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Résumé court 

Dans cette thèse, on présente une nouvelle méthode numerique pour la  solution 

des équations de Navier-Stokes incompressibles et instationnaires dans des domaines 

cylindriques non confinés. La discrétisation spatiale est constituée d'expansions vec- 

torielles à divergence nulle, suivant l'approche proposée par Leonard. Des séries 

de Fourier sont utilisées dans les directions longitudinale et azimutale alors que des 

polynômes par morceaux de type "B-splines" sont utilisés dans la direction radi- 

ale. Le caractère local des B-splines permet en plus d'inclure une variation radiale 

de la troncation azimutale. Des conditions de régularité complète au centre du do- 

maine ainsi que les taux de décroissance asymptotiques à l'infini sont pris en compte. 

L'intégration temporelle des sous-systèmes d'équations résultant de la formulation 

de Galerkine utilisée est effectuée avec un schéma mixte explicite/implicite du quasi 

troisième ordre. Les comparaisons faites avec d'autres méthodes purement globales, 

dans le calcul de stabilité hydrodynamique de certains écoulements tourbillonnaires 

avec symétrie axiale, ont permis de conclure que la méthode proposée ici représente 

une alternat ive avantageuse. 

Prof. GUY DUMAS 
Directeur de thèse 

- rzaU~s DU&NE 
Candidat 



Résumé long 

Dans cette thèse, on présente une nouvelle méthode numérique pour la solution 

des équations de Navier-Stokes incompressibles et instationnaires dans des domaines 

cylindriques non confinés. Cette méthode apparaît comme une nouvelle application 

de la formulation des expansions vectorielles à divergence nulie proposée par Leonard 

et possède donc les caractéristiques suivantes : i) représentation exacte de l'équation 

de continuité ; ii) élimination complète de la variable de pression ; iii) intégration 

temporelle implicite du terme de diffusion sans coûts additionnels ; et iv) réduction 

du nombre d'inconnus (vitesse) de trois à deux. Une autre caractéristique importante 

de la méthode, qui de fait lui confère une bonne part de son originalité, est l'inclusion 

de polynômes par morceaux de type "B-spline" dans la direction radiale semi-infinie. 

Plus particulièrement, la discrétisation spatiale est constituée d'une combinai- 

son de séries de Fourier dans les directions longitudinale (périodicité physique des 

écoulements avec évolution temporelle) et azimut ale (périodicité géométrique), et 

de B-splines projetés sur un domaine radial unitaire. La fonction de projection 

choisie permet une représentation exacte, jusqu'à un certain ordre, des comporte- 

ments asymptotiques à l'infini, En plus de ces comportements asymptotiques, des 

conditions de régularité complète sont imposées au centre du  domaine (r = 0). 

Grâce au caractère mixte spectral/B-spline des expansions vectorielles, un compro- 

mis intéressant est obtenu entre le découplage provenant de l'orthogonalité des séries 

de Fourier et la flexibilité de positionnement de résolution propre aux méthodes lo- 

cales. De même, le caractère local des B-splines permet aussi d'inclure une variation 

radiale de la troncation azimutale. La base vectorielle ainsi construite est ensuite 

utilisée dans une méthode de résidus pondérés de type Galerkine, d'où on obtient une 

réduction du problème complet 3-D en un ensemble de sous-problèmes radiaux 1-D. 



L'intégration temporelle de ces sous-systèmes d'équations est quant à elle effectuée 

avec le schéma mixte explicite/implicite du quasi troisième ordre proposé par Spalart 
et al. ( J .  Comp. Phys., 96, 297, 1991). La formulation de Galerkine est aussi utilisée 

pour l'obtention d'un programme de calcul de valeurs propres pour les problèmes de 

stabilité iinéaire. Une version pour domaines confinés par une paroi cylindrique a de 

plus été développée. Das ce cas, la version confinée de la présente méthode devient 

équivalente à celle proposée par Loulou et al. (NASA TM-110436, 1997). 

