
The dynamical evolution of substructure within dark matter halos is of 

central importance in determining many aspects of galaxy formation and 

galaxy evolution in cold dark matter cosmologies. The overall sequence 

in which the different stellar components of galaxies are assembled, the 

survival of galactic disks, the number of dwarf satellites orbiting giant 

galaxies, and the nature of stellar material in galactic halos al1 depend on 

the dynamics of halo substructure. In this thesis, 1 develop an analytic 

description of the evolution of substructure within a dark matter halo, and 

use it to construct a semi-analytic model of the formation and evolution 

of disk galaxies. 

Substructure within an individual halo is modelled as a set of distinct sub- 

halos, orbiting in a smooth background. These subhalos evolve through 

three main processes: dynamical friction, tidal mass loss, and tidal heat- 

ing. By including analytic descriptions of these three processes explicitly 

in a simple orbital integratiori scheme, it is possible to reproduce the 

results of high-resolution numerical simulations a t  a fraction of the com- 

putational expense. The properties of a subhalo can be estimated with 

an accuracy of 20%, until it has lost most of its mass or been disrupted. 

Using this description of satellite dynamics, 1 construct a semi-analytic 

model for the the evolution of a galaxy or eluster halo. 1 show that this 

model reproduces the basic features of numerical simulations, and use it 

to investigate two major problems in current galaxy formation scenarios: 

the prediction of excessive substructure in galaxy halos, and the survival 

of galactic disks in halos filled with substructure. 



I show that the small number of dwarf galaxies observed in the Local 

Group can be explained by considering the effects of reionisation on star 

formation in small halos. The stellar luminosities predicted in this case 

match the observed luminosities of local satellites. The predicted spatial 

distribution, sizes and characteristic velocities of dwarf galaxies are also 

consistent with those observed locally. 

Many of these satellite galaxies are disrupted by tidal stripping or encoun- 

ters. I investigate the properties of their debris, and show that its total 

mass and spatial distribution are similar to those of the stellar halo of 

the Milky Way. Furthermore, the stars in this debris are mainly old, sat- 

isfying another observational constraint on models of galaxy formation. 

Some satellites have been disrupted fairly recently, however, suggesting 

that coherent tidal streams may still be visible at  the present day. 

Finally, 1 investigate the effects of encounters on the central disk within the 

main halo. 1 find that the rate of disruptive encounters drops off sharply 

after the galaxy is assembled, such that the typical disk has remained 

undisturbed for the past 8-10 billion years. Less disruptive encounters 

are more common, and disks are often heated as they re-form after their 

last disruption, producing components like the thick disk of the Milky 

Way. These results may resolve the long-standing uncertainty about disk 

ages in hierarchical, cold dark matter cosmologies. It is less clear whether 

the bulge-to-disk mass ratios predicted by the model, for the currently 

favoured LCDM cosmology, are consistent with observations. The relative 

mass of the bulge in typical disk galaxies may place an upper limit on the 

age of their stellar contents. 
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A Cautionary Tale 

My supervisor likes to tell the story of a great city, that was once struck by a 

terrifying earthquake. As the aftershocks died away, the survivors gathered in the 

streets, amid the rubble of their shattered dwellings, only to be overcome by a new 

terror; looking up at  the night sky, they saw that it was divided in two by a great 

band of light, and concluded this must truly be the end of the world, for the cataclysm 

had split the sky itself. The punchline to this story is its setting - not, as one might 

imagine, four or five thousand of years ago, in a collection of mud huts somewhere in 

the cradle of civilization, nor even hundreds of years ago in a city of medieval Europe, 

but modern-day Los Angeles, after the earthquake of 1994. With the power out al1 

over the city, its inhabitants saw, in most cases for the first time, what was once a 

familiar sight; the starry vault of a dark sky, neatly transected by the great rift of 

the Milky Way. Our ancestors would not, in fact, have made the same mistake. It is 

only recently that we have lost Our familiarity with the heavens. Ironically, however, 

it is also only recently that we have gained a scientific understanding of Our local 

environment in the universe, and that we have started to appreciate the nature of the 

great disk galaxy which is Our home. 

This thesis aims to explore the nature and origins of Our Galaxyl , imagining it 

to be representative of the countless other galaxies we see throughout the universe. 

In particular, it attempts to explain the most prominent feature of the Milky Way, 

observed now for millennia; the flatness of the Galactic disk, which gives Our Galaxy 

II will follow the convention of capitalising 'galaxy' when referring to Our galaxy, the Milky Way. 



its characteristic appearance of a stream of stars, dividing the sky in two. This flat- 

ness, while clearly observed, has seemed hard to explain naturally, in recent models 

of galaxy formation. This was, in fact, part of my original motivation to explore the 

question of Our Galaxy's origins. More generally, 1 hoped to gain a better under- 

standing of the physical universe that surrounds us, its layout and its history, and 

the processes which govern its evolution. 1 hoped, in particular, to appreciate more 

fully Our local environment in the universe, which provided us with the Sun and the 

planets, the stars, and al1 the splendors of the night sky. 

The original point in this preface was that the average person today is ignorant of 

the appearance of the night sky. Many people once thought the world was flat, and 

now the idea is a synonym of ignorance. Yet it has been 70 years since Kapteyn and 

Shapley, and then Hubble, established the scale of our Galaxy and of the universe 

beyond it, and still this knowledge does not seem to have reached the public a t  large. 

Even the astronomy students 1 teach in introductory courses routinely confuse the 

Galaxy with the universe, and have no sense of the scale of either, while in the process 

of explaining Astronomy to the public during open houses and guided tours, 1 have 

sometimes had to update them on the revolutionary ideas of the 16th century! 

The purpose of this preface is to address this ignorance, since there is no point 

in presenting the dynamical history of Our Galaxy to  readers unfamiliar with the 

term 'galaxy' itself. In the next few pages 1 hope to introduce the lay reader to Our 

current understanding of the universe; its layout, its history and its workings. While 

the details of the thesis may remain obscure to those outside the field, and probably 

won't interest them much anyway, 1 hope that reading this initial section will a t  least 

give them a foothold in this subject, and provide basic vocabulary with which to  

tackle the rest of this work. At the end of the Preface 1 also provide an overview of 

the problem 1 considered in the thesis, and the methods 1 used to address it. 1 then 

refer the casual or confused reader to  the final section of the thesis, where 1 summarise 

its more technical points, and conclude on the structure and evolution of Our Galaxy. 



Readers with a background in Astronomy will already be familiar with the material 

in this preface, and may wish to proceed directly to the introduction instead. 

of the Universe 

The material contents of the universe, beyond the confines of Our planet, are or- 

ganised into structures on a set of progressively larger scales. These structures have 

been discovered in succession, historically, prompting the development of Mathemat- 

ics and Physics in the process. Unfortunately, only the first few rungs of this cosmic 

ladder are farniliar to the lay reader. Since this thesis concerns some of the largest 

structures in the universe, I will describe each of the intervening scales below. 

Material in the immediate vicinity of our planet forms the solar syste 

because it revolves around the Sun, as was first posited by Copernicus. Most of the 

transient phenornena observed in the night sky occur within the solar system, which 

houses the Moon, the planets and their moons, the asteroid belt, cornets and various 

other minor bodies, along with less easily seen distributions of dust, radiation and 

magnetic fields. The Sun is the central organising element of this system; al1 the other 

material in the solar system is thought to be debris left over from its formation, 4.5 

billion years ago. The Sun, the Moon and the planets are al1 distributed in roughly 

the same plane in space. As a result, seen in projection on the sky, they follow a 

single arc (called the ecliptic) to within ten or twenty degrees. As we shall see below, 

this flat spatial distribution suggests something about how the solar system formed. 

The scales of these astronomical structures are of course, astronomical, but I 

will mention them here to give the reader a point of comparison for the even larger 

structures discussed later. The Earth is roughly 13,000 km in diameter, and at  a mean 

density of 5.4 g/cm3 weighs 6 x 10" - that is, 6,000,000,000,000,000,000,000,000,000 

- grams. It takes light .13 seconds to circle the Earth, while a car moving a t  100 

km/hr would take 17 days to do so. The Sun is about 100 times bigger than the 

Earth, and slightly less dense (1.4 g/cm3, a little denser than water), giving it a mass 

of 2 x 1 0 ~ ~  grarns, or 300,000 times the mass of the Earth. The mass of the Sun 
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defines a convenient unit with which to measure al1 masses in hstronomy; the solar  

ass, denoted Ma. Light takes 15 seconds to travel around the Sun, while Our driver 

would take 5 years to do so. While the Sun is much larger than the Earth, the Earth's 

orbit is in turn much larger than the Sun - the mean radius of the orbit is 200 times 

bigger than the radius of the Sun, corresponding to 8 minutes of light travel tirne, 

or 170 years of driving time. This scale is in fact defined as a unit of length, the 

ka1 unit, denoted A.U. . The Earth's average speed in this orbit is about 

30 km/s. Pluto's orbit has a maximum diameter of 25 A.U., while the outer reaches 

of the solar system lie at 100 A.U. from the Sun. Thus it would take Our intrepid 

driver 17,000 years to reach the outer edge of the solar system, while light travels this 

distance in 14 hours. Even this local part of the universe is very, very large. 

Beyond the solar system lie other stars (and other planetary systems). The stars 

have been known to  lie outside the solar system for over 300 years, and over the 

course of the 19th century were established to be balls of ionised plasma like the Sun, 

though varying in size and mass, temperature and in chemical composition. Stars 

in the neighbourhood of the Sun typically lie a few light years from one another (a 

light year is a unit of distance, equal to the distance light travels in a year); for 

technical reasons, distances on this scale are measured in units called parsecs or pc, 

one parsec being equal to 206,250 AU.,  or 3.26 light years. Here again, we note 

that space is large and very empty, relative to things on Earth - the average distance 

between stars is 2,000 times the size of Our solar system. 

There is one last scale on which the structure of Our environment is apparent to  

the unaided observer (albeit the unaided observer living away from artificial lighting). 

While the brighter stars in the sky are distributed more or less uniformly, there is a 
i 

fainter band of light which divides the sky in two. The ancient Greeks named this band 

(galactos), claiming it was milk spilt from the breast of the goddess 

Hera, while she was feeding the infant Hercules. With the earliest observations by 

telescope, Galileo determined that the Milky Way consisted of the combined light 



of thousands of apparently faint stars, which might be normal stars lying at  great 

distances from us. The conclusion of the hypothesis is worth considering carefully. 

If most stars have roughly the same brightness, and the bright stars are distributed 

uniformly across the sky, while the fainter stars are concentrated in a single band of 

light, then we must be living within a flattened distribution, a disk or plane, whose 

edge is close enough to see (figure 1). 
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Figure 1 A schematic representation of the distribution of stars in the neighbourhood of 

the Sun. Nearby stars are distributed uniformly around the sky (smaller circle), 

while more distant stars are concentrated in particular directions (larger circle). 

1 will not discuss here the long and contentious debate that took place in the 

1920s, over how the stellar contents of the Galaxy were distributed in space, but say 

simply that it was established that we live in the middle of a great disk of gas and 

stars, slightly offset from the centre of Our Galaxy. The Galactic 

5,000 light years, or 1,500 pc, in thickness, and about 100,000 light years, or 30,000 

pc, in diameter. Thus the axis ratio of the disk is 20:1, which is why it is described as 



'thin'. The number of stars in the Galaxy is a few times IO1', but the total mass of the 

Galaxy is much larger than one might expect from this - 2 x 1012 Mo or so - due to the 

mysterious 'dark' matter. The Milky Way also has several other stellar components 

- a central Bu ge, and a tenuous Stellar a10 (also known as the Corona or the 

eroid) distributed spherically around the disk, in particular. The disk rotates 

at  roughly 200 km/s, while the other components have little net rotation. While Our 

view of the Milky Way is partly obscured by dust in the plane of the disk, it no dou 

resembles other external disk galaxies like the one shown in figure 2. 

Figure 2 Arp 281, a nearby disk galaxy, similar to the Milky Way. Note the disk, the cent 

bulge, and the small satellite galaxy (above and to the right). Image taken 

the author and D. Balam with the 1.88-m Plaskett telescope at the Domin 

by 

ion 



What of the universe beyond our Galaxy? Until the early part of this century, our 

Galaxy was often thought to constitute most of the universe, although some inspired 

minds, including Immanuel Kant, had supposed otherwise. Only in the 1930s, with 

the work of Hubble, were the nebulae, thought to be clouds of gas within Our own 

Galaxy, demonstrated to be separate galaxies, lying at  great distances from ours. 

Just as gravity organises the solar system and the Milky Way, it organises the Milky 

Way's nearest galactic neighbours into a structure called the Local 

Local Group includes three large spiral galaxies, the Androme  

known as 'M 317, the most massive of the three, the Milky Way, and a smaller galaxy 

known as M 33. Each of these large galaxies has several smaller companions, while a 

few other independent galaxies also form part of the group. The current membership 

includes about 40 galaxies, ranging in mass from 106 Mo to 1012 Mo. In total, the 

Local Group is thought to  measure 1 Mpc (one million parsecs) in size, and to weigh 

E 3 x 1012 Mo. Typical velocities within the Local Group are several huridred km/s, 

comparable to the rotation speed of the disk. 

And beyond this? The Local Group is only one of many associations amongst the 

billions of galaxies we can see throughout the universe, with the aid of telescopes. 

Sometimes galaxies group together in much larger numbers, forming (galaxy) clus- 

ters, with hundreds of large members and thousands of smaller members, measuring 

several Mpc across, and weighing 1014-1015 Mo - hundreds or thousands of times the 

mass of the Milky Way. Sometimes, at  the other extreme, galaxies appear to  be 

isolated, though it may be that they have small companions we have not detected. 

Individual galaxies, and groups and clusters of galaxies, tend to  be associated in 

larger structures which, while they are not gravitationally bound, show up distinctly 

in large-scale surveys. This large-scale s t ruc tu re ,  on scales of tens or hundreds of 

Mpc, represents the biggest inhomogeneities in the universe. On al1 scales larger than 

these, right out to the light horizon, approximately 13 billion light years (4 billion 

pc) from us, the universe is relatively smooth and uniform. 



is tory of t h e  Universe 

As the different scales which characterise the universe were discovered progres- 

sively, from the smallest to the largest, Our sense of the history of the universe be- 

came clearer. We know it now as the history of structure formation, the formation of 

atoms and nuclei; of gas clouds, planets and stars; of galaxies, groups and clusters of 

galaxies; and finally of the largest structures. 1 will outline Our current knowledge of 

these processes in the following section, and return to some of the underlying physics 

in the next. 

The galaxies and groups of galaxies described previously do not float motionless 

in intergalactic space, nor do they move about at  random like molecules in a gas; 

their motion is overwhelmingly away from us, with an average velocity proportional 

to  their distance. This was the great discovery of Hubble in the 1930s. Assuming 

that our vantage point in the universe is typical (an assumption called the Cosrno- 

logical Principle), this implies that everything in the universe is moving away from 

everything else, or that the universe is in uniform expansion. By implication, the 

material contents of the universe used to be much more tightly compressed, so much 

so that the temperature and density at  any place in the universe would once have 

been greater than those in the heart of the Sun. The expansion from this early, hot, 

dense phase is referred to as the Big Bang,  although analogies with an explosion are 

generally misleading, as the expansion of the universe is uniform and has no centre. 

Since light travels at  a finite speed, looking out to some distance corresponds 

to looking back to some early epoch, and in this sense we know that the Big Bang 

occurred, because if we look far enough away, we can see it going on. In fact, this 

statement is not strictly true; at  early times, the material in the universe was so hot 

and dense that it was an ionised plasma, opaque to light, just as the Sun is today. 

With the expansion, its temperature and density dropped to the point where electrons 

combined with atomic nuclei to  form electrically neutral atoms, and the universe 
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became transparent to light, about 100,000 years after the Big Bang2 . When we 

look to large distances, we can see up to the start of this era, but no further. The 

light from earlier times, shifted in frequency by the expansion of the universe, forms 

the Cosmic Microwave Background (CMB) . 
At the start of this new era, the universe was very nearly homogeneous. Local 

fluctuations in density around the mean value, observed as changes in the brightness 

of the CMB, were less than 1 part in 100,000. Since this time, the effects of gravity 

have made the universe much less homogeneous on small scales; a typical galactic disk 

is 100,000 times denser than the average density of the universe. While it is hard to 

measure the distribution of fluctuations in the CM% on al1 scales, theoretical models 

suggest that the (spatially) small fluctuations should have been more extreme than 

the large ones. In turn, gravity would have acted faster on these regions, causing 

positive fluctuations in the local density to acquire more material and become even 

denser . Eventually, t his process made certain regions sufficiently dense that rather 

than expand with the rest of the universe, they recollapsed in on themselves. The 

continued collapse of such regions was then halted only when star formation or some 

other process injected enough energy or angular momentum into them to  support 

their mass against further collapse. The early universe should thus have contained 

many small, condensed regions where the first stars were forming, perhaps a few 

million years after the Big Bang. 

At later times, larger, less extreme fluctuations would start to collapse gravita- 

tionally. These objects would already contain many small star-forming regions within 

their volume, however, so this collapse would be far from smooth, but involve many 

violent mergers between dense lumps of material. It is a t  this stage that we ex- 

pect galaxies to have formed, first on small scales, producing objects like the dwarf 

2Later in the history of the universe, high-energy radiation from hot stars and active galaxies 
re-ionised many of these atoms, such that intergalactic gas in the present-day universe consists 
mainly of charged particles. 
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galaxies of the Local Group, and then on larger scales, producing objects like the 

Milky Way. Finally, galaxies would have been attracted together to form the largest 

bound objects, groups and clusters of galaxies. This process of collapse and merger 

on progressively larger scales is known as hierarc ical s t r uc tu r e  for 

It is not quite clear where to place the formation of the different components of 

Our Galaxy in this sequence. The disk of the Galaxy continues to form stars very 

actively to  the present day, and contains stars of al1 ages, going baek 12 billion years, 

or four-fifths of the age of the universe. The other components, the 

corona (or stellar alo), appear to be made up of old stars, as old as any we see 

in the universe. One of the goals of galaxy formation models is to  explain these 

observations. Closer to home, our Sun, with an age of 4.5 billion years, would have 

formed when the universe was two-thirds of its present age, while the planets formed 

shortly thereafter. Life on Earth, in al1 its wonderful variety, is more recent still, only 

two to three billion years old. 

T h e  Physics of the Universe 

How then was al1 this accomplished? While the physical processes that formed 

atoms, stars and galaxies cannot always be studied in the lab, they have been partially 

determined over the past century through theoreticâl modelling and the detailed 

observation of the universe, greatly aided by work in related fields of physical science. 

On the largest scales, the behaviour of the universe is relatively simple, and can 

be described by a few quantities, known as the cosrnological 

determine its age, size, and expansion rate. These parameters include the 

0,  which describes the relative expansion rate of the universe, or equiva- 

lently the time that has elapsed since the Big Bang, the density parameter, 0, the 

density of the universe relative to the critical density needed to stop its expansion, 

and the cosmo ogical constant ,  ho (sometimes denoted fin), which measures the 

response of empty space to the expansion. The global behaviour depends on the 



values of these parameters; in particular, if R > 1 and ho = 0, the universe will even- 

tually recollapse, whereas if R < 1 and A. = O, or if A. > O, the universe will expand 

forever. One of the original goals of modern cosmology was to  attempt to determine 

the values of these global parameters; indeed, much of contemporary galaxy forma- 

tion theory was developed as part of this endeavour. While galaxy formation models 

may still help determine the values of the Hubble constant, the density parameter and 

the cosmological constant, other methods such as observation of the CMB have now 

superseded them in this task. Galaxy formation does play a crucial role, however, in 

the understanding of the material contents of the universe. 

The density parameter R is known from studies of the CMB, galaxy clusters and 

several other observations to be approximately 0.3 i~ 0.1; that is the universe has only 

three-tenths of the density it would need to stop its continued expansion. The theory 

of nucleosynthesis, the production of atomic nuclei and by extension the different 

chemical elements in the Big Bang, predicts that the density of normal matter in 

the universe should be around 0.1 or less (this material is called baryonic, baryons 

being protons and neutrons, the massive particles which make up atomic nuclei). 

Thus, two-thirds of the matter in the universe must be in some other, unknown form. 

Where is this stuff? In fact we have good evidence that it surrounds and permeates 

galaxies and clusters of galaxies. The Milky Way, for instance, spins so fast (roughly 

200 km/s at  the position of the Sun) that the outer parts of its disk would fly apart 

if not held in place by much more niass than can be accounted for in the visible 

stars. The same is true of galaxy clusters - the ratio of the mass needed to keep them 

gravitationally bound to the light we receive from them is roughly 100 times greater 

than the mass-to-light ratio of the Sun. Thus, since clusters do contain normal stars 

as well, most of their mass must be 'dark', in the sense that it does not interact with 

light and is effectively invisible. Determining the nature of the d a r k  

discovered by Fritz Zwicky in the 1940s, remains one of the greatest problems facing 

modern astrophvsics. 



How does one go about studying material which is, by definition, invisible? Dark 

matter has at  least one definite property, and that is mass. Like normal matter, dark 

matter in the early universe would have been subject to gravitational instability: re- 

gions with slightly more material initially would have exerted a stronger gravitational 

pull on their surroundings, attracting more material and becoming yet more dense. 

The conclusion of the process would have been the collapse of regions into dense, 

gravitationally bound lumps called alos. Since normal matter and dark matter do 

not interact strongly except through gravity, the two would initially have been mixed 

through these regions. Normal matter does interact with light, however, and can 

thereby radiate away, or issipate, energy. This process is also referred to as 'cool- 

ing', since it corresponds to the cooling of a gas in the conventional sense, that is the 

expulsion of microscopic kinetic energy by radiation. Once confined to a dense re- 

gion, where collisions between atoms were common and the consequent radiation and 

dissipation of kinetic energy was possible, the normal material would have collapsed 

further than the dark matter, forming a concentrated residue sitting in the centre of 

each dark matter halo. The final distribution of baryons would be determined by two 

processes. The first is the conservation of angular momentum, which cannot be lost 

through conventional radiation and would force collapsing material to form a rapidly 

rotating disk if it had any initial spin at  all. The second is star formation, which 

would become an important source of energy once the baryons reached the densities 

typical of Our Galactic disk. 

Within this dense star-forming object, or proto-galaxy, the first generation of stars 

would be born from the densest regions of gas, would evolve - burning through nu- 

clear reactions which transmute hydrogen to  helium, and helium to  heavier elements 

(referred to collectively as rnetals in astrophysics, in contrast with the conventional 

definition) - and would die, leaving slow burning remnants in the case of low-mass 

stars, or exploding as supernovae in the case of high-mass stars. These supernovae, 

occurring a few million years after the first stars formed, would have expelled their 



metal content into the surrounding interstellar medium, changing its chemical com- 

position permanently. 

From considering these basic processes, one gets a rough picture of how galax- 

ies first formed. (Although clearly the whole process would have been much more 

complicated than the early stages of structure formation, when gravity was the only 

important force.) Within halos of dark matter, gaseous baryons cooled and collapsed 

into centrally concentrated objects dense enough to form the first generation of stars. 

The most massive of these stars evolved quickly and exploded as supernovae after 

only a few million years, reinjecting enough energy into the gas to halt further col- 

lapse. Depending on the initial state of the baryons, these early star-forming regions 

may have been rotating disks, but subsequent merging with other halos containing 

other star-forming regions would have disrupted this structure. Disks could then have 

reformed as more gas fell into the halo and lost its energy, while preserving its angular 

momentum, possibly to be disrupted again by subsequent mergers. Understanding, 

from this rather complex and muddled picture of galaxy formation, how Our Galaxy 

came to look as it does today is the goal of this thesis. 

A Summary of t 

At the beginning of this preface, 1 reminded the reader of the one most easily 

observed properties of Our Galaxy, namely its thinness. The axis ratio of about 20:l 

that characterises the disk of Our Galaxy is mirrored by a corresponding feature in the 

motions of disk stars: the average random velocity of stars in and out of the plane of 

the disk is about 20 km/s, while their orbital motion carries them around the Galaxy 

at  200 km/s, or ten times as fast. Since the kinetic energy associated with motion is 

proportional to the square of the velocity, this means that the average star has 100 

times more energy associated with its orbital motion than with its random motion in 

and out of the plane of the disk. If one likens the motions of stars to the motions of 

gas molecules, random motion is analogous to heat; in this sense, the disk is CO 

that is its stellar motions are highly organised, rather than random. 



A cold, highly organised disk is the natural product of dissipation and the conser- 

vation of angular momentum, if the disk forms from the collapse of a single bal1 of gas 

with some initial spin. Yet the clumpiness of dark matter on smalP scales implies that 

galaxy formation was nothing like this. Galaxies formed from lumps, which formed 

from smaller lumps, and so on, and a galaxy the size of the Milky Way would have 

had many progenitors in this process, each with their own stars and distinct struc- 

ture. One might reasonably expect the outcome of such a chaotic history to look like 

a mess. Indeed, some galaxies, a minority of about IO%, are very mixed up - these 

are the elliptical galaxies. But spiral galaxies, like the Milky Way and most of the 

isolated galaxies we see in the sky, are not messy but highly structured. 

This problem can be rephrased in a slightly different way. The Milky Way formed 

out of the material occupying a certain volume of the universe. Models of the early 

distribution of dark matter predict that this region would already have contained 

many smaller halos of collapsed material, either entirely dark, or containing dwarf 

galaxies. If the dense central cores of these halos survived disruption as the Milky 

Way formed, then they would still be orbiting Our galaxy, presenting a hazard to 

the stability of the Galactic disk. The thinness and age of the disk of the Milky 

Way places limits on the 'lumpiness' of the material from which it formed, as any 

large lumps would have stirred it up, scattering its stars out of the plane of the disk. 

It is not immediately clear whether these limits are consistent with the lumpiness 

predicted by current cosmological theories. 

To attack this problem requires a mode1 of galaxy formation that covers a range 

of scales, from the thickness of the disk to the diameter of the Local Group; that 

describes both the conditions of the background universe and those in the main part 

of our Galaxy; and that can be run many times, to determine how likely it is to  

reproduce the specific properties of Our Galaxy in a large set of realisations. Existing 

models of galaxy formation tend to be largely numeriea , that is they generate 

complex results using many simple calculations, treating galaxies as clouds of point 
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masses which interact only through gravity. While conceptually simple, and robust 

in their predictions, such models are very expensive to run computationally, requiring 

weeks or months of computer time to generate a single set of results. An alternate 

approach to studying astrophysical problems is to do the calculation with pen and 

paper; this is called the ana od. This has the advantage of speed, but c m  

only be used to solve the simplest problems, typically those with a very simple spatial 

symmetry. My strategy, in this thesis, has been to use the bastard child of these two 

approaches, a semi-analytic met which mixes pen-and-paper analytic results 

with a certain amount of raw numerical computation. The result is a relatively 

complex model, but one that runs 5,000-10,000 times faster than purely numerical 

methods. While semi-analytic models are only approximate, and must be checked 

carefully against numerical results when possible, they provide the speed required to  

study the statistics of galaxy formation, for many different scenarios and choices of 

parameters. 

In the first part of this thesis, I outline an analytic description of minor mergers 

between lumps in a larger halo, that forms the basis for my model. In the second 

part, I then describe how to combine this analytic description with various other 

components to produce a complete model of galaxy formation, and then use this 

model to investigate the problem of disk survival, and several related problems. The 

details of these two sections are fairly technical, but the conclusion offers a summary 

of this work which 1 hope will be more accessible to the lay reader. 



Astronomy is an effort to understand both the contents of the universe, that is, the 

organised structures we see within it, and the workings of the universe, that is, the 

processes by which these structures formed. This endeavour started long ago, with 

the first attempts to explain the mysterious regularities of the Sun, the Moon and the 

planets, and has inspired many developments in mathematics and physics over the 

centuries. If we pursue it to this day, it is partly in the hope that it will continue to  

teach us new mathematics and new physics, but also, perhaps, because we sense we 

are close to the end of a chapter in the book. We can now observe most of the volume 

of the universe that will ever be visible to us, and we have instruments capable of 

detecting most forms of electromagnetic radiation, and even gravitational radiation 

and massive particles from space; that is to Say, we can detect most of the information 

we will ever receive from it. The challenge now is to begin to  understand the universe 

we observe by these means. 

Observations show us organised structure on many scales in the universe, from 

the sub-atomic to the sub-horizon, material arranged by the interplay of particles 

and forces. The largest structures, on scales where gravity is the dominant force, are 

simplest to understand, and it is here that the current picture of cosmogenesis seems 

most reliable. Moving to smaller scales, structure becomes easier to observe, but 

harder to explain, as electromagnetism and the other forces start to play an impor- 

tant role. Galaxies, in particular, sit at  the threshold of this new regime, which is why 

understanding galaxy formation is one of the main stumbling blocks in current astro- 

physics. Yet galaxies provide a vital connection between the global laws that govern 

the universe as a whole, and the detailed appearance of Our immediate surroundings. 
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This thesis, which explores galaxy formation, is one small part of a broader attempt 

to bridge the gap between local observations and universal laws, relating the detailed 

structure of Our Galaxy to the formation of galaxies and larger-scale structure a t  a 

more general level. 

ierarehical Galaxy rmation in a Universe ominated by Cold 

Our current picture of structure formation is based on a few key elements. First, 

several independent lines of argument - the theoretical behaviour of space and matter 

predieted by General Relativity, the observed expansion of the universe around us, 

and the existence of a cold, uniform background radiation, the Cosmic Microwave 

Background (CMB) - al1 imply that the universe was once much hotter and denser 

than it is now, and that the moment corresponding to  the origin of the expansion, 

the Big Bang, occurred at some finite time in the past. While the initial moments 

cannot be observed directly, we can see back to the moment when the universe be- 

came electrically neutral and transparent to light, the epoch of recombination, and 

observe its state at  the time by looking at  the CMB. Several features of the CMB are 

striking; notably, it is uniform to  one part in 105 (Smoot et al. 1991) on large scales, 

indicating that the universe as a whole is extremely uniform within its current hori- 

zon. Equally important, however, is the fact that it does show some small variations, 

whose amplitude varies with scale in a characteristic way. These fluctuations provide 

the initial conditions required for the subsequent growth of structure. 

A second essential element of current structure formation models is dark matter. 

The dynamics of galaxies and clusters, which probe the distribution of mass in the 

universe on the largest scales, are inconsistent with the mass distributions we would 

infer from their light alone. While gas in various phases, or very low-mass stars, can 
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account for some of the missing mass, the discrepancy between the estimated and 

required masses is huge, typically a factor of ten or more. The one other probe of the 

gravitational potential available on these scales, gravitational lensing, or the bending 

of light as mass curves space-time around it, confirms these estimates. Whatever 

accounts for the missing mass, it must by definition be 'dark', that is it cannot 

interact with electromagnetism, since it has to account for a deficit in mass per unit 

light. We have another constraint on its properties: the reaction networks which 

predict the abundances of elements forged in the latter stages of the Big Bang are 

extremely sensitive to the overall density of the universe in protons and neutrons, 

the baryons that account for most of the mass of normal matter. Nucleosynthesis 

limits the baryonic content of the universe to about a third of the total density due to 

matter, and since much of this can be observed directly in the form of stars and gas, 

most dark matter must be non-baryonic (Krauss 2001). Finally, since dark matter 

dominates the mass density of the universe, its dynamics at  early times will strongly 

affect structure formation. Dark matter particles which were still relativistic in the 

early universe could stream out of dense regions, erasing density fluctuations until 

late times. In this 'hot dark matter' (HDM) picture, the only surviving structure 

after this era would be on very large scales, and clusters and galaxies would have 

to  form through the fragmentation of these larger objects, producing numbers and 

distributions of structure quite different from those observed (White, Frenk & Davis 

1983). Current models therefore favour 'warm' or 'cold' dark matter (WDM and 

CDM respectively), particles that became non-relativistic earlier on in the expansion 

of the universe, and allowed small fluctuations to survive. 

The initial fluctuations seen in the CMB grow in amplitude through gravitational 

instability, and eventually collapse, becoming gravitationally bound. In a universe 

dominated by CDM, fluctuations on small scales have larger initial amplitudes on 

average, and therefore collapse first. Any collapsing volume is therefore likely t o  con- 

tain smaller regions which have already collapsed, and structure grows larger with 
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time through successive mergers between these regions. Within these regions, gas be- 

comes dense enough to cool by radiation, collapsing further and forming stars. This 

process is normally called hierarchical structure formation. While the details of the 

process become very uncertain once stars start to form, the first objects likely to 

have formed stars in the early universe would probably have contained about a mil- 

lion solar masses of material. A large galaxy such as the Milky, with a total mass of 

1012 MO, would have formed from the merger of a whole spectrum of smaller objects, 

including hundreds or thousands of these smallest star-forming halos. Mergers be- 

tween collapsed regions of dark matter, commonly called 'halos7, by analogy with the 

dark matter distributions surrounding present-day galaxies, are only one part of the 

galaxy formation process. After their parent halos have merged, the baryonic contents 

rearrange themselves, dissipating energy and forming condensed central regions, the 

galaxies observed today. Even ignoring the cornplexities of the dissipative processes 

involved, however, some parts of this picture seem inconsistent with observations. 

Most large galaxies - roughly 80% of them - have disks (Binggeli, Sandage & 

Tammann 1988), and most disks are fairly thin (van der Kruit & Searle 1982; Shaw 

& Gilmore 1990). The disk of the Milky Way, for instance, has an axis ratio of 

roughly 20:l (Bahcall & Soneira 1980). It is also fairly old - the oldest parts of the 

thin disk are at  least two-thirds the age of the universe (Carraro et al. 2001). Yet old, 

flat disks are vulnerable to heating and disruption. The disk of the Milky Way has 

roughly 100 times as much energy in its in-plane rotation as in its vertical (out-of- 

plane) motion. The addition of energy from an object with even 1% of the disk's mass 

could change this balance, heating the disk appreciably. If the Milky Way formed 

through a series of mergers, how has its thin disk survived continua1 disruption for 

so long? Hierarchical galaxy formation in CDM cosmologies leads to other problems 

as well. The density profiles of CDM halos have been studied extensively (NFW 

1996, 1997; Moore et al. 1998), and are generically predicted to have high-density 

cusps at  their centres. These cusps survive mergers as distinct structures, leading to  
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a general lumpiness of CDM halos. Even if these lumps do not collide directly with 

the disk of a central galaxy, they may heat it indirectly, by causing fluctuations in 

the potential of the halo. These lumps can also exchange angular momentum with 

the disk; in simulations of disk formation, this process leads to the disk losing most 

of its angular momentum, and collapsing down to  a fraction of the size of observed 

disks with similar rotation velocities (Steinmetz & Navarro 1999). If the halo of Our 

galaxy is full of lumps of dark matter, it also raises another question: why do we see 

no evidence for associated stars? The halo of the Milky Way does contain 11 other 

luminous objects, dwarf galaxies ranging in size from 1% to 0.001% of the mass of 

Our Galaxy (Mateo 1998). The predicted number of dark subhalos down to the same 

mass limits is on the order of 1000, however. Did only a handful of these objects form 

galaxies, or is the CDM prediction incorrect? 

There are alternatives to cold dark matter cosmologies. Dark matter could be 

slightly 'warmer', or have some self-interaction (Spergel & Steinhardt 2001; Hannes- 

tad & Scherrer 2000), the power spectrum of initial density fluctuations could be 

truncated on small scales by an additional mechanism (Gramann & Hütsi 2000), 

dark matter could decay with time (Cen 2001), or gravity itself could work differently 

on large scales (Bekenstein & Milgrom 1984; Milgrom 1986). To distinguish between 

these radical possibilities and more mundane solutions to the apparent problems of 

hierarchical galaxy formation, one requires a mode1 of galaxy formation that can con- 

nect the assumed properties of matter to observable features of galaxies, groups and 

clusters. I will discuss two main classes of such models in the next section. 
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1.2 Current Galaxy Formation 

1.2.1 Numerical Models 

The evolution of matter under the effects of gravity can only be described analyt- 

ically for systems with very simple geometry: two isolated point masses, for instance, 

or a single, spherically symmetric distribution of material. To follow the formation of 

more general structures through the effects of gravity, astrophysicist have used numer- 

ical models since the time of the earliest computers. The simplest of these numerical 

models, N-body codes, use sets of point particles to represent continuous distribu- 

tions of matter, and calculate the gravitational interactions between these particles 

to determine the evolution of the system. The number of particles, the number of 

timesteps, and the accuracy of the force calculations determine the overall accuracy 

with which a mode1 reproduces the evolution of a given physical system, although 

many subtleties exist in representing continuous distributions with discrete particles, 

choosing appropriate timesteps and e~tima~ting forces to sufficiency accuracy without 

incurring huge computational expense. 

