTION 5

In particular, if n is odd, then the following holds.

Theorem 2.2 If there ezists a sequenceable group of odd order n, then there ezist
two orthogonal RCLS(n) having property P.

Proof Setting k; = h;! for 1 < i < n satisfies the conditions of Theorem 2.1.
This is because the mapping g —> g” is a permutation of G whenever r is relatively
prime to n, since if g] = g3, then g = g1* = (9])* = (93)* = 95° = g2, where rs =
1 (mod n). Furthermore, H and K then have property P, since if H;; = Ki;, then
h;b; = hi'b;, hence h; = hi! and so he = h}, giving Hy; = hub; = h7'b; = K.
|

This theorem will be used in the next section, where the main "mesh” construc-

tion is presented.

2.2 The Mesh Construction

If A and B are m by m arrays (not necessarily defined on the same set of symbols),
define A mesh B, written A o B, to be the m by m array defined by

i if jis odd
(Ao B)y; = A B
B.'_.,' lf] is even,
for 1 <¢,7 < m. Note that in general, Ao B # Bo A.
Also, if C is an m by m array of symbols, define the reverse of C, written C%,

to be the m by m array formed by reversing the columns of C, that is,

R
Ci ;= Ci,m-l—l-j ’
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for1<1t,j <m.

Theorem 2.2 will be used to prove the following main theorem.

Theorem 2.3 If an RCLS(m) and a sequenceable group of order n both ezist, then
an RCLS(mn) also ezists.

Proof As mentioned above, m and n can be assumed to be odd. So by Theorem
2.2, there exist two orthogonal RCLS(n) H and K defined on the symbols 1,2, ...,n
having property P. Let A be an RC LS(m) defined, say, on the symbols 1,2, ..., m,
and let AM, A®) A" be n isomorphic copies of A on disjoint sets of symbols,
namely
Av(: ) = (Ai;, k),

forl1<t,j<mandl <k<nmn.

Let L be the mn by mn array, defined on the set § = {(z,y): 1 <z <m,1 <
y < n} of mn symbols, whose (i, 7)** “block” is

A o AKS)  if jis 0dd
(AW o AKG)R if i is even,
for 1 <1,5 <n, that is,

(A(H-'i) o A(K-'i))w if 7 is odd

L i-lm+u,(j-1)m4v =
Etmpsli=timey { (A% o AKS)R) . if j is even,
for 1 <i,j<nand 1<wu,v<m. Then L is an RCLS(mn).

To see this, first it is necessary to show that L is a latin square. To prove this,
it suffices to show that the array B, where

Bii—)miu(i-1)mev = (AT 0 AKG))
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for 1 <i,7 <n,1 <u,v<m,is a latin square, since B is obtained from L by
permuting its columns.

Let (z,y) be any symbol in S, and consider any row r = (i — 1)m + u of B,
where 1 < i <mand 1 < u < m. Since A is a latin square, there exists j; with
1 < j1 £ m, such that A,; = z, and so A,‘:{ = (z,y). Since H and K are latin
squares, there exist j> and js with 1 < j3, ja < n, such that H;; = K;;, = y.

If j; is odd, then

Bl yymin(ip-tym+in = (AFR) o AKR)), .
(Hijy)
A" = AY) = (z.v),

while if j; is even, then

Bi-tymiu(s-nmen = (AFn) o AKis)),
(Kij.
- A A =)

Thus each symbol in S occurs in each row of B.

Now consider any column ¢ = (j —1)m + v of B, whete 1 < j < n and
1 < v < m. Since A is a latin square, there exists ¢, with 1 < i; < m, such that
A;v =z, and so A,(" = (z,y). Since H and K are latin squares, there exist i, and

v

is with 1 S iz,ia <n, such that H"zi =Rii =Y.
If ¥ is odd, then

B(‘z-l)mﬁn.(j—l)mw = (A(H'.”.) o A(Ki’j))ilv
(Hiyji

'10”) = (:’n): = (z!y)!
while if v is even, then

By-tymtir (j-t)ymiv = (AFis) 0 AKn),

(Kiyj)
= 4" = A =(2,9)-
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Thus each symbol in S also occurs in each column of B, and so B is a latin square,

hence so is L.

It remains to show that L is row-complete. To this end, let ((z,y), (z,w)) be
any ordered pair of symbols of S, where 1 < z,z < m and 1 <y, w < n. There are

two cases.

Case 1: Suppose ¢ # z.

Since A is row-complete, there exist iy, ji,1; and j, with 1 < 4;,i2 <mand 1 <
J1,J2 £ m—1, such that (At'u'x + Aiq+1) = (2,2) and (A 55 Aiz 541) = (2,Z). Then

(A% A1) = (AZL41,45%) = ((2,9), (2,w)). Since H and K are orthogonal,
there exist s and ¢ with 1 < s,t < n, such that (H,, K,:) = (y,w), and so since H

and K have property P, there exists r with 1 < r < n, such that (H,¢, K;¢) = (w,y).
Ift is odd and j; is odd, then

L('—l)mﬁ't (t—l)m4+in = (A(H.‘) o A(K”))it.in
H,
50 = A2, = o)

and
L(a-t)mﬁx (t=l)m+(h+1) = (A(H“) ° A(K"))ﬁ,:'wl

K,
= A,(l'_,-:ll = (:'3‘14»1 = (z,w).
If t is odd and j, is even, then

Lpymtir t-tymesy = (A=) 0 AKe), o
(Ket) _ 40) _
'1.1'1‘ = 'lv.ix -(z’y)’
and
Lie-tymsiy (t-ms(in+1) = (A 0 A, L

H.
= (1.5:11 = (:”.}lﬂ = (z,w).
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Ift is even and j; is odd, then

Lirymtin,e=t)ymttm-zz) = ((AFH) 0 AK-NR), o .
= (A0 AR, 5,
= Al =AY, = (2,),
and
Le-ymtiz e-t)ymiimei-) = ((AF*) o AKNR), o0y s
= (AE) o AKR)), o

Hr w
= AGR = Af) = (s ).