La validation des différents programmes de calcul (Navier-Stokes et valeurs pro- 
pres) a été effectuée en comparant des résultats obtenus par la présente méthode 

avec des valeurs de référence. Les problèmes considérés pour faire ces comparaisons 

sont liés à la stabilité d'un modèle de tourbillon de sillage ainsi qu'à la stabilité et à 
l'évolution non linéaire d'un tourbillon triangulaire. Les résultats obtenus ont permis 
de conclure, d'une part, que le gain réalisé entre la méthode B-spiine non confinée 

et celle confinée n'est que marginal. D'autre part, les comparaisons faites avec les 

autres méthodes purement globales ont permis de conclure que la méthode proposée 

ici représente une alternative avantageuse aux méthodes globales comparées, partic- 

ulièrement pour le calcul d'écoulements avec symétrie axiale. 

Prof. GUY DUMAS 
Directeur de thèse 

r 
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Candidat 



In this thesis, a new numerical method to solve the incompressible, unsteady Navier- 
Stokes equations in unbounded cylindrical domains is presented. The method cornes 

as a novel application of Leonard's divergence-free vector expansions approach, and 
therefore possesses the following characteristics: i) exact treatment of the continuity 
constraint; ü) complete elimination of the pressure variable; iii) implicit time inte- 
gration of the diffisive term at no extra cost; and iv) reduction of the number of 
(velocity) unknowns from three to two. Another important feature of the method, 
that indeed represents the originality of the present formulation, is the introduction 
of mapped B-spline piecewise polynomials for the discretization of the semi-infinite 
radial direction. 

More specifically, the spatial discretization is constructed from a combination 
of Fourier series, for both the longitudinal (physical periodicity of temporal evolv- 
h g  flows) and azimuthal (geometricd periodicity) directions, and of Bsplines on a 
mapped unitary radial domain. The particular choice of mappiag function allows for 
an exact representation of algebraically decaying functions, up to some finite order. 
Besides the imposition of proper decaying conditions in the far field, complete (finite 
order) regularity conditions are also imposed at the center point r = O. These mixed 
~pectral/B-sphe expansions, used to form the divergence-free vector basis functions, 
yield an efficient compromise between the high uncoupling asaociated with the orthog- 
onality of Fourier series and the resolution positioning flexibility that is characteristic 
of local methods. The local character of the B-splines furthemore allows for a radiai 
variation of the azimuthal truncation. The resulting vector basis functions are a p  

plied to in Galerkin type weighted residual formulation that transforms the complete 
3-D problem into a set of small 1-D radial ODE'S that are mardied in time. For 



that latter task, the quasi-third order, rnixed explicit/irnpli~it scherne proposed by 
Spalart et al. (J. Cornp. Phys., 96, 297, 1991) is used. The Galerkin formulation 
dso  serves for the development of an eipnvaiue solver for linear stability problems. 
Finally, a wall-bounded version of this method, equivalent to the one presented by 
Loulou et al. (NASA TM-1 10436, lgg?'), is also produced in this work. 

The validation of the different Navier-Stokes and eigenvalue solvers is achieved 
by comparing linear stability results, and nonlinear dynamics predictions with other 
benchmark data. The particular flow problems considered are related to the stability 
of a trsiling line vortex, and the stability and nonlinear dynamical evolution of a 
special dass of zero circulation vortex that leads to the formation of a triangular 
vortex. On one hand, comparisons made between the unbounded B-spline formulation 
and the wall-bounded version of the method have shown only a marginal advantage 
of the former method over the latter. On the other hand, comparisons made with the 
data obtained by purely global expansions approximation methods prove the present 
spectraJ/B-spline method to be an advantageous alternative to these global methods 
for the computation of unbounded flow problems having an intrinsic 8Xid symmetry. 

Prof. G& DUMAS 
# 

Thesis Advisor Candidate 
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Chapter 1 

Introduction 

Over the last few decades, with the trernendous increase in computing capability and 
the many developments to which it waç the subject, computational fluid dynamics 
(or CFD as it is more commonly known) has gained much acceptance as an indis- 

pensable tool for studying the dynamics of fluid 0ows, standing somewhere between 

the theoretical approach and the "lab experiments" . If we now arrive at a point 

where numerical simulations of the Navier-Stokes equations-yielding the complete 

and accurate time evolution of the 3-D fiow field on ail physically relevant scales-can 

be viewed as a way of doing "numericd experirnents", it still remains of a limited 

extent. In vortical flow stability and transition dynamics-the class of physical prob- 

lems aimed a t  by the present work-one of the key phenornena is the apparition and 

rapid growth, after a certain time, of small scale structures. The amount of resolu- 

tion, both in space and time, neces sq  to generate the detailed databases required to 
shed light on such complex dynamics can easily become a challenge even for today's 

supercornputers. To maintain the probIem within tractable dimensions and cost, spe- 

cialized tailor-made numerical methods are still necessary. Albeit the fact that these 

methods are usudly restrained to very simple and regular geometries, whenever they 

are applicable, the richness of information at hand and the resulting absolute con- 
trol over the flow parameters they provide help make of numerical simulations a very 
powerful investigating tool. 