Early N-body code calculated al1 the inter-particle forces directly, requiring N2 

calculations to advance N particles over a single timestep. More sophisticated codes 

developed subsequently calculated forces on a grid of sample points, or used similar 
3 

algorithms to separate the force calculations from the underlying representation of 

the matter distribution, reducing the order of the calculation to roughly N log(N) per 

timestep. Numerical codes have also evolved to take advantage of technological ad- 

vances, in particular the recent development of large parallel machines. The detailed 

implementation of a code, the accuracy of the force calculations, and the timestepping 

criterion al1 affect the actual run time of a given simulation. Nonetheless, the number 

of particles used in an N-body or related simulation remains indicative of its overall 

computational expense, so 1 will use this as a point of cornparison iri the discussion 



Chapter 1: Introduction 22 

that follows. Typical simulations with E IO5-106 of particles are currently possi- 

ble on desktop machines, while the largest supercomputer simulations have IO8-10' 

particles. 

In the simplest cases, simulations by ru'-body or similar techniques are a fairly 

accurate representation of collisionless dynamics, approximate only in the sense that 

they are often used to represent systems with far more individual 'particles'. Thus 

large galaxies, for instance, contain 1010-1011 stars, while the underlying dark matter 

distribution may consist of huge numbers of microscopic particles. This should not be 

a problem provided the behaviour of the system is insensitive to the exact number of 

particles used. Typically, this sets a lower limit on the number of particles required to 

model a given system accurately. Studies of minor mergers, for instance, have found 

that mass loss from the tidal disruption of a satellite can be determined accurately 

using = 1000 particles (Klypin et al. 1999a; Velazquez & White 1999; Hayashi & 

Navarro 2001). Similar studies of dynamical friction, the drag force exerted on a 

satellite by the wake it produces in the halo, indicate that the background halo must 

be resolved a t  a comparable level to produce accurate results. Thus, in concrete 

terms, to study the evolution of satellites orbiting in a galactic halo, down to the 

size of the smallest satellites of the Milky Way, would require roughly 1000 particles 

for each satellite, or one million particles in total, and a few million particles for the 

background halo, whose total mass is several times larger. Modelling such a halo 

in its surrounding cosmological context would require on the order 107 particles in 

total. Modelling galactic disks is comparably difficult ; not only are these structures 

extremely thin, but their fragility makes them very sensitive to spurious numerical 

heating, if they are represented by too few particles. Thus an estimated 10'-107 

particle simulation is required to produce a disk model which remains stable for a 

Hubble time (Quinn, Hernquist & Fullagar 1993). While simulations of this size are 

becoming more common, and should be trivial to run on small computers in another 

five or ten years, their computational expense at  the present time, corresponding to 
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weeks or months of CPU time on a workstation, prohibits routine use. 

The limitations are even more restrictive if one adds the expense of hydrodynam- 

ical calculations to these estimates. The basic evolution of gas is better described by 

numerical models whicli represent the underlying matter distribution by cells with 

some finite size. These smoothed-particle hydrodynamics (or SPH) techniques typ- 

ically demand a computational effort exceeding that of N-body or similar codes. 

Including even more complex physics, such as energy injection from star formation 

and supernovae, radiative transfer and magnetic fields, which are required to  mode1 

the densest regions of galaxies self-consistently, will remain prohibitively expensive in 

the near future. The addition of these physical processes to simulations is currently 

only possible through approximations which detract somewhat from the simplicity 

and robustness of the numerical approach. Overall, numerical simulations provide 

the highest-quality and most detailed galaxy formation models currently available, 

but do so at  considerable expense. 

1.2.2 Semi-analytic Models 

Given the computational expense of purely numerical models of galaxy formation 

(and the added complexity of numerical techniques which include dissipative physics), 

it seems worthwhile exploring alternative approaches to modelling galaxy formation. 

While there is a long legacy of important analytic work on galaxy formation (e.g. 

Gunn & Gott 1972; Gunn 1977; Rees & Ostriker 1977; Silk 1977; White & Rees 1978; 

Fa11 & Efstathiou 1980; White & Frenk 1991), the general problem of determining, 

Say, the spatial distribution of material in a galaxy over the course of its evolution, 

is too complicated to tackle with any single analytic formalism. A recent approach, 

developed by several groups, has been to tie together analytic results with numerical 

calculations, producing hybrid, semi-analytic models. These models are necessarily 

approximate, typically containing many free parameters that need to be determined 
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by comparison with observations, but they offer a tremendous advantage in speed 

over purely numerical models. 

Existing semi-analytic models of galaxy use a fundamental result in the statistics 

of structure formation to  determine the sequence of mergers by which halos build 

up, in contrast numerical simulations, which simply start from initial conditions, and 

follow the growth of structure directly. This result is from the work of Press and 

Schechter (1974), who pointed out a way of calculating the number of collapsed ob- 

jects as a function of mass and of redshift, based on a few simple assumptions. Their 

approximate result was confirmed by more rigorous work subsequently (Bower 1991; 

Bond et al. 1991), and from it,  Bower (1991) and Lacey and Cole (1993) derived 

conditional probabilities for mergers between halos. Given these probabilities, it Ps 

possible to construct algorithms which generate random merger histories, tracing how 

the material in a halo at  the present day was distributed in smaller halos at  earlier 

times (e.g. Cole 1991; Kauffmann & White 1993; Kauffmann, White & Guiderdoni 

1993; Cole et al. 1994; Somerville & Kolatt 1999). In semi-analytic (SA) models, 

these histories, or 'merger trees', are then combined with approximate descriptions 

of gas cooling, star formation, feedback and other processes to produce a general 

description of galaxy formation. In general, these rnodels contain no spatial infor- 

mation about halos or their contents, but predict only spatially averaged quantities, 

focusing their attention on the process of dissipation, rather than dynamical issues. 

Since their invention, SA models have had some success in predicting the luminos- 

ity function of field galaxies (Somerville & Primack 1999), the colours of ellipticals 

(Kauffmann 1996), and several other properties of galaxy populations as a whole. 

Only very recently, however, have they been used to consider structure on sub-halo 

scales in any detail (Bullock, Kravtsov, & Weinberg 2000, 2001a). This has lim- 

ited their application to the problems of hierarchical galaxy formation discussed in 

the introduction, such as the survival of galactic disks or the excess substructure in 

galactic halos, which require careful consideration of the distribution and dynamics 
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of material within individual halos. 

1.3 An Alternative Ap 

To summarise the previous section, two main methods of modelling the formation 

and evolution of galaxies like the Milky Way have been considered to date. Nu- 

merical models represent the assembly of material into a galaxy halo in terrns of the 

dissipationless dynamics of a set of point masses (N-body or similar codes), or the hy- 

drodynamical evolution of a number of grid cells (smoothed-particle hydrodynamics, 

or SPH codes). In the former case, an estimated 107 particles are required to follow 

the dynamical evolution of substructure in a galactic halo, on the scale of the smallest 

dwarf galaxies, and to study disk evolution over the age of the universe; models of 

the second type are at  least as expensive, and much more complex. Overall, numeri- 

cal models produce robust results based on few assumptions, but the computational 

expense they incur limits their application, and their simplicity breaks down in its 

representation of certain processes, such as star formation, which are intrinsically 

complex. 

The semi-analytic models of galaxy formation developed recently are much faster, 

permitting the investigation of statistical problems in galaxy evolution. These meth- 

ods use the basic statistics of structure formation, together with simple, empirical 

recipes for the complex physical processes that determine galaxy evolution, to predict 

the global properties of galaxies. They do not follow the dynamics of galaxy inter- 

actions in detail, however, nor do they resolve structure on sub-halo scales. Thus, 

they are unsuitable for addressing the dynamical problems which arise in hierarchical 

galaxy formation. 

In this thesis, 1 outline a third approach to modelling galaxy formation, the con- 

struction of a semi-analytic mode1 of the dynamical evolution of halo substructure. 
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Semi-analytic modelling of dynamical processes, which are complex and well suited to 

numerical methods, might seem counterintuitive. I show, however, that the dynamics 

of halo substructure are determined by a combination of a few processes, each of 

which can be modelled at  much less expense, using analytic results, than they cou1 

be in a numerical simulation. In essence, the savings result from treating each lump 

in the halo as a single object, orbiting in a smooth potential, rather than representing 

it as a set of thousands particles, embedded within a halo resolved to  a comparable 

degree. As a result, the method is roughly 5000-10000 times faster than a numerical 

simulation. The model can be accurately calibrated by comparing its output to the 

few existing high-resolution simulations of galactic halos currently available, and then 

run hundreds or thousands of times in order to explore galaxy formation in differ- 

ent cosmologies, or using different physical assumptions, as well as to estimate the 

statistical likelihood of processes such as disk disruption. 

The other main advantage of this approach is more subtle. Physical models serve 

to  determine how much of the complexity of natural systems can be explained by 

simple underlying principles. A successful model should not only reproduce what 

is observed, but should also do so in a way which makes the observation easy to  

understand. If a model can reproduce observations using a more abstract or synthetic 

description of the relevant phenomena, this can provide valuable insights into their 

workings. This advantage must of course be weighed against the increased robustness 

of models based only on low-level physics. The approach I outline in this thesis 

includes explicit descriptions of physical processes such as dynamical friction and tidal 

heating, rather than generating them as a by-product of the gravitational interactions 

of multi-particle systems. In this sense, it gives concise and definite expressions for 

these processes, which can be tested in future simulations, and applied in future 

analytic work. 
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1.4 Outline O 

This thesis is divided into two main parts, which describe an analytic model 

of satellite dynamics, and a semi-arialytic model of galaxy formation based on this 

analytic work, respectively. The first part consists of three chapters, which present 

analytie treatments of dynamical effects, and test and calibrate these components 

of the model by comparison with numerical simulations. Chapter 2 explains how to 

calculate satellite orbits, and account for the orbital decay produced by dynamical 

friction. Chapter 3 describes a simple method for determining mass-loss rates, while 

chapter 4 discusses the heating of satellites by tidal shocks. 1 summarise the analytic 

model for dynamical evolution at  the end of chapter 4. 

The second part of the thesis then uses this analytic theory to construct a full 

model of galaxy formation. To determine initial conditions for the evolution of in- 

dividual halos, 1 generate merger trees, using a method discussed in chapter 5 .  In 

chapter 6, 1 explain how to relate these merger trees to the process of galaxy forma- 

tion, and outline a basic model of halo assembly, which 1 compare to dissipationless 

numerical simulations. In chapters 7 and 8, 1 then apply this model to the two spe- 

cific questions raised in the first part of this introduction. In chapter 7, 1 study the 

formation of the dwarf satellites of the Milky Way, as well as the origin of its stellar 

Corona, under a variety of different assumptions about the star formation rate in dark 

halos. In chapter 8, I then determine how many galaxies like the Milky Way would 

have survived disruption by infalling satellites, when the last major merger is likely to 

have taken place, and how much minor heating should occur in the disk over time. 1 

conclude with a summary of the semi-analytic model, its advantages and limitations, 

and the insights it provides into the process of galaxy formation. 



In this chapter 1 describe the physical context of the analytic model of subhalo dynamics presented 

in the first part of this thesis, and introduce two sets of numerical simulations that will be used to 

test the accuracy of the model. I explain the orbital calculations of the analytic model. and desêribe 

their implementation in an simple code. In simulations with a live halo, the amplitudes of the 

satellite orbits decay rapidly due to dynamical friction, the response of the halo to the presence of 

the satellite. 1 introduce an analytic description of this effect and include it in the orbital calculation. 

Finally, 1 show that mass loss must be accounted for in order to reproduce the properties of satellite 

orbits observed in the simulations. 

The growth of dark matter halos has been studied extensively over past decade, 

using high-resolution numerical simulations (see Moore (2000) for a recent review). In 

CDM cosmologies, dark matter halos form in regions of space containing smaller halos 

which have already collapsed as well as larger, low-density structures which surround 

and connect these smaller lumps. Halos grow by a process of accretion and merging 

which disrupts much of this structure, but preserves the dense cores of pre-existing 

halos as distinct objects within the larger halo. These surviving remnants of smaller, 

older halos, which had already collapsed before they merged with the larger system, 

are referred to as 'subhalos'. In numerical simulations, subhalos are typically small, 

compact and roughly spherical structures, and exist in large numbers within any 

well-resolved halo. A halo like that of the Milky Way, for instance, contains roughly 

1000 subhalos with masses greater than those of the smallest dwarf galaxies (Klypin 

et al. 1999b; Moore et al. 1999). The total mass of a halo is much larger than the 

combined mass of its subhalos; the remainder of this material is distributed smoothly 
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throughout the system, in a regular density profile which is similar for halos on al1 

scales and at al1 epochs (Navarro, Frenk & White 1996, 1997; Moore et al. 1998). 

These basic features suggest a simple model of halo substructure in which subhalos 

are represented by point-particles, orbiting in the potential of the main halo, and the 

rest of the matter distribution is taken to be smooth and roughly static over short 

timescales. The goal of the first section of this thesis is to  determine the dynamical 

evolution of the satellites in such a model. In the next three chapters, 1 describe 

a basic analytic model of satellite dynamics, and test its accuracy by comparison 

with two sets of simulations of small satellites orbiting in the potential of a large 

companion. 1 focus on the evolution of a satellite's orbit in this chapter, study the 

change in its bound mass in the next chapter, and determine the effects of rapidly 

fluctuating tidal forces on satellite structure in chapter 4. 

2.1 An Overview of the Numerical Simulations 

Given the overall complexity of satellite dynamics, any analytic model of the un- 

derlying physical processes requires testing and calibration by comparison with nu- 

merical simulations. Simple simulations offer the clearest test of analytic descriptions 

of satellite dynamics, and should be easiest to reproduce. On the other hand, since 

the ultimate goal of the first section of this thesis is to describe satellite evolution in 

a cosmological setting, it is equally important to test the effectiveness of the method 

described here in more complex and realistic situations. Numerical simulations are 

also subject to their own limitations and uncertainties, and can produce quite differ- 

ent results depending on the mass resolution, softening, and the accuracy of the force 

calculations involved. To act as an effective comparison, the numerical simulations 

should be sufficiently robust in this sense to give confidence in their results, and they 

should cover the broadest possible range of masses, densities and orbital parameters. 
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With these considerations in mind, I chose to compare the predictions of the analytic 

model to two sets of simulations, a set of simulations of satellite disruption in an 

analytic potential by Hayashi & Navarro (2001) (see also Hayashi (2001)), and a set 

of self-consistent simulations of encounters between disk galaxies and small satellites 

by Velazquez & White (1999). 

2.1.1 The Hayashi & Navarro Simulations 

The simulations by Hayashi & Navarro (HN hereafter) follow the evolution of a 

small satellite with a Navarro, Frenk & White (NFW) density profile, orbiting in a 

smooth, static potential generated by another NFW profile with the same concentra- 

tion, but a larger scale radius and mass. The NFW profile has the form: 

~ ( 4  = PO rSI+ + d 2 ,  (2.1) 

where the scale radius r, = 1 for the satellite and 10 for the main halo, and the 

integrated mass within 10 rs was 1 for the satellite (which was truncated outside this 

radius) and 300 for the main halo (G = 1 in these simulations). The HN simulations 

do not include the effects of dynamical friction, since the background potential is 

static, nor do they explore the effects of different satellite density profiles or complex 

background potentials, but they are much simpler to model analytically as a result, 

and cover a wide range of orbital parameters. They also use carefully chosen soften- 

ing lengths, a large enough number of particles, and sufficiently short timesteps to 

guarantee robust results. The orbital parameters for these simulations are listed in 

table 1, while the circular-velocity curve for the background potential, that is, the 

velocity of a circular orbit, V,  = a, as a function of r, is shown in the top panel 

of figure 2.1. 
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2.1.2 The Velazquez & White Simulations 

Table 2.1 Summary of Simulations from Hayashi & Navarro (2001) 

The simulations by Velazquez and White (1999, VW hereafter) are much more 

complex, having been designed to study disk heating in minor mergers. While harder 

to reproduce, they test the success of the analytic mode1 in describing the rnore 

complex phenomena associated with the planar geometry of the disk, and with in- 

teractions between the satellite and a responsive background. These simulations are 

fully self-consistent, including a realistic galaxy potential consisting of a dark halo, a 

stellar spheroid/bulge, and a disk, each represented by many thousands of particles. 

Their three satellite models have density profiles similar to those of dwarf spheroidal 

galaxies (although they are much more massive than typical dwarf spheroidals). VW 

consider eight different orbits, with cosmologically representative circularities, many 

of them for two or three different satellite models, and record the radial coordinate 

and bound mass of the satellite over the course each simulation. Their results show 

evidence for dynamical friction from the halo and the disk, tidal mass loss, shocking 

Name r a p o  rper i  Ecirc 

HN300:15 300 15 0.261 

HN300:30 300 30 0.430 

HN300:60 300 60 0.751 

HN100:15 100 15 0.505 

HN100:30 100 30 0.751 

HN100:60 100 60 0.949 

HN60:15 60 15 0.665 

HN75:15 75 15 0.592 

HN150:15 150 15 0.398 

Name r a p o  rperi  ecirc 

HNcl5 15 15 1.000 

HNc30 30 30 1.000 

HNc6O 60 60 1.000 

HNc75 75 75 1.000 

HNclOO 100 100 1.000 

HNcl50 150 150 1.000 

HNc300 300 300 1.000 
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as the satellite passes through the disk, and many other phenomena, so they offer a 

rigorous test of the analytic model presented here. 

The details of these simulations are given in VW, but 1 will repeat them here for 

clarity. The background potential consists of three components, a truncated isother- 

mal halo with a core, a stellar bulge, and an exponential disk. The density profiles of 

the three components are: 

Md 
pd(') = 4 a ~ 2 z 0  exp (- R/  Rd) sech2 (Z/ZO) 

where the masses and scale lengths of the components are: 

Mh = 7.84 x 1011 Ma, y = 3.5 kpc, r,,t = 84 kpc, 

Md = 5.6 x 101° Mo, Rd = 3.5 kpc, zo = 700 pc . 

The circular-velocity curve for this potential, calculated in the plane of the disk, is 

shown in the bottom panel of figure 2.1, along with the contributions from the disk, the 

bulge and the dark halo. The satellites SI ,  S2, and S3 are King models, with the core 

radii and initial concentrations listed table 2.2. VW carried out fifteen simulations in 

the potential considered here, with various combinations of satellite model and initial 

orbital parameters, as listed in table 2.3. (The orbits are specified by their initial size 

and circularity, and by their initial inclination to the disk. r, and r, are the initial 

pericentric and apocentric radii of the orbit, respectively. The circularity E J  = J/J,,  

where J is the initial angular momenturn of the orbit and J, is the angular momentum 

of a circular orbit with the same energy. Oi is the angle between the initial angular 

momentum vector of the satellite and the angular momentum vector of the disc. ) 
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Table 2.2 Velazquez & White (1999) Satellite Models 

Satellite Mode1 Density Profile Mass T C  Tt 

( a )  (pc) (kpc) 

VW S1 King CY porz/(r2 + rz) out to rt 5.6 x 109 1000 6.3 

VW S2 1 1 1 1 5.6 x IO9 500 6.3 

VW S3 I I  1 I 1.12 x 10'' 850 8.5 

Table 2.3 Summary of Simulations from Velfizquez & White (1999) 

Name Satellite Oi CJ r~ Ta 

mode1 ( k ~ c )  ( k ~ c )  

G l S l  SI  45" 0.33 5.25 59.0 

GIS2 S1 O" 0.55 10.5 55.0 

GIS3 S1 45" 0.55 10.5 55.0 

GIS9 S2 O" 0.55 10.5 55.0 

GlSlO S2 45" 0.55 10.5 55.0 

G l S l l  S2 90" 0.55 10.5 55.0 
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smooth potential generated by the main halo. This approximation will accurately 

reproduce the actual motion of the centre of mass of an extended distribution of par- 

ticles in a smooth potential, provided the scale over which the potential changes is 

large compared to the scale of this distribution. Thus a method based on this ap- 

proximation should be able to reproduce the results of numerically simulated orbits, 

provided the pericentre of the orbit is larger than the size of the satellite itself. In 

a general implementation of this method, the gravitational force field, or the gradi- 

ent of the potential, is calculated at  the position of the fictitious particle, and the 

corresponding acceleration is then applied to its motion. 

The problem of integrating motion has been investigated extensively in several 

different contexts, including solar-system calculations, where long-term accuracy is 

essential (Saha, Stadel, & Tremaine 1997), studies of globular cluster dynamics, which 

involve less accurate force calculation for a larger number of objects (Aarseth 1985), 

and N-body simulations, where this trade-off becomes very important (Quinn et al. 

1997). In the application considered here, a simple integration scheme is preferable 

for several reasons. First, each orbital calculation must be reasonably fast, to limit 

the computational burden on the full model, where several thousand satellites orbit 

within the halo for roughly a thousand timesteps. Second, the need to  explore orbits 

in many different potentials, including some which cari not be expressed in analytic 

terms, precludes the use of any method which relies on optimising calculations for a 

specific potential, or requires analytic expressions for the force or potential. Finally, 

and perhaps most importantly, energy and angular momentum need not be conserved 

to high precision in the orbital calculations, since these quantities will be substaritially 

modified by dynamical friction in any case, by amounts uncertain to within 10% or 

so, and since the background potential will also change substantially over the course 

of a typical orbital period in the full model of halo formation. 

Given these considerations, I chose to use a very simple, second-order Runge-Kutta 

integration scheme, the simplest that would satisfy these accuracy requirements. This 
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scheme produced excellent results, conserving energy to within 0.01% per orbit for 

a circular orbit resolved with 1000 timesteps per orbital period, and to within 1% 

per orbit for a circular orbit with 100 timesteps per orbital period. Given that the 

full model of galaxy formation described in part II uses several thousand timesteps 

in al1 (one for each new satellite), and that an average satellite spends only a few 

orbital periods in the main halo, this accuracy is sufficient to guarantee that most 

orbits will be resolved with more than enough timesteps. (To correct for numerical 

instabilities in orbits with small pericentres, reduced timesteps can also be used for 

these orbits in the full semi-analytic model, as explained in chapter 6.) The forces 

were interpolated from a look-up table, so that forces for non-analytic potentials 

could be calculated ahead of time. To optimise the code, al1 the variables related to  

the satellite's position which were required for other calculations, such as the local 

density and circular velocity, were also stored in the same look-up table, reducing the 

overhead associated with each timestep. 

2.2.2 Properties of Orbits in an Axisymmetric Potential 

Orbits within general spherical or axisymmetric mass distributions have integrals 

of motion, related to the more familiar integrals of motion associated with Keplerian 

orbitsl (Binney & Tremaine 1987, BT hereafter, p. 105). In spherical mass distribu- 

tions (or in the plane of symmetry of axisymmetric systems), orbits conserve energy 

and the three components of their angular momentum vector independently, and are 

therefore confined to  a plane. Bound orbits take the form of rosettes, corresponding 

to ellipses whose major axis precesses at  a regular rate around the centre of the poten- 

tial. The top panels in figure 2.2 show two projections of a typical rosette orbit in the 

plane of the potential used by VW. These orbits have well-defined apocentres and 

peri-to-apocentre ratios, determined by their total energy and angular momentum 

lThat is, orbits in the potential of a point mass. 



Chapter 2: Calculating Satellite Orbits 

respectively, just as Keplerian orbits do. 

Inclined orbits in axisymmetric potentials are no longer confined to  a plane, and 

are consequently more complicated to describe. The inclined orbits considered in the 

VW simulations are of the 'box' type; Their integrals of motion confine them to a 

volume which is approximately bounded by two cones, corresponding to a maximum 

angle of inclination with respect to the plane of symmetry, and two spheres, corre- 

sponding to their minimum and maximum radial coordinates2 . They typically pass 

through the plane of symmetry of the potential in a series of points, which Vary in 

radius between the limiting values. The bottom panels in figure 2.2 show an inclined 

orbit in the VW potential, while figure 2.3 shows the same orbit plotted in the cylin- 

drical coordinates R and x. The four bounding surfaces, and varying radius of the 

disk crossings are apparent in this projection. 

2.2.3 Comparison with Simulations 

Having constructed the potentials described in the previous section, it is possible to  

test the integration scheme in a realistic context, comparing the evolution of analytic 

and numerical orbits with the same initial parameters. Figure 2.4 shows the radial 

position of satellites as a function of time, in six simulations by VW (refer to  table 

2.3 for a summary of the orbit parameters). The points are the simulation results, 

while the solid curves show the corresponding analytic result. We see that while the 

amplitude and duration of the orbit is well matched by the analytic calculation over 

the first orbital period, the agreement deteriorates progressively, until after a few 

orbital periods, the analytic and numerical orbits are completely different both in 

phase and in amplitude. This cannot be due to any gross error in Our integration 

scheme, since it preserves the amplitude and period of the orbit, or equivalently its 

energy and angular momentum, reasonably well, while the numerical orbit decays 

21n general, the limiting surfaces have a more complicated shape. See BT, p. 114 ff. for a detailed 
discussion of the integrals of motion for these orbits 
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Figure 2.3 The orbit shown in the bottom panel of figure 2.2, projected ont0 the R - z 

plane. (The left-hand figure shows the first few orbital periods for clarity.) Note 

the four bounding curves which restrict its radius and inclination. 

pointed out that it would experience a net force opposing its motion, even if gravity 

was the only source of interactions between the particle and the background. There 

are several ways of understanding this result. One is to consider the response of 

the background particles and its effect on the moving particle. The moving particle 

attracts background particles towards its path, so that an overdense region forms in its 

wake; this wake then exerts a gravitational force on the particle, resisting its forward 

motion. More generally, one can view dynamical friction as a form of equipartition, 

driven by the collisional terms in the interaction between a single particle and a 

background system of many particles. Successive random encounters between the 

single particle and the background particles tend to transfer the former's forward 

momentum to the background, slowing it down progressively. 

Chandrasekhar's result is derived in detail in chapter 7 of BT; I will reproduce 

the main parts of this derivation here for clarity. (It is possible to derive similar 
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(BS, eq. 7-10). If the particle M moves through a sea of similar particles, distributed 

symmetrically around the axis of its motion, the contributions to /AVMi / frorn in- 

dividual encounters will average out, while the contributions to /AVMlll will produce 

a net deceleration. If the phase-space density of background particles can be writ- 

ten as f (b, v)  = D(b)n(v) , then the rate at  which the moving particle encounters 

background particles with velocities in the velocity-space volume d3v and impact 

parameters between b and b + db is: 

Thus the rate of change of VM due to these encounters is: 

In the case where D(b) is constant between O and b,,, and zero beyond this, inte- 

grating this expression over al1 impact parameters gives: 

-1 = l r l n ( l + ~ ~ ) G ~ m ( M + m ) ~ ~ d ~ v  (V - VM) I V  - VMI3 ' (2.6) 
dt v 

where: 

A ZE 
brnaxV2 

G ( M  +m)  ' (2.7) 

As explained in BT, A is very large in typical applications, so the approximation 

ln(1 + A2) E 2 ln A is usually made. 

If h is constant, and n is a function of Ivl only, then equation (2.6) is similar in 

form to  the expression for the force a t  a point within a spherical mass distribution. As 
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a result, the integral over velocities can be transformed into the following expression, 

by analogy with Newton's first theorem: 

that is the contribution to the drag force comes from particles with velocities less 

than VM. This result is known as Chandrasekhar's formula. Finally, evaluating this 

integral for a Maxwellian velocity distribution of dispersion a ,  and writing mDo = po, 

we have, for a massive object (A4 >> m), 

dVM - -471- ln AG2poA4 
- [erf (XI - xerf'(x)]VM, 

dt VM 

where erf(x) is the error function: 

2 
erf (x) = - J expWt2 dt, 

fi 0 
and X E vlf ia .  Dynamical friction in the analytic mode1 will be calculated using 

this more compact form of Chandrasekhar's formula. 

2.3.2 Calculating the Coulomb Logarithm 

The derivation of Chandrasekhar's formula above assumed a massive point par- 

ticle, moving through a homogeneous background of much lighter particles with an 

isotropie Maxwellian velocity distribution of zero mean, extending to some large dis- 

tance b,,. In particular, interactions between the moving particle and the back- 

ground particles were treated as isolated two-body encounters. Numerous studies of 

satellite dynamics (Weinberg 1986; Cora, Muzzio & Vergne 1997; Bontekoe & van 

Albada 1987; van den Bosch et al. 1999; VW; Colpi, Mayer & Governato 19991, have 

shown the formula to be more widely applicable, however, providing a good approx- 

imation to the drag force on an extended satellite in a more complex background 

system, provided that the Coulomb logarithm is adjusted appropriately. Clearly, if 

the satellite is comparable to background system either in mass or in spatial extent, 
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the approximations used in the derivation of(2.9) will no longer be valid. Based on the 

studies mentioned above, Binney & Tremaine (1987) suggest that Chandrasekhar's 

formula will be fairly accurate provided that the mass of the satellite does not exceed 

20% of the mass of the larger system, and that the orbit of the satellite lies neither 

outside the larger system nor completely within its core (BT, p. 427). 

The argument of the Coulomb logarithm can be expressed as the ratio of two 

characteristic scales: h = bmax/bmin, where b,, and bmi, are measures of the maxi- 

mum and the minimum impact parameters of the background particles contributing 

to the wake, or equivalently the scales of the background system and the satellite 

respectively. For a background system with an arbitrary density profile, b,, is equal 

to the spatial extent of the system, weighted by the density at  a given impact pa- 

rameter, as in the integral in equation (2.5). Equations (2.2-2.3) are only strictly 

valid for systems of infinite extent, however, in which case this integral diverges. This 

introduces some uncertainty into the appropriate choice of limiting value. In prac- 

tice, b,, is instead taken to be a scale characteristic of the system. Possible choices 

for a spherically symmetric system include the half-mass radius of the system (e.g. 

Quinn & Goodman 1986), the distance over which the background density changes 

by a factor of two (Binney & Tremaine 1987), and the tidal radius of the halo or the 

distance between the satellite's position and the centre of background system (Colpi 

et al. 1999). For the special case of an object a t  the centre of a spherically symmetric 

system with a density profile p(r),  for instance, Maoz (1993) gives the expression: 

,h - /J\  

where b,, is the maximum extent of the larger system and bmi, is the minimum 

impact parameter discussed below. When the characteristic scale of the main system 

is comparable to, or smaller than, the satellite itself, the magnitude of dynamical fric- 

tion should be greatly reduced. This can be accounted for by reducing the Coulomb 
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logarithm or averaging the background density over the scale of the satellite, as dis- 

cussed below, although Chandrasekhar's formula is no longer strictly valid in these 

cases. 

The value of bmi, is equally ill-defined. We saw above that for a point mass 

satellite, bmi, - G ( M  + m)/V2 (that is the radius of a circular orbit of velocity V 

in the reduced potential), where m is the mass of the background particles and V 

is the relative velocity of the satellite in a typical encounter. For rapidly moving 

satellites, V will be approximately equal to the velocity of the satellite relative to the 

background (BT), while for slowly moving satellites, it will be approximately equal 

to the local velocity dispersion (Chandrasekhar 1943). For extended satellites, the 

contribution to dynamical friction from background particles with impact parameters 

smaller than the size of the satellite itself will be greatly reduced, however. This can 

be accounted for by increasing bmin beyond the point-mass value. White (1976), for 

instance, derived an expression for bmi, which is approximately equal to 0.2 rt  (or 

very roughly the half-mass radius) for a wide range of King profiles. A good general 

approach is to take bmi, to be the larger of the half-mass radius of the satellite and 

the point-mass value G(IMsat + m)/V2 (e.g. Quinn & Goodman 1986), although this 

is only likely to work well for small systems (Maoz 1993). 

In summary, although the Coulomb logarithm is well defined in the original deriva- 

tion above, its value in realistic cases is uncertain. In practice, it is easiest to  estimate 

values for ln A from the expressions above, but calibrate them using numerical simula- 

tions of appropriate systems. I t  is worth noting one general feature of the logarithm, 

however. For most of the definitions of bmin and b,, discussed above, the argument of 

the Coulomb logarithm should scale roughly as A cx (hfsat /hfhalo)-l. We can see this 

most easily in the case of one isothermal halo orbiting within another; the characteris- 

tic scale of either system is proportional to its mass, and thus A is proportional to the 

ratio of the masses from the arguments above. This point is worth noting, given both 

the wide range of mass scales relevant to the question of halo substructure, and the 
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fact that an individual satellite's mass can change substantially over the course of its 

orbit. 1 will use this scaling when fitting individual orbits from the VW simulations 

in chapter 4, and in the full semi-analytic mode1 in chapter 6. 

Finally, it is not clear whether Chandrasekhar's formula adequately describes dy- 

namical friction in a non-uniform or non-isotropic distribution of background par- 

ticles, such as a galactic disk, and if so how to estimate the Coulomb logarithm in 

these cases. By the arguments given earlier, such systems should still exert a drag 

force on a particle or satellite moving through them. It is possible to calculate dy- 

namical friction for a uniform background of particles with an ellipsoidal velocity 

distribution, using the approach outlined above. In this case the frictional force is 

strongest in the direction of the smallest principal axis of the distribution (BT). Maoz 

(1993) and Dominguez-Tenreiro & G6mez-Flechoso (1998) also derived formulae for 

the magnitude of the energy loss produced by an arbitrary background distribution 

with a uniform velocity dispersion, but could not specify the direction of the corre- 

sponding frictional force. In the interactions considered in this work, disk friction is 

of secondary importance compared with halo friction, so 1 will limit myself to using 

Chandrasekhar's formula to calculate its approximate direction and magnitude. 

2.4 Adding iction to the Or ital Calculations 

2.4.1 Analytic Prescription 

Dynamical friction can be added to the orbital calculations described above using 

expression (2.9), with local values for p and a ,  and a value of 1nA adjusted to fit 

the orbital decay rate seen in simulations. Al1 three of the background components 

in the VW simulations will contribute to dynamical friction. Since the disk particles 

are both kinematically and spatially distinct from the other two components, their 

contribution should be calculated separately, while the contribution of the central 
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stellar bulge can be combined with the much larger effect of the halo. Thus the total 

frictional deceleration is: 

pi (< Vrel,i) = pz (r) [erf (X,) - Xi erfl(X,)] , 

and Xz = l ~ r e i , i l / ( J S ~ ) .  

Here M is the mass of the satellite, r is its position, Vsat is its velocity, VrOt is the 

local circular velocity of the disk, ph is the local density of the spherical (halolbulge) 

component, pd is the local density of the disk, InAh and ln Ad are the Coulomb 

logarithms for the halolbulge and the disk, and o h  and o d  are the one-dimensional 

velocity dispersions of the halolbulge particles and the disk particles respectively. 

The spatial extent of the VW satellites is larger than the scale height of the disk, so 

the use of (2.9) to describe disk friction is highly approximate, particularly when they 

orbit in the plane of the disk. In particular, equation (2.9) was derived assuming that 

the density of the satellite's wake is constant, and equal to the background density at  

the centre of the satellite. One way of accounting for the expected reduction in the 

magnitude of dynamical friction is to average the density of the disk over the scale of 

the satellite. Since this scaling will Vary from one satellite to another, 1 chose instead 

to smooth the density of the disk in the vertical direction by a fixed scale length, 

equal to two times the disk scale height, noting that this smoothing length is on the 

order of the satellite half-mass radius, for satellites with masses in the range where 

dynamical friction has a substantial effect. The disk velocity dispersion was taken to 
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be: 

where Vc,d is the circular velocity of the disk, the disk scale length is Rd = 3.5 kpc as 

above, and 0, = 143 km s-l. This expression is the expected functional form for the 

velocity dispersion of an isothermal sheet, normalised to the value measured by VW. 

The sum of the halo and bulge densities was used to calculate the other fric- 

tion term, since these components are kinematically similar. The combined velocity 

dispersion of the halo and stellar spheroid was taken to be: 

2 112 fi 
o h  = ( e h  + K,b) / > (2.14) 

where Vc,h and Vc,b are the circular velocities of the halo and the bulge, respectively. 

This expression is approximately valid over the range of radii of interest. 

2.4.2 Comparison with Numerical Simulations 

Figure 2.5 shows analytic orbits calculated as in figure 2.4, but with the effects of 

dynamical friction included. The Coulomb logarithms used, ln Ah = 2.4 and ln Ad = 

0.5, were adjusted to match the decay rate seen in the first few orbits. To indicate the 

overall sensitivity to the precise values of the logarithms, the dotted curves show the 

analytic predictions if they are increased or decreased by 20%. Except for the orbits 

in the plane of the disk, most of the change in orbital decay is due to the change in 

ln Ah. 