Finally, if ¢ is even and j; is even, then

Ly tymsiz t-t)mt(m-iz) = ((AF#) o AKR) O o
= (AF) 0 AR st

= A5h = Al = @),
and
Li-tymtiz (t-1ymt(mi1-) = ((AF o0 AKR), ) s
= (AW o A,
(K';;) = (:'33 = (z,w).

This completes Case 1.

Case 2: Suppose z = z.

Since H is row-complete, there exist 1,5 with 1 <t <nandl1 <j <n -1,
such that (H;;, H; j+1) = (y,w). Since A is a latin square, there exist u; and u,
with 1 < u;,u; < m, such that A, = A,,1 = z, so that AW, = A,(:)l = (z,y)
and A, = A‘(,':{ = (z,w) = (z,w).

If j is odd, then

L(i-l)mw; (F-1)m4m = (A(H‘i) o A(K‘i))unm
H;j;
= A&;n’t) = (1:)"; = (2,!/),
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and
L (i-l)m+u jm+l = ((A(m'i“) o AlKiin) )R)ul 1

= (AWiin) o AKin)),
= AT Z 4@ = (z,w),
while if j is even, then
Li-tymiug (i-tmim .= ((AF) 0 AKGDR), o,
= (AW o AK)),
H...
= Aw(ql,) = Aw(z)l = (z,¥),

and
= (A(H-'Jﬂ) o A_(K-‘..H»l))m1

H;,; w
= AG = AL = (z,w).

L 1)mtuz jms1

This completes Case 2.

So L is row-complete, hence L is an RCLS(mn), proving Theorem 2.3. 1§

Note that in the above proof, the fact that K is row-complete is never used. K
merely needs to be a latin square which is orthogonal to the RCLS(n) H such that
H and K have property P.

The following are some useful corollaries of Theorem 2.3.

Corollary 2.4 If there ezists an RCLS(m) and if there ezist sequenceable groups
of each of the orders ny,n,,...,n; (where ny, n,,...,n; are not neccssarily distinct),

then there ezists an RCLS(mnyn; - --ng).
Proof Apply Theorem 2.3 repeatedly. §

Corollary 2.5 If m is of the form m = r +27°(p1¢1)* (P242)® - -~ (Peqr )™, where
r € {1,9,15,25,33}, p; < ¢; are odd primes such that p; | ¢; — 1 and p; has 2as a
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primitive root (1 <1 < k), and k, s,t1,¢3, ..., tx are non-negative integers, then an

RCLS(m) ezists.

Proof As mentioned in Section 1.1, groups of order 27 and p;q; (where p; and ¢;
satisfy the stated conditions) have been sequenced, and RCLS of orders 1, 9, 15,
25 and 33 have been found. Applying Corollary 2.4 then gives the result. 1

It is interesting to note that setting ¥ = 0 and » = 1 or 9 in Corollary 2.5,
and letting s range over all the non-negative integers, gives an RCLS(37) for each
non-negative integer j = 0 or 2 (mod 3). RCLS of these orders were not previously
known to exist for j > 3.

Corollary 2.5 gives infinitely many new orders for which RCLS can be con-
structed. Table 2.1 lists these new orders (indicated by an asterisk *) as well as the
previously known odd orders, under 3000.
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Table 2.1
Odd Orders of RCLS Known Prior to This Thesis
Plus New Orders Obtained via the Mesh Construction (up to 3000)
(* indicates new orders via the mesh construction)
1 9 15 21 25 27 33 39
55 57 93 111 129 155 183 189*
201 205 219 237 243* 253 291 305
309 315* 327 351* 355 381 405*% 417
441* 453 471 489 495* 505 513* 525*
543 567* 579 585* 597 633 655 669
675* 687 689 693* 723 729* 737 755
813 819* 825* 831 837¢ 849 855* 891*
905 921 939 955 975* 979 993 999*
1011 1027 1047 1053* 1055 1101 1119 1137
1155*% 1161* 1191 1197* 1205 1227 1255 1263
1287* 1299 1317 1355 1371 1375* 1389 1395*
1405 1425* 1461 1485* 1497 1521* 1539* 1555
1569 1623 1641 1647* 1655 1665* 1703 1711
1713 1731 1803 1809* 1815* 1821 1839  1845*
1857 1881* 1893 1929 1935* 1953* 1971* 1983
2005 2019 2041 2073 2105 2127 2133* 2145*
2155 2181 2189 2199 2217 2223* 2253 2271
2277 2305 2307 2325* 2331* 2361 2433 2455
2469 2487 2511* 2559 2577 2605 2619* 2631
2649 2705 2709* 2721 2745* 2757 2775* 2781*
2811 2855 2901 2943* 2973 2991 2997*



Chapter 3

A Composite Order Direct

Construction

3.1 Introduction

The highlight of this thesis is presented in this chapter, namely, a construction
of a row-complete latin square of order n, where n is any odd composite number
other than 9. Since row-complete latin squares of order 9 and of even order have
previously been constructed, this proves that row-complete latin squares of every

composite order exist.

The construction is presented in Sections 3.2 through 3.5. An example of the
construction when the order is 35 (the smallest odd composite order for which an
RCLS was not previously known to exist) is given in Section 3.6.