This thesis is primarily concerned with the development of one such speciaiized 

numerical method for the solution of the incompressible Navier-Stokes equations. To 



better put in perspective the objectives and scope of our work, we will briefly go over 

some preliminary consideratioris. Then, the specific objectives aimed at by this thesis 

wili be stated. A general outline of the material presented will also be given. 

1.1 Preliminaries 

When devising an efficient numerical method for problems that involve the time 

evolution of structures of many diEerent length scales, one would principally look for 

i) wide-band, rapidly converging spatial discretization; and ii) simple, cost effective 

time integration. The first criterion is to be able to resolve smaller and smaller 

structures as they appear in the flow field with only a minimal increase of the spatial 

discretization. As for the second, it is obviously to rnaintain the time môrching of the 

solution accurate at an acceptable cost over the relevant time scales of the flow. 

Global (spectral) expansion methods are certainly well suited for the first require- 

ment. Amongst the main advantages they offer, let us note the exact treatment of the 

derivatives and the very high convergence rate-typically exponential, i.e., faster than 

any algebraic power-achieved in practice after reaching a certain level of resolution, 

as well as the important spatial uncoupling resulting from the (quasi-) orthogonality 

relations of the basis functions. We refer the reader to the monograph by Gottlieb & 
Orszag (1977) and the books by Canuto et al. (1988) and by Boyd (1999) for a more 

detailed description of the theory and techniques of such powerful methodology. 

Efficient time integration is sornewhat more involved since it implies an  efficient 

implementation of the spatial discretization for the cornputation of both the nonlinear 

and the pressure terrns; the linear diffusive term is the most simple one and does not 
require any particular techniques. Typically a mked explicit/irnplicit time integration 

scheme is used. The explicit integration of the nonlinear term is used to avoid the 
costly iterations while the implicit integration of the viscous term is used to relax 

the time step size restriction. Since the pioneenng works of Onzag (1969, 1970 and 

1971), the use of pseudo-spectral algorithms has become the standard way of avoiding 

the convolution sum associated with the nonlinear convective term. In incompressible 

Aows, no such "unique" approach is available for the pressure term and many diierent 



clever techniques have been devised (Canuto et al., 1988). They can be separated in 

two main classes: the coupled and the splitting methods, according to whether the 

system of equations (momentum and continuity) is solved at  once or in a decoupled 

rnanner. 

A different third special class of methods-known as divergence-free expansions 

methods-has been introduced by Leonard (1981). His idea is to avoid the problem of 

pressure computation by using special divergencefree vector expansions that implic- 

itly satise the continuity constraint and the boundary conditions. The construction 

of such expansions is far from straightforward, though, and requires mathematical in- 

sight and craftsmanship. The challenge is hence shifted from algonthmic to analytical 

considerations, but the advantages are numerous: 

Exact treatment of the continuis constraint; 

Complete elirnination of the pressure variable; 

Ixnplicit time integration of the diffusive term at no extra cost; and 

Reduction of the number of unknows (velocity components) from three to two. 

Divergence-free methods have successfully been used in various types of simulation 

problems among which we find: pipe flows (Leonard & Wray, 1982); straight and 

curved channel flows (Moser et al., 1983); spherical Couette flows (Dumas & Leonard, 

1994); vortex rings (S tanaway et al., 1988) ; boundary layers, mixing layers, and wakes 
(Spalart et al., 1991); and trailing vortex flows (Matsushima & Marcus, 1997). Note 
that these last three references deal with unbounded domains in, spherical, Cartesian 

and cylindrical coordinates respectively. 