We see that the change both in the period and in the amplitude of the orbit with 

time is much better predicted than in figure 2.4. The match to  the first few orbital 

periods is particularly good. The orbital decay rate is slightly overestimated, however, 

towards the end of each orbit. An obvious explanation for this is that the mass used 

in equation (2.12) should be adjusted as the satellite loses mass. Figure 2.6 shows 

the bound mass of each of the satellites in figures 2.4-2.5, as determined by VW. We 
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Figure 2.5 Analytic predictions compared with numerical orbits, with dynamical friction 

taken into account. Compare with figure 2.4. 

see that the satellite can lose a substantial fraction of its mass before its orbit has 

decayed completely. This leads to a miscalculation of dynamical friction, and thus of 

the decay rate itself. To estimate the orbital decay rate accurately, one must account 

not only for dynamical friction, but also for mass loss. This is particularly true for less 

massive or lower density satellites, which will experience substantial mass loss over 

the course of their orbits, and fa11 into the potential more slowly as a result. The next 

chapter explores this aspect of dynamical evolution. Thé Coulomb logarithms may 

also increase slightly as a satellite loses mass, as discussed in the previous section. 
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This effect is less pronounced, however, so I will only include in the mode1 once H have 

established an good description for mass loss and heating. 
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reducing the strength of dynamical friction measured in the simulation from its ex- 

pected value (van Kampen 2000); in the limit of a static, unresponsive background 

system, simulations should show no orbital decay at all. Interestingly enough, how- 

ever, some simulations with static potentials, notably those of HN, do show orbital 

decay. Figure 2.7 shows several of their orbits, with the apocentre-to-pericentre ratios 

indicated. We see that while the more circular orbit conserves its orbital energy, the 

more radial orbit, which loses the most mass, decays noticeably. Since the system as a 

whole must conserve orbital energy, the missing orbital energy must be transferred to 

the material stripped off the satellite. This effect has been noted in other simulations 

of very radial encounters (Heisler & White 1990), but is often ignored. It should also 

occur in fully self-consistent simulations with live halos, where it will add to the effects 

of dynamical friction. While this effect is generally less important than dynamical 

friction, it would lead to substantial errors in estimating ln h for orbits in a live halo if 

they were as radial as HN 300:15. Finally, some of the orbit-to-orbit variation seen in 

figure 2.5 may be may be an indication of the higher-order effects predicted by more 

sophisticated treatments of dynamical friction (Maoz 1993; Dominguez-Tenreiro & 

G6mez-Flechoso 1998). In this sense, the Coulomb logarithms determined here are 

average values, which should be roughly applicable to a wide range of orbits and 

potentials. 

2.5 Summary 

In this chapter 1 have introduced a basic mode1 of halo substructure, consisting 

of small, dense satellites, orbiting in a smooth background potential. The orbital 

evolution of the satellites is determined using a simple integration scheme, which 

calculates the trajectory of the centre of mass of each satellite, as if it were a point 

mass. I show that while this method may provide an adequate description of satellite 
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Figure 2.7 The radius vs. time in three simulations by HN. The horizontal line indicates 

the radius of the original apocentre. Note the orbital decay in the most radial 

orbit. 

orbits in a static potential, it fails to reproduce the strong orbital decay seen in 

simulations with a 'live', or responsive, potential. This decay is the result of dynamical 

friction, the local response of the background to a moving satellite. The magnitude 

of dynamical friction can be estimated analytically, using Chandrasekhar's formula. 

By adding this drag force, with suitably chosen Coulomb logarithms, to the orbital 

calculations, it is possible to  reproduce the beliaviour of satellites in a live potential 

much more accurately. The overall evolution of the satellites still differs from this 

simple model, however, because they lose a substantial fraction of their mass during 

each orbital period, and therefore experience progressively less friction over the course 

of the simulation. 1 will attempt to account for this mass loss in the next chapter. 



The material initially bound to a subhalo may become unbound as the subhalo orbits in the potential 

of a larger system. This mass loss represents an important correction to dynamical friction, as 

discussed in the previous chapter. A theory of mass loss is also required to reproduce the substructure 

seen in simulated halos, and to follow the evolution of material stripped from satellites in the halo 

formation process. In this chapter, 1 present two basic descriptions of mass loss, one applicable 

to static systems, and the other to rapidly changing systems. 1 develop a general model which 

interpolates between these two descriptions, and compare its predictions to the mass-loss rates seen 

in numerical simulations. The general model predicts the mass-loss rates for some of these orbits 

reasonably well, consequently improving estimates of the orbital decay rates over those predicted 

in the last chapter. Most of the simulations show faster mass loss than is predicted by the model, 

however. This is a consequence of tidal heating, which will be discussed in chapter 4. 

Dynamical friction, as noted in the previous chapter, is the result of the main halo's 

response to a satellite moving through it, and depends sensitively on the mass of the 

satellite. We saw that orbital decay rates will be overestimated if the mass of a satellite 

is taken to be constant throughout its orbit, because this mass actually decreases with 

time. When a satellite subhalo first merges with the main halo, it consists of some 

initial distribution of material. This material may not remain spatially associated 

with the satellite as it orbits, however, particularly if it becomes unbound, that is, 

acquires a net positive energy with respect to the rest of the satellite. It is not clear 

whether dynamical friction depends on the bound mass of the satellite, or simply on 

the mass of material which is associated with it in space, but the distinction is largely 

semantic since any material not bound to  the satellite will quickly be removed from its 
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vicinity. In any case, a reasonable estimate of satellite mass is required to implement 

dynamical friction properly, and should also be useful in relating the predictions of the 

analytic model to the subhalos seen in numerical simulations, which show evidence 

of mass loss (Ghigna et al. 1998), and to study the properties of the tidally stripped 

material itself. 

Mass loss turns out to be much harder to describe in analytic terms than dynamical 

friction. The motion of a given particle, initially associated with a satellite in a 

simulation, is fundamentally chaotic, and there is no simple test to  determine how 

long its orbit will remain associated with the motion of the satellite's centre of mass. 

The total mass or bound mass of a satellite can also be defined in several different 

ways, making comparison between published numerical results problematic. In this 

chapter, 1 present two models of mass loss, based on the tidal-limit approximation 

and on the impulse approximation respectively. The tidal-limit approximation is 

derived by considering the steady-state behaviour of a satellite on a circular orbit 

in a spherically symmetric potential, while the impulse approximation applies to 

encounters which are instantaneous compared with the interna1 dynamical time of 

the satellite. 1 show how these two models can be combined into a single, general 

description of mass loss on arbitrary orbits, and compare the predictions of this 

general model with simulation results. 

3.1 Measuring ass in Simulations 

Before discussing the two extremes of mass loss, it is worth mentioning some of 

the minor complications of studying mass Ioss numerically. The mass associated with 

a specific substructure within a halo can be defined in one of two ways. Either it is the 

mass of material which is spatially associated, that is concentrated in one position 

with respect to the rest of the background material, or it is the mass of material 
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which is associated in phase-space, that is both in the same place and exhibiting 

the same dynamics. Algorithms to identify substructure in a halo that only use a 

local overdensity criteriori, for instance, measure masses of the former type, while 

methods that also check whether material is bound measure masses of the second 

type. In practice one would expect both masses to be similar for objects much denser 

than the background, but they may differ in detail. A satellite moving on a circular 

orbit will ultimately be stripped to the point where it is 3 times denser than the 

mean background density interior to the radius of its orbit, or 9 times denser than 

the average density at  its radius, for instance, if it orbits in an isothermal potential. 

Thus, including al1 the material spatially associated with the satellite would produce 

as mass estimate 10% higher than the bound mass alone. 

Most numerical results use a mass estimate of the latter type, since it can be easily 

determined from simulation data, and is in some sense more physical; as noted above, 

this is probably the best estimate to use for dynamical friction calculations, though 

this has not been demonstrated rigorously. In any case, even the bound mass of a 

subhalo is not uniquely defined, since the criterion used to determine membership 

for an individual particle, namely that the sum of its kinetic and potential energies 

in some frame of reference and some potential be negative, depends on the frame of 

reference and the potential used. In practice, bound masses are usually estimated 

by selecting a group of particles based on their correlated positions, determining the 

potential generated by these particles alone, using the centre of mass or the most 

bound particle within the group to define a frame of reference, removing unbound 

particles from the group, and finally iterating through this process until the solution 

has converged to a final set of particles. The details of these steps Vary from one 

implementation to the next, however, and may produce small differences in the esti- 

mated mass (e.g. Klypin et al. 1999a; H N ) .  In more general situations, the issue of 

substructure within substructure (the 'cloud-in-cloud' problem) further complicates 

this process. While not an issue in the simulations considered here, this problem does 
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arise in analysing the full cosmological simulations considered in part II. 

imit Approximation 

3.2.1 Derivation 

Given a fixed, static potential with several local minima, it is straightforward to 

determine whether particle orbits will remain trapped around these minima. For some 

particularly simple cases, the potential generated by a satellite orbiting in a larger 

halo is in fact static, when viewed in a frame of reference moving with the satellite. 

If the satellite's contribution to the potential can be built up self-consistently from 

trapped orbits, then this technique provides a way of estimating the total mass of 

material that will remain bound to  the satellite for al1 lime. 1 cal1 this the tidal 

limit approximation, since the orbits are restricted to a specific volume a t  al1 times, 

producing a sharp edge or tidal limit to the density profile of the satellite. 

The detailed derivation of the tidal limit, and its corresponding mass estimate, are 

described in chapter 7 of BT. 1 will reproduce the essential parts of their derivation 

here. Consider a satellite of mass rn on a circular orbit of radius D, and CO-rotating 

at its orbital frequency, in a spherically symmetric background potential. 1 shall 

initially consider the case were the main system has a mass M ,  entirely contained 

within the orbit of the satellite, and extend the result to more general cases later. 

The mass distribution in this system, as seen in a frame CO-rotating with the orbit of 

the satellite, is static, and therefore the potential is static. We can define an integral 

of motion, Jacobi's integral, which is conserved along any orbit in this potential: 

1 1  
EJ = -v2 + @(x)  - -IR x xI2 

2  2 (3.1) 

1 
= -v2 + ( P & ( X )  

2  (3.2) 
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where Q, is the vector (O, O, a), and 

0 = JT 
is the angular speed at  which the systems orbit around their common centre of rnass. 

Since v2 2 O, a particle whose Jacobi integral is Ej will never enter into the region 

where <Peff (x) > Ej, so curves of constant aeff(x) form impenetrable boundaries to 

the motion of particles in the combined system. There is a saddle point in <Peff (x) be- 

tween the satellite and the centre of the combined system, which marks the boundary 

between iso-potential contours centred around the satellite, and contours centered 

around the main system. This is shown schematically in figure 3.1. Taking the con- 

tour which passes through this point as the tidal limit of the system, one can calculate 

the approximate size of the satellite by determining the distance to this saddle point, 

that is the distance to the point where (daeR/dx) = O. In the limit where M >> m, 

this gives a radius: 
1 

r~ z (E)3 D (3.3) 

called the Jacobi limit, which is approximately equal to the tidal limit of the system 

(BT, equation 7-84). 

3.2.2 Alternate Formulations 

There are two alternative interpretations of the Jacobi limit which will be useful 

in considering satellite evolution. First, if we take the cube of equation (3.3) and 

rearrange terms, we obtain the result: 

3m 3M 
- 4nr; = l r , (r~) = 3 (p )  nD3 = 3/j,(D), (3.4) 

that is, the mean density of the satellite within its tidal limit exceeds the mean 

density of the main system interior to its orbit by a factor q - ~ , ( r j ) / & ( D )  = 3. 

This overdensity criterion provides a particularly simple description of tidal stripping, 
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Figure 3.1 A schematic illustration of the effective potential in a binary system (a small 

satellite of mass m in a circular orbit around a larger system of mass Al). The 

Jacobi limit rJ  corresponds to the distance from m to the interior saddle point 

in the effective potential. 

well suited to comparison with numerical results. The internal orbital period of the 

satellite at its outer radius, tint(rJ), can similarly be related to the orbital period of 

the satellite within the larger system, rOrb: 

tint (TJ) = 7-'l2 %rb. (3.5) 

This correspondence hints at  some of the more complex physical processes at  work 

in tidal stripping, namely resonances between the tidal forces of the external system 

and the internal orbital structure of the satellite. 

We can also consider several useful generalisations of the Jacobi limit. First of 

all, the derivation above amounted to equating the binding energy of the satellite a t  

some radius r to the work done by the tidal field of the larger system. Doing this in 
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an inertial frame gives: 

G m  aF dD 2GM , -- = a F r = r 2 = - -  m 2M 
D3 

r ,  or -= -  
r dD dr r3 D3 (3.6) 

that is the overdensity 7 is 2 in this case, because the additional contribution of the 

differential centrifuga1 force has not been included. In practice, this term increases 

mass loss and raises the overdensity on circular orbits, and reduces it on very hyper- 

bolic orbits. On a general orbit, the additional term, equal to  1 for a circular orbit, 

turns out to  be w2/w;, where w is the instantaneous angular velocity of the satellite 

and w, is the instantaneous angular velocity of a circular orbit at  the same radius. For 

satellites which are not CO-rotating with their orbital motion, w2 in this expression 

can be replaced by wLb, the square of the angular velocity in the non-rotating frame. 

Finally, we see from the second derivation above how to extend the Jacobi limit to 

systems orbiting within an extended potential. In this case, including the appropriate 

expression for the tidal force introduces a derivative of the force of the main system 

with respect to r, or equivalently a second derivative of its potential @. Thus the 

most general expression for the overdensity is: 

1 d2@ .=($-Gs). (3.7) 

This is close to the original expression derived by King (1962). 

Even with these corrections and generalisations, the Jacobi limit is still approx- 

imate in several ways. First, the actual shape of the iso-potential contours in the 

combined system considered originally is not strictly spherical; Innanen, Harris and 

Webbink (1982) have calculated, for instance, that the length of the short axis will 

be approximately (2/3)'12 smaller than the distance to the saddle point calculated 

above. Furthermore, EJ is only one integral of motion; for many general orbits, there 

exist other, non-classical integrals of motion that can confine particles with apoc- 

entres beyond r~ to the vicinity of the satellite. The overall phase-space density of 

trapped orbits does drop quickly around r ~ ,  however, so the Jacobi limit provides a 
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good estimate of the limiting radius of the system (see BT, p. 452, and references 

therein, for further discussion of this point). Finally, as discussed in the following 

section and the next chapter, it is not immediately obvious whether the Jacobi limit 

can be extended to non-static potentials, such as those experienced by satellites in 

non-circular orbits. 

3.2.3 Comparison with Numerical Mass-loss Rates 

These reservations aside, how well does the tidal limit approximation describe 

mass loss in simulations? The expressions derived above can be extended to non- 

circular and decaying orbits in a naive way, by taking the potential and angular 

velocity in equation (3.7) to be the instantaneous values characterising the motion 

of the centre of mass of the satellite. Since this expression was derived for a spher- 

ical potential, the axisymmetry of the disk must also be accounted for. The most 

straightforward way to do this is to average over the asphericity of the potential due 

to the disk component, setting: 

d2<p d2<p,,h - --- = - -- 
dr2 dr2 dr (3.8) 

where asph is the potential produced by a spherically symmetric distribution with the 

same mass M(< r )  interior to r.  This will be very close to the radial gradient of the 

actual force on the satellite when it is far from the disk, or when it is in the plane of 

the disk. Only when the satellite is close to the disk, but on an inclined orbit, will 

the true gradient differ substantially from this value, and in practice tidal shocking 

should dominate the physics of the mass loss in these cases, as discussed in the next 

chapter. 

Given these conventions, figure 3.2 shows the bound mass determined by VW in 

simulations considered in chapter 2, compared with the bound mass estimated from 

the tidal-limit approximation, if al1 the material beyond the satellite's instantaneous 

tidal limit is considered to be immediately and permanently unbound. (The Coulomb 
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logarithm used to calculate these orbits has been held constant, even though the mass 

of the satellite decreases; the effects of a changing logarithm will be considered in the 

next chapter). We see that while this prescription for mass loss reproduces the sharp 

drop in the bound mass at  each pericentric passage, the overall rate of mass loss is 

overpredicted; on the first pericentric passage, for instance, the satellite generally loses 

only a quarter to a third of the mass expected from the tidal-limit approximation. 

Furthermore, this result still holds even if a different definition of the overdensity 

used; the dotted curves show the same results for a constant overdensity 7 = 2. In 

this case the agreement on the first pericentric passage is improved, but mass loss is 

still overpredicted in general. 

We can get some indication of the cause of this overprediction by examining the 

dependence on orbital properties. We see that the estimate considered here is more 

accurate for more circular orbits. For radial orbits, the mass-loss rate is predicted 

to be much higher than what is seen in the simulations. This is understandable, 

given that these systems only spend a short time near the pericentre of their orbit, 

and then rapidly return to regions with smaller tidal fields. Unfortunately, typical 

subhalo orbits seen in cosmological simulations are fairly radial; Ghigna et al. (1998) 

find an average apo-to-pericentre ratio of 6:1, for instance. Thus it is precisely these 

cases which the analytic model should describe best. In the next section, 1 will 

consider a mass-loss model which does not assume circular, unchanging orbits, in an 

effort to improve the accuracy of the model. 
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Figure 3.2 Mass-loss rates predicted by truncating the satellite at its instantaneous tidal 

limit. The solid curves show the analytic prediction for the overdensity de- 

scribed in the text, while the dotted curves show the same results for a constant 

overdensity = 2. The points are the numerical results of VW. 

a rapidly fluctuating tidal force, which accelerates individual particles within the 

satellite with respect to its centre of mass. Before and after pericentric passage, 

on the other hand, tidal forces on the satellite will be minimal. If one assumes 

that the motion of particles within the satellite is negligible during the course of the 

acceleration, an assumption commonly called the impulse approximation, then the 
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energy change for a particle of unit mass, AV, can be written: 

Between pericentric passages, AV will normally be uncorrelated, such that V . A V  = 

O. Thus, only when AV is comparable to the escape velocity of the system over a 

single pericentric passage will the first term in equation (3.9) be important, unbindiaig 

the particle completely as the satellite passes through the pericentre of its orbit. The 

contribution from the second term, on the other hand, will add up from one orbit to 

the next, producing systematic heating of the satellite. In the limit of brief encounters, 

Allen and Richstone (1988) get a partial estimate of impulsive mass loss by ignoring 

the heating term, and determining how many particles are directly unbound by the 

first term alone. Equating A V  with the circular velocity at  radius r ,  they obtain a 

condition on the outer radius of the satellite: 

Gm < 
- N  ( ~ e n c ~ ~ t i d )  (3.10) 

r 

similar to the tidal limit derived above (cf. eq. 3.6). For a brief encounter, the right- 

hand side of this equation will be small, so the tidal limit will be larger than the 

Jacobi limit, and mass loss will be reduced correspondingly. 

This approach provides one possible method for determining mass loss on simple, 

radial orbits in a spherical potential, where mass loss occurs mainly at  the pericentre 

of the orbit (HN). In particular, equation (3.10) assumes that before and after the 

encounter, the satellite is isolated, in the sense that tidal forces on the satellite are 

negligible. In a typical galactic potential, however, a satellite may experience several 

shocks in rapid succession as it passes through the disk and through the pericentre 

of its orbit' . To determine mass loss in these more general cases requires a method 

which can account for continuously changing tidal fields. Equation (3.10) also depends 

'Dynamical friction also causes the orbital period to change, making it less convenient to deter- 
mine the timing of these shocks. 
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on the validity of the impulse approximation, and neglects the long-term effects of 

the second term in equation (3.9). 1 will address these points when discussing tidal 

heating in chapter 4. 

3.4 A General 

The tidal limit is a steady-state solution to the problem of mass loss on an srbit 

with a fixed pericentre, but typical satellite orbits do not spend enough time near 

pericentre to  achieve this steady state. In the method of Allen & Richstone (1988), 

the predicted mass-loss rate therefore depends not only on the strength of the tidal 

field at  the pericentre of the orbit, but also on the duration of the passage through 

pericentre. The relationship between the tidal limits derived in either case (equations 

(3.10) and (3.3) or (3.6)) suggests a more general description of tidal stripping that 

interpolates between these two cases. One way of deriving a more general mode1 is 

to make the ansatz that a system initially out of equilibrium, in the sense that it 

extends beyond its tidal limit, will evolve transiently towards a steady state, where 

it is stripped to its tidal limit, over a timescale equal to the orbital period. If one 

supposes that transient behaviour, which determines the evolution from the initial 

to the final state, is simply an exponential decay of the difference between the two 

states, then as a satellite evolves from the initial state Xo = X(t = O) to the final 

state X1 = X ( t  = oo), its state at  any time will be: 

X (t ) = XO + (XI - XO) (1 - exp (-tltchar)), (3.11) 

with tchar Y torb. Thus for over short timestep At, we can write: 

6X = X ( t  + At) - X(t)  Y --AX(At/t,,b), 

where A X  r Xl(t)  - X(t )  is the difference between the actual state of the system 

and the state it would achieve if it remained in that tidal field indefinitely. 
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Of course this general argument does not specify whether X should be the mass of 

the system, or its density, or its outer radius, or some other property such as the energy 

of the system, nor is there any guarantee that the timescale for the transient evolution 

is exactly torb, as several related times, such as the dynamical time of the satellite or 

the interna1 orbital period at its outer edge or at  the half-mass radius characterise 

the system equally well. 1 will show in this chapter and the next that taking X to 

be the mass of the system, and tchar to be the instantaneous orbital period of the 

system, yields results in excellent agreement with the simulations. 1 note however 

that this solution may not be unique, and the relative accuracy of different schemes is 

somewhat obscured by the freedom one has in choosing the Coulomb logarithms and 

the heating coefficient described in the next chapter. Further analysis is required to 

establish the theoretical justification for this mass-loss model; in practice, however, 

it is easy to implement and accurately represents the simulations, so 1 will use it as 

a general description of mass loss. 

In detail then, the method is as follows: 

e In each timestep, one calculates the mass loss AM predicted by the tidal strip- 
ping approximation, that is the total mass the system would lose if it remained 
indefinitely on a circular orbit in a tidal field of that strength. 

e Assuming that this mass is lost as described above, the corresponding change 
over a short interval of time At is: 

Thus in this model, a satellite on a circular orbit will lose all the mass outside 

its tidal radius in one orbital period, while a satellite on a stable, eccentric orbit will 

lose a constant fraction of this mass, roughly proportional to the time spent close 

to pericentre, at  each pericentric passage. In this sense, the model reproduces the 

results derived above in these two limiting cases, while for a realistic orbit, decaying 

due to dyriamical friction, the mass loss will Vary over the course of a single orbital 
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period, peaking as the satellite passes through pericentre, and also changing from one 

orbital period to the next, as the radius of the pericentre decays. 

Finally I note that while this prescription predicts the total mass of the satellite 

as a function of time, it does not specify its size. It is not clear how the density profile 

of the system evolves as the satellite loses mass. From energy distribution arguments, 

mass will preferentially be stripped off the outside of the satellite, but its actual size 

at  any time will also depend on tidal heating, and therefore I postpone a discussion 

of this point to chapter 4. 

arison with Simulations 

Finally, how well does this model reproduce the behaviour seen in simulations? 

Figure 3.3 shows the bound mass for VW orbits GlS1-GlS3, GlS6, GIS8 and GlS14. 

The prediction of the total mass loss up to the first pericentric passage is now greatly 

improved (compare the solid lines with figure 3.2). For GlS2, GlS8, and GlS14, the 

overall mass-loss rate is also fairly accurate, while for GlS1, GlS6, and GlS14, it is 

somewhat too slow. This may indicate that the characteristic timescale for mass loss, 

taken to be the instantaneous orbital period in this case, is in fact overestimated, 

but choosing a shorter time does not necessarily improve the estimate, as shown by 

the dashed lines on the same figure. Thus, it appears that some process beyond the 

passive tidal stripping described in this chapter accelerates mass loss, and furthermore 

that this process is related to passage through the disk. Not only does the satellite 

lose mass suddenly when it crosses the disk; we can also see that its mass loss rate 

(the slope of the curve) decreases slowly over time, after each disk crossing. 

The simple model proposed has no memory; a satellite moving through the disk 

into a low-density region with a weak tidal field will forget its encounter and behave 

subsequently as if its interna] state had never changed. In reality, rapid encounters 
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Figure 3.3 As figure 3.2, for the general mass-loss model, in which the mass lost in each 

timestep is scaled to the instantaneous orbital period of the system (see text). 

will permanently change the energy distribution within a satellite, making it more 

susceptible to subsequent mass loss (the effect comes from the second term in equation 

(3.9)). 1 refer to this process as tidal heating, and examine it in detail in the next 

chapter. 
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In this chapter, 1 have discussed the need to  include mass loss in studies of satel- 

lite dynamics, in order to correctly predict orbital decay times, to study the effects 

of satellites on disks, and to explore other problems such as the distribution and 

properties of tidally stripped material, some of which may account for the stellar halo 

of the Galaxy. 1 describe the two extremes in which mass loss has been modeled 

analytically, the tidal stripping approximation, a steady state solution that applies to 

systems on circular orbits, and the impulse approximation, which describes very rapid 

changes in otherwise isolated systems. Since real satellites are neither isolated nor in 

a steady state, 1 construct a general model which interpolates between the two cases, 

reproducing the expected behaviour in either limit. 1 show that this model offers a 

good description of the mass loss seen in simulations, for orbits in a smooth potential, 

but that disk crossings in a realistic galactic potential will accelerate mass loss, in 

ways not accounted for by tidal stripping. This 'tidal heating' will be discussed in 

the next chapter. 



In the previous chapter, we saw that rapid gravitational shocks, such as those induced by the passage 

of a satellite through the plane of the disk, can produce changes in its mass not accounted for by 

simple tidal mass loss. In this chapter 1 present a model of tidal heating, based on the theoretical 

work of Gnedin, Ostriker and collaborators, which accounts for this effect. 1 derive the increase 

in energy per unit mass produced by tidal forces in the outer part of the satellite, and show how 

this change in energy modifies the phase-space distribution of satellite material. These changes 

can be included in the model of mass loss described in chapter 3 by using an 'effective density', 

which includes the effects of heating, when calculating the tidal limit of a system. 1 show that this 

model does an excellent job of matching simulation results, for a reasonable choice of the one free 

parameter, the heating coefficient ch. Since it is often of interest to know how the physical size of the 

satellite changes as well, however, 1 also propose an approximate description of the structural changes 

produced by heating, based on the simulation results of HN. While the proposed behaviour matches 

the simulations to first order, several higher-order effects, some transient and some systematic, are 

clearly visible in the numerical results. The structural changes observed in these simulations require 

further study, but the model proposed here does at least give a reasonable indication of how the 

peak circular velocity will change with mass loss, for instance. Finally, 1 summarise the results of 

the first part of this thesis, describiné : the full analytic model of satellite evolution that has been 

nresented in cha~ters  2-4. 

While a slowly varying tidal field produces steady mass loss through tidal strip- 

ping, as discussed in the previous chapter, rapid tidal shocks, such as those produced 

by the passage through a thin, dense disk, will preferentially rearrange the interna1 
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structure of a satellite, leaving it more prone to subsequent mass loss. This 'mem- 

ory' effect is not accounted for in the theory of tidal mass loss introduced in the 

previous chapter, where mass loss in any timestep is more or less independent of the 

previous history of a satellite of given mean density. It is my goal in this chapter to 

account for the irreversible heating of a satellite produced by tidal shocks, in a way 

that complements the work in the last chapter on tidal stripping. It is worth noting 

that at  a rigorous level these two processes form part of a continuum; in both cases, 

the application of a tidal field, varying in time and space, to the initial distribution 

function of the satellite, produces direct changes and subsequent readjustment of the 

distribution, leading in particular to a smaller total mass of material k i n g  bound. 

Tidal stripping from the steady-state or impulse approximation models can be distin- 

guished from tidal heating on the basis of the timescale involved; tidal shocks occur 

over timescales short compared to the interna1 dynamical time of the satellite, impul- 

sive tidal stripping on timescales short compared to the orbital period of the satellite, 

and steady-state tidal stripping on even longer timescales. In this regard, it is the 

existence of thin, dense, galactic disks, with associated crossing times that are very 

short for typical satellite orbits, that motivates a separate treatment of tidal heating, 

the most rapid of these disturbances. 

4.1 Theory 

4.1.1 The First and Second-order Heating Terms 

The basic theory of tidal shocking was developed initially by Ostriker, Spitzer & 

Chevalier (1972) and is summarised in Spitzer (1987). I t  has recently been studied 

extensively by Gnedin, Ostriker and collaborators in a series of papers (Kundié & 

Ostriker 1995; Gnedin & Ostriker 1997, 1999; Gnedin, Hernquist & Ostriker 1999). 

Spitzer (1958) first recognised that the effect of brief, abrupt changes in the potential 
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of the background system can be modeled by taking them to be instantaneous, with 

respect to the orbits of particles within the satellite. In general, a fluctuating tidal 

acceleration A(x, t) produces the velocity change 

on a particle whose position x varies during the course of the acceleration. In the 

impulse approximation, the change in position is neglected, so the net acceleration 

on a particle initially at  position xo is simply T(xo)dt over the interval dt, where 

T(xo) is the tidal acceleration at  position xo, that is the difference in gravitational 

acceleration g between the centre of the satellite and xo: 

T(xo) = g(x0) - g(Q). (4.2) 

If the satellite is small compared with the characteristic scale of the background 

potential (that is, the scale over which it varies appreciably), as it must be for the 

tidal approximations developed in the previous chapter to be valid, then we can write 

T (XO) = XO ' Vg 1 = ga,bxbea 1 (4.3) 

where ga,b = aga/axb, ea is the unit vector in the x,-direction, and repeated indices 

indicate summation over the three Cartesian coordinates. Over a single rapid shock 

(say a passage through pericentre, or through the plane of the disk), a particle has 

its energy per unit mass change by 

1 1 
Al3 = - ( ( v + A v j 2  -v2 )  = v . A v + - A v 2  

2 

where Av = x(t) - Vg dt. i (4.4) 

If the velocity distribution at  any point within the satellite is symmetric about v = 0, 

then the first term will vanish for a brief shock where T has a roughly constant 

direction. Thus only the second term remains: 

A E  = - x(t)  . Vg dt -1 x(t) Vg dt l J  2 (4.5) 



Chapter 4: Tidal Heating 71 

In the case of a small, spherical satellite, averaging over a shell of radius r gives: 

for a brief shock of duration At. This is the first moment of the change in energy for 

particles at  radius r 9  that is the change in the average energy. KundiC and Ostriker 

(1995) also calculate the higher moments of the change in energy. The second moment, 

that is the change in the dispersion of energies at  radius r ,  is: 

this can be comparable to the first order term in its effects, while the third and higher 

order terms are negligible. 

4.1.2 Adiabatic Corrections 

It is also possible to account for some of the limitations of the impulse approxima- 

tion within this same framework. The expressions for the heating terms, equations 

(4.6) and (4.7), were derived assuming that the particles are stationary for the dura- 

tion of the shock. In fact, the internal orbital times of particles within the satellite 

can often be similar to the shock timescales. The orbital motion of the particles then 

damps out the net tidal acceleration over the course of the shock. In the limit where 

the internal orbital times are short compared to the shock timescale, the system re- 

sponds adiabatically to shocking, and it has no effect on the satellite. To account 

for this damping effect, one can introduce an adiabatic correction A, which describes 

the ratio of the energy change to the change predicted by the impulse approximation. 

This correction will depend on the ratio of the shock timescale t, to  the orbital time 

of a particle at  radius r within the satellite tOrb(r), x - tS/torb(r), called the adiabatic 

parameter (Spitzer 1987). Gnedin and Ostriker (1997, 1999) find that the first and 

second-order adiabatic corrections are well approximated by: 
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with the coefficients yl z 312 for slow shocks (those where x z 4 at the half-mass 

radius of the satellite) and y1 z 312 for fast shocks (x(rhm) z 1. 

4.2 A Genera ode1 for Tida 

While the formalism of Gnedin, Ostriker and collaborators provides a detailed 

description of tidal heating, and has been verified by comparison with numerical 

simulations, it requires a few modifications before it can be used in the analytic 

model of satellite evolution proposed here. Specifically, the analytic model is general, 

so the form of the potential and the location of pericentric passage are not known in 

advance. Thus the effect of heating on mass loss must be broken down into a series 

of the changes, produced step by step as the satellite moves through the potential. 

Furthermore, it would be prohibitively expensive in computational terms to  keep track 

of the energy distribution within each satellite, so heating must be related to  global 

changes in satellite properties. Consequently, the rnodel requires a scaling relation to  

relate mass loss to the change in interna1 energy of the satellite. 1 will describe these 

two changes in detail below. 

4.2.1 The Discrete Heating Calculation 

First, consider the effect of heating described by equation (4.5) above. If we divide 

the shock into a series of n discrete time steps of equal length At, then the work done 

is: 

1 
Wtid ( in )  = - At2 T t i d  (ti) ' [:' (4.10) 

2 

In going from tn to tn+l, the energy change in a single timestep is therefore: 

1 n- 1 

4W.d (tn + 1 )  = - T t  ( n )  [2 Z %id (tt) + T i i d  ( ln )  (4.11) 2 %=O 
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Finally, using equation (4.3), we can rewrite this as: 

with eighteen terms from the summation over a and b, where we have used the fact 

that 

averaged over a spherel . This discrete expression will allow the code to track the 

energy of the satellite as it evolves in its orbit. 

4.2.2 Corrections to the Heating Rate 

There are two further corrections required of equation (4.12). First, the adiabatic 

correction mentioned above will reduce the change in energy over the course of a 

shock, if its duration is long compared to the interna1 dynamical time of the satellite. 

This can be accounted for by using equation (4.8) to reduce the energy change above, 

replacing T with T(l + ~ h , ) y l / ~ .  This makes the approximation that the orbital 

period at the half-mass radius characterises the response of the whole system over 

the course of the shock, which should be the case provided the shock is brief and 

the mass of the system does not change radically over this time. More importantly, 

however, the system will also readjust itself between subsequent shocks. Thus, the 

sum in equation (4.12) should only be calculated over the duration of a single, coherent 

shock of duration comparable to or less than torb(rhm); otherwise the increased mass 

loss due to heating will include some of the effect of the steady tidal field, already 

accounted for in the tidal stripping calculation described in chapter 3. Thus shocks 

must be identified in a general way, as they occur in the orbit. 1 do this using the 

same ratio of timescales that appears in the adiabatic correction; shocks produce a 

coherent effect if the characteristic timescale of the shock is short compared to the 

lThis is only strictly true if the shock is rapid, so that xi(to) = x,(t,) c z,(t,) for al1 t, < t,. 
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orbital times of material in the satellite. Specifically, the satellite is heated when 

tshock < torb,satl where tshock EE (t& + tGb)-l is the harmonic mean of the disk and 

bulge shock times tsh,d = z/Vz,Sat and tsh,b = r/T/sat, and to,b,sat = 2 ~ r h / K ( r h )  i~ 

the orbital period of the satellite at its half mass radius. This criterion corresponds 

to that considered by Gnedin and Ostriker (1999) for short shocks, such as the disk 

shocks which dominate in the VW simulations considered here. The corresponding 

adiabatic correction has an exponent y1 = 5 / 2 .  In potentials without a disk, the 

values for long shocks may be more appropriate. This is the case, for instance, with 

the simulations of HN. 

Second, heating also leads to a change in the interna1 velocity dispersion of the 

satellite, as discussed by KundiC & Ostriker (1995). Both the average energy gain 

and the increase in the dispersion will drive mass loss. In keeping with the simplicity 

of the analytic approach, 1 will only compute the first-order change in the energy 

distribution, and account for the higher-order effects through the introduction of a 

heating coefficient, €hl  that 1 will adjust to yield reasonable overall matches to the 

numerical mass-loss rates: 

AE = c h A E l  (4.13) 

where 

AEl = Al ( x ) A E ~ , ~ ~ ~  = Al ( x ) A W t i d  

KundiC & Ostriker (1995) estimate that the second-order heating term has an effect 

comparable to or greater than that of the first-order term, so ch should be greater 

than 2. From the disruption timescale arguments in Gnedin & Ostriker (1997),  for 

instance, one might expect that ch P 713. The value of ch used in practice, however, 

will also depend on the shocking criterion and the adiabatic parameters discussed 

previously. 
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4.2.3 Relating Heating and Mass Loss 

Having described the energy change produced by heating in a way that can be 

implemented step by step in the orbital calculation, it remains to relate this energy 

change to mass loss. Mass loss is difficult to model in physical coordinates, because 

changes in the bound mass are really the result of changes in the energy distribution 

of the satellite. Whether these changes correspond to a spatial rearrangement of 

the satellite, (that is a change in the potential energies of the particles) or simply 

a change in its velocity distribution (that is a change in the kinetic energies of the 

particles) will depend on the timescale for shocking, and the dynamical timescale of 

the satellite. 1 will derive the relation between heating and mass loss in the first case, 

that is assuming heating causes the satellite to expand instantaneously, since this is 

the easiest case to understand physically. 1 will then show however, that this relation 

is general, and more or less independent of the spatial evolution of the material in 

the satellite. The actual behaviour of the satellite is quite different from a simple 

expansion, as explained in section 4.4, so it is important to have a description of mass 

loss that does not depend strongly on these structural changes. 

Instantaneous heating produces an energy change AW(r) at  radius r given by 

equation (4.12). This work will initially increase the kinetic energy of the particle, but 

through expansion, some of this kinetic energy will be converted to potential energy. 

Assuming the system returns to virial equilibrium, the total change in potential energy 

will be AU = LAW (Gnedin & Ostriker 1999). If we suppose that this additional 

energy causes the satellite to expand, and further more that it does so smoothly, with 

no shell-crossings, that is no net rearrangement of its density profile, then this energy 

input will cause a change in radius A r  = AWr2, since 

-GM Ar  
(4.14) 
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if M ( <  r )  remains constant. The corresponding change in density is: 

3Ar 9AW(r) 9 Ap r - Pr = r 
(4.15) 

Thus, if we ignore the adiabatic correction, the radial dependence has dropped out 

of the change in density. As explained previously, tidal stripping eventually removes 

from the satellite al1 the material below some mean density threshold. If the satellite 

has expanded due to heating, al1 the material that was originally within A p  of this 

threshold will be removed as well, that is heating will drive additional mass loss. 