13
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3.2 Generating Arrays

Throughout this chapter, let g4 = p* be a power of an odd prime p with ¢ # 3 (p
can equal 3, but then a > 2), and let m be an odd number with m > 3. Also,
denote by F, the finite field of order g and by Z,, the set of integers modulo m.

Define a generating array (see [2]) to be a ¢ x mq array A defined on the symbol
set F; X Z,, such that, writing A;; = (z,y;5) for 1 < i< gand 1 < j < mg, the
following conditions hold:

(G1) each symbol appears once in each row of A;
(G2) if z;,; = z;,5, then ¢, = iz;.

(G3) if Y+t = Vst = Yiziptl — Yipip 80 (Ziyj, 24, jy41) = (Zinsay Tigjp+1), then

(#1,51) = (12, 52)-

Suppose A is a ¢ X mq generating array (with A;; = (z;;,y:;)). Define L to be
the mq x mgq array on symbol set F, x Z,,, with

Lig+i; = (25,95 + k)

for1 <i<q,1<j<mgand 0 <k < m—1 (and of course computations involving
the first and second coordinates are carried out in F, and Z,, respectively). As in
[2], the following holds.

Theorem 3.1 The array L defined above is an RCLS(mg).
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Proof Suppose Ligiij, = Ligtij- Then z;;, = zi;, and yi;, +k = yiz, + K, s0
that A;;, = A;;. By condition (G1), j1 = j2. So no symbol occurs more than once

in any row of L.

Suppose L g+ir.i = Lingtinj- Then Zi; = zi,; and yi,; + k1 = ¥iy; + k2. Since
Ti,j = Ti,j, it follows from condition (G2) that i; = 1;. But then y;,; = y;,;, and so

ky = k;. So no symbol occurs more than once in any column of L.
Therefore L is a latin square.

To show that L is row-complete, suppose

(Lryqinin s Lhagain,in 1) = (Dhygaiz o Liggin ja41)-

Then
(Zaq Yan + k1) = (Tagn, Yas +k2)
and
(Zia+1, Yaar + F1) = (Zo 541, Ui + Ra)-
Hence
(Zirqr i 41) = (Tiaias Tiria 1),
and

Via+l —V¥a = Waa+a +k) =G5 +k)
= (Yan+r + k) — (5 + K2)
= Y+l — Yk

so by condition (G3), (i1,71) = (32, J2)-

Therefore L is row-complete, and so L is an RCLS(mgq). 1

So to construct an RC LS(mgq), it suffices to construct a g x mq generating array
A (with A;; = (Z45,¥i;)), which is what will now be discussed.
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3.3 Choosing The y;;’s - R-Sequenceability

In Sections 3.3 and 3.4, assume m = 4r + 1, where r > 1. Thecase m = 4r + 3
(with r > 0) is similar, and is dealt with in Section 3.5.

Set y to be constant along columns of A, that is, set
yfj =35

for 1 <i< qand 1 < j < mgq, where the sequence s is to be determined.

Writing

dj = 8541 — 85

for 1 € j < mq — 1, condition (G3) then states that for each fixed z € Z,,, the
ordered pairs (z;j, ; j4+1) for which d; = 2 must all be different. Since there are at
most ¢* such ordered pairs, and since i is free to range from 1 to g, at most ¢ of the
d;’s can take on a fixed value 2. Furthermore, if z = 0, then y; ;41 = s;41 = 3; = y;j,
hence by condition (G1), z;j4+1 # 2ij, and so by a similar argument as above, at
most ¢ — 1 of the d;’s can take on the value 0. A simple counting argument then

shows that these upper bounds must be met, that is, exactly ¢ — 1 of the d;’s must

equal 0, and for fixed z # 0, exactly g of the d;’s must equal z.

So to summarize, the following are necessary conditions which the above se-

quence s must satisfy if A is to be a generating array:

(S1) each z € Z,, appears q times in s;
(S2) each nonzero z € Z,, appears g times as a difference s;; — s;;

(S3) 0 appears g — 1 times as a difference s;,; — s;.
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An additive group of order m is called R-seguenceable if there is an ordering
g1 = 0,92, ...,9m of its elements so that the partial sums g; + go + ... + g; are all
distinct for 1 < ¢ < m — 1 (exactly one element does not occur among these partial

sums). The ordering is then said to be an R-sequencing of the group.

The concept of R-sequenceability will be used to construct a sequence s satis-

fying conditions (S1), (S2) and (S3).

The following is the sequence of partial sums of the R-sequencing of Z,, (where
m =4r+ 1) givenin [8]: 0,4r,1,4r —1,.,r~2,3r+2,r - 1,3r +1,7,3r - 1,7 +
1,3r-2,...,2r—-2,2r+1,2r — 1, 2r,0. By the definition of R-sequenceability, all of
the numbers in the above sequence, except for the last, are distinct. Furthermore,
each nonzero element of Z,,, occurs once as a difference of consecutive terms in the
sequence (and 0 occurs zero times as a difference). Deleting the last term 0 then
gives a sequence z of length m — 1, all of whose terms are distinct, and such that
each nonzero element of Z,, occurs once as a difference of cyclically consecutive
terms. In fact, the same properties will hold for any sequence which is obtained
from z by cyclically shifting z and then adding a constant element of Z,, to each

term of the resulting sequence.

In particular, these properties hold for the following sequence w obtained by
adding » + 1 to each term of z and then cyclically shifting the resulting sequence
2r places forward: 2r +1,4r,2r +2,4r—1,...,3r—1,3r + 2,3r,3r + 1,r +1,r,7 +
2,r—-1,...,2r—-1,2,2r,1.