The question as to whether use one of these already existing specialized methods 

or engage in the development of a new one greatly depends on the type of targeted 

flow problems. Here, the particular class of problems we are interested in mostly con- 

cerns the dynarnics of simple vortical flows. Many interesting problems can indeed be 

formulated in terms of a single vortex tube interacting with some other fundamental 

flow structure like a straïning field1, or a circular jet for example. A better under- 

standing of these simple models is relevant to more complex problems ranging from 

'This particular probiem has been the ob ject of a fair amount of attention lately, especially since 



the dynamics of aircraft trailing vortices (Spalart, 1998) to the dynamics of coherent 

structures in turbulent flows (Vincent & Meneguzzi, 1991; Cadot et al., 1995). 

Taking into account these physical considerations led us to restrain our possible 

choices to methods having at  least one (periodic) longitudinal axis that can be aligned 
with the main flow structure. For such axisymmetric topology though, the unbounded 

Cartesian formulation used by Spalart et al. (1991)-with two periodic directions- 

would not seem to  be more advantageous than a fully perïodic box, Le., with three 

periodic directions. Although the advantages of the complete uncoupling and fast 
transfonns for al1 directions in a fully periodic box may seem very appealing, proper 

resolution of very localized structures (such as a single or a pair of vortex tubes) 

could rapidly become too expensive because of the uniform resolution associated 

with Fourier series. Another penalizing element of using a Cartesian periodic box is 

that the periodicity lengths of the transverse directions must be large enough to avoid 

interactions with the neighboring structures while maintaining enough resolution for 

the ones of interest. This problem can be partly avoided in passing from Cartesian 

to cylindrical coordinates where the now unique "transverse" radial direction is no 

longer periodic, but the azimuthal direction hm now gained a geometrical periodicity. 
For this reason and because some of the targeted flows for the present code have an 

intrinsic axial symmetry, a cyiindrical coordinates frame of reference was chosen2. 
This way, not o d y  the problem of minimizing neighbor interactions is rnoved into 

one of properly taking into account the more complex non-homogeneity of the radial 
coordinate, but the reference frame also allows for a more natural description of an 

important class of vortex problerns. 

Matsushima & Marcus (1997) developed an efficient spectral method for un- 

bounded cylindrical coordinates that could certainly be used for the type of flow 

problems we have mentioned. Their method is based on Fourier series expansions for . 
Leweke & Wiiiiamson (1998) have shown that the short-wave instability of the counter-rotating 
vortex pair could be linked to the elliptic instability problem (Bayiy, 1986; Pierrehumbert, 1986; 
Waleffe, 1990). 

the link between the axial symmetry of the flow and the choice of a cylindrical coordinate 
frame of reference may seem quite natural, the cboice of formulating the numerical method in terms 
of cylindrical coordinates instead of Cartesian did not appear to us as so obvious in the first place. 
Indeed, cylindrical coordinates have intrinsic dificulties due to the singularity of the differential 
operators at T = O that Cartesian coordinates do not have. 



both the longitudinal and the azimutha1 directions, and rational Legendre function 

expansions in the radial one. It is worth noting that, a t  the time the present work was 
undertaken, their paper had not yet been published. At any rate, their approach did 

not completely answer our preoccupation of the time which was the introduction of a 

local discretization for the semi-infinite radial direction. Indeed, the k e d  "method- 

defined" resolution associated with global expansions may become expensive when 

solving very localized structures, as we already mentioned for the case of the periodic 

box above. The idea behind the development of a new mixed global/local method 

is to take advantage of the high uncoupling that cornes from orthogonal expansions 
(e.g., Fourier series) while introducing some more "user-defined" flexibility in the 

resoiution positioning of the unbounded radial direction. 

Some preliminary work (Dufresne & Dumas, 1998a; Dufresne & Dumas, 1998b) 

led us to the conclusion that B-splines were better adapted than more classical finite 

elements for the type of discretization considered for the radial direction (see also 

the discussion in Sec. 2.3.2). It then came to our attention that the appropnateness 

of B-splines was also supported by some of the work done a t  NASA Ames Research 

Center and Stanford University. Kravchenko et al. (1996) had developed a mixed 

spectral/B-spline method, in Cartesian coordinates, to simulate turbulent channel 

flows. A similar method for cylindrical coordinates was Iater on presented by Louiou 
et al. (1997) for the simulation of turbulent (circular) pipe flows. This latter work 

being very close to our own, we used it as a work base for some methodological aspects, 

the principal difFerences being in the treatment of the radial basis functions and the 

boundary conditions. Also, since we shail frequently refer to their work throughout 

this thesis, we will make use of the simpler notation "LMMC", for the four authors' 

names: Loulou, Moser, Mansour and Cantwell. 