Furthermore, because A p  is independent of r ,  this will be equivalent to stripping 

the original satellite density profile with a higher density threshold for the external 

tidal field. This leads to the following convenient method for including the effects 

of heating in mass loss. At each step, A p e E  is calculated as before, and added to 

some total change in density dpeE,  recorded over the duration of the shock. The 

density threshold used to determine mass loss is increased by this total change. The 

algorithm for mass loss described in the last chapter will then strip off a fraction of 

the material beyond this higher threshold. Thus both heating and mass loss can be 

included in each step of the orbital evolution. 1 note finally that the cancellation of 

radial dependence that occurs in the change of density produced by heating is no 

accident; heating, that is instantaneous changes in the tidal field, scales with radius 

in the same way as the long-term changes that produce steady mass loss, because 

the two are ultimately the same phenomenon, differing only in timescale. 1 treat 

them separately here only because the other characteristic timescale in the system, 

the dynamical time of the satellite, distinguishes between them. 
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.3 Comparison wit 

4.3.1 The VW Simulations 

By accounting for tidal stripping and tidal heating, the analytic model should 

now be able to reproduce the behaviour seen in the numerical simulations. Figures 

4.1, 4.2 and 4.3 show the overall comparison, for instance, with the fifteen orbits 

of VW. Figures 4.1 and 4.2 show the eEect of inclination on the orbital evolution, 

for the satellite models S1 and S2, which differ mainly in concentration. Figure 

4.3 shows more or less radial orbits, as well as orbits for the more massive satellite 

S3. The Coulomb logarithms have roughly the same fiducial values used previously, 

ln Ah = 2.4 and In Ad = 0.4, at  the start of each run, but increase as the satellite loses 

mass, as diseussed in chapter 2. The heating parameter has been adjusted to match 

the numerical mass loss rates; the value used here, ch = 3, provides a good match 

and is in the range expected from the results of Gnedin & Ostriker (1999). 

We see that the overall accuracy of the analytic predictions is greatly improved 

by considering tidal heating. Now the analytic model produces an excellent match 

for orbits out of the plane of the disk. For orbits in the plane of the disk, there are 

some systematic variations between the numerical and analytic results. In particular, 

the analytic model appears to overestimate dynamical friction, and to underestimate 

mass loss slightly. This presumably stems from the approximations made in deriving 

expressions for these phenomena, which break down when the scale of the satellite 

is comparable to the scale of the system in which the satellite orbits. While further 

adjustment of the model parameters would yield a better fit to the numerical results 

for the in-plane orbits, these cases are clearly unrepresentative in the general cosmo- 

logieal situation, so 1 will use the values appropriate for inclined orbits in the general 

model. 
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Figure 4.2 As figure 4.1, for the more concentrated satellite mode1 S2. 

match the VW simulations. We see that for this value heating parameter, the overall 

match to the HN simulations is excellent for al1 but the most extreme of these orbits, 

HN300:15. As noted in chapter 2, this orbit, which has an apo-to-pericentre ratio of 

20:1, also shows some loss of energy and orbital decay, which may account for some 

of the increased mass-loss rate seen in the simulation. There are also some slight 

discrepancies between the numerical and analytic results for the more circular orbits 

HN 100:60 and 100:30, which start out at  smaller apocentres, and lose mass very 

quickly as a result. These minor differences may be due to  one of the several different 

approximations made in deriving heating and mass loss. 
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Figure 4.3 As figure 4.1, for the orbits varying in circularity, and orbits for the more massive 

satellite S3. 

Even with these minor discrepancies, the overall estimates of infall and mass-loss 

rates are still remarkably reliable. For al1 the orbits considered here, the estimated 

mass and apocentre are remain within 20% of the numerical results until the satellite 

has lost 80-90010 of its mass. Thus, the analytic model should be able to  predict infall 

and disruption times that are accurate to within 20%, and also provide a reasonable 

estimate of the mass lost throughout an orbit, in order to determine how much satellite 

material winds up in tidal streams, for instance. 

It is paiticularly compelling that the same heating and stripping model describes 
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simulations of different satellite models in two very different potentials, with a single 

value of the heating coefficient. This suggests that this value is both correct and gen- 

erally valid. Finally, 1 note that the satellites considered in the two sets of simulations 

are both massive and orbiting close to the centre of the potential, where tidal effects 

are particularly strong. They have also been followed for many orbital periods. The 

accuracy of the analytic mode1 is expected to be even better in the more common 

case of a low-mass satellite far out in the halo, which orbits only a few times between 

entering within the virial radius of the main systern and the present day. 
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4.4 Structural Changes 

So far 1 have not discussed how the spatial distribution of material within the 

satellite changes, as it is heated and loses mass. The rough details of this psocess 

have been determined from many simulations, including Aguilar & White (P986), Oh, 

Lin & Aarseth (1995), Gnedin & Ostriker (1999), Johnston et al. (1999), and HN, 

although it is still hard to describe rigorously in simple analytic terms. First, the 

passage of a satellite through the disk or the pericentre of its orbit results in spatial 

distortion of the material that remains bound. Once it has passed through this region, 

unbound material escapes from the satellite, while the remaining bound material 

expands slightly, until the mean density of the satellite has more or less returned 

to its original value. Detailed simulations of this process (Gnedin & Ostriker 1999) 

reveal that the satellite actually undergoes several oscillations after a shock, before 

returning to virial equilibrium. The timescale for these oscillations is comparable 

to the dynamical time of the satellite. The return to equilibrium is the result of 

a balance between the expansion caused by the energy injected by the tidal field, 

and the removal of material beyond a certain radius, although the details of the 

process on realistic orbits remain obscure. Nonetheless, if the mean density of the 

satellite returns to its previous value, then the change in the outer radius, or any 

radius containing a fixed fraction of the satellite's mass, should Vary as r cc M1I3. In 

particular, this implies that the peak circular velocity of the satellite will decrease as 

GMP Vp = /F cc cc (4.16) 

(where M, is the mass within the peak radius) since this type of expansion preserves 

the form of the density profile, and thus the ratio M/Mp.  
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but that the radii containing fixed fractions of the bound mass then expand (at in 

the case of the outer radii, containing 70-100% of the mass). The overshoot and first 

oscillation is also visible, although the simulations are sufficiently noisy that it is hard 

to rnake out in the inner regions. This process has been studied a t  higher resolution 

by Gnedin and Ostriker (1999), and is shown in more detail in their figure 3. We also 

see that the timescale for the response increases with radius, as expected. 
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Figure 4.6 The mean density within several fractional mass radii, vs. time, for three of 

the HN simulations. The solid, short-dashed, long-dashed and dotted lines 

correspond to radii containing 90%, 70%, 50%, and 20% of the mass respectively. 

The smooth curves in the bottom panel correspond to the analytic prediction, 
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assuming the density within any given fractional mass radius remains constant. While 

this estimate does not capture the full details of the evolution of the satellite's density 

profile, it does provide an estimate of its average behaviour. The actual density within 

any fractional radius, shown in figure 4.6, does not change by more than a factor of 

1.5 over the first 5 orbital periods for orbits HN300:60 and WN300:30, and even for 

the extremely radial orbit HN300:60, the change is only a factor of 2, so prediction 

for the radial behaviour should accurate to within 15% on typical orbits (or to within 

30% in more extreme cases). The figures also give some indication of the systematic 

change in the density profile with respect to this approximation. While the inner and 

outer radii become smaller than this estimate (solid and dotted Iines), the middle 

radii grow systematically larger (short and long-dashed lines), producing a density 

profile with a flatter central core and a sharper outer cutoff. These changes may be 

dependent on the initial concentration and density profile of the satellite, however, 

and they require further investigation. 

In summary, looking at  satellite behaviour in simulations, we see truncation and 

possibly compression at each pericentric passage, followed by an expansion and os- 

cillation around the old equilibrium density. While the details of this process require 

further study, the approximation that the satellite returns to  its original density pro- 

vides an estimate of the fractional mass radii of the satellite that is accurate to within 

15% for orbits of intermediate circularity. In particular, this approximation allows 

one to estimate how the circular velocity of a satellite will change as it loses mass. 

Assuming p remains constant, then V ,  cc &Ill3. Given the systematic trend towards 

flatter density profiles mentioned above, the actual peak circular velocity may drop 

slightly faster than this as the satellite loses mass, but for the orbits considered the 

resulting error in V ,  is only 8-15%. I will examine the consequences of the dependence 

of the peak circular velocity on mass loss further in chapter 5. 
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Summary of Part 

In the first part of this thesis, 1 have developed an analytic description of the 

evolution of substructure in dark matter halos, which will serve as the basis for a 

semi-analytic model of galaxy formation. In this description, a halo is represented 

by a smooth background potential, including a dark component and possibly several 

baryonic components, and a separate set of distinct subhalos. The latter correspond $0 

self-bound lumps of material within the halo, the former cores of smaller halos which 

have merged with the larger system, and possibly the sites where dwarf galaxies may 

have formed. The evolution of the smooth background components is described in 

part II; in this first part of the thesis 1 have considered only the evolution of the 

subhalos. The latter can be inferred from dynamical arguments, and by examining 

numerical simulations of interactions between small companions and galaxies. The 

main processes that determine this evolution are described in three separate chapters; 

dynamical friction, the net transfer of orbital energy from the subhalo to  the halo 

through many small collisions with background particles, tidal mass loss, and tidal 

heating, two related processes that result from the spatial extent of the satellite. 

1 account for dynamical friction by using Chandrasekhar's formula, with local 

values for the density and velocity dispersion, and appropriately adjusted values of 

the Coulomb logarithm. 1 determine the tidal mass-loss rate by assuming that a 

satellite loses the material outside its steady-state tidal limit over the course of one 

orbital period, an assumption that relates the impulse approximation to  more common 

descriptions of mass loss. Finally, 1 include tidal heating by measuring the extent to 

which it accelerates mass loss, in a simple model based on Fokker-Planck studies of 

globular cluster disruption. The resulting description of satellite evolution depends 

on three main parameters, two Coulomb logarithms, ln Ah and ln Ad, which scale 

dynamical friction from the halo and disk respectively, and a heating coefficient eh, 

which scale2 ; tidal heating. I find that a single set of paramete r values, close to  
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those expected from theory, suffices to match the results of more than 20 different 

simulations of satellite evolution by two different groups. 'Mihile the orbital evolution 

of a satellite should not depend on its radius to first order, a prediction for the ske  

of the satellite is useful for estimating its peak circular velocity, and for comparing 

analytic predictions with numerical simulations or observations. Without predicting 

the detailed evolution of the satellite density profile, 1 show that assuming that the 

density within any fractional-mass radius remains constant gives an estimate of the 

evolution of these radii which is accurate to 15-30%. 

1 note that in general, the treatment of satellite dynamics outlined here will break 

down for very large satellites, those which are comparable to  the main system in mass 

or in size. 1 will show in chapter 8 that mergers of this magnitude only occur early on 

in the history of most systems, however, and from dynamical friction arguments, they 

are expected to evolve very quickly thereafter. At later times, the largest satellites in 

most systems are similar to those considered in the previous three chapters, and the 

vast majority of satellites in any given system are much smaller. 

Overall, the analytic description thus predicts the position, velocity, mass, and 

size of most satellites at  each point in their orbit to an estimated accuracy of 20%, 

for typical cases, and does so using only a small number of calculations. As such, it 

provides a useful, interpretive point of comparison for numerical simulations. More 

importantly, however, it makes the problem of modelling the formation of galaxy halos 

through hierarchical merging computationally tractable. In Part II of this thesis, 1 

will describe a full semi-analytic mode1 of galaxy formation based on this preliminary 

work, and apply it to some of the dynamical problems mentioned in the Introduction, 

such as the properties of satellite galaxies, the formation of stellar halos, and the 

survival of galactic disks in hierarchical cosmologies. 



istories for 

In hierarchical CDM cosmologies, galaxies, groups, and clusters form within merging halos of dark 

matter. Analytic expressions for the statistics governing halo formation rates can be derived using 

the method of Press and Schechter. Press-Schechter statistics have been used recently to develop 

algorithms for constructing random, but statistically representative sets of merger histories for in- 

dividual halos. These merger histories form the basis for semi-analytic models of galaxy formation. 

In this chapter, 1 describe several algorithms for generating merger trees, and the implementation 

of one of these algorithms, which is used in this thesis. 1 demonstrate the method7s accuracy, and 

discuss some of the basic properties of the resulting merger histories. 

As outlined in the introduction to this thesis, the formation, evolution and clus- 

tering of galaxies is currently understood in terms of hierarchical models of structure 

formation. In these models, small fluctuations present in the early universe grow 

through gravitational instability, eventually causing certain regions of the universe 

to  cease their initial expansion and recollapse, forming dense, gravitationally bound 

objects, called 'halos'. The spectrum of initial fluctuations, that is their average am- 

plitude as a function of spatial scale, determines the order of collapse (the relative 

phases of the initial fluctuations are assumed to be random). In cold dark matter 

(CDM) cosmologies, the amplitude of fluctuations is largest on small scales, so the 

smallest structures collapse first, and most large structures form later, from material 

that is already inhomogeneous on small scales. Thus, as halos form, they incorporate 

or merge with 'subhalos7, smaller halos which have collapsed previously within the 

same volume. These subhalos may be disrupted in the merger process, or they may 

survive as distinct substructure within the larger halos, if they are sufficiently dense. 



Chapter 5: Constructing Merger Histories for Dark Matter Halos 89 

Until matter reaches very high densities, it consists of a uniform mix of baryons (or 

other dissipational material), and dissipationless dark matter. At high densities and 

within a certain temperature range, the interaction rates between matter particles 

become appreciable, and these interactions convert kinetic energy into radiation. As 

a result, the dissipational component within halos in a certain mass range loses energy 

and collapses further. This process is halted by the partial conservation of angular 

momentum, which spins up material as it faIIs in, and by the Injection of more energy 

into the system, from star formation and related processes. Hierarchical models thus 

predict a characteristic structure to the universe, consisting of vast regions of dark 

matter, only slightly denser than the average background density, linking dense dark 

matter halos which are perpetually merging and growing, and which in turn contain 

central condensations of baryons, in the form of the stars and gas we see in galaxies. 

While many details of galaxy formation are highly uncertain, hierarchical models 

do make certain basic statistical predictions about the formation and evolution of 

dark halos, which shed light on this complex process. Press and Schechter (1974), for 

instance, followed a simple argument to produce an estimate of how many halos of a 

given mass should have collapsed by a given epoch. Using statistical methods, this 

approach was more recently extended to predict the merger rates between halos, and 

other related bivariate statistics (Bower 1991; Bond et  al. 1991; Lacey & Cole 1993). 

These statistics place constraints on the formation of a typical halo, specifying its 

average growth rate as a function of redshift, for instance. Several groups have used 

extended Press-Schechter (EPS) statistics to construct merger histories which are in- 

dividually random, but statistically representative as an ensemble. These 'merger 

histories' or 'merger trees' are the basis for most semi-analytic models of galaxy for- 

mation, including the one described in this second part of this thesis. In this chapter, 

I will describe methods for generating merger trees, test the accuracy of my own 

implementation of one of these methods, and comment on the various characteristic 

ages of subhalos that can be defined within a merger tree. In the next chapter, 1 will 
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then develop a model for the assembly of galaxy halos, based on merger trees, and 

compare the basic predictions of this model to the results of high-resolution numerical 

simulations. First, however, 1 will introduce the two cosmological models considered 

throughout the rest of this thesis. 

5.1 Cosmologica 

Simple cosmological models can be described in terms of a few fundamental param- 

eters, specifically the relative expansion rate of the universe H ,  often parameterised 

by h r Hl(100 kms-l Mpc-l), and the present-day density of the universe in units 

of the critical density required for recollapse, Cl - plp, or more precisely the density 

of each of its constituent forms of matter and energy. These different components 

include radiation, normal matter, and 'dark' or 'vacuum' energy, corresponding to 

the cosmological constant. Of these, only the latter two are important at  late times, 

contributing R, and RA to the density, respectively. The contribution to the matter 

density is further divided into the baryonic contribution Clb and the dark matter con- 

tribution Cl,, although the global dynamics of the universe depend only on the total 

matter density. 

The cosmological parameters are normally measured at  the present day, indicated 

by a subscript 'O7 - thus Ho, Ro and so forth - but 1 will omit the subscript where 

the meaning is clear. In a given cosmology, the parameters a t  any other epoch can be 

determined from equations describing the overall evolution of the universe with time. 

It is convenient to describe the expansion of the universe in terms of a changing scale 

factor: 

a(t) = R(t)/Ro, ( 5 4  

where Ro is the size of some region at  the present day, and R(t) is its size a t  an 

lThe general reader is referred to the preface for an explanation of the terms and units used in 
this section. 
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earlier time t .  Light from distant objects, seen at that earlier time, is shifted to 

redder wavelengths by the expansion of the universe. The scale factor is simply 

related to the observed redshift of objects at  that time by: 

In terms of the cosmological parameters and the redshift, the expansion rate of the 

universe at  any time is 

where OtOt is the total density from al1 contributions. The term (1 - fitot), sometimes 

denoted Rk, describes the overall curvature of the universe; in particular, Rk = O 

corresponds to a flat universe. 

In principle, the values of the cosmological parameters can be determined by 

observation. In practice, however, their values are currently uncertain by factors of up 

to 2. A full discussion of the uncertainties in the observed values is beyond the scope 

of this work; the reader is referred to Krauss (2001) or Balbi (2001) for a discussion of 

recent determinations. In this work, I will consider the simplest cosmological model, 

in which OtOt = R, = 1 and h = 0.5, as well as a model with h = 0.7, 0, = 0.3 and 

a cosmological constant contributing RA = 0.7. The former model was previously 

thought to describe the universe, and is still referred to as 'standard' CDM (SCDM). 

In this model, the merger rate between halos remains high a t  recent times, so it offers 

the strictest test of the disruptive effects of merging on present-day galaxies. On 

the other hand, the latter model, referred to as Lambda-CDM (ACDM), is strongly 

favored by current observations (Krauss 2001). Separate observational constraints, 

namely the abundance of deuterium, helium and other light species, fix the value of 

Rb in either of these models to be approximately 0.025 h-2, or 10% and 5% of the 

critical density for SCDM and LCDM respectively. 

The formation of structure in either of these models depends one or two other 

parameters. Structure forms from an initial spectrum of fluctuations whose shape is 
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Table 5.1 Summary of the Cosmological Models 

Mode1 Cl,,, R, RA Rb h l? os 

SCDM 1.0 1.0 0.0 .O52 .5 .50 .70 

ACDM 1.0 0.3 0.7 .O52 .7 .21 .90 

predicted by CDM models, and can be characterised by a curvature scale, l?, and an 

amplitude, a,  measured on some fiducial scale. In simple CDM models with Rtot = 1 

and fib = 0, l? is in fact related to the other cosmological parameters by l? = R,h, 

so the initial spectrum is specified by the amplitude o alone. As explained in the 

next section, the amplitude can be measured at  the present day on any mass scale 

where it is sufficiently small; conventionally the fiducial scale of 8h-'Mpc is used, 

and the amplitude is labeled os. The value of og can be aetermined observationally 

by comparison with the amplitude of fluctuations in the microwave background (Efs- 

tathiou et al. l992), or with the abundance of massive clusters (White, Efstathiou, & 

Frenk 1993; Viana & Liddle 1996; Eke, Cole & Frenk 1996). The SCDM model used 

here uses the former normalisation, to allow direct comparison with numerical simu- 

lations by Moore et al. (1999), while the LCDM model uses the latter normalisation, 

which has been adopted by other numerical studies (Colberg et al. 1998). Table 5.1 

summarises the full set of parameters describing the SCDM and LCDM model, while 

figure 5.1 shows the spectrum of fluctuations for either model, as a function of mass 

or of spatial scale. We see that the main difference between the power spectrum in 

the two models on galaxy scales is in its amplitude, rather than its shape. 
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Figure 5.1 The mean amplitude of fluctuations in the early universe, a ( M ) ,  extrapolated 

linearly to the present day, as a function of mass. 

5.2 Gravit at ional Instability and Press-Schechter Statistics 

The small fluctuations in the density field, whose amplitude at  early times is 

shown in figure 5.1, will evolve through gravitational instability, producing much 

denser structures at  late times. While the growth of structure through gravitational 

instability is generally complex, the evolution of an isolated fluctuation in an SCDM 

universe can be described in particularly simple terms, for as long as its mean density 

is comparable to that of the universe as a whole. Following the derivation in Pad- 

manabhan (1993, PB hereafter, p. 273 If.), for instance, let us consider the evolution 

of a 'top-hatl fluctuation, that is a spherical region of radius r ,  which has a uniform 
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density (1 +6) times that of the background, where 6 « 1 initially. Provided the per- 

turbation is small compared to size of the universe, its evolution can be described in 

Newtonian terms. In particular, individual shells of material within the perturbation 

will satisfy energy conservation: 

where r is the radius of the shell, M is the total mass of the system and E is its total 

energy (PB eq. 8.8). For bound shells, E < O and this equation has the parametric 

solution: 

r = a ( l  - cos0), t = B(O - sin 0); A3 = G M B ~  (5.5) 

(PB eq. 8.15). 

This solution can then be used to predict the density of the fluctuation at  any 

time, ~ ( r ,  t) by considering the behaviour of its outermost shell. I t  is interesting to 

compare this with the background density of the universe a t  the same time, fig In 

the SCDM model, 
P(r t) 9 (0 - sin O)2 
- i -= ( l+&)=-  

2 (1 - cos O)3 ' 
(5.6) 

Pbe 

(PB eq. 8.24-8.25). For small values of 0, corresponding to the early stages of collapse 

when 6 << 1, this gives 
3 6t2/3 S E - -  

20 B a(t> , 

where a is the scale factor introduced in the previous section. Thus, the evolution 

of small fluctuations will initially be linear in the scale factor. Linear evolution 

is particularly convenient mathematically, as it preserves the shape of the initial 

spectrum of density fluctuations (figure 5.1), changing only the amplitude as the 

universe e ~ ~ a n d s . ~  

It is also instructive to compare the full, non-linear evolution of a fluctuation 

with the linear approximation. The solution described by equation (5.5) will reach 

21n fact, the spectrum shown in figure 5.1 is actually the spectrum as it would have appeared at  
early times, extrapolated to the present day by linear evolution. 
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a maximum radius, called the turn-around radius, when 6 = 7r. At this point the 

density within this radius relative to the background density is simply: 

P b ,  t )  - 9 (7d2 -- -- = 5.6 . 
Pbg 2 (2)3 

(5.8) 

The linear calculation, on the other hand, gives ,D(r,t)/pbg = 2.063, or 6 = 1.063 

at  this time. After turn-around, the solution will collapse back to r = O at  19 = 

2n. Long before it reaches this point, however, any real perturbation will cease 

to follow the idealised mathematical solution, as shells of material cross and mal1  

potential fluctuations within the perturbation are amplified. If the system reaches 

virial equilibrium in this process (known as violent relaxation), then conservation of 

energy predicts that its final radius will be half the turn-around radius, so the final 

density will be 8 times the density at  turn-around. Assuming virialisation occurs at  

roughly O = 27r, then in terms of the background density a t  this time, pbg,viri the 

density of the virialised object will be 

97r2 213 3 
P ( ~ ,  t) = -Pbg,to 2 = -((2) 2 ) Pbg,vir = 18r2pbg,vir 178pbg,vir , (5.9) 

whereas the linear result at  the same time is: p(r,t)/pb, = 2.686, or 6 = 6, = 

1.686. While the preceding derivation is only valid in SCDM, it is possible to  carry 

out a similar calculation in other cosmologies such as LCDM (e.g. Viana & Liddle 

1996). In this case, both the critical overdensity 6, and the density ratio in equation 

(5.9), defined more generally as A, = pvir/pc, will take on slightly different values; 

6, = 6c,scoMfl~055 in LCDM models with Clt,, = 1 (Peebles 1980), while figure 5.2 

compares A,(z) for the SCDM and LCDM models. 

5.3 Press-Sehee 

The results of the previous section suggest an analytic approach to predicting the 

statistical properties of collapsed structures. As long as the density of a region of 
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of radius, then setting a(t)b(r) = b(r)/( l  +z) = 6,(z) = 1.686 wilB provide an estimate 

of the region around this point which has collapsed and virialised by redshift z ,  as 

well as the mass of the corresponding collapsed object: 

Conversely, if a volume V around a point, which contains a mass M in the initial 

density distribution, is overdense by more than &(z) when evolved linearly up to the 

epoch z, then its contents should reside in a collapsed structure of a t  least that mass, 

by that redshift. 

Based on this reasoning, Press and Schechter (1974) suggested a method for pre- 

dicting the number of collapsed objects in the universe as a function of mass and 

redshift. Writing the fraction of the initial density distribution that has collapsed by 

redshift z, when averaged over a volume containing an average mass M l  as: 

where p(6 )  is the probability of a point in the initial density field having an overdensity 

6, they estimated that the number of collapsed objects of mass M at  redshift z was 

simply : 
1 d 

n(M, z) = -- f (M, z). (5.12) 
M d M  

This estimate is not quite correct, since it assumes that f increases monotonically 

for decreasing M l  or equivalently that if material is within an object that exceeds 

the critical density threshold on some mass scale M l  the volume around it will also 

exceed this threshold when smoothed on any smaller mass scale. In fact, collapsed 

regions will contain a mixture of overdense and underdense material, introducing a 

correcting factor of roughly 112 into equation (5.12) . Assuming the initial spectrum 

of density fluctuations is Gaussian, with the amplitude g(M,  z) = D(z)ao (M) (where 

3A more rigorous derivation of the PS result, such as that of Bower (1991) or Bond et al. (1991), 
confirms that the factor is exactly 112. 
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o0 ( M )  is the amplitude extrapolated linearly to the present day, and D ( z ) ,  the linear 

growth factor, accounts for the redshift dependence), then the predicted number of 
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Gelb & Bertschinger 1994; Ma 1996; Tozzi & Governato 1998; Gross et  al. 1998; 

Tormen 1998). Overall it shows reasonably good agreement, given the simplifying 

assumptions made in its derivation, although the relative number of low-mass and 

high-mass halos are somewhat over-predicted and under-predicted respectively (Jain 

& Bertschinger 1994; Tormen 1998; Gross et al. 1998; Governato et al. 1999). This 

may be due to a systematic variation in 6, with mass; a mode1 which accounts for 

the non-spherical geometry of collapsing halos provides an improved fit to simulation 

results (e.g. Sheth & Tormen 1999; Sheth, Mo & Tormen 2001; Jenkins et al. 2001). 

Unfortunately, this mode1 cannot be incorporated into the merger tree methods de- 

scribed below, which require 6, to be independent of mass (van den Bosch 2001). 

Furthermore, in the merger tree code described below, the Press-Schechter method 

is only used to determine relative rates of halo formation, over a small, sub-galactic 

mass range, which should be less sensitive to this effect. Thus, 1 will use equation 

(5.13) as the basis for generating merger trees. 

With this caveat, the Press-Schechter prediction provides a simple and relatively 

accurate way of estimating the outcome of the highly non-linear process of structure 

formation, and as a result it has been extended and generalised by several authors. 

In particular, both Bower (1991) and Bond et al. (1991) laid the groundwork for 

determining the statistical properties of individual regions, as well as putting the 

theory on much sounder theoretical footing. This allowed Lacey & Cole (1993, LC 

hereafter) to formulate merger probabilities and various other bivariate statistics. 

Thus, for example, while the Press-Schechter formula gives the probability that a 

region has collapsed on a mass scale M by a redshift z, thereby providing an estimate 

of the number of such regions, Lacey and Cole (1993) calculated the probability that 

a region would collapse on a mass scale Ml by a redshift xl, given that it had already 

collapsed on a mass scale M2 by the earlier redshift z2, thereby providing estimates of 

the instantaneous merger rate between halos, and several average properties of their 

individual formation histories. These results, known as extended Press-Schechter (or 
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EPS) statistics, form the basis a whole class of semi-analytic galaxy formation models 

described below. 

5.4 Constructing 

Using the results of Lacey & Cole (1993), it is possible to calculate the probability 

that material that is in collapsed structure, or halo, of mass M2 at  an epoch x2 was 

in a halo with a smaller mass between Ml and Ml + dMl at  a later epoch 21. This 

probability is simply: 

in terms of the dimensionless variables S = a i (M)  and w = &(x) (LC eq. 2.15). The 

conditional probability fs, (S;, w21S1, wl) can also be calculated, and gives the proba- 

bility of a halo of mass Ml merging to form an object of mass M2 over some redshift 

range (LC eq. 16). The original halo may steadily accrete structureless material to  

make up the mass difference dM = M2 - &, or it may merge with other halos, in 

which case the mass of the halo (that is the mass of the connected overdense region) 

will increase instantaneously at  each merger. Thusl taking the limit of equation (5.15) 

as z2 approaches zl, for some fixed mass difference dM, gives the probability that the 

original halo merged with another single halo of mass dM. Using a set of these 

probabilities, calculated for different values of Ml, dM, and n, one can then generate 

random mass accretion histories for halos which start out with a given initial mass. 

In some cases, the result is even analytic. Thus, for instance, by counting the number 

of progenitors of halos with some final mass M2 at  22, and selecting those that have 

a given fraction r of the final mass at some earlier epoch 21, one can estimate the 

probability that a halo 'formed' by this epoch, that is the probability that its main 
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where S, = S(rM)  (LC eq. 2.26). This expression is only valid for r > 0.5, since 

otherwise there may be more than one progenitor with more than this mass, and 

even then it is not fully rigorous, as explained in LC, due to the limitations in EPS 

statistics. 

While this approach of following mergers forward in time yields several useful 

results, it is generally more interesting to be able to reconstruct a halo's complete 

mass-accretion history, given a specified final state. In its fullest form, this 'merger 

history' describes how the material in a halo at  the final epoch is distributed in smaller 

progenitor halos at every earlier epoch. I t  is sometimes also called a merger 'tree', by 

analogy with a tree structure whose trunk corresponds to the final halo, and whose 

branchings represent the division of this material into distinct progenitors at  earlier 

times (see figure 5.4). 

The problem of generating merger trees is much harder to resolve algorithmically. 

The fundamental difficulty arises from the fact that while binary merger probabilities 

of type (5.15) are well defined and can be evaluated from analytic expressions, they 

cannot be constrained to give a specific final mass for an object undergoing many suc- 

cessive mergers (Kauffmann & White 1993; Somerville & Kolatt 1999). Conversely, 

starting with a halo of a known mass at  some final time, there is no closed-form ana- 

lytic expression to predict the joint probability that its contents will be split between 

two or more progenitors of specified masses at  an earlier time. Thus, merger tree 

algorithms must either violate mass conservation, or use inaccurate merger proba- 

bilities. Early attempts to  construct merger histories that resulted in objects of a 

specific mass at  the present day (Cole 1991; Kauffmann & White 1993; Cole et al. 

1994), for instance, violated mass conservation by using discrete mass steps in the 

merger history. This Iimited their mass resolution, as well as their overall eAlciency 
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and accuracy (see Somerville & Kolatt (1999, SK hereafter) for a discussion of these 

problems) . 

Figure 5.4 A sample merger tree, in which halo 'A' merges with halo 'B', and the combined 

system AB then merges with C .  The merger epoch x, and the original merger 

epoch z,, for halo A are indicated on the plot. 

An alternate approach, which has since become standard in semi-analytic mod- 

els, was first proposed by SK. In this method, the merging history of a halo with 

a specified mass at  the final epoch is traced backwards in time. To calculate ac- 

curately the probability of the halo dissolving into one or more progenitors at  any 

given timestep, the stepsize is kept so short that the probability of a multiple merger 

occurring is small. Thus, most of the mergers in the tree are binary mergers, whose 

probability distribution is given by the closed-form analytic expression (5.15). Once 

the progenitors of a given halo are determined, the merger history of each progenitor 
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in the next timestep is then calculated in the same fashion. While the calculation 

does have a limiting mass resolution, in the sense that branches with less than some 

limiting mass are considered smooth accretion, and traced no further, halo masses can 

Vary continuously above this limit. Furthermore, having reduced most of the merger 

calculations to a series of simple, binary mergers, the method is very fast computa- 

tionally. Adjusting the scaling of the timestep to optimise the overall performance 

and accuracy, it is easy to generate merger trees with dynamic ranges of 10*-1@ in 

mass, with thousands of individual branches and timesteps, in a few minutes of GPU 

time. In the next section, I describe an implementation of this approach, designed to 

generate merger histories for galaxy, group and cluster halos. 

mplementat ion 

To establish the mass accretion histories of a representative sample of galaxy- 

sized halos, to be used in determining the evolution of halo substructure, 1 developed 

an implementation of the Somerville & Kolatt algorithm, as described in SK. This 

algorithm starts with a halo of a given mass at  some final redshift, and traces its 

accretion history back until none of its progenitors exceed the mass resolution, or 

until some limiting redshift is reached. To mode1 the formation of a large disk galaxy 

comparable to the Milky Way, I chose a final mass of 1.6 x 1012 Mo at  the present day, 

consistent with recent estimates of the total mass of the Milky Way's halo (Zaritsky 

1998). The substructure observed within the halo of the Milky Way, namely its 

retinue of dwarf satellites, extends down to estimated masses 104-105 times smaller 

than the total mass of the Milky Way's halo, so the mass resolution in the merger 

tree was chosen to be 5 x 107 Mo, or roughly 3 x 1oP4 times the mass of the whole 

tree. The limiting redshift required to achieve convergence in the properties of the 

trees depends or1 the mass resolution; for the resolution used here, a limiting redshift 
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of around 20-25 was found to be sufficient, so a redshift of 30 was chosen to  ensure 

convergence. 

An important element of the method of SK is the choice of timestep; it has to be 

short enough to guarantee that halos have a single progenitor in most timesteps, yed; 

long enough that the calculation is reasonably fast. SK pick a fiduclal timestep based 

on the probability that a halo of mass Mo will have more than one progenitor over 

the resolution limit Ml, in order to satisfy the first constraint: 

In order to improve the efficiency of the calculation, however, they suggest the scaling: 

with a = 0.3 and b = 0.8. In the merger trees considered here, the mass resolution 

is higher than that considered by SK, so more conservative values of a = 0.15 and 

b = 0.02 were used, based on the tests described below. 

Overall, the merger trees used here recorded approximately 3000 mergers with 

the main trunk, over about as many timesteps. The length of each timestep was 

approximately 0.1 Gyr (corresponding to Az EY 0.01) at  the present day, decreasing 

to 0.01 Gyr (Az E 1) at  z = 30. The number of progenitors chosen per step was - 1.2, in keeping with the requirement that it be close to 1. Each merger tree took on 

the order of 15 minutes to generate on a desktop system, but much of this overhead 

came from the dynamical calculations in the branches, described in the next chapter. 

The basic calculation took only a third as long. Recording al1 the mergers with the 

main trunk of the tree produced approximately 100 kb of data per tree. 

To test the timestep scaling, and the overall accuracy of the code, I performed 

several tests. The average mass spectrum of progenitors of a halo at  a given epoch, 

for instance, can be calculated analytically from EPS theory: 
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In figure 5.5, I show the spectrum of progenitors averaged over 120 SCDM trees, at  

four different epochs (histograms), compared with this prediction. Figure 5.6 shows 

similar results for LCDM. The abscissa is labeled in units of the mass resolution Ml. 

We see that overall, the agreement is excellent for masses more than 10 times the 

mass resolution. The spectrum close to the resolution limit is slightly lower than 

the EPS estimate at  the lowest redshift, and slightly higher at  the highest redshift. 

SK found similar results, however, suggesting that this is an intrlnsic limitation of 

the algorithm. Nonetheless, the agreement is generally excellent, particularly when 

compared with other algorithms (SK). 

araeteristic Ages within the Merger 

The merger tree records only the mass of progenitors of a final halo, a t  each of a 

series of earlier epochs. Al1 other properties of these progenitors must be inferred from 

their own merger histories within the tree. Numerical results, notably NFW (1996, 

1997), but also more recently Bullock et al. (2001b) and Eke, Navarro & Steinmetz 

(2001) suggest that the properties of dark matter halos depend principally on their 

mass and the epoch at  which they formed. In particular, older halos are expected 

to be more centrally concentrated, because their cores are denser, having formed a t  

a time when the mean density of the universe was greater. Thus i t  is interesting to  

establish a rigorous definition for the formation epoch of a given halo in the merger 

tree. Several different definitions have been proposed. The first was introduced in 

the previous section; for a halo of mass M at  a given epoch, there is a unique epoch 

when its main progenitor first had a mass of more than fA4, where f is some fraction 

greater than a half, which can be taken as the formation epoch of the system. (If f is 

less than a half, it may no longer be clear which progenitor is the 'main' progenitor, 

and the analytic calculation is no longer valid, as explained in section 5.4.) 



Figure 5.5 Distributions of progenitors at four different epochs in the SCDM merger trees. 

The smooth curves are the EPS prediction, while the histograms are the average 

results for 120 trees. Mass is measured in units of the resolution limit. 