Define the reverse of the sequence w, written revw, to be the sequence obtained
by reversing the order of the elements of w, and choose s to be the sequence which
begins with g —1 0’s, followed by g— 1 sequences w, followed by one sequence revw,

and then ends with a single 0.
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Theorem 3.2 The sequence s, chosen as above, satisfies conditions (S1), (52) and
(53). |

Proof Condition (S1) clearly holds since, as mentioned above, each nonzero el-
ement of Z,,, appears exactly once (and 0 does not appear at all) in w, and hence
also in revw. Also by the discussion above, the differences s;;; — s; appearing in s
are: ¢— 2 0’s, followed by a single 2r + 1, followed by g — 1 of each nonzero element
of Z, except ¢ — 2 of (2r + 1) — 1 = 2r, followed by a single 0, followed by one of
each nonzero element of Z,, except 1 — (2r +1) = 2r + 1, followed finally by a single
0 — (2r + 1) = 2r. From this it is clear that conditions (S2) and (S3) hold. &

3.4 Choosing the z;;’s - Component Squares

Let o be a primitive element of F, (i.e. a generator of the multiplicative group of
nonzero elements of F,), and write F; = {f1, f2,..., f;}. To define the z;’s, latin
squares of side ¢ on symbol set £, will be used. These latin squares will henceforth
be called component squares . For 0 < k < m — 1, define the k** component square
C*) by
c® = { afi+tbo’+a f1<j<qg-1
acfi+ce fji=gq

for 1 <14,j < q, where a, b and c; are constants in F, to be determined later, and

ab£0 (0<k<m~—1). (3.1)
Since a; and ¥ are nonzero, and since o is a primitive element, C®) is a latin
square.

For 1 £ j < mgq, suppose symbol s; occurs for the t:." time at position j of the
sequence s (i.e. t; = |[{j': 85, = 85,1 < 7' < j}{)- So specifically, ¢ is the sequence
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which begins with 1,2,...,g—1, followed by m —1 1’'s, m — 1 2’s,..., m — 1 ¢’s, and
which ends with a single q.

Set the j** colamn of z’s in A to be the ££* column of the s* component square,

that is,
zij = C'.-(,:;:)
for1<i<qand 1 <j<mgq.

Clearly the ordered pairs (s;,t;) are all distinct. Therefore condition (G1) is
now satisfied, since if A;; = Aij;, then s; = yi;, = y;;, = s; and also C,(;::) =
Tij, = ZTijy, = C‘(;;:) = C,-‘;::;), so that t; = t; (since the C*)’s are latin squares),
and hence j1 = jz.

Furthermore, A satisfies condition (G2), since if z;,; = z;,;, then C,(: ’,Z = C.(: ’,1,
and so since the C*)’s are latin squares, f; = %,.

The rest of this section deals with finding values of the a's, b’s and c's for
which A satisfies condition (G3) (and hence is a generating array).

Condition (G3) requires that, for each fixed d € Z,,, all of the ordered pairs

(€, ci),
where 1 <i<¢q,1 < j < mqand s;y; — s; = d, be distinct.

There are seven cases.

Casel: d=0.

The relevant ordered pairs are (C, C,-(:,Ll) and (C,-(':’_,l, C,S':)) for 1<i< qand
1 <v < q—2, that is (using 097! = 1),

(aofi + boo” + o, a0 fi + boo** + co)
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and
(arfi + b1 +c1 a1 fi + ).

Since aof; + boo” + co and a, f; + by + ¢; both range over all of the elements of F,
as ¢ ranges from 1 to q and v is fixed, these are precisely the ordered pairs

(v, u + boo” (0 — 1))
and
(u,u —by),

where # € F; and 1 < v < ¢ 2. Now for fixed u, the values u + byo?(o — 1) are all
distinct as v varies from 1 to g — 2, (since by # 0 and since o is a primitive element
of Fg). The ordered pair (u,s + bo(o — 1)) is missing, and so by(c — 1) should be
set to —b;. Thus the only additional condition arising from this case is

b = (1 — o)by. (3.2)

The next four cases are similar to each other.

Case 2: d=2h—-1forl<h<r.

The relevant ordered pairs are (CS~*+1) cB+h)) ang (Cg'h“), C,-(;*h) ) for

1<i<gqand1<v<qg-1,thatis
(@3r-hs1fi + b3r-n410" + Car—pt1, @3r4n fi + bargno’ + Carsn)

and

(@r-ns1fi + Croht1s Qrin fi + Cran).
Since as,-p41fi + b3r—n+10Y + Car—hy1 30d Ge_py1 fi + G—hy41 both range over all of
the elements of F, as i ranges from 1 to ¢ and v is fixed, these are precisely the

ordered pairs

a3r4-h
C3r~h+1

a3r4h G3r4-h
(u., ~———u + (b3p4n — bsr—h+1)0" + C3ppn —
G3r-h+1 B3p—ht1 Q3r—~h+1
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and

Grth h
(u, ——U+ Crph — Cr-htl)s
Gy—h+1 Gr~h+1

whereu €F,and1<v<g-1.

Setting
a
wih _ Tth (1<h<r), (3.3)
Q3p-h+1 Gy -h+1
a3r4-h
bapsn — —— b3, _p41 # 0,
G3r—h+1
that is
barth sk (1 ch<y), (3.4)
bsr—h41r ' G3r_n41
and
QA3e+h h
Car+h — Cir—-htl = Cr4h — Cr—h+1,
Gar—h+1 Ge-h+1
that is
Gr4h )
Cir+h — CGo4h = (Csr—h-u - Cr—h+1) (1 < h < ")7 (3-5)

Ge—h1
it is evident by an analysis similar to that in Case 1 that all the ordered pairs in

this case will then be distinct.