Let us finally note that the method we present here, like the one of Matsushima 

& Marcus, can be viewed as an alternative approach to the "vortex methods" for the 

computation of free vortical flow dynamics. Indeed, the vortex methods-based on a 

Lagrangian discretization of the vorticity equation-certainly offer another efficient 

and attractive means for computing this kind of flow problems. Different formulations 

in terms of vortex filaments (Leonard, 1985) or vortex particles, in two or three 

dimensions (Winckeimans, 1989) have been devised according to the type of problem 

considered. A more recent account of the various aspects of these methods can be 



found in Cottet & Koumoutsakos (2000). Some of the most recent developments, in 
relation to flow simulations past bluff bodies, can also be found in PLoumhans (2001). 

1.2 Objectives 

Following the afùrementioned considerations, we are now in 

the principal objective of this thesis as: 
a position t O formulate 

To develop a new spectiaI/B-splzne method for the solution of the unsteady, 

incompressible Navier-Stokes equations in unbounded cylindriml domains. 

This original extension, made here, of Leonard's divergence-free vector expansions 

method is to be complemented by the following secondary objectives: 

O To develop an eigenvalue solver for the normal mode analysis of the (temporal) 

linear stability pro blem; 

O To adapt the unbounded spectral/B-spline method for the solution of wall- 

bounded flow problems; and 

O To develop an eigenvahe solver for the latter wall-bounded flow problems. 

1.3 Outline of presentat ion 

The material presented in this thesis is divided in three parts: i) the numerical method 

itself; ii) the implementation of the method; and iii) the numerical testing of the 

method. A more specific outiine, by chapter, is given in what follows. 

Chap. 2 is devoted to the presentation of the numerical approach. More specifi- 
cally, in Sec. 2.1 we present the mathematical problem to be solved, i.e., the Navier- 

Stokes equations with the relevant boundary and initial conditions. Particular atten- 

tion is paid to the definition of the regularity conditions that apply in the unbounded 



radial direction. In Sec. 2.2, we define the weak problem to be approximated by the 

divergence-free vector expansions. These expansions form the core of the spatial dis- 
cretization which is then presented in Sec. 2.3. Here again, special attention is paid 

to the radial direction and its B-spline discretization which, indeed, represents an 

original extension of the divergence-free method. A surnmary of the complete spatial 

discretization is presented in Sec. 2.4. 

Implementation of the numericd method is discussed in Chap. 3. For the time 
integration, we use the mixed scheme proposed by Spalart et al. (lggl),  briefly pre- 

sented in Sec. 3.1. Explanations on how to compute the nonünear term are given in 

Sec. 3.2. In that case, special attention is again paid to the radial direction whose 

treatment differs fiom the standard pseudo-spectral algorithm. Treatment of the reg- 
ularity and the boundary conditions is discussed in Sec. 3.3. The local discretization 

in the radial direction allows for the implernentation of a modal reduction algorithm; 

this is covered in Sec. 3.4. At this step, we now have in hand our complete unbounded 

Navier-Stokes solver which is identified by the name UNCYL. The modifications that 

are required for the implementation of the wall-bounded version of the solver are dis- 
cussed in Sec. 3.5. Implementation of these modifications results in the code BOUN- 
C n .  Because the implernentation of the eigenvalue solver is quite similar for both 
the unbounded and the wall-bounded method, it is discussed in a unified manner in 

Sec. 3.6. From this, we obtain the two new Iinear stability codes UNCYL-LS and 

BOUNCYL-LS. 