Alternately, one can use the related definition, that the formation epoch is the 

epoch when the average particle, in the halo at  the present day, mas in a progenitor 

of mass f M .  This epoch can be determined by solving the equation: 

1 
erfc - - [&] - 5. (5.20) 

where AS  = cr: ( f  M )  -4 ( M )  . It was this formation epoch that was found to correlate 

with concentration by NFW (1996, 1997). It is also possible to define the formation 

epoch in terms of the merger history of a halo, as the epoch when the mass of a halo 
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group of two distinct subhalos, A and B, to  halo ABC, rather than a single system, 

AB.  To characterise the (sub)halo A in this situation, 1 will refer to the epoch w 

A first merges with B as the original merger epoch for halo A, denoted xmo, and 

the epoch when A and B both merge with the main halo C as simply the merger 

epoch for halo A, denoted 2,. These two definitions will be used in the next chapter. 

The bottom panel of figure 5.7 shows the distribution of zm for halos in a typical 

merger tree (the discrete appearance of this distribution will be explained in the next 

chapter), while the top panel shows the distribution of x,,. Clearly the original 

merger epoch is much earlier for most of the halos in the tree - typically zm E 1-3 

while zm, E 5-10. 

O 5 10 15 20 25 
z 

Figure 5.7 The characteristic epochs z, and xm, defined in the text, for the subbranches 

in a single merger tree. 
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5.7 Summary 

In this chapter, 1 have outlined the statistical approach to structure formation 

first suggested by Press and Schechter. This approach has been extended consider- 

ably by many authors over the past fifteen years, and is now the basis of Monte Garlo 

techniques for generating representative mass-accretion histories, or merger trees, for 

sets of dark halos. 1 have also presented an implementation of one of these methods, 

based on the algorithm of Somerville and Kolatt. This merger-tree code can pro- 

duce mass accretion histories resolving thousands of subhalos, in only a few minutes 

of CPU time on a desktop machine. The resulting merger histories show excellent 

agreement with the predictions of EPS theory. Finally, 1 have discussed how éo assign 

characteristic ages to individual halos within a merger tree. 

The PS description of structure formation, while mathematically straightforward, 

is rather conceptually abstract. In particular, the merger-tree code developed in this 

chapter contains no spatial information about the halos at  any given epoch. While 

this information was unnecessary in previous semi-analytic models, which averaged 

over the spatial structure within individual halos, it is clearly required for any model 

which hopes to resolve the contents and structure of individual halos. The move from 

merger trees to a full model of galaxy formation is problematic, and will be discussed 



In this chapter, 1 discuss how to relate the Press-Schechter description of halo growth to the process 

of galaxy formation. Moving from one to the other requires a careful treatment of surviving substruc- 

ture within each side-branch joining the main trunk of a merger tree. 1 explain how this substructure 

can be accounted for by using a simplified version of the dynamical models developed in part 1. 1 

also introduce a set of basic rules to specify the evolution of the central baryonic components within 

the main halo. Together, these components constitute a semi-analytic model of galaxy formation, 

or more specifically the formation and dynamical evolution of gailaxy halos. H compare some basic 

predictions of this model with numerical simulations of groups and clusters. Overall, the model 

matches the numerical results very accurately, producing similar distributions of subhalo mass, peak 

velocity and distance from the centre of the system. The predictions for the stellar contents of a 

galaxy halo and for disk survival will be discussed separately in two subsequent chapters. 

The previous chapter started out by considering the dynamics of dissipationless 

material during the initial stages of gravitational collapse, when the growth of struc- 

ture is linear, or only weakly non-linear. In this regime, gravitational dynamics are 

sufficiently simple that it is possible to derive analytic estimates of the numbers, total 

masses and overall growth rates of halos as they enter the non-linear regime. Even in 

a purely dissipationless model, the interna1 dynamics of a realistic system, once shells 

of material cross after their initial collapse, is much more complicated, and cannot be 

determined analytically. Unfortunately, it is precisely in this high-density regime that 

galaxy formation occurs, permitting stringent observational tests of theories of struc- 

ture formation. In this chapter, 1 will try to make the connection between the EPS 

merger histories discussed in chapter 5 ,  and the process by which galaxies, groups 
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and clusters form, developing a semi-analytic (SA) model of galaxy formation based 

on the evolution of individual halos. 

A basic outline of this SA model is as follows. The model considers the formation 

and evolution of a central galaxy within the dark matter halo corresponding to the 

main trunk of the merger tree. The structure of this halo-galaxy system a t  any epoch 

is taken to  be smooth and simple, the dark component having a cosmological density 

profile, and the baryonic components constituting the central galaxy, a disk and a 

spheroid, having density profiles similar to the stellar and gaseous components of the 

Milky Way. The total mass of the dark component is determined by the merger tree, 

while the other components grow following various simple laws. In particular, the 

model does not derive a growth rate for the disk, but assumes that it grows roughly 

in proportion to the dark halo, while the spheroid is built up from stellar material 

stripped from dwarf galaxies, as explained below and in chapter 7. 

The interpretation of branches in the merger tree is more complex. Each represents 

a merger with another halo, which adds its mass to the total mass of the main system. 

The core of this halo may be sufficiently dense to withstand tidal disruption, however, 

producing a distinct subhalo within the main system. The subsequent evolution of 

this subhalo can be described using the analytic methods developed in part 1. This 

approach suffices if each branch is small, and contains only a single dense core. If a t  

some point the main trunk of the tree experiences a major merger with another halo 

of comparable mass, this other halo may contain its own substructure. A full model 

of halo growth should in principle examine the history of each side branch in as much 

detail as the main trunk. This would be very expensive computationally, however, 

and would require a more detailed treatment of mergers.' The detailed evolution 

of the main galaxy is also generally of more interest, as it dominates the system and 

can be related to local observations of Our own Galaxy. Thus in practice, the model 

'As mentioned in chapter 4, the analytic model will also break down for mergers of similar-mass 
components. 
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determines the substructure within each branch, at the moment it merges with the 

main trunk, using a simpler method based on its previous merger history. I will start 

by explaining this process of 'pruning' in the next section, and then I will return to 

the evolution of the main trunk in section 2. 

.1 Pruning 

The problem of accounting for branchings in a merger tree is best understood 

in terms of the physical example of cluster substructure. Many real clusters show 

substructure in their spatial or velocity distributions (e.g. Virgo (Petrosian et al. 

l998), Coma (Gurzadyan & Mazure 2001, and references therein), Fornax (Drinkwa- 

ter, Gregg & Colless 2001), and more distant clusters (Plionis 2001)). This substruc- 

ture indicates that they include several distinct groups which have not yet dissolved 

completely into the main system. In the hierarchical, CDM picture, clusters have 

assembled recently through the merger of several large halos, each corresponding to  

a distinct group of galaxies. Each of these groups has many members, which collec- 

tively show correlations in their positions and velocities. If one were to construct a 

rnerger history for the whole cluster to predict its total galaxy population, it would 

be necessary to count mergers with large halos as contributing many small dense 

subhalos containing individual galaxies, rather than a single massive object. The 

same situation occurs on smaller scales, due to  the scale-free properties of dark mat- 

ter. If the progenitor of a Milky Way-like system merges with a large halo, this halo 

should contain its own substructure, some of which will survive in the halo of the 

main system, just as galaxies from groups survive within clusters. To determine the 

substructure of the main halo, it is thus necessary to account for the substructure of 

al1 its branches. 

Substructure will not survive indefinitely within a halo; we saw in part I that 
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dynamical friction will cause its orbit to decay into the centre of the halo, where it 

is disrupted. While it is not feasible to include the full analytic calculation for each 

subhalo in each side-branch of the tree, it is possible to  estimate how long it will take 

a subhalo to  fa11 in and be disrupted. For an orbit of circularity 6 ,  this timescale is 

given by: 

where J,  and r, are the angular momentum and radius of a circular orbit of the same 

energy, and r J I  J, is the circularity of the orbit. (Colpi e t  al. 1999). These authors 

further scale this time by a factor 'e' to account for the reduction in dynamical friction 

due to mass loss. When pruning the merger trees, 1 will set this parameter to 1, which 

gives good agreement with numerical results, as shown below. 

This estimate can be used to determine whether a given subhalo survives within 

its sub-branch, up until the time when this branch merges with a larger branch, or 

with the main trunk of the tree. Considering the situation shown schematically in 

the top left-hand corner of figure 6.1, if the infall time estimated using equation (6.1) 

(where é, the circularity, is picked at  random from a cosmologically representative 

distribution) is longer than the time between x, and zm0, then the whole branch will 

have merged with the main trunk before the subhalo disrupts within the subsystem, 

and therefore the subhalo should be passed on to the main trunk as a distinct object, 

and the mass of its parent branch reduced accordingly. If the infall time is shorter 

than the time between z,, and x,, then the subhalo will have been absorbed by its 

parent, and thus the branch can be treated as a single, structureless object. These two 

possibilities are shown schematically in figure 6.1. For large branches, this process of 

'pruning' (or more precisely 'grafting') produces bursts of mergers with the main trunk 

at a single epoch, corresponding to the epoch when the branch itself merges. This 

explains the discrete distribution of merger epochs seen in figure 5.7 in the previous 

chapter. It is worth pointing out that this is not an artefact of some approximation 
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in the merger tree. If one could determine the distribution of epochs when individual 

galaxies had joined a large cluster, they would show similar discreteness, as whole 

groups of galaxies merged with the cluster at  once. 

I 

Figure 6.1 A schematic diagram indicating how substructure in a branch of the merger 

tree is either incorporated into the branch or counted as a separate object, at  

the epoch of the final merger with the main trunk, depending on its infall time 

within the branch. 

Given this method for dealing with substructure within branches, a merger tree 

can be reduced to a series of individual mergers with the main trunk, occurring in 

sporadic bursts. The cumulative mass function of these merging objects, averaged 
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over 120 SCDM merger trees, is shown in figure 6.2. As the halo grows, it 'sweeps up' 

more and more material from surrounding space, including smaller halos. On small 

scales, the cumulative mass function therefore resembles the cumulative mass function 

of the universe (cf. figure 5.3), with a slope of -1 on galactic scales, while close to  

the present-day mass of the halo, mass conservation truncates this distribution. The 

resulting mass distribution is well-described by the integral of a Schechter function: 

with a = -1.96 and M* = 0.16 Mvir, where MVir is the mass of the whole tree. The 

rate at  which the halo merges with other halos increases as it grows, so that most 

of its substructure at  any time has been acquired fairly recently. The thick line in 

the top panel of figure 6.2 shows the spectrum for the SCDM trees, counting all 

mergers back to the initial redshift of the tree, z = 30, while the thin lines show the 

spectrum for mergers which have occurred prior to x = 0.5, z = 1, x = 3, and x = 6. 

The bottom panel shows similar results for LCDM. We see that in both cases, most 

subhalos merge with the main tree between redshifts of 1 and 3. 

In a pure CDM cosmology, substructure should continue down to  very small scales. 

The distribution in figure 6.3 is truncated at  5 x 107 Mo, as explained in the previous 

chapter, both for computational reasons, and since this corresponds to the estimated 

mass of the smallest dwarf galaxies in the Local Group. Given that the pruning 

operations described above may depend on the shape of the mass spectrum over 

some range in mass, it is important to test the convergence of the mass distribution 

as a function of limiting resolution. Figure 6.4 shows the mass function calculated 

for sets of trees with limiting resolutions of 2.5 x 107 Mo, 5 x Io7 Mo, 1 x 10' Mo, 

and 2 x 10' Mo. We see that the normalisation of the mass distribution converges 

at  masses greater than the resolution limit, for a resolution limit of 5 x IO7 Mo or 

less, and that the slope below 10-2Mvi, appears to be constant and more or less 

independent of mass resolution. 
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Figure 6.2 The cumulative distribution of subhalos merging with the main trunk, shown 

for several different redshift ranges. The ranges are x = 6-30, 3-30, 1-30, 0.5-30 

and 0-30 from top to bottom. Most subhalos merge between z = 3 and z = 1. 

Finally, to clarify the effect of including substructure from side-branches as dis- 

cussed above, in figure 6.5 1 show the cumulative mass spectrum of halos merging 

with the main trunk, calculated assuming each branch corresponds to a single, struc- 

tureless object (dotted curves). The dashed curves in figure 6.5 show the effect of 

counting al1 subbranches separately, while the solid curves show the result of pruning 

the merger tree according to infall times. We see that the first spectrum is flatter 

overall, and extends to larger masses; it is roughly described by a Schechter function 
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Figure 6.3 The cumulative distribution of al1 subhalos merging with the main trunk of the 

merger tree. The thick solid line is the average from 120 merger trees. while 

the dashed lines show the cosmological (1-a) variance. The line solid line is an 

integrated Schechter-function fit with the dope and mass listed. 

with a = -1.5 and M* = 0.085 AdVi,. The other two cases are steeper, with slopes 

close to a! = -2. 1 will show in section 6.4 that the slope of the first distribution 

is inconsistent with numerical results for group and cluster halos, confirming that 

substructure in the side-branches does have to be accounted for in models based on 

merger trees. First, however, having explored the general properties of the merg- 

ing halos, it remains to determine their detailed structure, and the structure of the 
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and final redshift, as well as the mass in the trunk at  each step2 . This data provides 

the basis for a semi-analytic description of galaxy, group or cluster formation. In this 

section, 1 will describe the components of the model designed specifically to model 

galaxy formation, or more precisely the formation of a single large gaIaxy; with a 

number of small satellites in orbit around it. The model can easily e generalised to  

larger groups or clusters, by changing the mass of the merger tree and the form of 

the central potential; this is not the main purpose of this work, however, so I will not 

discuss these extensions in what follows. 

Within the main halo (the 'trunk' of the merger tree), a large disk galaxy forms 

through dissipation of the energy in the halo gas, its collapse, and subsequent star 

formation. These processes are complex, and it is beyorid the scope of this work to  

attempt to model them. Instead, they are simply assumed to  produce a galaxy with 

a basic structure similar to the observed structure of the Milky Way, but structural 

parameters that depend on its evolutionary history. The two components of the 

galaxy model are a thin, exponential disk with an isothermal vertical density profile, 

and a spheroidal component, including both the bulge and the corona, (or stellar 

halo), with a Hernquist density profile. These components are similar in form to 

those used in the VW simulations, but change in scale as the main halo acquires 

material. 

Since the merger trees trace the halo's mass accretion history back to an epoch 

when it has only a small fraction of its final mass, the central components must also 

grow during this accretion process. As the main halo merges with other halos, gas 

should cool and collapse into its centre, to add to the mass of the galactic disk. In 

the simplest model, the disk mass would increase instantaneously and in proportion 

whenever the halo mass increased, so that one mass tracks the other. In a more sophis- 

ticated model, gas infall would be further delayed by the cooling time. The cooling 

2This 'pruning' is actually included in the code, and accounts for much of the computational 
effort of generating the trees. 
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time is more complicated to calculate, however, depending on the mass, 

metallicity of the system. As an approximation to this more realistic situation, I will 

consider a model where halo gas is added to  the disk over the infall time, which is 

longer than the cooling time for galaxy-sized objects (White & Rees 1978). As shown 

in figure 6.6, the effect of this delay is fairly minor. 

The overall efficiency with which the gas content of the halo is added to the disk 

is a free parameter; 1 set it to 0.5 for the SCDM model and 0.8 for the LCDM model, 

which, when multiplied by the baryon fraction of the universe in either model, gives 

a disk mass of approximately 5.6 x 10'' Mo a t  the present day, in keeping with recent 

mass models for the Milky Way (Dehnen & Binney 1998). Major mergers may disrupt 

the disk and convert it into a spheroidal component; 1 will discuss this process in detail 

in chapter 8. 
("-2) /n = This Finally, the (radial) scale length of the disk, rd, grows as Md 

will produce a Sully-Fisher relation of slope a = 3.0, if one assumes that the total 

luminosity of the disk is proportional to its mass, and that the peak circular velocity 

of the disk is proportional to JMdIT<I. While the peak circular velocity of the disk 

actually depends on the total mass distribution in the inner part of the halo, the 

tightness of the observed Tully-Fisher relation suggests that the latter proportionality 

is maintained in practice, in most real galaxies. The scale height of the disk is 

taken to be 1/5 the radial scale length at  al1 times, mainly due to the computational 

requirement that the form of the potential remain the same throughout the run. 

The other component of the potential, the spheroid, grows in quite a different way. 

1 assume that this component forms entirely from the debris of merging, following two 

different processes. The first is tidal disruption of satellite galaxies, which 1 describe 

in detail in the next chapter. The stellar contents of any satellite which is stripped 

beyond some point, or which falls too deep into the potential, are added to the mass 

of the spheroid in the corresponding timestep. Furthermore, if the disk experiences 

a sufficiently violent encounter, it is assumed to  be entirely disrupted, and its whole 
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mass is added to the spheroid3 . This process is also described in more detail in 

chapter 8. When the mass of the spheroid changes, its scale length as assurned to 

follow a Fish (or constant central surface brightness) law: r, sc Ad1/". 

Figure 6.6 shows the mass accretion histories of the different components in a 

typical (SCDM) merger tree. The disk grows in proportion to the main halo, with a 

slight lag, as shown in the top panel (dashed line), while the spheroid grows due to  

satellite and disk disruption, as shown in the second panel. The third panel shows 

the growth of the bulge, while the bottom panel shows the resulting disk-to-spheroid 

mass ratio versus time. 

6.2.2 Evolution of the Subhalos 

Having determined the basic properties of the dominant galaxy within the main 

halo, the evolution of substructure must now be taken into account. Each merger in 

the pruned merger tree corresponds to a single object crossing the virial radius of the 

main halo. If many halos merge with the main halo at  the same time, this corresponds 

to a single group merging with the system, as explained above. For each group or 

independent subhalo, orbit is assigned, passing through a random point at  one virial 

radius from the centre of the main halo. The radial velocity is taken to be negative 

and equal to the infall velocity of the main halo, that is simply its circular velocity 

at  the virial radius, d m ,  the velocity a particle falling in from rest a t  the 

turn-around radius would have at  this point. Numerical simulations (Tormen 1997) 

have shown that this is in fact close to mean radial velocity for satellites first crossing 

the virial radius. A random circularity is chosen from the distribution measured by 

Ghigna et al. (1998), and the orbit is given the corresponding tangential velocity, 

with a random orientation in the tangent plane. 

Coherent groups of objects should have correlated initial positions and velocities, 

3Throughout the run, both the disk and spheroid are actually given minimum seed masses, to 
prevent numerical instabilities in the code, but these are small enough to be negligible. 
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Figure 6.6 

Time ( G y r )  

The mass of the halo or disk components (top panel, solid and dashed lines), the 

spheroidal component (second panel) and the bulge component (third panel) vs. 

time, normalised to their final mass, in an individual SCDM tree. The bottom 

panel shows the resulting disk-to-spheroid mass ratio vs. time. 

with some scatter related to the structure of the group before it merges with the 

main halo. To reflect this, a single orbit is chosen for each group, and the individual 

members are then assigned positions and velocities which deviate from this mean by 

small random offsets. The offset in position is chosen from a uniform distribution of 

width AR = while the offset in velocity is chosen from a Gaussian distribution 

of width AV = Vvir,g, where rVi,, and Vvir,g are the virial radius and circular veloeity 
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of the whole group, respectively. 

Finally, the initial structure of each individual subhalo must be specified. Halos 

should be dominated by dark matter in al1 but their central regions, particularly on 

small mass scales. Thus each halo is represented by the analytic profile: 

found by Moore et al. (1998) to describe the general profile of halos seen in hig 

resolution simulations. There is continuing controversy over the exact inner slope 

of this profile, but in practice these differences have very little effect on the results 

described below. In particular, a Moore profile and an NFW profile, which has a 

flatter inner slope, are almost identical outside the central region if they have the 

same outer radius and peak circular velocity radius. 

Given a mass and a mean density set by the virial density estimated in chapter 

5, this profile has a single free parameter, the ratio of the outer radius to the scale 

radius, called the concentration. While there is no analytic prediction for the con- 

centration of halos with this exact profile, work by Bullock et al. (2001b), NFW 

(1996, 1997) and Eke et al. (2001, ENS hereafter) has suggested relations between 

concentration, mass and redshift for the similar NFW profile, which can be related 

to Moore concentrations if the prediction is written in terms of the ratio of the virial 

radius to the peak radius. The predicted concentrations from ENS, the most recent 

and extensive of these studies, are shown in figure 6.7. There are several caveats in 

using these predictions, however. First, they were derived by studying isolated halos, 

rather than subhalos; second the halos studied were more massive than those consid- 

ered here, and third, there was considerable scatter in the relations, even under these 

restricted conditions. 

Ultimately, the concentration specifies the central density of a halo; for subhalos 

in clusters, this density may be strongly affected by tidal heating and mass loss. 1 

will show below that the concentration relations of ENS give reasonably good results, 
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erical Simulations 

So far, most of the processes 1 have described involve only dissipationless dynamics. 

As a result, it is possible to evaluate the accuracy of the model up to  this point by 

direct comparison with numerical simulations. A few high-resolution simulations of 

individual halos do exist; the current list includes one massive SCDM cluster, the 

'Coma' cluster, one smaller SCDM cluster, the 'Virgo' cluster, and a pair of SCDM 

galaxy halos, the 'Local Group' halos, al1 by Quinn and collaborators (Moore et al. 

1999), as well as two LCDM clusters, one by Navarro et al. (Taylor & Navarro 2001) 

and one by Springel et al. (2000). These simulations are self-consistent and based on 

very simple assumptions, so they offer far more robust predictions of dark substructure 

than the semi-analytic model, which excels instead in speed and flexibility. Some 

aspects of the simulations are subject to resolution limits or other numerical effects, 

and here the comparison with the semi-analytic model may be particularly interesting. 

In any case, it is clearly important to test how well the SA model reproduces these 

simulation results, before applying it to other problems. 

Since halo properties are predicted to show a certain amount of cosmological 

scatter, it is important to compare the SA results against as many simulations as 

possible. To do this, the masses, lengths and velocities in each simulation have to 

be scaled to the same fiducial values used in the merger trees. The simulations do 

not contain a central disk or baryonic component, so 1 ran a set of trees without 

these components present. The smoothed density profiles of the main halos in each 

simulation have already been determined to be close to the form given by equation 

(6.3), and are the basis for the profile used in the SA trees. Instead, 1 will focus on 

the properties of the substructure. 

Substructure in the simulations was identified by the authors using the group 

finder SKID, which assigns particles to the nearest local minimum in the potential, 
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and determines masses, radii and velocities for the resulting groups. These measure- 

ments can be affected by numerical noise (especially in low-mass halos) and the posi- 

tion of the subhalo within the main halo (see chapter 2 for a discussion of some of these 

uncertainties, as well as the SKID website (http:/I www-hpcc.astro.washington.edu 

/ tools / skid.htm1) for a description of SKID, and Klypin et al. (1999a) for a com- 

parison of group-finding algorithms). Of the group properties produced by SKID, I 

took the total mass and the peak circular velocity to be the most reliable, as they 

are less subject to random fluctuations due to single particles, and the effects of the 

background density field, than other properties such as the outer velocity. 

Figure 6.8 shows the cumulative mass function for halo substructure averaged 

over 120 SCDM trees (thick solid line), compared with the results from the SCDM 

simulations mentioned above (thin dotted lines), scaled by the ratio of the mass of 

the main system (the mass within its virial radius) to the fiducial mass 1.6 x 1012 Mo. 

Two of the dotted lines correspond to the Virgo simulation at  two different epochs, 

two correspond to the two main halos in the Local Group simulations, and one (the 

steepest) is from Coma. The thick dashed lines indicate the cosmological variance 

from tree to tree in the SA model. We see that the slope, normalisation and variation 

of the SA results match the numerical results quite well, although there is a marginally 

significant offset of about 20% in the normalisation. Only the Coma simulation 

shows a slightly different distribution, with a similar normalisation around a mass 

ratio of but a slightly steeper slope. Whether this is due to  its much larger 

mass (2.4 x 1015 Mo), a different set of parameters for SKID, or simply represents 

cosmological variance is unclear. In any case, this discrepancy exists within the 

simulation results, and needs to  be clarified by further numerical work. 

Figure 6.9 shows a similar comparison of the distribution of peak circular velocities 

in the SA merger trees and the simulations. Line styles are as in figure 6.8. The 

numerical results have been normalised to  the mass used in the SA trees by assuming 

that the subhalo velocities within a halo of mass Mvi, scale as V m Ad:!. This 
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Figure 6.8 Comparison of the cumulative mass function of surviving halos within the virial 

radius at late times, in the SA model (thick solid line, with dashed lines indi- 

cating the 1-a variance), and several numerical simulations (thin dotted lines). 

Both sets of results have been normalised to the total mass within the virial ra- 

dius. The top axis gives the equivalent mass in a galaxy-size halo. The vertical 

line indicates the resolution limit of the SA model. 

normalisation produces the smallest scatter in the numerical results; normalising by 

the peak or outer circrilar velocity of the main halo (e.g. Moore et al. 1999) produces 

a slightly larger offset between the numerical simulations of galaxy halos and those of 

cluster halos, because the concentration of the background density profile is slightly 
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different . 

The SA peak circular velocities are determined by the initial concentration of the 

subhalos, and their subsequent structural evolution within the main halo. As dis- 

cussed in chapter 4, as subhalos lose mass, their peak velocity decreases as rn1l3. The 

initial concentrations are those predicted by the ENS formula, for a formation red- 

shift corresponding to the epoch z, when the subhalo falls into the main system. The 

SA results match the distributions from the Local Group simulations (lower dotted 

curves) reasonably well, up to velocities of 50 km s-l; the cluster distributions appear 

to  be somewhat steeper. Shifting the SA velocities up by 20% produces a reasonable 

match to both sets of results. This could indicate that subhalos in simulations are 

slightly more concentrated than predicted by the SA model, possibly because the 

halos retain some memory of their initial formation epoch (although using the origi- 

nal merger epoch, x,,, to determine the concentration produces halos that are much 

too concentrated). It is also possible that stripping and heating modify the subhalo 

profiles in a more complicated way than suggested in chapter 4, or that the ENS con- 

centrations are incorrect on the small mass scales considered here. Finally, given the 

small number of simulations available, it is unclear whether the difference between 

the clusters and the galaxy halos is significant, in which case the SA prediction may 

be quite accurate. Investigating these different possibilities requires further numerical 

work; in the interim, 1 will assume a 20% uncertainty in the peak velocities predicted 

by the SA model. 

It is also interesting to compare the spatial distribution of substructure in the 

numerical and SA halos. Figure 6.10 shows the number density of halos within some 

fraction of the virial radius, nornialised to the number density within the virial radius. 

The jagged solid line is the average semi-analytic result, while the lines with error bars 

are the simulation results. The solid line with points and error bars is for al1 subhalos 

with M/Mvir > in the Coma simulation, while the dotted line with points and 

error bars is for al1 subhalos with M/MYi, > 3 x 10-4 in the Virgo simulation. The 
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Figure 6.10 A comparison of the number density of subhalos within the SA halos (solid line) 

and the numerical halos (solid and dotted lines with points and error bars), 

normalised to the number density within RVi,. The solid line with points and 

error bars is for al1 subhalos with M/MVi, > 1 0 - ~  in the Coma simulation, while 

the dotted line with points and error bars is for al1 subhalos with M/Mvi, > 
3 x 10-~  in the Virgo simulation. The SA distribution is for M/Mvir > 1 0 - ~ .  

The dashed line indicates the background density (Moore) profile, normalised 

to the mean density within the virial radius. 

increasing their mass loss rates, but also decreasing their orbital decay rates due to 

dynamical friction as a result. Figure 6.11 shows cumulative mass functions in models 
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with and without the disk. The curves are for all satellites within the virial ra 

160 kpc, 80 kpc, 40 kpc, 20 kpc and 10 kpc (from top to bottom). We see that the 

disk disrupts massive satellites within 40 kpc; at larger distances or for small masses, 
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t2I3 or (1 + z)-' in an SCDM cosmology, so much of the mass of the halo is assembled 

fairly early on. The size of the system goes as (1 + z)2/3, so the halo will also be 

smaller at  early times. Subhalos crossing the virial radius at  some epoch will M l  to 

the centre, pass through it, move out towards their initial turnaround radius, and 

then return again over roughly one Hubble time (that is approximately the age of 

the universe at the time they first fell in). Many subhalos will also be disrupted, 

in the first or subsequent passages through the pericentre of their orbit. The halo 

seen at  any epoch will thus contain well-mixed material from early merger epochs, 

distributed fairly evenly in its core, as well as shells of material falling in or moving 

back outwards, according to their dynamical 'age'. Figure 6.12, for instance, shows 

the position, velocity, remaining mass and original mass for the satellites in a typical 

(SCDM) merger tree at  z = O, as a function of the time elapsed since they entered 

the main halo, At,. Figure 6.13 shows the total number of satellites vs. time in a 

number of LCDM halos, in three mass ranges: al1 satellites (solid curves), those with 

M > 5 x 108 M, (dotted curves), and those with M > 5 x IO9 Mo (dashed curves). 

The numbers increase for the first few Gyr as the halo forms, and then decrease slowly 

thereafter as infall slows down and satellites are stripped and disrupted. This general 

structure will also be obscured by correlations between the positions and velocities of 

individual subhalos within larger groups, however, as discussed in the previous section. 

In general, the radial distribution of subhalos from a given merger era is expected to 

remain roughly constant in spatial scale, but to decrease in normalisation as halos 

are diçrupted. These general features provide interesting observational tests of the 

SA model, using high-redshift clusters. 
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In this chapter, I have discussed how to apply the rather abstract models of merg- 

ing used to generate merger trees to the more concrete problem of galaxy formation. 

This requires three main additions to the merger tree code described in the previous 

chapter: a mechanism for 'pruning' the tree, to reduce it to a series of mergers with 

the main trunk, a model for the evolution of the main system, and the dynamical 

model for subhalo evolution developed in part 1. 

Adding these components to the merger tree code produces a full model of galaxy 

formation, in which the main structural features of a galaxy and its halo, as well 

as the masses, peak velocities and orbits of its subhalos, are specified at  al1 times. 

The behaviour of the central components is based on empirical recipes, designed to 

reproduce the features of observed galaxies. The evolution of substructure is a predic- 

tion of the model, however, and can be compared directly with numerical simulations 

of halo formation. This comparison shows that the SA model reproduces numerical 

results quite accurately, matching the distributions of masses, peak velocities and 

positions within the halo to within 20% or better. Some minor discrepancies in the 

peak velocity distributions and the number of objects in the centre of the system may 

be artefacts of the SA model or the numerical simulations, but the overall agreement 

between the two is good. In the next two chapters, 1 will use the SA model of galaxy 

formation to address the two main questions raised in the introduction, namely how 

the stellar contents of the halo could be produced by hierarchical structure formation, 

and how the thin disk could have survived this process. 
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Figure 6.12 The position, velocity and remaining mass, normalised to their original values 

(top three panels), as well as the original total mass (bottom), of the satellites 

in a typical (SCDM) merger tree at x = O, as a function of the time elapsed 

since they entered the main halo, At,. The top axis shows At, as a function 

of the dynamical time. 
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Figure 6.13 The total number of satellites in several LCDM halos as a function of time, 

in three mass ranges: al1 satellites (solid curves), those with M > 5 x 108 Ma 

(dotted curves), and those with M > 5 x 10' Mo (dashed curves). 



tellar Conte 

In this chapter, the semi-analytic model of galaxy formation developed in chapters 5 and 6, which was 

based on the dynamics of dark matter halos and subhalos, is combined with a simple model of star 

formation, to predict the stellar contents of galaxy halos. 1 describe the observed stellar substructure 

in the halos of the Milky Way and Andromeda, and show that in standard CDM cosmologies, 

there cannot be a one-to-one correspondence between dark matter subhalos and satellite dwarf 

galaxies. The large discrepancy between the two may be a result of the reduced efficiency of star 

formation in less massive halos; a simple model of the truncation of star formation below a threshold 

circular velocity after the epoch of reionisation, for instance, produces a satellite luminosity function 

comparable to that seen in the Local Group. The structural properties and spatial distribution of 

the satellites produced by this model are also consistent with the observed properties of Local Group 

dwarfs. The more massive satellites in the Local Group appear to be systematically brighter than 

predicted, however. 1 present one possible scenario for the star-formation history of dwarf galaxies, 

and show that it produces a better match to the observed luminosity function, and explains the 

morphologies and star-formation histories of individual satellites in the Local Group. Many satellites 

are disrupted by tidal effects; their stellar debris presumably contributes to the bulge and stellar 

halo of their parent galaxy. The masses, density profiles and ages of the stellar halos formed by 

this process are shown to be consistent with local observations. On average, a number of satellites 

will have been disrupted recently around any given stellar galaxy, so the existence of coherent tidal 

streams in the stellar halo also seems plausible in this model. 

Halos of cold dark matter are relatively simple and almost scale-invariant. Exten- 

sive numerical simulations have established their formation rates (e.g. Tormen 1998; 

Gross et al. 1998; Governato et al. 1999), their density profiles (e.g. Navarro et  al. 
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1996, 1997; Moore et al. 1998), their net angular momentum (e.g. Barnes & Efs- 

tathiou 1987; Ryden 1988; Warren et al. 1992; Steinmetz & Bartlemann 1995; Cole 

& Lacey 1996) and the masses, circular velocities and spatial distribution of their sub- 

structure (e.g. Ghigna et al. 1998; Klypin et al. 1999b; Moore et al. 1999; Springel 

et al. 2000), fairly consistently, although there is still disagreement on certain points. 

In the previous chapter, 1 showed that a semi-analytic model can generate dark mat- 

ter halos which have these basic properties, and resenible numerical halos in detail 

as well. In real-world galaxy halos, luminous substrueture is much easier to observe 

than dark substructure, however, and thus the current challenge in galaxy formation 

models, whether numerieal or semi-analytic, is to develop plausible models for star 

formation. 

Unfortunately, star formation is an inherently complicated process, sensitive to 

the geometry, size and chemical composition of the star forming region, and as a 

result is much harder to model than the dynamical evolution of dark matter. This is 

particularly true on the scale of dwarf galaxies, which have only small reservoirs of 

cold gas from which stars can form, and whose potentials are weak enough that the 

energy balance in their gas is very sensitive to interna1 processes and environmental 

effects (Babul & Rees 1992). Any model of star formation, whether numerical or 

semi-analytic, is necessarily approximate; the basic energy exchanges within a star- 

forming region occur on scales thousands of times smaller than the finest numerical 

resolution limit, and their geometry and interaction is sufficiently complex to defy an 

analytic treatment. Numerical models of these processes benefit from a full and robust 

treatment of the large-scale context for star formation in galaxies, and are starting 

to produce convincing results (Gerritsen & de Blok 1999; Navarro & Steinmetz 2000; 

Springel2000). Semi-analytic methods, while less robust, are much faster, which is an 

important advantage given the model-dependence and the number of free parameters 

in star formation recipes. In this chapter, I will add a very simple model of star 

formation to the semi-analytic model of halo evolution developed in the last chapter, 
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and test its predictions for the stellar substructure of galactic halos, to  determine 

whether local observations are broadly consistent with hierarchical galaxy formation. 

ocal Observations of 

The distribution of stars within galactic halos is best observed locally, both be- 

cause they are too faint to see in more distant systems, and because it is possible to 

get a clearer sense of their 3-D distribution in nearby space. The Milky Way is part 

of the Local Group of galaxies, an overdense region about 1 Mpc in size. In structural 

terms, the Local Group probably consists of two or possibly more overlapping halos, 

those of the Milky Way and of the Andromeda galaxy, giant spiral galaxies of similar 

size and morphology. (A number of other nearby galaxies exist in subgroups, some 

of which may be bound to  the Local Group, but most of which lie outside it.) The 

contents of these halos offer the best observational comparison with models of halo 

substructure. Beyond their central stellar components, each contains roughly a dozen 

satellite dwarf galaxies. The basic properties of these satellites are listed in tables 7.1 

and 7.2 below. 

The dwarfs Vary in luminosity, morphology, (cold) gas content and star-formation 

history, with some evidence for systematic trends in the latter properties with lu- 

minosity. In particular, some morphologies are exclusive to  low-luminosity or high- 

luminosity systems. 1 will discuss this further below. It is also worth noting that 

the lists in tables 7.1 and 7.2 are probably incomplete below Mv = -10 (van den 

Bergh 2000), and that there may be other substructure in the Local Group with 

cold gas but little or no associated starlight, the so-called 'high-velocity clouds7 of 

neutral hydrogen (Blitz & Robishaw 2000), although this remains controversial due 

to the lack of well-established distances to these objects (Zwaan 2001). The halos 

of luminous galaxies also contain tens or hundreds of globular clusters, aggregates of 



Chapter 7: The Stellar Contents of Galactic Halos 140 

Table 7.1 Dwarf Galaxy Satellites of the Milky Way 

Name Type Adv Lv V, or size [Fe/H] star formation cold 

(LEI) (44 ( ') gas 

LMC Irr -18.05 1310 79.0 645 -0.8 active + burst yes 

/ SMC Irr - -16.7 335 42.0 320 -1.1 active + bursts yes 

Sagittarius dSph-N -13.4 18.1 21.6 600 -1.0 old ? 
no i 1 Fornax dSph -13.2 15.5 14.8 71 -1.3 o l d + l b u r s t  ? 1 

1 ~ e o  I dSph -11.9 4.79 12.4 12.6 -1.5 old + 2 bursts no 1 
Sculptor dSph -11.1 2.15 9.33 76.5 -1.8 o l d + l b u r s t ?  yes 

Leo II dSph -9.6 0.58 9.5 8.7 -1.9 old no 

Sext ans dSph -9.5 0.50 9.33 160 -1.7 old + 1 burst yes 

Carina dSph -9.3 0.43 9.6 28.8 -2.0 old + 3 bursts no 

Ursa Minor dSph -8.9 0.29 13.2 50.6 -2.2 old no 

Draco dSph -8.8 0.26 13.4 28.3 -2.0 old no 

stars less massive but much denser than most dwarf galaxies. Given their numbers 

and densities, the origin of most globular clusters is probably very different from that 

of the dwarf satellites, but some of the most massive clusters may be the nuclei of 

disrupted dwarf galaxies (e.g. w Centauri in the Milky Way (Hilker & Richtler 2000; 

Lee et al. 1999) and Maya11 II in Andromeda (Meylan et al. 2001)). Finally, I note 

that while the properties of the recently discovered dwarfs spheroidals And IV-VI are 

poorly determined, they are probably similar to those of And 1-111 (Mateo 1998). 