Case3: d=2r+2h-1for2<h <r.

The relevant ordered pairs here are (CL "2 c@ **) and (C,-(:"H'z), Cg‘ ) for

1<i<gand1<v<g-1

By an analogous argument to that given in Case 2, setting

b o 2 (2<h<r), (3.6)
Ggr-h+2 B2r-h42

Preh , Swth o cp<y, 3.7)
barhisz ' Gar—n42

and
Gp

Crth — Ch = (G!r—h+2 - CZr—h+2) (2 < h < 1'), (3'8)

G2e—-h42
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forces all of the ordered pairs in this case to be distinct.

Case4:d=2r—2h+2for2<h<r.

The relevant ordered pairs are (Cjy, Coa™—"*?) and (CZ™*%, Cl ) for 1 <

t<gqand1<v<qg-1

By an analogous argument to that given in Case 2, setting

ML M (2 k<o), (3.9)
ap B2r4h
bzf—'l'l'z # azf—h+z (2 S h S r)’ (3.10)
bh ap
and
G4qp—-h42
Car—ht2 = Car—hts = (ch —carpn) (2<h <), (3.11)

forces all of the ordered pairs in this case to be distinct.

Case 5: d=4r—-2h+2for1<h<r.

The relevant ordered pairs here are (CE¥M o441y and (C,—(:'*'h), C,-(: rohilly

for1<i<gand1<v<gqg-1.

By an analogous argument to that given in Case 2, setting

Ge—htl = Q3p~h41 (1 S h S f), (3‘12)
Geth Q3r+h
brohs1 , Broh41
1<h<r), 3.13
by +h 7 Gpih (sh<r) 1)
and
B3r—h41

Crohtl = Cir—htl = (cr+n—csr4n) (LSh<T), (3.14)
Q3r4h -
forces all of the ordered pairs in this case to be distinct.

The last two cases are somewhat different.
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Case 6: d = 2r.
The ordered pairs under consideration here are (CL, C,-(::;l)), ( C;(,; ) C,-(:'ﬂ))
and (C&* CP) for1<i<gand1<v<g—2, thatis

(arfi + byo¥ + 1, 82000 fi + b2y 410" + caps1),

(ar1fi + 641, 83041 5 + Carg1)s

and

(02'+1f€ + Czr41,80f; + cO)

Since a,f; + bio” + c1, @41 fi + cr41 a0d a2041 fi + €204 all range over all of the
elements of F, as i ranges from 1 to q and v is fixed, these are precisely the ordered

pairs
A2r+1 G2r41 v a3z
(-u, a4+ (b2r 410 — i b )o + c2pq1 — '+lc1),
a) 1 a
G3r41 a3y
(u= U + Carpr — +lcr+1),
Ar+1 +1
and
Qg Qg
(u, u+co — cz-+1) )
A2e41 2r41
whereu €F,and 1 <v<gqg—2.
Setting
az, a,
a Gr41 G2r+1
A2r41
bzrs10 — = by #0,
ay
that is,
by a
#0 3.16
bzr-u a!r-{-l, ( )
Gr 4} a2
bar 410 — ——2by + Cappy — ——2=cy =g — C2r+1, (3-17)

G2r41
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and

G2r41 a3r41
Cardt = ~OTCL T Cargt = Gty (3.18)
1 +1

it follows by an analysis similar to that in Case 1 that all the ordered pairs in this
case will then be distinct.

Case 7: d=2r + 1.

The relevant ordered pairs are (C,S:)_l, C,(f *+1)) and ct ) ot for1<i<gq

and 1 <v<q-—1,thatis

(aﬂfi + bo + Co, “2r+lf€ + b2'+10 + 62'.'.1)

(a3r+1fi + b3 410" + Cap41, @rg fi + bp 107 + o)

Since aof; + bo + co and @3, 41 f; + bar416° + €341 both range over all of the elements

of F, as i ranges from 1 to q and v is fixed, these are precisely the ordered pairs

a a a
(‘u, e+ b2r 10 + C2p41 — 2'-Hbo - 2:1 -‘-‘o)
and
a, a, v a,
(1, = + (Bepr — —b3es1)0” + i1 — —Fcarn),
Q3r41 Q3p+1 B3p+1
whereu €F;and 1<v <g-—1.
Setting
B2r+1 = Gr41 (3.19)
ao @3r41’ ]
Gr41
b1 — bsr+1 # 0,
Q3p41
that is
b,
<t Gri1 (3.20)

bartr ' G341’
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and

+1 Qzr41 Qr41
Cril — Cir41 = b2r410 + €2y — G:o bo — ——co, (3.21)

G3r4+1 ao
it follows by an analysis similar to that in Case 1 that all the ordered pairs in this

case will then be distinct.

This completes the seven cases.

So whenever the a.’s, bx’s and c;’s satisfy conditions (3.1) through (3.21) above
(some of which are actually redundant, e.g. (3.9) follows from (3.1) and (3.6)),
then condition (G3) is satisfied and A is a ¢ X mq generating array (and so an

RCLS(mgq) exists by Theorem 3.1).

Theorem 3.3 Suppose 0 # 2, and set go = ... = @3y = 1,82,41 = ... = Qg =
'—lsbo = 1161 =1 —U,bz = '"bf = 1$bf+l = e = bﬁr = "1;62-»«(—1 = .- = b&r =
I by=..=by = thco=-%ande,=..=cy =0. Then thear’s, bi’s and

ck s satisfy conditions (8.1) through (3.21).

Proof Condition (3.1) holds since o # 2, and condition (3.2) clearly also holds.
Both the left and right-hand sides of (3.3), (3.6), (3.9) and (3.12) equal 1, so these
conditions hold. Both the left and right-hand sides of (3.5), (3.8), (3.11), (3.14)
and (3.18) equal 0, so these conditions also hold. (3.4) holds since the left-hand
side is -Z5 (recall o # 2), which is unequal to the right-hand side value of 1. (3.7)
holds since the left-hand side is 22, which is unequal to the right-hand side value
of 1. (3.10) holds since the left-hand side is —1, which is unequal to the right-hand
side value of 1. (3.13) holds since, for 1 < A < r — 1, the left-hand side value of
—1 is unequal to the right-hand side value of 1, and for A = r, the left-hand side
value of o — 1 is unequal to the right-hand side value of 1 (since & # 2). Condition
(3.15) holds since all three expressions equal —1. (3.16) holds since the left-hand
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side is =2(22-3) (recall o # 2), which is unequal to the right-hand side value of —o.
(3.17) holds since both the left and right-hand sides equal —%. (3.19) holds since
both the left and right-hand sides equal —1. (3.20) holds since the left-hand side is
—2, which is unequal to the right-hand side value of —1. Finally, condition (3.21)
holds since both the left and right-hand sides equal 0. #

Now it is well-known that there are ¢(q — 1) primitive elements in F,. Also,
#(g—1) > 2 since ¢ > 5. So F, has a primitive element o # 2, completing the proof

of the following theorem.

Theorem 3.4 There ezists an RCLS(mq) whenever m =1 (mod 4), m > 5, and
q s an odd prime power, q # 3.

Once again, the reader is referred to Section 3.6, in which the construction is

illustrated with an example.

3.5 The Case m =4r + 3

In this section, the case m = 4r + 3, where r > 0, is dealt with. The analysis is
similar to the m = 4r + 1 case, with only minor modifications, and so the details

will be kept to a minimum. Also, the same notation will be used here.

The following is the sequence of partial sums of the R-sequencing of Z,,, (where
m = 4r + 3) given in [8]: 0,4r +2,1,4r +1,...,7 —2,3r + 4,7 — 1,3r + 3,7, 3r +
1, +1,3r,7+2,3r —1,...,.2r — 1,2r + 2,2r,2r + 1,0. Deleting the last term 0
gives the sequence z. Adding r 4+ 1 to each term of z, tal;ing the reverse of the
resulting sequence (note that this was not necessary in the m = 4r + 1 case), and

then cyclically shifting that sequence 2r + 1 places forward gives the sequence w,
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which is: 2r +1,1,2r,2, .., r 4+ 3, r~1L,r4+2,7,7+1,3r +2,3r +1,37r + 3,3r,3r +
4,...,4r,2r + 3,4r + 1,2r + 2,4r + 2. Again s is the sequence which begins with
q — 1 0’s, followed by q — 1 sequences w, followed by one sequence rev w, and then
ends with a single 0.

As in the m = 4r 4 1 case, set
Gl #0 (0<k<m—1), (3.22)

so that the C(*)’s will be latin squares.

There are once again seven cases to consider, depending on the value of d =
3;+1 —8;. Just the relevant ordered pairs and the resulting conditions will be listed,

as their derivation is similar to the m = 4r + 1 case.

Case l: d=0.

The relevant ordered pairs are (C,-(: ), C;(,‘:L,.) and (C,-(':'_.";z) . C.-(':'“) Jfor1<i<gq

and 1 < v < ¢— 2, and the only condition arising from this case is

bars2 = (1 — a)bo. (3.23)

Case2: d=2h—-1for1<h<r.

The relevant ordered pairs here are (CS ™"+, CE*™) and (CE7+2), cEr+h+Y))

for 1 <1< qand 1 <v<q-—1, and the conditions are

Gr+h  _ Gsrthil (A<h<r), (3.24)

Gy ht1 Q3r—h42

bysn Qr+h
1<h<r), 3.25
by 41 # Gr—h+1 tshsr) (3:25)
and
a

Crih = Corthtl = ——(Cppp1 —Caponpz) (LS h<r).  (3.26)

Q3¢ -h4-2
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Case3: d=2r+2h+1forl <h<r.

The relevant ordered pairs here are (0,53'-"“), C,-(:')) and (C,-(:'"‘“), Ci(:ral»h-{-l))

for1<i<gqand1l<v<gq-—1, and the conditions are

Q2r—h+2 Gyqr—-h+3
bh an
1<h<rT) 3.28
bar—ht2 * G2r-h42 (I<hsr) ( )
and
a
Ch = Corahtt = — 2 (g pi2 — Corohss) (1< h<7). (3-29)
G4r-h+3

Cased: d=2r—2h+2for1 <h<r.

The ordered pairs under consideration in this case are (CZ Y ¢+ and

(C}:’,Cg"”z)) for 1 <i<gand 1< v<g-1, and the conditions are

ached DM 1<k, (3-30)
Q2r+h+1 ap
Buchis 4 Swhs (o), (3.31)
bar+hs1 G2r+h+1
and
Qzy—
Car—ht3 — Cormhtz = — a:ﬂ (car4ne1 —en) (1 <h<r). (3.32)

Case 5: d=4r —-2h+4forl<h<r.
The ordered pairs under consideration in this case are (CE "+, c87A+3) and

(Cg"’"’, Cg"'“)) for1<i<gand1l<v<q~1, and the conditions are

Q3¢ —h42 = Gyr—~h il (1 S h s '.), (3.33)
3r+h+1 Gr+h

(3.34)

2

- as,—
bsr—h+2 Sr—h+2 1<h<r)
bsf+h+1 Q3p4hi1
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and

""“:‘(cs.”.ﬂ-c,%) A<h<r). (3.35)

C3r—h+2 = Cr—h41 =

Case 6: d = 2r + 2.