How do these observations compare with the substructure predicted by dissipa- 

tionless models of halo formation? The answer, unfortunateiy, is not very well. The 

total mass of the Local Group dwarfs is highly model-dependent, but the circular ve- 

locities or velocity dispersions of their stellar components should give some indication 
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Table 7.2 Dwarf Galaxy Satellites of Andromeda 

Name Type Mv Lv V, or size [Fe/H] star formation eold 

M 33 SC -18.9 2870 130 70.8 -1.1 active yes 

M 32 E -16.7 383 65.1 9 -1.1 old ? no 

NGC 205 E -16.6 366 10.0 6.2 -0.8 ald + 2 bursts no 

NGC 185 dE -15.5 125 35.4 16 -1.22 old + 1 burst ? 

NGC 147 dE -15.5 131 31.1 20 -1.1 old no 

IC 10 dIrr -15.7 160 30.0 5 -1.37 old + 1 burst yes 

IC 1613 Irr -14.7 63.6 20.9 11 -1.3 active + bursts? yes 

EGB0427+63 dIrr -12.6 9.12 33.0 2 -1.5 active Yes 

And 1 dSph -11.9 4.71 9.9 13.4 -1.5 old no 

And II dSph -11.1 2.35 9.9 17.2 -1.6 old no 

LGS 3 dIrr -10.5 1.33 12.7 14.5 -1.8 old ? Yes 

And III dSph -10.3 1.13 9.9 4.5 -2.0 old + 2 bursts yes 

And IV dSph * * * * * old no 

And V dSph * * *. * * old Yes 

And VI dSph * * * * * old + bursts? yes 

* The properties of And IV-VI are not well determined, but ean be assumed to be 

similar to those of And 1-111 (Mateo 1998). 
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of the total mass of luminous and dark material associated with each one, indepen- 

dent of the stellar lurninosity. Figure 7.1 shows the cumulative number of subhalos 

predicted by the semi-analytic model, as a function of peak circular velocityl , com- 

pared with the average number of satellites within the virial radii of the Milky Way 

or Andromeda, as a function of observed circular velocity (or a comparable quantity, 

2/2 times the velocity dispersion, for the non-rotating systems). On the face of I t ,  

the theoretical prediction is terrible; at  the low circular velocities it overestimates the 

number of dwarf satellites by more than an order of magnitude. 

This result was highlighted recently in the numerical work of Klypin et al. (1999b) 

and Moore et al. (1999), but it is not new; Kauffmann & White (1993) found the 

same excess of small objects in their semi-analytic modelling of the Local Group, and 

similar results appeared in other galaxy formation models based on Press-Schechter 

predictions (White & Rees 1978; Dekel & Silk 1986; Cole 1991; White & Frenk 1991; 

Lacey & Silk 1991). The recent numerical results, however, conclusively refuted one 

hypothesis which had been advanced to explain away this excess, namely that small 

objects were disrupted or combined together by merging (e.g. White & Rees 1978; 

Kauffmann & White 1993). In fact, al1 CDM halos have central cusps which may be 

able to resist disruption, and small CDM halos are denser than large ones on average, 

so mergers with larger halos are unlikely to destroy thern completely. Given this trend 

in density with mass, the large number of low-mass subhalos found in semi-analytic 

models is a straightforward consequence of the dope of the Press-Schechter mass 

spectrum, which in turn is determined by the dope of the CDM power spectrum. 

As a result, a basic feature of any hierarchical model based on pure CDM is that 

dark matter halos are very lumpy, sufficiently so that each lump cannot plausibly be 

related to a surviving, luminous companion of a massive galaxy. 

'The circular velocity of dark matter halos reaches a maximum value at  a characteristic radius, 
equal to 1.25 scale radii for the Moore profile used here (see figure 2.1 and equation 6.3). 1 will refer 
to this velocity and this radius as the peak circular velocity Vp and peak radius rp  respectively. 



Figure 7.1 A cornparison between the semi-analytic cumulative velocity function (solid line, 

with 1-0 deviation indicated), and the average number of satellites in the two 

main halos of the Local Group. 

This discrepancy has been used to argue that pure CDM models may be wrong 

(e.g. Moore et al. 1999; Spergel & Steinhardt 2000; Cen 2001). A less radical pos- 

sibility is that halos do contain large numbers of small subhalos, but that galaxy 

formation is less efficient on these small scales, so that few of these low-mass subhalos 

form stars (Klypin et al. 1999b; Moore et al. 1999; Bullock et al. 2000). In par- 

ticular, the high-energy background radiation which has filled the universe since the 

reionisation epoch may have heated the gas in small halos to the point where it could 

not cool, condense and form stars (Babul & Rees 1992). In the rest of this chapter, I 

will develop a simple mode1 for the net efficiency of star-formation in halos of different 
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masses, based on this premise, and determine the properties of dwarf satellites in this 

model. 

netion of Ga actk Satellites 

7.2.1 Suppressing Star Formation in Dwarf Galaxies 

While star formation in giant galaxies is observed to follow certain regular pat- 

terns, star formation in small galaxies is complicated by several effects. The potentials 

of small galaxies are shallow, such that the characteristic velocities associated with 

star formation are close to the escape velocity of the system. In particular, star for- 

mation leads to supernovae explosions within IO7 years, and these can deliver enough 

mechanical and thermal energy to surrounding gas to eject it from the star forming 

region. (Even in massive galaxies, the energy released by supernovae is thought to 

regulate star formation by ionising, disrupting and heating the clouds of cold gas from 

which stars form. The self-regulation of star formation is normally called 'feedback'.) 

Overall, interna1 energy sources in dwarf galaxies are comparable to the gravitational 

energy of the system, leading to strongly regulated star formation. 

The collapse and virialisation of dark matter halos gives their primordial gas a 

specific amount of thermal energy, heating it to a speeific temperature. This 'virial' 

temperature is very low for small halos, around 104 K, as a result of their shallow 

potentials. External heat sources can produce enough energy to heat the gas within 

a halo to this temperature, so environmental effects will also play a role in regulating 

star formation in low-mass halos (Babul & Rees 1992; Efstathiou 1992; Gnedin 1996; 

Forcada-Mir6 1997). 

An important example of this type of regulation is heating due to reionisation. 

Baryons in the early universe first combined into electrically neutral atoms at  around 

z CY 1150, the epoch at which the CMB photons were last scattered. At some later 
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time, however, the flux of high-energy background radiation from stars, or possibly 

from active galactic nuclei, was sufficient to re-ionise the neutral gas in the intergalac- 

tic medium. The redshift of this epoch of reionisation is estimated to lie between z 

cz 6 (the redshift of the most distant observations of absorption-line systems, al1 of 

which show the universe to be ionised) and z = 10-20 (Haiman & Loeb 1997), based 

on models of radiative transfer in the early universe (Gnedin 1996, 2000) and studies 

of the CMB (Schmaltzing, Sommer-Larsen & Goetz 2001). Reionisation has impor- 

tant consequences for dwarf galaxy formation. Many studies have shown that the gas 

in the shallow potentials of low-mass halos is sufficiently heated by the background 

flux after reionisation that it cannot cool and condense to form stars (e.g. Babul & 

Rees 1992; Efstathiou 1992; Gnedin 1996, 1999; Forcada-Mir6 1997; Barkana & Loeb 

1999). Thus, after the epoch of reionisation z,i, star formation is suppressed in halos 

with circular velocities of less than Krit 2 35 km s-l (below V 2 18 km s-l, the gas 

may actually be photo-evaporated from halos by background radiation). 

It is straightforward to test the consequences of this effect with merger trees. 1 

will consider the following simple model: 

e prior to reionisation, cooling and star formation occur with a fixed efficiency ~ , f  

in al1 halos, so that by xri, a fraction E s f f l b / f l  of the mass of any halo is in cold 
gas or stars 

e in large halos, star formation continues with the same efficiency after zri, instan- 
taneously transforming a fixed fraction of any newly accreted mass into cold gas 
or stars 

e in halos with velocities less than Vcrit, no star formation occurs after z,i, although 
the stellar mass of the halo may grow through mergers 

Given that the circular velocity of a halo can increase through mergers or accretion, 

this model also implies that intermediate-mass objects rnay stop forming stars at  zri, 

but start to form stars again at  later times, as their velocity rises above VCrit. Figure 

7.2 illustrates schematically the change in the total and stellar masses (parameterised 
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by the velocities, V and f, x V respectively) for massive, intermediate and low-mass 

halos. Note that the original gas content of small halos is assumed to remain available 

for star formation, once they grow or merge into systems over the velocity threshold. 

While reionisation can photo-evaporate the gas in very small halos, removing it from 

the halo completely, this gas is assumed to be reincorporated into the system as it 

grows larger. This explains the jump in stellar content for the intermediate-mass case 

shown in figure 7.2, once it reaches Vcrit. The mode1 also neglects the timescale for 

gas cooling and star formation, and does not distinguish between cold gas and stars, 

counting them as a single component. The actual rate of star formation in galaxies 

will be discussed further in chapter 8. 

Overall, this model of truncated star formation drastically reduces the number of 

galaxies (that is halos containing stars) with circular velocities less than Krit, and 

implies that low-mass halos that did form stars did so at  very early times. Above 

this limit, a fixed fraction of the mass of a halo is in the form of stars and cool 

gas. The resulting truncation of the luminosity function produces rough agreement 

with the numbers of dwarf galaxies observed in the Local Group, as has recently 

been demonstrated by Bullock et al. (2000) (see also earlier analytic or semi-analytic 

work by Efstathiou (1992); Chiba & Nath (1994), Kepner, Babul & Spergel (1997), 

Nagashima, Gouda, & Sugiura (1999), and Barkana & Loeb (1999)). I will proceed 

to  investigate this agreement in more detail below. Reionisation is also an appealing 

model for the suppression of star formation, in that of the three free parameters it 

introduces (esfi Krit, and xri), two (esf and Krit) are fairly well determined from other 

considerations. It is worth noting, however, that other processes such as feedback 

may also play an important role in limiting star formation in dwarf galaxies. In 

particular, the lowest-mass objects, which often formed before reionisation and were 

therefore unaffected by it, may have lost their gas through these other mechanisms. 

The predicted effect of feedback is more model-dependent, however, so I will restrict 

myself to a simple model where reionisation is the only process limiting early star 
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with estimates of the stellar and gaseous mass of the Milky Way. Requiring that: 

ab 1.6 x 1012~sf - = 8 x l o l O ,  
S;! (7.1) 

gave c,f = 0.9 for the SCDM models and csf = 0.5 for the LCDM models. These 

efficiencies are in the range suggested by numerical studies of star formation (Katz 

1992; Navarro & Steinmetz 2000). The critical velocity used was Krit = 35 kms-l, 

the value expected from theoretical studies (Ikeuchi 1986; Rees 1986; Babul & Rees 

1992). The reionisation epoch was left as a free parameter, subject to  the limits 

mentioned above (6 z 5 20). Figure 7.3 shows the ratio of the stellar to the total 

mass for the subhalos merging with the main system in a typical SCDM run, with 

zri = 15. Most systems containing stars have a fixed fraction of their mass, E~&?~/S;! , 

in this form, and lie along a diagonal line in figure 7.3. Only the minority of systems 

which accreted some mass after zri, but had velocities below Krit when they merged 

with the main halo, deviate from this locus. 

To relate this stellar mass to an observable luminosity, one requires a (stellar) 

mass-to-light ratio r. To get a rough idea of the resulting luminosity functions, I 

will initially use l? = 3, a value typical of old stellar systems (Tanta10 et al. 1996; 

Maraston 1999). Figure 7.4 shows the predicted cumulative luminosity function of 

satellites around a giant galaxy like the Milky Way at  the present day. The solid curves 

show the results for reionisation epochs zri = 6, 9, 12, and 15 (with the 1-0 variance 

indicated for the latter case). The points are the average for the satellites of the Milky 

Way and Andromeda, with the satellites of Andromeda shifted down by a factor of 

0.75 in luminosity, to reflect the larger mass of this system. For both the predicted 

and observed values, I have only counted satellites within the virial radius of the main 

system, which makes the observed luminosity functions uncertain by a few counts. 

The counts are also likely to be incomplete below Mv = -10 (van den Bergh 2000); 

this is indicated schematically by the error bars, which show the effect of doubling the 

counts below this magnitude. Systematic trends in morphology with magnitude may 
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Figure 7.4 The average cumulative luminosity functions for dwarf satellites in the SA 

model, assuming a constant mass-to-light ratio of l? = 3. The four curves are 

the results for z,i = 6, 9, 12, and 15 from top to bottom at the faint end. The 

points are the average luminosity functions within the virial radii of the Milky 

Way and Andromeda. The symbol types indicate morphology: open squares - 

dwarf irregulars and spirals, open circles - dwarf ellipticals, filled circles - dwarf 

spheroidals. The horizontal line and error bars indicate possible incompleteness 

below Mv = -10. The thin dotted lines indicate the 1-0 variance in the SA 

results for zri = 15. 
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was established previously by Bullock et al. (2000), using a slightly different imple- 

mentation of the same physical model. It is important to note that the horizontal 

normalisation of the luminosity function should be considered uncertain by a factor 

of as much as 2, due to uncertainties in the total mass of the Milky Way's halo (which 

determines the mass of the merger tree), the total mass of the stellar components of 

the Galaxy (which 1 used to determine tSf), and by the general cosmological uncer- 

tainty in !ilb. Independent of this shift, there are two discrepancies in the shape of 

the luminosity function that are worth commenting on. 

First, the semi-analytic luminosity functions have a steep slope at  the low-luminosity 

end, which is inconsistent with observations for z,i 5 9. This discrepancy stems from 

the fact that very small systems assembled most of their mass before z,i, and are 

therefore unaffected by reionisation in this simple picture. In the model of Bullock 

et al. (2000), this effect is not apparent because the substructure in side-branches 

of the merger tree is not considered. This produces a flatter spectrum of subhalo 

masses, as shown in figure 6.6. Simulations indicate that the actual spectrum of sub- 

halos is steeper than this, however, so that this extra substructure should be taken 

into account . 

The steep faint-end dope of the luminosity function in figure 7.4 may be real; 

for zri > 12 it could correspond to faint, undetected dwarf galaxies, high-velocity 

clouds with few stars, or possibly globular clusters. The latter objects are small, 

dense, numerous and have lower luminosities than dwarf galaxies, but are also much 

more compact, suggesting that they may have formed in very different conditions. As 

discussed previously, feedback is also expected to reduce the efficiency of star forma- 

tion in small objects, compounding the effects of reionisation. This could reduce the 

numbers of objects at  the faint end of the iuminosity function to the lcvel required to  

match observations, so speculation as to the nature of these objects may be prema- 

ture. Taken at  face value, however, the model suggests that the reionisation epoch 

must be 2 12, as opposed to the value of 8 found by Buliock et al. (2000). This is 
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in agreement with a recent estimates of z = 10-20, by Haiman & Loeb (1997) and 

Schmaltzing et al. (2001); 

There is also a smaller discrepancy at  the bright end of the luminosity function; the 

brightest Local Group satellites are a few times brighter than expected from the simple 

model with a constant r. Here the explanation is straightforward; these objects have 

star formation histories and morphologies which differ systematically from those of 

fainter dwarfs, and should be brighter due to differences in their stellar mass-to-light 

ratio. The predicted mass-to-light ratios for stellar systems can be calculated using 

population synthesis models, but depend on several intrinsic physical parameters, 

including the age, metallicity and star formation history of the population, as well as 

several model parameters that should in principle be fixed by observations, including 

the shape of the initial mass function, the fraction of non-luminous remnants (brown 

dwarfs of black holes) in a population, and various corrections to  the computed model 

atmospheres (Carraro et al. 2001; Bruzual2000). For old, passively evolving systems, 

models predict a mass-to-light ratio of = 3 in the V band (e.g. Tanta10 et al. 1996), 

although this value is probably uncertain by a factor of 50-100%. For active star- 

formation regions, on the other hand, I' should be 0.5-0.7 or less (the value 0.5 was 

computed using the Starburst99 modcls (Leitherer et al. 1999), for instance, for a 

1 Gyr old population with a metallicity of [Fe/H] = -1.5). The local stellar mass- 

to-light ratio of the galactic disk lies between these extremes, a t  a value of r E 2 

(Binney & Tremaine 1987). 

Figure 7.5 shows the luminosity function for a reionisation epoch x,i = 15, plotted 

assuming I' = 3 and r = 0.5. We see that these two distributions bracket the observed 

luminosity functions, with the fainter objects matching the higher value of I' while the 

brighter objects match the lower value. Given that the brighter objects are irregulars 

actively forming stars in many cases (open squares), while most of the faint objects 

are dwarf spheroidals with no evidence of recent star formation, it seems entirely 

possible that the two groups are drawn from the original mass function predicted by 
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Figure 7.5 As figure 7.4, but for 2,; = 15, and two different mass-to-light ratios, I' = 3 

(solid line) and I' = 0.5 (thick dashed line). 

the semi-analytic model. 1 shall re-examine this possibility in more detail below, and 

discuss the evolutionary status of the bright early-type galaxies, which also appear 

to deviate from the high-l7 curve. 

7.2.3 Other Properties 

Before considering the evolutionary history of the SA dwarf galaxies in detail, it 

is worth seeing whether they resemble the local dwarf galaxies in their structure and 

spatial distribution. The stellar masses determined in the previous section are much 
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smaller than the total masses of individual subhalos, so we expect the structure and 

interna1 dynamics of the stellar distributions to be dominated by dark matter, as is 

observed in the less massive Local Group dwarfs (Mateo 1998). In particulas, the 

characteristic velocity of each stellar system should be determined by its surrounding 

subhalo, while its spatial extent should lie within the tidal limits of the subhalo. 

Figure 7.6 shows the peak velocities (bottom panels) and peak radii (top panels) 

for dark matter halos in the SA model, plotted versus their corresponding stellar 

luminosity, assuming a fixed mass-to-light ratio of 3. The large points indicate the 

limiting radii and peak circular velocities Vp (or 40 for the non-rotating systems) 

observed for Local Group dwarfs with well-determined distances (symbol types are 

as in figure 7.4). If we assume that the stars within each subhalo extend out to 

roughly the peak radius of the halo, and have a circular velocity roughly equal to 

Vp, we see that the model results agree almost perfectly with the observations. (This 

correspondence also implies that the total mass-to-light ratios estimated for the dwarfs 

in the SA model would match observed values.) One interesting consequence of this 

picture is that the dark halos around many dwarf galaxies should extend out much 

further than the limits of their stellar component. Some dwarfs may have lost a large 

fraction of this dark mass through tidal stripping, explaining the observed (stellar) 

tidal streams around dwarf galaxies. I will discuss this point later, in section 7.4.3. 

One can also compare the spatial distribution of the SA dwarfs to the observed 

distribution of Milky Way satellites (1 will not consider the satellites of Andromeda 

as their distances from the centre of that system are much less well determined). 

Figure 7.7 shows this comparison, as a function of luminosity, for two typical runs. 

Overall, it is hard to compare the observed and predicted distributions, due to  the 

small numbers of objects involved, and the uncertainties in the observed distances, 

but it is certainly possible to find systems which closely resemble the satellites of the 

Milky Way. 

In summary, by accounting for the effects of reionisation on star formation in 
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Figure 7.6 The peak-velocity radii and peak velocities for model dwarf galaxies (small 

points), compared with Local Group dwarfs with well-determined distances 

(large points - symbol types are as in figure 7.4). 

small halos, it is possible to generate reasonable numbers of dwarf galaxies, that is 

groups of stars within satellite subhalos, in the semi-analytic model. These objects 

appear to  have luminosities, peak velocities or velocity dispersions, sizes and a spatial 

distribution consistent with the observed properties of local dwarfs. The model can 
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Figure 7.7 The radial distribution of satellites in two typical SA runs (small points), com- 

pared with the distribution of the Milky Way's satellites (large points). Symbol 

types are as in figure 7.4. 

also provide more detailed information about their evolutionary histories, which 1 will 

consider in the next section. 

ocal Satellites 

While the semi-analytic model, combined with heating after reionisation, gives 

total stellar masses for galactic satellites which are approximately correct, a wealth 

of other information is also available observationally, about the morphologies and 

star-formation histories of local dwarfs. In this section 1 will consider some of the 
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other processes that may affect star-formation in dwarf galaxies, in order to permit 

a closer comparison wit h observed systems. 

Until they fall into the main halo, the star formation histories of the side-branches 

of the merger tree are dominated by the effects of reionisation. As explained in the 

previous section, in massive halos, star formation is assumed to be continuous, while 

in low-mass systems it will cease, possibly indefinitely, at  x,i. Since reionisation occurs 

very early in the history of the universe, most low-mass systems will only contain old 

stellar populations, whereas massive systems will contain a mixture of stellar ages. 

Subsequent evolution, once systems fa11 into a larger halo, will generally emphasise 

these trends. Low-mass systems may lose their hot gas through ram-pressure stripping 

(Lin & Faber 1983; Kormendy 1985; Mayer et al. 2001), while massive systems will 

retain their gas and continue to form stars. This picture is broadly consistent with the 

observed properties of galactic satellites, as seen in tables 7.1-7.2; low-mass systems 

tend to be old, passively evolving dwarf spheroidals, while more massive systems have 

more gas, more active star formation and a greater range of morphologies. 

There are some exceptions to this general trend. Some massive satellites resemble 

giant ellipticals in their morphology and concentration (e.g. M 32 and NGC 205), sug- 

gesting they may be smaller versions of field ellipticals which experienced a disruptive 

encounter either before or after falling into the main halo (see chapter 8 for further 

discussion of the formation of field ellipticals). Some low-mass satellites are also un- 

dergoing bursts of star formation at the present day (e.g. LGS 3), which change their 

colour and brightness, and both massive and low mass satellites show evidence for 

bursts of star formation in the past (cf. tables 7.1-7.2). 

These fairly ubiquitous bursts of star formation must be due to some stochastic 

process occurring within the main halo, since many are more recent than the infall 

times for typical satellites. One possibility is that collisions with other satellites, 

or with the disk of the main galaxy, trigger these episodes. This is plausible, both 

because even small galaxies still have gas associated with them in some cases, e.g. 
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Sculptor and Sextans and half the dSph companions of Andromeda (see tables 7.1- 

7.2), and also because collisions between subhalos are relatively common. 

While there is no clearcut way to  distinguish collisions from less disruptive en- 

counters, a satellite of mass m is sure to be strongly perturbed if its peak radius r, 

overlaps with the peak radius of another system of similar mass m' = fm ,  or if it 

passes within r, of the disk. Figure 7.8 shows the distribution of the number of such 

collisions, and the time of the last collision, for f = 0.2. We see that E 20-25% of al1 

systems have experienced a collision or an encounter with the disk, and a number of 

these have occurred within the past 5-6 Gyr (since t = 7-8 Gyr) (although very re- 

cent encounters are rarer in the SCDM halos). Thus it is possible that these objects 

would have experienced starbursts and have younger, brighter stellar populations. 

Some objects have also experienced many encounters; examination of the individual 

runs show that these are generally systems in sub-groups, which fa11 into the halo at  

a single merger epoch, and remain on similar orbits thereafter. 

Overall, it therefore seems quite easy to explain the presence of multiple episodes of 

star formation in even the smallest dwarfs, provided they retain at  least some of their 

original gas (or accrete new gas through Bondi accretion - see Silk, Wyse & Shields 

1987). Violent encounters may also play a role in determining the morphology of 

massive dwarfs. These objects retain large quantities of gas, and encounters between 

them, or with the disk, may result in strong starbursts, disruption of any disk present, 

and the formation of a relaxed remnant that is more elliptical in appearance. In this 

way, encounters may transform dwarf irregulars like the LMC into dwarf ellipticals 

like M 32. The same process (termed 'galaxy harassment'), operating on larger scales, 

has been proposed as a way of converting cluster spirals in to SOS or ellipticals, for 

instance (Moore, Katz & Lake 1996). 

This leads to the following, synthetic picture of dwarf galaxy evolution: 

e halos originally form stars independently, with an overall efficiency determined 
by reionisation and possibly also feedback; they may or may not retain their 
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Figure 7.8 The number of close encounters, as defined in the text (top panels), and the time 

of the last close encounter (bottom panels), for dwarf satellites in the SCDM 

and LCDM halos. 

primordial gas, depending on their mass 

most small subhalos form their stars prior to reionisation; they may also lose 
some or al1 of their gas then or after they fa11 into the main halo, through 
ram-pressure stripping; most of their stars are old (e.g. Ursa Minor) 

high mass subhalos continue to form stars after reionisation, and after they fa11 
into the main halo, as dwarf irregulars (e.g. Magellanic clouds) or small spirals 
(e.g. M 33) 

encounters trigger occasional starbursts in low-mass systems (e.g. LGS 3) 

e encounters may transforrn high-mass irregulars into dwarf ellipticals ( e g  M 32) 
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While this model does explain some of the general trends observed in the Local 

Group, it is probably not complete, and requires further testing, as well as detailed 

observations of other groups, to confirm it. Assigning morphologies and luminosities 

on the basis of this model does produce very convincing luminosity functions, however; 

figure 7.9 shows several composite luminosity functions, where the SA dwarfs have 

been assigned a morphology on the basis of having had a collision or encounter within 

the past 3 Gyr. The mass-to-light ratios used are 3 for passive, low-mass systems 

(dwarf spheroidals), 2 for disturbed high-mass systems (dwarf ellipticals), and 0.5 for 

star forming systems (dwarf irregulars). The top panel shows the average luminosity 

function for the satellites within the virial radii of Andromeda and the Milky way, for 

comparison. 

There are several remaining uncertainties in this picture of dwarf galaxy evolution. 

Local Group is a very small sample of objects, which individually show evidence 

for many complex phenomena, leaving a number of open questions. 1s the gas loss 

imputed for low-mass dwarfs due to environmental effects within the halo, such as 

ram-pressure stripping, or does it predate their infall into the halo? Gan low-mass 

satellites retain primordial gas within the halo? What is an appropriate criterion 

for determining encounter rates between halos? Overall, these questions need to be 

addressed by more detailed modelling of the gas dynamics of dwarf satellites, which 

might also shed light on the related question of the nature of high-velocity clouds. 

Another aspect of dwarf galaxy evolution that is more amenable to  semi-analytic 

modelling is the question of tidal disruption rates and the formation of the stellar 

halo of the Milky Way. 1 will turn to these questions in the final section of this 

chapter. 
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Figure 7.9 Sample luminosity functions for dwarf satellites, compared with the average 

luminosity functions of the satellites of the Milky Way and Andromeda (top 

panel). Mass-to-light ratios and morphologies have been assigned as described 

in the text, and are indicated by the different symbols (symbol types as in figure 

7.4). Filled squares indicate disturbed, low-mass systems. 

7.4 Tidal Disruption an 

7.4.1 The Density Profile of the Stellar Halo 

Tidal stripping and satellite disruption were discussed extensively in the first 

part of the thesis. In chapters 3-4, 1 considered the evolution of a satellite with a 
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simple, single-component density profile. In this section, 1 will be more concerned 

with the disruption of a dwarf galaxy, that is a group of stars contained within a much 

larger halo of dark matter. Since the dark matter will dominate the dynamics of al1 

but the most massive satellite galaxies, however, this should not alter the problem 

substantially. 1 also showed in chapter 4 that the analytic model of satellite evolution 

is only valid while the satellite retains at  least 10-20% of its initial mass; beyond this 

point, disruption occurs fairly quickly, but the precise details of the process become 

too complicated to model. In general, 1 will consider a satellite to be disrupted when it 

is truncated to  within the peak radius of its rotation curve. This disruption criterion 

was shown to  produce the same number of surviving subhalos as seen in numerical 

simulations of halo formation, so it is probably reasonable, but 1 will also discuss the 

effect of using more or less restrictive criteria below. 

In the SA model, once a satellite is disrupted, its stellar mass is added to  the 

spheroidal component of the main galaxy, which includes the bulge and the stellar 

halo. If an extremely massive satellite collides with the main galaxy, it will disrupt 

the disk. This process may add to the mass of the stellar halo (e.g. Bekki 1998d), but 

1 will assume that it contributes primarily to the bulge, while the stellar halo builds 

up mainly from satellite debris. 1 will examine disk disruption and bulge formation 

in more detail in chapter 8, and restrict my attention to the satellite disruption in 

this section. 

There are several basic observational tests for a model of the formation of the 

stellar halo; its mass is a few times IO9 M, (Gilmore, King, & van der Kruit 1989), 

its density profile goes as r-3-5 (Gilmore et al. 1989), and it is predominantly old (Un- 

avane, Wyse & Gilmore 1996). The semi-analytic model produces larger masses of 

disrupted material - Msh ci 1.5 x 10LO Ma for the SCDM trees, or Adsh = 2.5 x 101° Ma 

for the LCDM trees - but some of this material will wind up in the bulge. These 

masses are comparable to the total mass of stellar material in surviving satellites, so 

using a different disruption criterion will change them substantially. The criterion 
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used here is required to match the numbers of surviving subhalos seen in numerical 

simulations however, as shown in chapter 6. Changing the efficiency of star formation 

in satellite halos would also a ct these mass estimates, a t  the expense of requiring 

different mass-to-light ratios to match the luminosity function of Local Group satel- 

lites. 

The mean density profile produced by satellite debris will depend on its subsequent 

orbital evolution. While the SA model gives detailed information about the position, 

velocity and mass of stripped material as it leaves the satellite, subsequent orbital 

evolution is complicated by the fact that the size and shape of the background po- 

tential change with time. Furthermore, the need to resolve individual debris streams 

from hundreds of satellites with large numbers of particles puts the problem beyouid 

the means of the analytic model described in part 1. Pending a numerical treatment of 

this problem, one can get a rough idea of the radial distribution of debris by plotting 

the density of stripped or disrupted material as a function of the last point in the 

satellite's orbit before it was disrupted (although mass loss is triggered by a passage 

through pericentre, it lasts for a large fraction of the orbital period, so the orbital 

phase at which satellites are disrupted should be fairly random - cf. chapter 4.) 

Figure 7.10 shows the average density profile of satellite debris, versus the radius 

a t  which the satellite was disrupted, for SCDM and LCDM (points). Overall the 

debris is centrally concentrated, and generally comparable with the observed density 

profile of the stellar halo in the Milky Way; the dotted line, for instance, shows a 

power-law of slope -3 .5 ,  corresponding to the distribution of halo material observed 

locally (Gilmore et al. 1989). Thus, while the formation of the stellar halo requires 

further numerical study, the SA results are broadly consistent with observations of 

the halo of the Milky Way. 
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ranges, -1 > [Fe/H] > -1.55, constituting 40% of the halo, -1.55 > [Fe/H] > -1.95, 

constituting 30% of the halo, and [Fe/H] < -1.95, constituting the remaining 30%. 

Based on the observed numbers and metallicities of blue stars in the halo, they then 

estimated that no more than a fraction of the stars in each of these three metallicity 

ranges could be substantially (= 2 Gyr) younger than the dominant, old population. 

The upper limits were 28%, 6%, and 3%, for the three ranges respectively. 

Since 1 have not included a full population synthesis code in the SA model, it is im- 

possible to determine the metallicities of the different stellar populations in the dwarf 

satellites directly (such a calculation would also be very sensitive to the e 

and dynamics of star formation in these small objects, and thus highly uncertain). 

Observed Local Group satellites show a strong correlation between metallicity and 

luminosity or circular velocity, however, as shown in figure 7.11. The solid sym- 

bols show the dwarf spheroidals and transitional objects, for which the correlation 

is strongest. It is weaker for the irregulars and dwarf ellipticals (open symbols), but 

these objects may have lower and variable mass-to-light ratios, which move them off 

the relationship. 

The strong correlation for objects with similar mass-to-light ratios, implies a cor- 

responding correlation between stellar mass and metallicity. This may be because the 

same process limiting star formation in small halos also removes metals from these 

halos more effectively, or because star formation only occurs in a single early burst 

in the smallest systems. More recent bursts of star formation should make systems 

brighter by one to two magnitudes or more, but they do not appear to affect their 

metallicity substantially, as seen in figure 7.11. If one uses the stellar mass of the sys- 

tem as an indicator of its metallicity, it is thus possible to determine the approximate 

metallicity distribution of material in the stellar halo. The limits mentioned above 

then become limits on the amount of young material contributed to the stellar halo 

by massive, intermediate-mass and low-mass systems respectively. 

Star formation in low-mass objects (those with velocities less than is turned 
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Figure 7.11 The metallicity of Local Group dwarf galaxies, versus their luminosity. A 

strong correlation exists for dwarf spheroidals or dwarf spheroidal/irregulars 

(solid circles and squares). Dwarf ellipticals, ellipticals, and irregulars lie 

off this relationship, (open symbols) possibly because they are systematically 

brighter for a given stellar mass. The horizontal lines divide the objects into 

t hree metallicity classes; the vertical lines show the corresponding approximate 

division into three magnitude classes, for the solid symbols. 

off at  the onset of reionisation, which corresponds to a very early time, so al1 their 

stars are old. To estimate the fraction of younger stars in more massive satellites, 

I assume that massive satellites have formed stars at  a constant rate up until their 

disruption time. I also define the dominant old population as consisting of stars which 

formed before tOH. The fraction of younger stars contributed to the halo by a satellite 
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disrupted at time tdis is then simply: 

tdis - told 
f y  = 

tdis 
(7.2) 
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= 8, 10 and 12 Gyr The horizontal liries indicate the limit determined by Unavane 

et al. (1996). We see that the SA halos are compatible with these limits, provided 

told < 10 Gyr. Overall, the stellar halos formed in the SA mode1 seem similar to the 

observed stellar halo of the Milky Way. (In the two other metallicity bins, not shown 

here, almost al1 material is old.) Aside from the problem of choosing an appropriate 

value for told in the younger cosmologies considered here, there are several complica- 

tions that may affect this result, however. First, I have ignored the contribution from 

material formed in bursts; this could increase the young fraction slightly, particularly 

in the last two bins. Furthermore, I have assumed that the disk, when disrupted, 

contributes to the bulge rather than the stellar halo. If young disk material were 

mixed in with the stellar halo material by disruption or violent heating, this could 

also raise the fraction of intermediate-age material in the stellar halo to  an unaccept- 

able level. 1 will show in the next chapter that most disk disruptions occur a t  early 

times, however, so that any material added to the stellar halo by the process would 

also appear to be old. Overall, the massive contributions to the stellar halo and bulge, 

both from disrupted disks and frorn disrupted satellites, tend to  occur a t  early times 

in the SCDM and LCDM trees, so the age of the stellar halo is easily explained. 

7.4.3 Tidal Streams in the Halo 

When a satellite loses mass through tidal stripping or disruption, the stripped 

particles or stars remain on similar orbits with slightly different energies. A corre- 

sponding difference in orbital velocity stretches the stripped material out in long, 

coherent tidal streams, which remain thin and strongly associated for several orbital 

periods. Given that an orbital period in the outer stellar halo is several Gyr, it is 

plausible from theoretical arguments alone that some of these streams would be visi- 

ble at  the present day. There has been much recent interest in the existence of tidal 
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streams, prompted by the discovery of Sagittarius, a dwarf galaxy currently being dis- 

rupted by Our Galaxy (Ibata, Gilmore and Irwin 1994), and several possible fainter 

streams (Helmi et al. 1999; Majewski et al. 2000). Thus it is is worth considering 

whether tidal streams are common in the SA results. 

Unfortunately, if the stars in dwarf galaxies occupy the centres of much larger dark 

matter potential, then they will only escape to form visible streams when the dwarfs 

are close to being disrupted, and as 1 argued earlier, the exact timing of this process 

is hard to determine in the analytic model of satellite dynamics. One can get a sense 

of the frequency of tidal streams, however, by examining how many systems exist 

close to the disruption limit, or how many have been disrupted recently. Satellites 

are considered to be disrupted when they have been truncated to the radius of their 

peak circular velocity, when they disrupt the disk, or when they pass within the 

halo core radius (3.5 kpc at  the present day) of centre of the potential. The latter 

criterion is put in to avoid numerical errors in the orbital calculations; in practice, it 

only accounts for 10% of the disrupted satellites, and is only important a t  early times 

when the main halo is small. Most satellites are disrupted by progressive mass loss. 