The ordered pairs under consideration are (C “),C,-(,ml)), (C,-(:"m ,C‘-(q'“’)

and-(C,-?'“),Cg)) for1 <i< qand 1 <v <q-2, and the conditions are

G2y Qpyl Qo
Gar+2 a3r+2 Q241
bars2 Gqr42
+ # a r+ , (3.37)
by i1 G2p4+1
G2r4] A2y 41 ag
bz 410 — bars2 + Cae41 — ———Corpz = Co — Car41, (3-38)
Gqr42 Qyr42 Q2p 41 :
and
Q2e 41 Q41
C2r4+1 — - Cer42 = Cpy1 — Cary2- (3-39)
Gar4-2 a3y 42

Case 7: d =2r + 1.
The relevant ordered pairs are (C,-(:).l, C,(f '+1)) and (C',-(;'H), C,(:' +2) Jfor1<i<gq

and 1 <v < ¢ -1, and the conditions are

Q2p41 - G3p4-2 (3 40)
Qo Qryy’
bs*-l»z Q3r+2

) 3.41

br+1 * Gry1 ( )

and

3r+2 G241 a2r+1
T Crt1 = bar 10 + cap ) — ——by — —1=co. (3.42)
Gry1 L ao

This completes the seven cases.

C3r42 —

So whenever the ai’s, b’s and c’s satisfy conditions (3.22) through (3.42) above
(some of which are actually redundant, e.g. (3.30) follows from (3.22) and (3.27)),
then condition (G3) is satisfied and A is a ¢ x mq generating array (and so an

RC LS(mgq) exists by Theorem 3.1).
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Theorem 3.5 Suppose 0 # 2 and 3o # 2, and set ag = ... = a3 = l,62,41 =
v T Qg1 = —L,Ggry2 = LLbp = ... = b = Lbyy = ... =byy = ~Lboppn =
=Ll byia = =byqr = Lbarys = . = bgeg1 = ~Lbge42 =1 — 0,00 = =5 and
€L = ... = C4r42 = 0. Then the ar’s, b ’s and i ’s satisfy conditions (3.22) through
(3.42).

Proof Condition (3.22) holds since o # 2, and condition (3.23) clearly also holds.
Both the left and right-hand sides of (3.24) and (3.33) equal 1, so these conditions
hold. Both the left and right-hand sides of (3.27) and (3.30) equal —1 when A =1
and 1 when 2 < h <, so these conditions hold. Both the left and right-hand sides
of (3.26), (3.29), (3.32), (3.35) and (3.39) equal 0, so these conditions also hold.
(3.25) holds since the left-hand side is —1, which is unequal to the right-hand side
value of 1. (3.28) holds since, when h = 1, the left-hand side value of 22 (recall
o # 2) is unequal to the right-hand side value of —1 (since 3o # 2), and when
2 < h < r, the left-hand side value of —1 is unequal to the right-hand side value of
1. (3.31) holds since, when k& = 1, the left-hand side value of 1 — & is unequal to
the right-hand side value of —1 (since o # 2), and when 2 < h < r, the left-hand
side value of —1 is unequal to the right-hand side value of 1. (3.34) holds since
the left-hand side equals —1, which is unequal to the right-hand side value of 1.
Condition (3.36) holds since all three expressions equal —1. (3.37) holds since the
left-hand side equals -‘%%'—31 (recall o # 2), which is unequal to the right-hand
side value of —a. (3.38) holds since both the left and right-hand sides equal —%.
(3.40) holds since both the left and right-hand sides equal —1. (3.41) holds since
the left-hand side is 1, which is unequal to the right-hand side value of —1. Finally,
condition (3.42) holds since both the left and right-hand sides equal 0. 8

Observe that 3 and 5 are primitive elements of Fs and F; respectively, which
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satisfy both of the conditions imposed on o in Theorem 3.5. Also, since there are
¢(q—1) primitive elements in F,, and since #(g—1) > 3 when g > 9, it follows that
F, also has a primitive element o satisfying o # 2 and 30 # 2 when g > 9 (note
that at most one o € F, satisfies 30 = 2), completing the proof of the following

theorem.

Theorem 3.8 There ezists an RCLS(mq) whenever m =3 (mod 4), m > 3, and
q i3 an odd prime power, q # 3.

Theorems 3.4 and 3.6, combined with the facts (mentioned in Section 1.1) that
RCLS of order 9 and of every even order have been constructed, give the following

main theorem, the most important result in this thesis.
Theorem 3.7 There ezists an RCLS(n) whenever n is composite.

Proof By the remarks above, it suffices to consider the case when n is odd and
not equal to 9. Clearly such an n has an odd prime power factor ¢ with ¢ # 3 and
g < n. But then n = mgq for some odd number m > 3. Invoking Theorems 3.4 and

3.6 when m =1 or 3 (mod 4), respectively, completes the proof. 1§

The question as to whether there exist RC LS of odd prime order remains open.
Currently, the only known result relating to this question is that there do not exist
RCLS of orders 3, 5 or 7. Also, as an aside, several authors have studied the
question of whether or not a given row-complete latin square can be made to be
column-complete (i.e. to have a row-complete transpose) by suitably reordering its

rows. It turns out that this is not always the case (see e.g. (2] or [6]).
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4r +1

5). Then m

where r = 1, and so w is the sequence 3,4,2,1. Therefore, s is the sequence

7and g

2,NMJa

—

3, a primitive element of F; not equal to 2, and set

7 (one could also take m

=4,c0=—-%=—3-4

i
— 2

5and ¢
00000034213421342134213421342112430.