Figure 7.13 shows the distribution of the ratio of the truncation radius to the peak 

velocity radius, x = rt/r,, for al1 the satellites in a set of SA runs, including those 

that have been disrupted. For 'live' systems, 1 have used the values of rt  and r, at  

z = O, while for disrupted systems, 1 have used the values at the time the satellite 

was disrupted. Since the model does not follow the dynamics of disrupted systems, 

the details of the distribution around the disruption limit rt/r, = 1 are unreliable, 

but we see in general, disrupted systems have been stripped to 1-2 times their peak 

radius. Some of these systems may show tidal tails while they are in the early stages 

of disruption, while in the latter stages they may form tidal streams. 

Finally, it is also possible to examine when satellites were disrupted, since the tidal 

debris of recently disrupted systems may remain visible for several orbits. Figure 7.14 

shows the distribution of times since satellites were disrupted, in the SCDM runs. We 
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Figure 7.13 Cumulative distributions of the tidal radius of satellites, relative to their peak 

velocity radius, in the SCDM and LCDM runs. The numbers include systems 

which have been disrupted (e.g. al1 those with rt /r ,  < 1). 

see that 10-20% of systems have been disrupted within the past 4-6 billion years (2-3 

dynamical times), so coherent tidal streams could be quite common in this model. 

This plot also shows that the rare satellites which fa11 in or hit the disk (dashed 

lines) do so a t  earlier times. Halo disruption and the subsequent orbital evolution 

of stellar material is sufficiently complex that this process should be re-investigated 

nurnerically; these preliminary results provide a motivation for numerical studies with 

realistic, two-component model dwarfs, falling into a halo at  a cosmological rate. 
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Figure 7.14 The cumulative distribution of times since disruption, for satellites whieh have 

been disrupted of have fallen in by z = O (solid lines). The dotted line shows the 

distribution for those disrupted, while the dashed line shows the distribution 

for those which have fallen in or hit the disk. 

7.5 Summary 

In this chapter, 1 have applied the basic framework of the semi-analytic model to 

the study of the stellar contents of subhalos, within the halo of a giant galaxy like the 

Milky Way. 1 have argued that observations of local satellite galaxies require either a 

radical revision of CDM, or a less radical restriction of star formation in small halos, 

due to feedback, external heating at  the epoch of reionisation, or similar processes. 

The effects of reionisation can be represented using a simple model with three main 

parameters, the epoch of reionisation z,;, the velocity threshold below which it 
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truncates star formation, and the efficiency of star formation c,f, above this threshold. 

Setting these parameters to reasonable values produces a distribution of stellar masses 

similar to that of the Local Group satellites. Assuming that the dark halo of each 

object dominates its dynamics, it also possible to assign sizes and peak velocities to  

these model dwarf galaxies. 

1 show that this approach reproduces not only the luminosity function of local 

satellites, but also their sizes, circular velocities and spatial distribution, with one 

or two notable discrepancies. There is an excess of faint objects, which may reflect 

the need for additional feedback to further limit star formation in the smallest halos, 

but could also indicate the existence of fainter objects in the Local Group which have 

escaped detection. The most luminous local satellites are also somewhat brighter than 

predicted in the simplest model, but this is expected from differences in their stellar 

populations and stellar mass-to-light ratio. In particular, the SA model predicts 

that the stellar mass function should resemble a Schechter function, whereas the 

observed luminosity function is flatter than this. Assigning lower mass-to-light ratios 

to massive, star-forming satellites corrects this discrepancy. 

Considering the evolutionary histories of satellite in more detail, 1 show that 

many have experienced encounters with the disk or with other satellites. This may 

account for the starbursts known to  have occurred in the past in some small Local 

Group dwarfs. In more massive systems, it may lead to a transforpation from dwarf 

irregulars into dwarf ellipticals. Assigning morphologies and mass-to-light ratios to 

dwarf galaxies based on their recent evolutionary history, it is possible to construct 

morphologically mixed luminosity functions which resemble those observed in the 

Local Group. 

Finally, satellite disruption is fairly common in this model, despite the presence of 

dark matter halos surrounding dwarf galaxies. Although the detailed structure of this 

debris requires further investigation, the mass, age and spatial distribution of material 

stripped from satellites are roughly consistent with the properties of the spheroidal 
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components of the Milky Way. The existence of many systems close to the disruption 

limit, and of many systems which have recently been disrupted, also suggests that 

tidal streams should be cornmon in this model, consistent with observations. Over- 

all, the SA model succeeds in producing a detailed and plausible description of the 

evolution of dwarf galaxies and stellar halos around giant galaxies, consistent with 

observations in the Local Group. It remains to determine whether the evolution of 

the central components of giant galaxies, the disk and the bulge, is also consistent 

with observations. This will be the subject of the final chapter of this thesis. 



In this chapter 1 apply the semi-analytic model to the problem of disk survival in CDM cosmologies. 

After a brief discussion of previous work on this problem, 1 consider two processes which may affect 

disks, coilisions, that is direct encounters with subhalos, and indirect heating, which arises from 

distant interactions with halo substructure. While the collision rate depends on the precise definition 

used to classify encounters, 1 show that for reasonable definitions, disks are likely to have experienced 

their last major collision long ago, so that the existence of thin, old disks does not pose a problem 

for CDM models. If the stellar contents of the disk are converted into a spheroidal component when 

it is disrupted, however, then the bulge-to-disk mass ratios of bright galaxies may be too high in 

LCDM. This result places a constraint on the earliest time at which disks can have formed their 

stars, whereas the observed age of the disk of the Milky Way constrains the latest time at  which 

it formed its contents. Small collisions can heat the disk substantially without disrupting it, and 

disks are also subject to indirect heating from the fluctuations in the galactic potential produced by 

orbiting subhalos. 1 present analytic estimates of the magnitude of direct and indirect heating, and 

show that they both predict considerable disk heating at  early times, but less disk heating recently. 

These results are consistent with the observed velocity dispersion of the thin disk a t  the present day, 

and may also explain some of the increased velocity dispersion in older disk stars. In particular, the 

sharp jump in velocity dispersion that marks the transition to the thick disk corresponds to an age 

when minor mergers are common, suggesting that heating by halo substructure may be responsible 

for the formation of this component in disk galaxies. 

While hierarchical galaxy formation, mediated by cold dark matter, is a well- 

established model for which there is much indirect support, it does rely on several 

key elements that have not yet been tested directly, including the form of initial 
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spectrum of density fluctuations on small scales, the precise physical properties of dark 

matter, and the global parameters describing the universe. Ht is aherefore of partiêu8ar 

concern when the predictions of this mode1 appear to be in conflict with the observed 

properties of galaxies. An example of one such potential conflict was mentioned in the 

introduction; hierarchical galaxy formation requires frequent mergers between halos, 

which in turn might be expected to leave most galaxies with disturbed morphologies, 

give them a wide range of ages and dynamical states. Observationally, however, 

most isolated galaxies have disks, which constitute a large fraction of the stellar 

mass of the galaxy, and are relatively thin. These observations al1 suggest that the 

majority of field galaxies have not been disturbed by mergers in the recent past. Local 

observations of the Milky Way also support this conclusion: the disk of the Milky 

Way is about three times as massive as its bulge and corona, is dynamically cold, 

and has been that way for at  least 8 Gyr, judging from observations of the velocity 

dispersion of old disk stars. 

The effect of mergers on the long-term evolution of disk galaxies was first quan- 

tified in theoretical studies by Tremaine, Ostriker and others (Ostriker & Tremaine 

1975; Tremaine 1976, 1981; see also Carlberg & Hartwick 1989; Ostriker 1990), and 

numerical studies by Quinn, Goodman and Hernquist (Quinn & Goodman 1986; 

Hernquist & Quinn 1988, 1989). This work faced two difficulties; that of determin- 

ing accurate merger rates for a given cosmology, and that of determining the effect 

of individual mergers on the luminosity, thickness and dynamics of the disk. The 

strongest evidence for a conflict between cosmology and observed galactic structure 

was found by T6th and Ostriker (1992, TO hereafter), who estimated the efficiency 

of disk heating by infalling satellites, and used the age, scale height and velocity dis- 

persion of the thin disk of the Milky Way to  constrain how much mass it could have 

accreted over in the recent past. Their estimate was that any merger with an object 

with more than 10% of the mass of the disk within the past 5 Gyr would have heated 

it substantially more than is observed. They concluded that SCDM might be ruled 
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out on this basis. 

Uncertainties in the overall efficiency of heating derived in this analytic work, 

and the limitations of the earliest numerical simulation of a minor merger (Quinn 

& Goodman 1986) inspired a number of subsequent numerical studies. Quinn et al. 

(1993) and Walker, Mihos & Hernquist (1996, WMH hereafter) built directly on the 

results of the first study, extending it to a fully self-consistent, high-resolution simula- 

tion. In these papers, they established several important corrections to the estimate 

of TO, including the dependence of heating on orbital inclination, and the dissipation 

of the energy of the satellite in several sinks not accounted for in SO's calculation, 

including the orbital energy of stripped mass, and global, coherent modes in the disk. 

Huang & Carlberg (1997, HC hereafter) took a different approach, simulating quite 

different encounters between stiffer disks and initially distant, low-density satellites. 

They found both that their satellites were heavily stripped before they reached the 

disk, and that the disk absorbed some of the effect of the merger by tilting coherently 

towards the satellite, thereby reducing heating. Most recently, Velazquez and White 

(1999) carried out a large number of high-resolution simulations, which confirmed the 

importance of orbital inclination and mass loss in minor encounters. 

The conclusion of these studies appears to be that although minor mergers do heat 

disks, the process may be 2-3 times less efficient than estimated by TO. It is hard to  

make more precise estimates, however, as they depend on the specific properties of the 

encounter. Some of the basic differences seen in these simulations can be understood 

using the analytic model developed in part 1. Figure 8.1, for instance, shows the orbital 

evolution and mass-loss histories for three different satellites, VW's satellite model 

SI (solid line; see chapter 2), a more concentrated satellite similar to that used by 

WC (dotted curve), and a dense satellite similar to  the more concentrated of the two 

models considered by TO (dashed line). Although I have given these satellite models 

the same mass, and started them off on identical orbits (the orbits considered by VW 

- cf. chapter 2), their evolution is radically different, largely because of differences in 
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mean density. In particular, the least dense satellite (that of HC) loses most of its 

mass quickly, and experiences little orbital decay thereafter, while the much denser 

satellite of TO falls into the disk quickly, taking most of its mass with it. This different 

dynamical evolution may explain some of the disagreement between the amount of 

disk heating reported in these studies. Figure 8.2, for instance, shows the fraction 

of its original mass still bound to the satellite as it crosses the disk, as a function of 

the radius of the disk crossing, for many different orbits. The squares correspond to 

the TO satellite, the triangle to the VW satellite, and the circles to  the satellite of 

HC; solid symbols indicate the average value in the region of the outer disk indicated 

by the dashed lines. If disk heating depends on the square of the bound mass of the 

satellite, as suggested by the analytic expressions mentioned below, the difference in 

mass loss in the three cases may explain the much stronger heating found by TO, 

relative to HG and VW (Taylor & Babul 2001). 

These numerical simulations, while a substantial improvement on the earliest 

work, are still limited by the overall difficulty of the problem. Generating numer- 

ical models of galactic disks which remain stable over cosmological times is extremely 

challenging, and the detailed dynamics of disks may require millions of particles to 

resolve fully (Quinn & Goodman 1996; Velazquez & White 1999). Given that the 

disk must then be embedded in a much larger dark matter halo, this means it will 

be some time before minor mergers are routinely simulated in realistic halo-galaxy 

systems. 

More generally though, it is worth pointing out that no set of merger simula- 

tions based on idealised initial conditions, no matter how accurate, can determine 

the overall likelihood of disk survival in a hierarchical universe. The question of 

disk survival is ultimately a statistical one; given estimates of the damage done by 

encounters, either those of TO, or revised versions based on subsequent numerical 

studies, how often does the average disk experience an encounter sufficiently intense 

to heat or disrupt it? Since mergers occur stochastically in hierarchical models, at  
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Figure 8.1 A comparison of the orbital evolution and mass-loss histories for satellites similar 

to those used by VW (solid lines), HC (dotted lines), and TO (dashed lines). 

Orbits and masses were calculated using the analytic model. 

a mean rate that evolves over time, and since the previous history of merging sys- 

tems may determine the outcome of an encounter between them, predicting the rate 

of disruptive encounters accurately is far from trivial. Any attempt to answer this 

question must necessarily consider an ensemble of many different systems, with rep- 

resentative merger histories. This was attempted in a cursory way by Kauffmann & 

White (1993), using a semi-analytic model, and by Navarro, Frenk & White (1994), 

using large-scale simulations. Both studies suggested that disruptive mergers are less 
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in terms of radius and satellite mass fraction at the time of the event (see text 

for details). Symbol types are: square - TO, triangle - VW, circle - HC. The 

solid symbols indicate the average value for al1 disk crossings in the region of 

the outer disk indicated by the dashed lines. 

common than expected, but neither studied the dynamics of the encounters in much 

detail. Numerical simulations are only just starting to form realistic disks ab initio 

(e.g. Navarro & Steinmetz 2000; Springel 2000), and simulating the merger histories 

of a large population of disk galaxies in their cosmological content, with sufficient 

resolution to improve substantially on previous work, is well beyond current compu- 

tational capabilities. The methods developed in this thesis do allow a reinvestigation 

of the problem by semi-analytic means, however. In the rest of this chapter, 1 will use 
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my model to address two main issues, first the frequency of collisions, direct encoun- 

ters between the disk and a satellite, and second the combine$ effect of many small 

or distant encounters, which produce a steady heating of the disk. 

8.1 Estimating Collision 

8.1.1 Defining Major Mergers 

1 will start by considering the frequency of collisions, and more specifically the 

rate of major mergers, that is encounters which completély disrupt a galactic disk. 

If two massive systems encounter each other on a bound, parabolic or even mildly 

hyperbolic orbit, they will merge due to dynamical friction. It seems reasonable to  

suppose that if the systems are stellar disks of equal mass, embedded in larger halos 

of equal mass, and that the disks are inclined to one-another, the resulting merger 

remnant at  late times will be much less flattened, due to conservation of angular 

momentum. This basic mechanism for turning two flattened disk galaxies into a single, 

more spherical elliptical, the 'merger hypothesis', was first suggested by Toomre & 

Toomre (1972), and has been demonstrated to work effectively in many subsequent 

numerical simulations (e.g. Negroponte & White 1983; Barnes 1988, 1992; Hernquist 

1992; Mihos & Hernquist 1994; Steinmetz & Buchner 1995; Barnes & Hernquist 1996; 

Heyl, Hernquist & Spergel 1996; Bekki & Shioya 1997). 

It is much less clear whether mergers between a primary galaxy and a less massive 

secondary will disrupt the disk of the primary, or simply heat it. While this problem 

has only been addressed recently in simulations, there are now several simulations of 

unequal-mass mergers (Bekki 1998a, 1998b, 1998c; Naab, Burkert & Hernquist 1999; 

Bendo & Barnes 2000; Cretton et al. 2001), which result in one outcome or the other, 

depending mainly on the mass ratio of the two systems. Thus it seems reasonable 

to distinguish between heating and disruption events based on a critical mass ratio, 
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as is commonly done in semi-analytic models (Cole 1991; Kau ann & White 1993; 

Cole et al. 1994; Somerville & Kolatt 1999). 

Before 1 estimate the critical mass ratios which distinguish between disruptive 

events, heating events, and less important collisions, it is worth noting a major source 

of confusion in determining appropriate values for these ratios from numerical simula- 

tions. The 'major merger' simulations mentioned in the preceding paragraph consider 

encounters between disk or disk/bulge galaxies, within dark matter halos 4-5 times 

as massive, starting at  distances of E 100 kpc. Their general conclusion seems to 

be that ratios of 3:1 or less are required to disrupt the disk, while P O : l  encountess 

heat it. The 'minor merger' simulations of VW, HC, WMH, and others considered 

single-component satellites, introduced a t  some smaller distance from the centre of 

halos varying in greatly in size, from 35 kpc (WMH) or less to 84 kpc (VW). Their 

conclusion seems to be that a 5:l encounter with the disk may be sufficient to  thicken 

it substantially. The analytic calculation of TO, on the other hand, was expressed in 

terms of the mass the (single-component) satellite had as it crossed a given radius, on 

a decaying, quasi-circular orbit starting a t  20 kpc. It concluded that a 10:l encounter 

could thicken the disk. In each case, the mass ratio quoted is the ratio of the mass of 

the main system (the whole halo and galaxy in the case of major mergers, or the disk 

only in the case of minor mergers) to the mass of the satellite, ut its initial orbital 

position. 

In a simple mode1 where the primary and secondary have exactly the same density 

profile, and the secondary falls in slowly enough to be tidally stripped to its Jacobi 

limit, a 3:l merger at  the virial radius will produce a 3:l merger at  100 kpc, 60 

kpc, 20 kpc or any other radius (albeit after a delay while the secondary falls in), 

provided that this mass ratio is taken to  be the mass within a given radius in the 

primary, relative to the mass which remains bound to the satellite as it crosses that 

radius. Realistic satellite orbits are highly radial, however (Tormen l997), and mass 

loss is correspondingly less efficient. Figure 8.3, for instance, shows the fraction of 
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its mass that each satellite in a SA halo has retained as a function of its merger 

epoch. It is apparent that most satellites lose a well-defined fraction, about 45%, 

of their mass on the first pericentric passage, and about 73% in the second passage 

(beyond a certain redshift the orbital phase no longer correlates with merger epoch, 

so there is more scatter in the results). Furthermore, small satellites will pass close 

to the disk several tirnes before their orbits decay completely. Thus, the rnass ratios 

quoted in dilferent types of studies are not, in fact, directly comparable - a 3:l halo 

merger between self-similar galactic systems may be quite different from an encounter 

between a single-component satellite and a disk three times more massive, sitting at  

the centre of a much larger dark halo. 

A final complication to this extremely confusing situation is the fact that disks 

may re-form, even after a disruptive collision. If a disk is primarily gaseous, as it 

would have been at  early times, then a violent encounter may simply heat this gas 

and eject it into the surrounding halo. Over time, this gas can cool and form a 

new thin disk, with a net angular momentum vector intermediate between those of 

its progenitors. Thus merger remnants may have thin disks a t  late times, despite 

the disruption of their original disks. There are some limits on the efficiency of this 

process, however; several studies suggest that about 75% of the gas involved in a 

major merger is immediately converted into stars, and therefore no longer available 

for subsequent disk formation (Barnes & Hernquist 1996; Mihos & Hernquist 1996). 

In summary, there is no simple way to relate the results of major and minor merger 

simulations to cosmological rates of disk disruption. Disruption may require a 3:l halo 

merger, an encounter between a galactic disk and a satellite with 50% of its mass or 

more, or something in between. Furthermore, it is not obvious how the rates of these 

different events would compare in a cosmological setting, given the complex orbital 

evolution of satellites, and its dependence on the properties of the initial orbit and 

the mass and density of the smaller system. Not every 3:1 halo merger will lead to 

a major merger with the disk, as the infalling halo may have substructure or may be 
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Figure 8.3 The fractional mass loss for subhalos in the SCDM and LCDM halos described 

in chapter 6, as a function of merger epoch. The thick dashed lines indicate the 

general pattern of mass loss as systems fa11 into the halo; most systems lose 45% 

of their mass on the first pericentric passage (highest dotted line), and a further 

30% on the second passage (middle line). Systems below the lowest dotted line 

have been disrupted. 

tidally stripped before it falls in, or the disk may grow substantially during the infall 

time, nor does every major merger with the disk result from a recent major merger 

at  the virial radius. To make some headway in this problem, 1 will first examine 

the disruption rates predicted by the SA model, given difFerent possible disruption 
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criteria. 

8.1.2 Comparing Disruption Criteria 

Figure 8.4 compares the disk ages determined using various different disruption 

criteria suggested by the results of merger simulations. Each panel shows the cumu- 

lative distribution of ages, that is the distribution of lookback times since the disk 

was last disrupted. The dotted horizontal line indicates a fraction of 50% of the trees 

(which were not selected in any way, and as a result do not necessarily have a large 

disk at  the present epoch). A disk was considered disrupted when: 

e a satellite came within 4 Rd of the centre of the potential 

(E 15 kpc in present-day systems) 

e the mass ratio characterising encounter, r ,  exceeded the threshold f c  

The figure shows results for: 

a) r E Mt/Ms,O and f ,  = 6 (top panel, solid line) 

b) as a), but for f c  = 12 (top panel, dotted line) 

c )  r E Mg/Ms and f c  = 1 (middle panel, solid line) 

d) as c), for f c  = 2 (middle panel, dotted line) 

e )  r E Md/% and f c  = l (bottom panel, solid line) 

f )  as e), for f c  = 2 (bottom panel, dotted line) 

where Mt is the total mass of the main system and is the total mass of the 

satellite, each measured when the satellite first crossed the virial radius of the main 

system, whereas Mg, the mass of the galaxy (disk+spheroid), Md, the mass of the 

disk, and 111,, the mass of the satellite, are measured at the time of the collision. 

The first two criteria are closest to  those used in simulations of major mergers, which 
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riormally compare the initial masses of self-similar systems at  large distances from 

each other, although the halos in these simulations are fairly small, relative to the 

central galaxies. The last four criteria are more suitable for comparison with minor 

merger simulations, which normally compare the satellite mass to the mass of the 

main galaxy. 

SCDM LCDM 
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We can draw a number of conclusions from a comparison of these different curves. 

The first is that the disruption criteria used are decreasingly restrictive, going from 

top to bottom. Even for the least restrictive criterion, however, the average disk 

formed more than 9 Gyr ago (at z = 1.5-2.5, depending on the cosmology). Thus the 

existence of an old disk in the Milky Way is not surprising. While it may be possible 

that disks are disrupted by even weaker encounters than assumed in case f), that is 

by encounters with an object with less than half the mass of the disk, this seems 

unlikely based on the simulation results. Conversely, even if disks are only disrupted 

by huge mergers, such as the 6:l case in the top panel (which, for our fiducial galaxy 

model, would correspond to a subhalo which had five times the mass of the disk, when 

it crossed the virial radius, or about two times the mass of the disk, after its first 

pericentric passage, falling into the centre of the potential), they still have median 

ages of around 12 Gyr. This is simply because they could not have formed much 

earlier in the cosmologies considered here. At these early times, structure is forming 

rapidly, and halos are acquiring a large fraction of their mass with a very short period 

of time, which explains why disk ages are relatively insensitive to the exact disruption 

criterion used.' 

In what follows, 1 will take e) or f) as determining disk disruption, given that these 

criteria depend on the mass of the disk and of the satellite a t  the time of the encounter, 

and are therefore easier to interpret, and closely related to the minor merger criterion 

considered later in this chapter. There is one subtle difference worth noting between 

criteria c) and d) and criteria e) and f). Once a disk has been disrupted once, its 

parent galaxy will start forming a new one as before, but the new disk will be much 

less massive than the surrounding bulge initially. Because of its small mass, this 

proto-disk is frequently disrupted by infalling satellites, in models using criteria e) or 

f). Thus, an intial disruptive merger is often followed by many subsequent disruptions, 

'It also justifies an approximate treatment of satellite dynamics, as mentioned in chapter 4, sirice 
it implies that major mergers are rare at  late times. 
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until the disk has a chance to grow larger or the merger rate becomes low enough for 

it to  survive to the present undisturbed. Since a massive bulge may act to  stabilise 

the disk slightly, the actual rate of subsequent disruptions following an initial disk 

disruption may be overestimated here, but it is clear from figure 8.4 that this 

reduce the average age of the disk substantially. 

8.1.3 The Estimated Rate of Disk Disruption 

Given a definition of disk disruption, specifically criterion e) or f )  above, let us now 

re-examine the rate of disk disruption in more detail. Figures 8.5 and 8.6 show the 

distribution of disk ages and formation epochs (that is the times when the disk was 

last disrupted, using this criteria), for SCDM and LCDM respectively. (These are the 

same data shown in the bottom panel of figure 8.4, plotted differeritially.) The solid 

histogram is for criterion e), while the dashed histogram is is for criterion f). From 

figures 8.4-8.6, we see that in the SCDM model, two-thirds of disks are 8-12 Gyr 

old, a third have been disrupted more recently, and up to 20% have been disrupted 

in the last 5 Gyr. The latter objects presumably correspond to field ellipticals or 

SOS, which are bulge-dominated and constitute roughly this fraction of giant galaxies 

(Loveday 1996). The systems with the oldest disks were last disrupted at  z E 2-3, 

while the youngest disks formed at  z E 1. For LCDM, the relative numbers of old 

and young disks are similar, although the disruption ages are slightly younger. In 

either cosmology, a typical spiral galaxy (that is a giant galaxy with a large disk) 

has been in place since z E 1, about 9-10 Gyr ago, even assuming disks are easily 

disrupted (criterion f),  dashed histograms); if they are harder to  disrupt (criterion 

e), solid histograms), the mean ages are even older. These ages and redshifts refer to 

the time when the disk was last disrupted; how much of the disk's mass was in place 
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Figure 8.6 As figure 8.5, for the LCDM galaxies. 

et al. 2000). Thus it seems plausible that it represents the remains of an early disk, 

disrupted by a major merger. The total mass of the bulge is less certain; estimates 

put it at  1/3-1/6 the mass of the disk (Dehnen & Binney 1998). Major mergers in 

the SA mode1 lead to old disks, but do they also produce reasonable bulges? 

In the standard picture established by numerical simulations, a major merger 

with a gaseous disk causes a starburst, which consumes some fraction of the available 

gas (Barnes 1996; Mihos & Hernquist 1996). Both the original disk stars and those 

formed in the burst are distributed spherically, but any gas remaining after the event 

can cool and form a new disk. Thus, only some fraction of the disk mass is added 
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to a spherical component in each major merger. Unfortunately, the fraction is not 

well known. Mihos & Hernquist (1996) found that approximately 95% of the disk 

mass was converted into a bulge in a major merger, but the disks considered in these 

simulations were only 20% gas. Early disks and early satellites would have had a much 

higher gas fraction, so the overall efficiency of the starburst following disk 

may have been lower. Recently, Barnes (2001) has also found that the conversion 

efficiency can Vary between about 50% and 90% depending on the mass ratio and 

orbital parameters of the encounter. 

Figure 8.7 shows the distribution of disk-to-bulge mass ratios predicted by the SA 

mode1 a t  the present day, in SCDM and LCDM cosmologies, using criterion e) (dashed 

histograms) or f) (solid histograms). In the top panels, the conversion efficiency is 

taken to be 50%, while in the bottom panels it is taken to  be 95%. Even if disk 

disruption is rare (criterion e), the median bulge-to-disk mass ratio is 0.45 in SCDM 

and 1.1 in LCDM, and if it is more common (criterion f),  the median ratio is 0.9 

in SCDM and 1.7 in LCDM. While it is expected that 10-15% of the systems will 

correspond to  field ellipticals, and a further 15% to SOS, the majority of isolated, giant 

galaxies are spirals (Loveday 1996) with MB/MD < 1. Thus, these mass ratios seem 

far too high. 

Making a more quantitative statement is problematic, due to uncertainties in the 

observed mass ratios of isolated galaxies. Bulge-to-disk luminosity ratios are typically 

0.6 or more for field ellipticals, 0.4-0.6 for SOS, and less than 0.4 for spirals (Simien 

& de Vaucouleurs 1986), but these luminosities are measured in the B-band, where 

the mass-to-light ratios of the two components may differ by a factor of 2 or more. 

Studies of galaxy rotation curves (Vega-Beltran et al. 1999; Pignatelli & Galletta 

1997; Corsini et al. 1999), for instance, find much larger mass ratios (e.g. 1.4 for the 

Sa NGC 2775, 2.8 for the Sa NGC 2179, and 5-9 for some SOS). The rotation-curve 

decompositions used in these studies do not always include a dark matter component, 

however, so it is not clear how much of the spherically distributed mass inferred 
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corresponds to  the stellar bulge and halo. 

If I ignore these complications and use the luminosity ratios 0.6 and 8.4 to distln- 

guish between morphological types, for the disruption criterion e), then the SCDM 

galaxies are 60% spirals, 18% SOS, and 22% ellipticals, and the LCDM galaxies are 

10% spirals, 22% SOS, and 68% ellipticals. The latter numbers are clearly incon- 

sistent with the percentages 67/18/15, determined in surveys (Loveday l996), and 

using a broader disruption criterion or increasing the conversion efficiency makes the 

discrepancy worse. 

There are several possible solutions to this problem, aside from rejecting LCDM 

as a viable cosmology. The disruption rate calculated here could be overestimated, 

but it seems unlikely that a disk could encounter a satellite of equal mass and escape 

intact. The conversion efficiency is less well constrained; in particular, collisions 

between systems with large gas fractions may be much less efficient at  forming stars in 

sudden bursts. If major mergers of gaseous objects is indeed less efficient, this may in 

turn have implications for the age, colour and chemical composition of the structural 

components of giant galaxies. Clearly, simulations of gaseous mergers are required to  

confirm this hypothesis, but it seems a plausible means of reducing the bulge-to-disk 

ratios to observed values, given the merger rates predicted above. Finally, it may be 

that the masses of bulges are genuinely high, as suggested by some of the observations 

mentioned previously. Accurate mass estimates for a larger sample of objects would 

be required to confirm this, however. Having considered the rate disruptive encounters 

in hierarchical models, 1 will now examine the dynamical evolution of disks, in halos 

filled with substructure. 
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Figure 8.7 The distribution of bulge-to-disk mass ratios calculated for the SCDM and 

LCDM galaxies, using criteria e) (dashed histograms) and f )  (solid histograms), 

assuming 50% or 95% of the disk mass is converted into a spheroid during 

each disruption (top and bottom panels respectively). The vertical dotted lines 

indicate the expected ranges for different morphological types. 

8.2 The Consequences of 

Much of the theoretical and numerical work mentioned in the introduction to this 

chapter sought to determine not so much whether disks would be completely disrupted 

in hierarchical cosmologies, but rather whether they would be heated substantially 

by minor mergers below the threshold for disruption. In this section I will estimate 
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the frequency of such encounters, using the same approach as for major mergers, and 

also consider some other consequences of minor mergers. 

8.2.1 The Origin of the Thick Disk 

Local observations in the solar neighbourhood yield a clear relationship between 

the age of local stars and their velocity dispersion. Stars more than about 10 Gyr old 

show a substantially increased velocity dispersion, particularly in the vertical direction 

(Gilmore, Wyse & Jones 1995; Quillen & Garnett 2001; Fuchs 2000). This increased 

vertical dispersion produces a large scale height for the old population. There is 

a corresponding relationship between age and metallicity, with a similar jump a t  10 

Gyr (Buser 2000), and old, high-velocity disk stars also show enhanced abundances of 

a-elements, indicating that they may have formed in a rapid burst (Prochaska et al. 

2000). These separate observations suggest the existence of a distinct component, 

referred to as the 'thick disk'. The thick disk probably corresponds to 20% of the 

mass of the disk or less, based on stellar age distributions, although these numbers 

are poorly determined (Rocha-Pinto et al. 2000; for cumulative plots see Fuchs 2000, 

Ferguson & Clarke 2001). Given that the kinematics of the thick disk are exactly 

those expected for a disk heated by a minor merger, it is interesting to see how 

often minor mergers produce disk thickening, and whether the age and mass of the 

thickened component in the SA galaxies are comparable to the properties of the thick 

disk of the Milky Way. 

To determine when the disk was last thickened appreciably by a minor merger 

requires some merger criterion, just as disruption did. The same choices and compli- 

cations arise as for major mergers, although it is clearer in this case that a criterion 

like to e) or f) should be used. For the same reasons mentioned above, 1 will choose a 

criterion similar to e) or f) ,  but with a mass ratio of 5:1, to reflect the rough consen- 

sus from simulations that a merger with a satellite with 20-30% of the disk mass will 



Chapter 8: The  Survival of Galactic Disks 194 

heat the disk substantially (WMH, HG, VW). Thus, 1 consider the disk to  be tidally 

thickened every time it collides with a satellite which has more than 20% of its mass. 

Figures 8.8 and 8.9 show the resulting distribution of ages and epochs of the last 

disk thickening event, for SCDM and LCDM respectively (with line styles as before). 

We see most of these events occur around the epoch of halo assembly, when major 

merger are frequent as well (cf. figures 8.5 and 8.6). As a result, a number of systems 

may have experienced a thickening event shortly after they formed. 
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the SA model, in SCDM and in LCDM, relative to the final mass of the disk in each 

system a t  t = O. The solid lines are the results for criterion 'e' (the disk is disrupted 
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& Binney 19981, at  earlier times, much more of the disk would have been gaseous. 

This gas could have been heated by a minor merger, but then have dissipated and 

cooled again, leaving no trace of this event. To give a rough idea of the resulting 

effect on the mass of the thick disk, in the bottom panel 1 show the mass of the thick 

disk, assuming that the thick disk material assembled quickly, and formed stars at  

a constant rate over time until it was heated, (that is assuming that at  t h e  t ,  a 

fraction t/tw of the disk was stellar, where tH is the Hubble time). We see that while 

the same fraction of systems have thick disks, these components now have 10-20% 

of the total disk mass, similar to the mass of the thick disk component in the Milky 

Way. 

In summary, a model for tidal heating, based on numerical estimates of the thresh- 

old for this process, suggests that both the age and mass of the thin disk of the Milky 

Way, as well as the age and mass of the thick disk, are entirely plausible in hierarchical 

cosmologies. Given that these observational constraints were originally considered an 

argument against CDM (or at  least SCDM), this result may seem a bit surprising. 

To clarify the physics behind this result, 1 will re-examine disk heating rates under 

some simplifying assumptions. 

8.2.2 Explaining the Age of the Thin Disk 

If early estimates of the rate of major and minor mergers were so high, why 

are they so much rarer in the SA model? Does the SA model overlook important 

physical processes, or does it account for processes igriored in previous work? First, it 

is worth noting that while the result in TO received much attention, it relied on early 

and uncertain estimates of the halo merger rate, as well as a simplified treatment 

of the efficiency of heating. While subsequent numerical work was mainly directed 

towards clarifying the latter issue, and produced estimates for the heating efficiency 

e 50% smaller than those in TO, two papers have also examined the accuracy of the 
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Figure 8.10 The distribution of thick disk masses in SCDM (solid histograms) and LCDM 

(dashed histograms), calculated assuming the disk is entirely stellar when dis- 

rupted (top panel), or forms stars at a constant rate (bottom panel). 

assumed merger rate. Kauffmann & White (1993) derived a more rigorous estimate 

of the halo merger rate, using merger trees. Although their main conclusions were 

similar to those of TO, namely that the rates were unacceptably high in SCDM, but 

more reasonable in and open cosmology with R < 1, they did note that the galaxy 

merger rate might be much smaller than the halo merger rate. Navarro et al. (1994) 

re-examined this problem with numerical simulations, finding that the infall time for 
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delay in merging which further reduced the rate of disk heating. Thus the average 

disk in their SCDM simulations had remained unheated for the last 5 Gyr. While 

these simulations suffered from a number of technical problems, leading to  excessive 

cooling and the formation of very small galactic disks, they did suggest that the case 

for frequent disk disruption had been overstated. Combining their low merger rates 

with the stricter heating criteria determined by simulations of minor mergers, one 

obtains the estimate that most thin disks are 6-8 Gyr old, in keeping with the results 

presented above. 

Since the physics of the SA model is modular, it is possible to quantify the distinct 

processes which reduce the disruption rate. Figure 8.11 shows the cumulative distri- 

butions of times since the disk was last disrupted, calculated (from top to bottom): 

1. with the full model 

2. with no dynamical friction 

3. with no mass loss from the satellites 

4. with neither dynamical friction nor mass loss compared with the rate a t  which 

halos experienced 20:1 of 6:l mergers, 

5. counting substructure within branches separately 

6. ignoring substructure 

Comparing 1) and 2), we see that the net effect of dynamical friction is to make the 

last major merger slightly more recent, presumably by causing the infall of satellites 

which would otherwise orbit indefinitely in the halo without hitting the disk. Turning 

off mass loss while retaining friction has a much larger, and opposite, effect; with mass 

loss, most disks are y IO Gyr old, whereas without mass loss, they are 4 Gyr old. 

Thus it is essential to  account for mass loss when studying halo dynamics. 
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Comparing panels 3) and 4), we can also see that the high merger rate in the no- 

mass-loss case disappears if dynamical friction is turned off, resulting in a distribution 

of disruption times similar to the fiducial one. This indicates that the mergers in panel 

3) are caused by the rapid orbital decay of massive satellites, in a model where they 

lose no mass. 

Finally, we can compare these different rates to the corresponding halo merger 

rates. Panels 5) and 6) show the distribution of times when the halo last experienced 

a merger with a mass ratio of either 20:l of more (dotted line), or 6:1 or more (solid 

line), at  its virial radius. Comparing 5) with 6), we see that accounting for the 

substructure in branches of the merger tree, as described in chapter 6, reduces the 

rate of halo mergers of a given mass ratio slightly, because A decomposes branches into 

smaller subcomponents. The overall effect is more important for the more massive 

mergers, however (compare 6:l and 20:l). Comparing 5) with the fiducial rate in l ) ,  

we see that subhalos with masses comparable to or greater than the central galaxy 

cross the virial radius at  later times, but have not disrupted the disk by x = O, either 

because they are still falling in, or because tidal stripping has reduced them in mass. 