—L64
fi=ifor1 <i <7 Then COCH,CP CO and CW (in that order) are the

following component squares.

As in Theorem 3.3, set o

above. Note that 35 is the smallest composite order n for which an RCLS(n) was
Take m

CHAPTER 3. A COMPOSITE ORDER DIRECT CONSTRUCTION
In this section, an RCLS(35) is constructed to illustrate the method described

3.6 An Example
previously not known to exist.

4-35

O AN~D
MN-HOoOO WY
wENN—HO©
oYW mN
N-OoOLNRn
SO
HOAN—OOIN

OO
YPAN—HOY
—_oewnPMme
NI DO
SOOI
HHONN SO
DN DO

—aNMYWnoeD
QNN
OYIDNO Dy
FINOO ™
NP O
OO~ PN
NOO—MNMY

HOIMPINWD
OO YD
OO~ NMm
NP
MINOO=~N
FOOLO~NNm
NAFINOO

NPV O=N
FINOO~MNNMm
NN OD
Qe NO
NP0~
NOO—NMm
O

Writing z + Ty + 1 for (z,y) € F7 x Is, then A is the following 7 x 35 generating

array.
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Finally, the RCLS(35) L is shown in Figure 3.1.
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Figure 3.1
An RCLS(35)
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Chapter 4
Quasi-Complete Latin Squafes

In this chapter, the related concept of quasi-complete latin squares (QCLS) is
introduced, and a proof that complete sets of mutually orthogonal QCLS of order
p exist for every prime p. Such sets were previously only known to exist for primes
p <13.

4.1 Complete Sets of Mutually Orthogonal QCLS

An n x n latin square L is quasi-row-complete if each unordered pair of symbols
occurs exactly twice among the unordered pairs {L;j, L; j+1}, where 1 < ¢ < n,
1 <j<n-1. L is quasi-column-complete if its transpose is quasi-row-complete,
and L is quasi-complete if it is both quasi-row-complete and quasi-column-complete.
A quasi-complete latin square of order n will be denoted by QCLS(n). Finally, a
complete set of mutually orthogonal latin squares of order n is a set of n — 1 such
squares. (It is well-known and easy to show that no more than n — 1 such squares

can exist.)

34
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Freeman [9, 10] suggested that a QC LS(n) be used in the design of certain types
of experiments for values of n for which no RC LS(n) is known to exist, and in [10]
he constructed a QCLS(n) for every n. He then went on to prove that complete
sets of mutually orthogonal QCLS(5) and QCLS(7) exist [11}.

In [5], Campbell and Geller also proved the existence of a QC LS(n) for every n
(buif used the term balanced latin square instead of QCLS), and they also showed
that complete sets of mutually orthogonal QCLS(n) also exist for n = 7, 11 and
13.

Now it will be shown that complete sets of mutually orthogonal QC LS(p) exist

for every prime p. The proof is quite straightforward, and makes use of terraces.

A terrace (see [3]) of a group G of order n is an ordering by, bs, . .., b, of the
elements of G, such that each z in G with z* = e occurs once among the elements
bytby, b7 b, ...,b;1,b,, and for every other z in G, £ and z~! together occur a
total of two times among these elements (so either £ occurs twice and z~! does not

occur, or ™! occurs twice and z does not occur, or both z and ™! occur once).

Clearly whenever a,,a;, ..., a, is a terrace of G, so is ca,, cay, ..., ca, for any c
in G. Also, if G is abelian, then whenever a,,a;,...,a, is a terrace of G, so is
arl,az?,...,a;! (see e.g. [8, pg. 62]). The following theorem was proven by Bailey
in 1984.

Theorem 4.1 ([3, Theorem 1]) Then xn array L with L;; = a;b; (1 <t,5 <n)
is a QCLS(n) if and only if a7, a3}, ...,a7! and by, bs, . .., b, are both terraces of
G.

Now 0,n—1,1,n—2,2,n — 3, ... is easily seen to be a terrace of (Z,, +) (see e.g.

[8, Theorem 2.3]). This fact, along with Theorem 4.1, will be used in the proof of

the following theorem.



CHAPTER 4. QUASI-COMPLETE LATIN SQUARES 36

Theorem 4.2 There ezists a complete set of mutually orthogonal QCLS(p) for

every prime p.

Proof Let a;,as, ..., a, denote the terrace of Z, mentioned above. Define the p—1
arrays L), L@, . L®-Y) of size p x p by
Lgf) = a; + kaj,

forl1 <i,j<pand 1< k< p~1. Then kay, kay,...,ka, is a terrace of Z,, and
since Z,, is abelian, —a;, —ay, ..., ~a, is also a terrace of Z,. So by Theorem 4.1, L)
isa@QCLS(p)for 1<k<p-1

Suppose (L3, L) = (L&), L)) for some ky # k, with 1 < i,j < p and
1<k,ks <p—1. Then

a; + klaj =ay + kla‘ln

and

a; + k2a; = ay + kaa,.

Subtracting these equations and rearranging gives
(kr — ka)(a; — a,) =0,

and so since k, # ka2, a; = a,, that is, j = v, and hence also a; = a,,, that is, : = u.
This shows that L) and L{*?) are orthogonal for any k; # k,, thereby completing
the proof of the theorem. 1
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