Overall, the results shown in figure 8.11 demonstrate the complexity of merger 

statistics, which depend on disk and halo growth rates, halo merger rates, infall times 

and mass-loss rates. It is because of this complexity that a semi-analytic model is 

required to estimate accurate disk disruption rates. 

8.2.3 The Epoch of Major and Minor Mergers 

Major and minor mergers may produce effects that are directly observable as they 

occur, including strong bursts of star formation, quasar and AGN activity, and nearby 

ULIRGS (Mihos & Hernquist 1996; Mihos 2001). It is not the goal of this thesis 

to predict realistic rates for this activity. To do so would require, a t  a minimum, 

generating merger trees for objects of many different masses, and convolving the 
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runs, weighted by the total mass of material involved in each case. The large solid 

points indicate major mergers (mass ratios of 2:l or less), while the small points 

indicate minor mergers (mass ratios of 10: 1-2: 1). Redshift is plotted logarithmically 

along the bottom axis. This figure shows that the distribution of major and minor 

merger events is similar, although minor events are more common, and that these 

events typically take place before x = 2-3 in LCDM, or z e 1 in SCDM. On the 

other hand, because galaxies are simultaneously growing in mass over time, it is 

the late mergers that involve the largest total masses of material. Thus, if mergers 

convert some fixed fraction of the available gaseous mass into stars, or funnel it into 

an active nucleus, we would expect these encounters to  be the most luminous. This 

combination of increasing merger mass and decreasing merger rate may account for 

the peak in quasar activity around x = 2-3 (Pei 1995), although the problem clearly 

requires more detailed treatment, as in Haiman & Menou (2000). 

So far in this chapter 1 have considered only the effects of direct collisions on the 

dynamical state of galactic disks. Thin disks are inherently unstable, however, and 

therefore sensitive to much weaker disturbances (indeed, it is extremely difficult to  

keep the disks in numerical simulations stable, even in isolation). Given the amount 

of substructure predicted to survive in galaxy halos, the combined effect of these weak 

disturbances may heat disks substantially. Direct collisions below the threshold mass 

ratio for minor mergers may also contribute to heating, thickening the disk gradually 

over time. In this last section, 1 will apply two previously developed analytic estimates 

of the heating rate produced by substructure, to determine the importance of this 
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Figure 8.12 The redshift distribution of major and minor mergers (solid and open circles 

respectively), plotted versus the total mass of material involved. 

8.3.1 Analytic Estimates 

Heating is a collisional process, that is it depends on the transfer of kinetic energy 

from a perturbing satellite to individual disk stars or particles, via two-body interac- 

tions. To calculate the heating rate in a given encounter, one has to  average over the 

effects of individual encounters, integrating either over the distribution of perturbers, 

or over the distribution of background particles. Heating thus represents the other 

part of the calculation that led to dynamical friction - in the simplest terms, one 

could imagine that the energy each satellite loses through dynamical friction winds 

up in the background as kinetic 'heat9. In practice, however, there are several sources 

of energy involved in the process, including the kinetic energy of the satellite but also 
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the potential energy of the disk, and the kinetic energy associated with its coherent 

rotation, while this energy is redistributed into several sinks, including the orbital 

energy of material stripped from the satellite and the kinetic energy of coherent disk 

modes, as well as the 'thermal' kinetic energy of the disk. Despite this complexity, 

heating is ultimately mediated by two-body interactions, and therefore by using some- 

thing like a dynamical friction calculation (or more rigorouslj: fluctuation-dissipation 

theory), with a suitable efficiency parameter, it should be possible to determine an 

analytic expression for it . 

In order to establish the relative efficiency of heating, one needs to derive a steady 

heating rate, based on the net effect of a single encounter. This requires averaging 

the effects of a single satellite on many nearby disk particles, or averaging the effects 

of a large number of evenly distributed satellites on a single disk particle. The first 

approach was developed by T0. It estimates a local Iieating rate proportional to the 

amount of energy lost to disk dynamical friction locally, summed over al1 satellites 

that pass through a given annulus. Given that disk dynamical friction is modulated by 

the local density of the disk, which drops off rapidly with height in the disk plane, this 

form of heating is appreciable only for close encounters with the disk, and therefore 

accounts for weaker versions of the disruptive encounters considered in the previous 

sections. 

The other way to estimate a continuous heating rate is to  average over the effects 

produced by a large number of more distant satellites. This approach was used by 

Lacey & Ostriker (1985; see also Lacey (1984) and Ipser & Semenzato (1985)) to 

determine the dynamical effect of a halo full of massive black holes. It requires an 

estimate of the local density of perturbers, which are assumed to be numerous and 

uniformly distributed, and in this sense will be approximate for the less common, 

more massive satellites, but does have the advantage of including the effects from the 

entire halo. 1 will proceed to compare these two heating estimates below. 
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8.3.2 Close Encounters 

In a single hyperbolic encounter between two point particles, it is possible to 

calculate the net velocity changes for either particle, in the directions parallel to, and 

perpendicular to, the initial relative velocity (Binney & Tremaine 1987). Averaging 

over a series of encounters, for a given geometry and velocity distribution, gives the 

net changes in < Vl >, < I/il >, < V: > and < I/ir >. By comparing these net 

changes, it is possible to determine the ratio of the energy lost by a satellite through 

dynamical friction, to the energy gained by the disk in plane, € 1 1 ,  and out of plane, 

€1. 

TO considered a satellite spiraling in on a quasi-circular orbit, and assumed that 

fractions cl, and c l  of the orbital energy lost as it fell through a given annulus were 

contributed to the random motions of stars in that annulus. Thus, for instance, they 

assumed a change in the surface energy density: 

AE - 6lAEsat A€, = --- - 
2nrdr 2nrdr (8.1) 

for an annulus exteriding from r to dr, where Ac, is the change surface energy density 

going into vertical motion, AE is the total energy input into the annulus, and AEsat 

is the energy lost by the satellite. They then considered the response of the disk and 

its return to virial equilibrium, showing that this energy produces a change in scale 

height : 

AH - 1 2 A€, - 1 
- - - 2 Ac, 8 

H -- 3 Wdd + 36(r)] = 3 nGC2H [l + $)] 

- - - 2 clAESat [l + :6(r)] -' (8.2) 3 2n2rdrGC2 H 

where C = C(r) is the surface density of the disk, wdd is the disk self-energy and 6(r) 

is the ratio of the disk and halo self-energies, wdd and wdh. I will use this expression 

to  calculate the change in disk height produced by each encounter with the disk, and 

the related expression: 

(A:) (wdd C4wdh) 
ACT; = - (8.3) 
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for the change in the velocity dispersion. 

For thin disks, S(r)  is small; for the disk model considered by TO, for instance, 

which has the sarne vertical profile as the model used in the SA CO 

The exact value of €1 also varies between 0.4 and 0.7, depending on the distribution 

of orbits in the disk. 1 will ignore the uncertainty in these two terms, and use an 

effective coefficient of 0.4 for the change in W .  TO also assumed slowly decaying, 

quasi-circular orbits, such that satellites only passed through a given radius once. For 

general orbits, it is not clear how to distribute the energy lost during each encounter 

with the disk. 1 have chosen to  distribute it over and area equal to the size of the 

satellite, assuming that this is roughly the size of the region that responds strongly 

to the encounter. Thus, a fraction dr/(2rsat) of the energy lost by the satellite goes 

into heating an annulus of width dr if it lies within rSat of the satellite's position. The 

resulting expression for the change in scale height is then independent of the width 

of the annulus: 

where Ici = C ~ , ~ / ~ T ~ G  and ~ 1 % ~  Y 0.4. The corresponding change in the vertical 

velocity distribution is: 

AG, = k2AEsat /2rsat 
rC (8.5) 

where k2 = C ~ , ~ / ~ T  and €1,~ E 0.6. 

Figures 8.13 and 8.14, for instance, show the cumulative changes in A H  and Ao,, 

produced by direct encounters since a given time, at  r = ro = 8.5 kpc in a typical disk, 

for four different SCDM and LCDM halos respectively. The dotted line shows the 

rate at  which the disk builds up. We see that the only substantial direct heating is a t  

early times, before most of the mass of the disk is in place. This heating can produce 

an old, thickened disk component in some cases (e.g. the second panel of figure 8.13). 

Because close encounters a t  late times are rare, however, and because the main mass 

of the disk builds up after these encounters cease to be common, the contribution of 
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with y = v,/&T,. 
To apply this heating in a given timestep, one has to determine the local number 

density of perturbers, and account for differences in their masses. Since there are a 

finite number of satellites in th  SA model, 1 do this by counting up the number of 

satellites in a given volume, and dividing by the volume to get a number density. 

The different masses are easily accounted for by weighting the contribution of each 

satellite by the square of its mass. The resulting heating rate depends only on a 

single parameter, the volume over which the mean density of satellites is calculated. 

This introduces some uncertainty in this heating calculation, but it still provides an 

interesting estimate of the disk heating rate, as 1 show below2 . 

Figures 8.15 and 8.16 show the vertical velocity dispersion for disk stars as function 

of their age, calculated using this approach, in three different SCDM runs and three 

LCDM runs (note that the stellar ages have been rescaled to match the age of the 

universe of 18.6 Gyr implied by the observations). Each solid line shows the result 

calculated for a different volume; the volumes used wese spheres with radii of 20, 40, 

and 80 kpc. The scatter between these lines gives an estimate of the uncertainty in 

the heating rate, in each case. The points are the observed velocity dispersions of 

disk stars, compiled by Quillen & Garnett (2001) (there is some disagreement over 

the in-plane velocity dispersions determined in this work, cf. Fuchs (2000), but more 

general agreement on the vertical velocity dispersions, which are shown here). The 

total velocity dispersion was calculated by assuming that the value for the youngest 

of these points, = 9 km s-l, is the initial value produced by star formation. 

As with the direct heating calculation, we see that most disk heating from poten- 

tial fluctuations occurs at  early times. In particular, this form of heating has been 

relatively unimportant for the past 3-5 Gyr. The increase in the observed velocity 

21n fact, some of this volume-dependence may also cancel out, if the Coulomb logarithm, which 
is based on a weighted integral over the distribution of perturbers, is adjusted upwards for larger 
volumes. 
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dispersion during this time must therefore be due to  the other known sources of lieat- 

ing, internal to the disk, such as spiral arms and giant molecular clouds. These are 

expected to produce heating which increases steadily as t1I2. The dashed lines show 

the range of age-dispersion relations this form of heating would produce, based on the 

measured dispersions in the youngest bins. We see that although these mechanisms 

may account for the increase in heating back to E 5 Gyr ago, prior to this potential 

fluctuations become an increasingly important source of heating. In partlcular, the 

observed velocity dispersions in the oldest bins (corresponding to the thick disk) are 

larger than expected from internal heating alone. Figures 8.15 and 8.16 show that 

this old component, which I suggested previously was the result of a minor merger, 

could also be the result of an indirect encounter. 

In fact, the distinction between direct collisions and indirect encounters may be 

rather arbitrary, since the heating rate calculated using equation (8.6) is generally 

higher if the satellite density is averaged over a smaller volume, indicating that the 

dominant effect is from fairly close encounters. The contribution from the largest 

satellites also dominates over the more numerous small satellites. Unfortunately, 

the simplifying assumptions made in deriving equation (8.6) also break down in pre- 

cisely these cases. It therefore seems worth examining the possibility that indirect 

encounters with the few dozen most massive satellites in a halo could heat the disk 

substantially over its lifetime, using numerical simulations. This will not be an easy 

task, since it requires forming a galactic disk in cosmologically realistic conditions, 

and keeping it stable for a Hubble time. It is a challenge for the next generation of 

numerical studies of disk evolution. 
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part of the disk also arise naturally in approximately 30% of the systems in either 

cosmology. Thus, the observed structure of the Milky Way and other nearby galaxies 

does not seem to preclude hierarchical galaxy formation in a standard cosmology. 

One or two unresolved problems remain, however. The mass ratios of galactic 

bulges and disks appear to be too large in LCDM - rough estimates for the simplest 

model suggest that more than half of the present-day galaxies correspond to SOS or 

ellipticals. While stricter disruption criteria would reduce this problem, they are 

probably not warranted; a more likely explanation is that early disks are primarily 

gaseous, and that this gas re-forms a new disk after a major merger, rather than being 

turned into a stellar bulge. Even allowing for this possibility, however, the average 

bulge-to-disk mass ratio is somewhat higher than expected. To elucidate this point, 

it would be useful to have a better sample of observed bulge-to-disk mass ratios, for 

galaxies of different morphological types. 

The disk heating from the potential fluctuations produced by indirect encounters 

is also predicted to be quite large, the dominant effect coming from encounters with 

the nearest and most massive satellites. Unfortunately, in this regime, the analytic 

estimates of heating are least d iable .  Thus, a detailed and careful numerical simula- 

tion of disk evolution in a halo filled with substructure will be required to verify the 

importance of this mechanism, in generating the velocity dispersion observed in old 

disk populations. 

There are also some obvious extensions to the SA model which would provide a 

clearer picture of disk formation. The most important is the inclusion of realistic disk- 

formation and star-formation rates, based on analytic estimates or hydrodynamical 

results. This would be a particularly interesting first step towards a full semi-analytic 

model, combining the dissipative physics of previous models with the dynamical cal- 

culations developed in t his thesis. 



otivation for this 

Galaxy formation is undoubtedly a complex process. In hierarehical models, nt 

proceeds through many distinct steps, including the gravitational collapse of dense 

regions in the early universe, baryonic dissipation, star formation, mergers between 

small star-forming regions, repeated heating and cooling of the gas around these 

objects, disk formation, and disk disruption; and these various steps are repeated on 

increasing mass scales and at  decreasing rates as the universe expands. Clearly this 

sequence of events is too complex to be represented by any simple analytic model. The 

analytic models of galaxy formation that have been developed consider only limite$ 

aspects of the process, under greatly simplified assumptions. 

For the two decades that galaxy formation has been a major topic of research, 

numerical models have therefore dominated the field. The earliest and most common 

models considered the dissipationless dynamics of matter as it assembled into the 

dense lumps from which galaxies formed; more recently, hydrodynamic codes have 

allowed the actual gas dynamics, and even star formation, to be modelled numerically. 

It seems likely that these hydrodynamical simulations will produce convincing galactic 

models in the near future. Despite their considerable predictive power in many areas, 

however, even these models represent only a crude approximation to the microscopic 

structure of star-forming regions, just as stellar models average over the detailed 

motion of gas on small scales, inside stellar interiors. 

Numerical models have another, more significant disadvantage, however, namely 

the computational expense they incur. Current high-resolution simulations require 
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days, weeks or months of CPU time to follow the evolution of galaxy halos in detail. 

In heavily constrained problems with few free parameters, it is reasonable to run a few 

very large simulations, even if the expense is considerable. Thus, for instance, a set of 

four one-billion particle simulations of the evolution of the entire observable volume 

of the universe have recently been run on the world's most powerful supercornputers, 

each with one of the few sets of cosmological parameters of interest currently. Galaxy 

formation is more complex and less well uriderstood than the formation of larger-scale 

structure, however; typical galaxy formation models involve dozens of free parameters 

and many uncertain assumptions. It is simply not possible to  investigate every option 

comput ationally. 

There are some broad patterns in galaxy formation, that rnake aspects of the 

problem amenable to a combination of numerical and analytic techniques, however. 

Galaxy halos, for instance, appear to have a regular structure with certain universal 

properties, judging from numerical simulations. Their substructure also seems to  

form in a predictable and regular way, through a fairly simple process of hierarchical 

merging on progressively large scales. Over the past decade semi-analytic methods, 

which combine numerical codes with analytic results, have capitalised on these regular 

features of galaxy formation, producing predictions for the general properties of large 

populations of galaxies, while leaving the detailed structure of individual galaxies 

to numerical techniques. In this thesis 1 have developed a new semi-analytic model 

which considers the evolution of individual galaxies, and in particular galaxy halos, 

in detail. This model attempts to bridge the gap between existing numerical and 

semi-analytic models, in order to develop a way of studying statistical problems in 

galaxy dynamics that is computationally feasible. 
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.2 Galaxy For 

According to the current cosmological paradigm, galaxies form within much larger 

and more massive halos of dark matter. The early dynamical evolution of galaxies is 

thus dominated by the dynamics of dark matter, which are much simpler to under- 

stand and to model. The initial evolution of dark matter can be understood in terms 

of a simple model of spherical collapse. An isolated fluctuation in the early universe, 

that is a region slightly denser than its surroundings, will amplify with time, becoming 

denser until it ceases to expand along with the background universe, but instead turns 

around and recollapses. In the latter stages of collapse, more complex processes will 

redistribute potential and kinetic energy, until the system reaches virial equilibrium, 

a relatively stable state for non-relativistic matter distributions interacting through 

gravity alone. 

In the case of a symmetric, isolated density fluctuation, collapse and virialisation 

proceed at  a well-defined pace, so that the size, mass and density of the resulting 

virialised structure can be predicted at  al1 times. In the more realistic context of a 

universe filled with many density fluctuations on different scales, different rates of 

collapse will cause separate halos, or virialised regions, to form a t  different times, 

possibly incorporating material which has itself already collapsed on a smaller scale. 

In cosmologies dominated by CDM, in particular, the amplitude of fluctuations is 

greatest on small scales. As a result, by the time galaxy-scale halos form, they do 

so by merging with and incorporating many smaller halos. Thus structure forms 

hierarchically from small scales to  large scales as the universe expands. 

Since the density of halos is some roughly constant multiple of the background 

density of the universe at  the time they formed, the smaller, older halos absorbed 

by galaxy halo will also be denser than the system into which they are incorporated. 

Analytic and numerical work shows that under these conditions, substructure will 

survive within the main halo, taking the form of small, dense, roughly spherical 
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cores, orbiting in a smooth, roughly spherical background. While the outer parts 

of galaxy halos are less relaxed and more irregular, within the virial radius a two- 

component model, consisting of a smooth spherical mass distribution following a 

universal density profile, and a set of much smaller, self-similar profiles corresponding 

to individual subhalos, or cores of accreted halos, provides a very good approximation 

to the matter distribution seen in simulations. 

The dynamics of small, symmetric objects moving in a smooth potential can be 

described fairly accurately in analytic terms. Thus, given initial conditions within 

a galaxy halo, it is possible to construct a purely analytic model of its subsequent 

evolution (analytic in the sense that it relies on analytic formulae to  describe the main 

dynamical processes, although these formulae are then applied through numerical 

integration in some cases), which capture the essential details seen in more expensive 

numerical simulations. 

9.3 An Analytie Mode1 of Satellite Dynamics 

In the first part of the thesis (chapters 2-4), I develop an analytic model of sub- 

halo dynamics, suitable for studying the dynamical evolution of galaxy halos. Beyond 

straightforward orbital calculations, which treat subhalos as unchanging point masses 

moving in a static potential, this model includes three other components, which pro- 

vide the most important corrections to the point-mass approximation: dynamical 

friction, tidal stripping, and tidal heating. 

Dynamical friction is discussed in chapter 2, after a brief description of the general 

outline of the dynamical code and the basic orbital calculations. It is a drag force, 

produced by two-body interactions between the subhalos and individual particles in 

the background halo, or more generally, in a smooth background, by the response 

of the background to the satellite's passage. While more rigorous descriptions of 
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dynamical friction exist, they are generally too complicated to apply in a simple 

model. Instead, 1 rely on Chandrasekhar's formula, an approximate result which is 

only formally valid in a very limited set of situations. 1 find, however, as many others 

have previously, that by adjusting the Coulomb logarithm, a free parameter which 

scales the magnitude of dynamical friction, 1 get good agreement with the deceleration 

measured in high-resolution simulations of close encounters between small satellites 

and disk galaxies. This part of the anaIytic model thus has a single free parameter, 

the (halo) Coulomb logarithm, InAh, which by comparison with the simulations of 

VelAzquez & White (1999, VW hereafter), should have a value of approximately 2.4. 

1 include dynamical friction from the disk and from the spherical components of the 

background separately, both because their dynamics are quite different, and because 

this permits a heating calculation described in chapter 8. Disk friction is generally 

less well determined than halo friction, both analytically (because of the complexity 

of the calculation), and numerically (because it is typically much weaker than halo 

friction), except for orbits in the disk plane, where other effects may also influence 

satellite dynamics. Disk friction introduces a second free parameter in the analytic 

model (although it is of negligible importance for most satellites in a typical halo), 

namely the disk Coulomb logarithm, ln Ad. Once again, comparison with simulations 

suggests that In Ad = 0.4-0.5. 

In chapter 3, 1 consider the dynamical effects of mass loss. Subhalos have some 

spatial extent, and therefore experience differential, or tidal, gravitational forces which 

may affect their structure. In the simplest case, tidal forces create an envelope around 

the core of the subhalo, analogous to the Roche lobes in stellar binaries, outside of 

which material is unbound and no longer follows the core in its orbit. This tidal 

truncation reduces the mass of a subhalo as it orbits, which in turn reduces the 

magnitude of the local response it produces in the background, and consequently the 

drag it experiences from dynamical friction. For massive satellites similar in density 

to their parent system, the interplay between mass loss and dynamical friction is 
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complex, and can change the overall evolution of the system radically, so it is crucial 

to have a good model for mass loss in order to predict the evolution of these systems 

accurately. 

For static systems, that is satellites on unchanging circular orbits, the slze of the 

tidal limit can be calculated approximately and is constant with time. Thus, over time 

these systems should lose al1 mass beyond this limit, and reach a steady state. This 

state is described most succinctly in terms of the ratio of the density of the satellite 

within its tidal limit to the density of the background system within the orbit of 

the satellite; in the simplest case, this density ratio has a value of 3. The orbits of 

subhalos typically seen in numerical simulations are very radial, however, and poorly 

described by this approximation. An alternate description of mass loss, called the 

impulse approximation, predicts mass loss in encounters much faster than the internal 

dynamical time of the satellite. 1 propose an ad-hoc description of mass loss which 

interpolates between these two limiting cases, and show that while lacking rigorous 

justification, it predicts mass-loss rates much more accurately than the tidal limit 

approximation alone. Formally, this description of mass loss has no free parameters, 

although the use of the the instantaneous orbital period as the characteristic timescale, 

while reasonable, is somewhat arbitrary. 

Finally, in chapter 4 1 discuss some of the complexities of tidal interactions not 

included in the simple model of mass loss. Generally, tidal forces will increase the 

internal energy to orbiting satellites, affecting their structure even within the tidal 

limit. The theory of tidal heating has been developed previously in great detail, to 

model the dynamics of globular clusters. 1 show how it can be added to the mass-loss 

model in a particularly convenient way. The close connection between the two is 

no accident, but reflects the fact that both effects stem from the same tidal forces, 

differing only in the characteristic timescale over which they operate. By adding the 

effects of tidal heating to mass loss and dynamical friction, 1 show that the analytic 

model predicts the evolution of numerical satellites to very good accuracy. Tidal 
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heating introduces a third and final free parameter, the heating efficiency ch, predicted 

to be > 2. 1 find that the value = 3, determined by matching the VW simulations, 

also produces a very good match to the simulations of Hayashi and Navarro (2001, 

HN hereafter), despite their use of a very different potential and satellite model. 

The three main components of the analytic model are al1 expressed in terms of 

global properties of the subhalo, which account for their speed, relative to Fokker- 

Planck or restricted numerical methods. Unfortunately, it is not obvious how to 

account for changes in satellite structure within this simple framework. In the last 

part of chapter 4, 1 show some results on the interna1 evolution of subhalos, from 

simulations by HN. Although these results do not provide a clear explanation for 

the observed behaviour of the density profile, they do suggest that the simple ap- 

proximation of self-similar evolution is valid as a first-order description of satellite 

evolution. 

Combining this result with the previous components of the analytic model, 1 

produce a code which can predict the changing position and velocity (or orbital radius, 

phase and period), as well as the mass, size and peak circular velocity of subhalos 

as they orbit within a larger system, to an accuracy of 10-20%. This analytic model 

becomes unreliable only when the satellite is very large or very massive compared to 

the main system, if it evolves for many orbits, or if it loses most of its mass (more 

than 80-90%). The model is based on scalar calculations, involving global properties 

of the satellite, so its computational order is O(NsatsNstew), where Nsats is the number 

of satellites NSt,,, is the number of timesteps. As a result, it only takes a few minutes 

on a desktop system to  follow the evolution of several thousand satellites over the age 

of the universe. In this sense, the analytic model is 5,000-10,000 times faster than 

comparable numerical models, and thus provides a radically different way of studying 

halo dynamics. 
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Given initial conditions, the analytic model provides a very fast way of study- 

ing the subsequent dynamical evolution of a galaxy halo. Producing detailed and 

accurate initial conditions is a separate challenge, however. Here too, 1 rely on a 

substantial body of previous analytic and numerical work on structure formation. 

The collapse of dark matter into bound halos has been studied by a generation of 

numerical modellers, producing agreement on some of the basic properties of halos, 

including their formation rates, spatial distribution, mean densities, density profiles, 

spin, flattening or triaxiality, and most recently their substructure, which appears to  

have its own regular distributions of m a s ,  peak velocity, and position within the large 

halo. Thus, a t  least in classical CDM cosmologies, it is possible to produce a detailed 

and convincing model for the structure of individual halos at  any given epoch. 

While large-scale simulations now follow the formation of well-resolved halos in 

considerable numbers, this is a comparatively recent development. Earlier models of 

galaxy formation in the field therefore relied on analytic estimates of the formation 

and growth rates of halos. The most developed of these, extended Press-Schechter 

methods developed in the 1990s, actually predict, in a statistical sense, the full ac- 

cretion and merger histories of individual halos. By incorporating these statistics 

into Monte-Carlo codes, a number of groups have developed methods for generating 

large numbers of representative halos with detailed evolutionary histories, at  very 

little computational expense. While these methods are approximate, and have some 

intrinsic limitations, they provide a very fast way of generating initial conditions for 

subsequent studies of galaxy evolution. 

In chapter 5, I describe my implementation of the most recent of these 'merger 

tree' codes. Press-Schechter statistics predict the number of collapsed halos on a given 

mass scale at  any epoch, based on a simple model of the collapse of an isolated density 

fluctuation. The more recent extension of this method provides estimated growth and 
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merger rates between halos. Using these extended Press-Schechter statistics, Merger 

tree codes then determine a possible decomposition of a single present-day halo into 

its progenitors at  any earlier time, as well as the sequence of mergers which produced 

the final object. Thus, in the context of the analytic model, these codes predict 

the evolving mass of the main halo since some early time, the original masses of its 

satellites, and the times at  which they merged with the main system, as well as similar 

information for each satellite, down to some limiting resolutions. Each run produces 

a unique halo, and typically takes a few minutes of CPU time on a desktop machine. 

There are several subtleties involved in using the output from merger trees as the 

input to the dynamical model developed in part 1. 1 discuss these in chapter 6. First, 

the properties of the central galaxy in the main system, which can have a substantial 

effect on satellite evolution, need to be determined. For this 1 use simple, semi- 

empirical rules based on the observed appearance of giant galaxies, and inferences 

about galaxy formation. 

A more eomplex problem is the treatment of substructure within subhalos merg- 

ing with the main system. While some semi-analytic models ignore this complication, 

it is clearly unrealistic to assume that in an equal mass merger between two halos, 

for instance, one contains many small subhalos which survive the merger, whereas 

the other consists of a single monolithic objeet, which contributes no substructure to  

the final merger remnant. In fact, 1 show that this assumption leads t o  a systematic 

underestimate of halo substructure, compared to the results seen in simulations. The 

converse assumption, namely that subhalos consist entirely of undissolved substruc- 

ture, is equally incorrect. To model the formation of a halo consistently would require 

separate dynamical calculations for each subhalo, making the process prohibitively 

expensive. Instead, 1 use an approximate treatment of halo dynamics in sub-branches, 

to  determine which substructure is disrupted or absorbed within each subhalo falling 

into the main halo, and which substructure survives to continue its evolution in the 

main halo as a separate entity. 1 show that this 'pruning' technique produces results 
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in good agreement with numerical simulations. 

Suitably pruned merger trees, the set of rules describing the growth of the cen- 

tral galaxy in the main halo, and the analytic model of subhalo dynamics, together 

constitute a full, semi-analytic model of galaxy formation, which makes the investi- 

gation of statistical problems in galaxy dynamics computationally feasible. The last 

two chapters of the thesis are devoted to two important examples, the origins and 

distribution of the stellar contents of galactic halos, and the survival of galactic disks. 

.5 The Contents of Galactic 

The different stellar populations distributed throughout galaxy halos, in particular 

the halo of the Milky Way, provide some of the most detailed clues about the process of 

hierarchical galaxy formation. The first, paradoxical feature of the halos of the Milky 

Way and Andromeda, the only giant galaxies we can observe in detail, is that they 

contain few distinct dwarf galaxies, whereas dark matter halos in simulations contain 

thousands of subhalos with comparable or greater circular velocities. Two possible 

explanations for the incredible discrepancy between the two (almost two orders of 

magnitude!) are that star formation in small subhalos is extremely inefficient, or that 

CDM is wrong in some fundamental way. 

1 investigate one plausible model for the truncation of star formation in small 

halos, suggested by Babul & Rees (1992) and others, and considered recently in this 

context by Bullock et al. (2000). In this model, star formation in small objects 

is suppressed, due to the heat deposited into the gas in these objects by intense 

background radiation, which arises at  the epoch of reionisation. 1 find that this process 

produces plausible numbers of dwarf satellites, as established by Bullock et al. (2000), 

but that one or two features of the predicted luminosity function require further 

explanation. In particular, different dwarf galaxy morphologies, evolutionary histories 
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and mass-to-light ratios suggest a number of other processes have modified their stellar 

contents since they fell into the halo of their parent galaxy. Estimating the effects of 

ram-pressure stripping, collisions and encounters on these objects produces satellite 

luminosity functions very similar to those of the Milky Way and Andromeda. 1 also 

show that the properties of the dark matter halos associated with the dwarf galaxies, 

specifically their extent, circular velocity and spatial distribution, are consistent with 

Local Group observations. 

Not al1 dwarf satellites survive the process of galaxy formation; many may be dis- 

rupted, spreading their debris throughout the stellar halo of the Milky Way. Observa- 

tions of the halo have determined its total mass, density profile, age and metallicity. 1 

show that the disruption of dwarf galaxies in the SA model produces a distribution of 

tidal debris roughly consistent with these observations, and that in particular, most 

of the material is fairly old. While the details of dwarf disruption are uncertain in 

the simple analysis of the analytic model, some systems have been disrupted fairly 

recently in a typical SA stellar halo, so coherent streams of stellar debris, similar to 

those observed in the Milky Way, may have survived to the present day. 

9.6 The Survival of Galactic Disks 

Finally, in the last chapter, 1 address one of the main questions motivating this 

work; in hierarchical cosmologies, how is it that galactic disks survive heating and 

disruption by frequent mergers? 1 consider the effects of two distinct processes which 

can disturb disks: direct collisions, in which satellites pass through disks, heating 

them violently or disrupting them, and distant encounters which heat disks slowly 

over time. 

The rate of collisions is particularly interesting, as these events should leave in- 

delible imprints in the form and dynamics galaxies, and produce observable burst 
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of star formation or nuclear activity. While collision rates are easy to  estimate in the 

SA model, there is no clear criterion for establishing which of these events will disrupt 

or heat a disk. After comparing disruption rates derived assuming different criteria, 

1 choose the criteria that encounters between satellites with total masses equal to, or 

greater than, the central galaxy can be taken to disrupt a galaxy completely, while 

encounters with satellites with 20% of the mass of the central galaxy will thicken the 

disk appreciably. 

1 show that for this criterion (or any similar one), galactic disks are old, even 

in SCDM. Ages of 10-12 Gyr are typical, and thus the estimated age of the disk of 

the Milky Way is perfectly reasonable in this cosmology, or in LCDM. On the other 

hand, if disk disruption is assumed to transfer most of the mass of the disk into a 

less flattened bulge, then the bulges typically produced in LCDM are more massive 

than expected. Possible solutions to this problem are that early disks are mainly 

gaseous and that the disruption of a gaseous disk is less efficient a t  transforming 

this gas into stars than inferred from numerical simulations of disk disruption (which 

consider disks with smaller gas fractions), or that observed disk-to-bulge mass ratios 

are overestimated. A less likely possibility is that the disk disruption criterion used 

here is not strict enough, and that disks can survive encounters with massive objects. 

The disk ages predicted by the SA model may seem to contradict early work on 

disk disruption, which suggested it was more common in CDM models in general, and 

in SCDM in particular. 1 show however, that several recent estimates of disruption 

rates point to  the general result established here, namely that disks are old on average. 

After the initial epoch of rapid merging 10 - 13 Gyr ago, mergers between massive 

subhalos and the central galaxies in Milky Way-type halos became sufficiently rare 

that the average galaxy has not experienced one since this time. This result stems 

from the fact that the halo merger rate on these mass scales decreases with time, 

while size of galactic halos increases, reducing the rate of central mergers, and also 

from the fact that tidal mass loss and the growth of the central disk galaxy increase 
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the mass difference between the satellite and the main system during the initial stages 

of infall. 

The SA model also explains the origin of thick disks in the same context. The rate 

of less disruptive encounters can be estimated, in a similar manner to the disruption 

rate, using a larger mass ratio for the main criterion. 1 show that these encounters 

can produce thick-disk components with 10 - 20% of the disk mass in cz 30% of al1 

systems. 

In the remainder of chapter 8, 1 consider the effects of more gradua1 heating 

on galactic disks. First 1 used the formalism of T6th & Ostriker to calculate the 

contribution to disk heating from direct encounters with small satellites. 1 show that 

these encounters can heat the disk substantially a t  early times, although the net effect 

on mean scale-height of the disk at  the present day is negligible, because most of the 

stellar mass of the disk has built up more recently. 1 then consider indirect heating 

produced by distant substructure throughout the halo. 1 find that halo substructure 

can also heat the old disk substantially, although once again it is ineffective at  late 

times. Minor encounters or indirect heating may explain the origin of the thick disk 

and part of the age-velocity dispersion relation, although some of the latter must 

come from other sources such as heating by spiral arms and giant molecular clouds. 

As the scope of the model of galaxy formation developed in this thesis was fairly 

broad, 1 have not been able to investigate al1 of its components in detail. I t  would 

be interesting to test each component more thoroughly, using simulations designed 

specifically for that purpose. In particular, my assumptions about the structural 

evolution of subhalos, their concentration as a function of mass and redshift, and the 

dynamics of subgroups falling into a larger halo, al1 require further confirmation by 
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numerical results. Given suitable simulations, testing these assumptions should be 

straightforward. 

Some components of the model, while inadequate, will be harder to improve upon. 

In particular, the merger trees used here have been demonstrated to show systematic 

mismatches with numerical results. While one main cause of this discrepancy (the 

assumption that the density threshold for gravitational collapse is independent of 

mass) has been established, there is no easy way of generating merger trees which 

correct for this effect. 

Within galaxy halos, encounters between subhalos should be numerous, and may 

drive the evolution of the most massive satellites. While some consequences of subhalo 

encounters can be investigated approximately using the SA model, a proper treatment 

of these collisions requires numerical simulations. Similarly, the dynamical evolution 

of the largest subhalos is poorly represented by the analytic model, and should be 

determined from numerical simulations. 

Finally, there are components that could be added to the current model, increasing 

its predictive power at  the expense of added complexity. In particular, it would be 

straightforward to add the dissipative components of existing SA models to the one 

developed here, expanding on the toy model of star formation presented in chapter 7. 

This might be of interest when considering the detailed evolution of dwarf galaxies 

and the stellar structure of the disk, but SA studies should probably only serve as 

a preliminary to numerical work on these problems, given their complexity. Simpler 

additions to the model could be used to follow the statistics of black hole formation 

in the nucleus of the galaxy, and to relate merger rates to observed galactic activity. 

The SA model presented here deals with individual halos in detail, but ignores 

structure in the universe on larger scales. Thus, to derive predictions for observed 

merger and interaction rates in large surveys will require combining it with more 

traditional semi-analytic models, which apply to whole populations of objects. An 
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important exception is in studies of cluster dynamics, since cluster galaxies are them- 

selves substructure within a much larger dark halo. Although the model presented 

here was applied to the problem of galaxy and group formation, by changing the mass 

scales in the model and removing the central disk, its predictions can be extended to 

clusters with little effort. 

Interesting as it may be as a distinct representation of galaxy or cluster forma- 

tion, my ultimate goal in developing the semi-analytic model was to provide a fast 

and simple way of incorporating what we know, or think we know, about structure 

formation into many other calculations, such as disk heating or satellite evolution. 

Even today, these calculations are often performed in complete abstraction from their 

cosmological context - numerical simulations of disk heating start with present-day 

disks, and studies of satellite disruption consider satellites like those we see today, 

because there is no simple way to incorporate the changing mass, size and properties 

of galactic systems into such studies. 1 hope that with methods like those presented 

in this thesis, we will soon begin to improve this situation. 
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