The material presented so far has been of a rather technical character. The third 

part on the numerical testing, presented in Chap. 4, involves more physical consider- 
ations. In the first section of the chapter (Sec. 4.1), we consider the Poiseuille flow 

problem in relation with both the eigenvalue solver BOUNCYL-LS and the Navier- 

Stokes solver B o u N C ~ .  Comparisons with Stokes Aow analytical solutions serve 

for a thorough validation of the B-spline discretization. Other test results are also 

presented to complete the validation of the two solvers. As for the remainder of the 

chapter, it is devoted to the numerical testing of both unbounded solvers U N C ~  and 

UNCYL-LS. .4 two part approach has been adopted. First, in Sec. 4.2, we consider 
the stability of a trailing line vortex. For the cases studied, an excellent agreement 

between our results and those of other authors is observed. Comparisons with some 
results of Matsushima & Marcus also show that the present B-spline formulation is 



indeed advantageous. For the second part, in Sec. 4.3, we consider simulations of 
the triangular vortex problem. Although more qualitative in this case, the agreement 
between our results and those used as a reference is again more than satisfactory. 
Since this crucial validation chapter turns out to be somewhat lengthy, a summary is 
presented at the end in Sec. 4.4. 

FinaiIy, conclusions are drawn in Chap. 5. Note that throughout this thesis, the 
more technical material has been, whenever possible, relegated to the appendices in 
order to deviate the presentation. 



Chapter 2 

Numerical Met hod 

The numerical methodology presented here aims at  solving efficiently the unsteady, 

incompressible Navier-Stokes equations in unbounded cylindrical domains. As a nat- 
ural first step, we begin this chapter with a more precise mathematical statement of 

the problem, including some particular considerations on the regularity and boundary 

conditions in the radial direction. The variational form, leading to a weak approxi- 

mation of the problem, is then considered. The ensuing Galerkin method is obtained 

after the construction of a complete set of divergence-free vector expansions. These 

expansions are formulated in terms of both Fourier series and mapped B-spline inter- 

polation functions. Because of its rather non-standard character, the use of B-splines 

for the radial direction is the object of some particular attention. For ease of con- 
sultation, a brief summary of the spatial discretization is provided a t  the end of the 

chapter . 

2.1 Navier-St okes equat ions 

We start by assuming that the fluid flows we are interested in are well described by 

the incompressible Navier-Stokes equations (see, for exarnple, Batchelor, 1967). The 
conservation of momentum equation, expressed in terms of the velocity vector u and 

static pressure p, is written in non-dimensional form (in an inertial frame of reference) 



The vector field u and the scalar field p are both functions of space and tirne, i.e., 

u = u(x,t) with x E R , 

and sirnilarly for p. The vector x defines the spatial coordinate and t the time, R 
defines the spatial domain containing the fluid and since we consider three dimensiond 

(unbounded) fields, 52 C p. As for the mass conservation equation, because of the 

incompressibility condition (assuming a homogeneous fluid), it simply reduces to the 

divergence-free constraint 

v-u  = o .  

Beside the auxiliary (boundary and initial) conditions that d l  be discussed into 

some more details below, there is only one additional parameter that completely 

characterizes the problem, narnely the Reynolds number Re. It represents the ratio 

of the non-viscous (typically the inertia) to the viscous forces and is usually defined 

where umf and zmf are respectively the (dimensional) reference velocity and length 

scales of the flow, and Y is the kinematic viscosity of the fluid. Before going any fur- 
ther, let us make a note regarding the notation used in this work. Al1 constants and 

variables will be expressed in non-dimensionai form unless othenvise stated; dimen- 

sional terms will be identified with the "overbar" notation. Because for the targeted 

flow problems al1 relevant scales are determined by the flow itself, at first we only 

consider the dimensiond scaling factors in their generaLform, i.e., a reference length 

Er& aad velocity Dr&, from which can be deduced the reference time Tref = &/ÜEf. 
Note that the Reynolds number can also be interpreted as a ratio of the viscous to 

the convective time scales. Explicit mention of the dimensional scaling factors, with 

their physical relevance will be made when considering some particular flow problem. 

The set of partial differential equations (PDEs) formed by the conservation of 

mornentum equation (2.1) and the solenoidai condition (2.2) has been the subject of 



much attention since its formulation in about the mid 19th century, and may even be 

considered one of the most studied sets of PDEs (Ockendon et al., 1999). However, 

only a very small number of exact steady solutions, and an even smaller number of 

unsteady ones, are yet known. Some of these solutions côn be found in Schlicht- 
ing (1979) and Wang (lggl),  arnong others. For the great majority of problems then, 

one must rely on approxirnate (strong or weak) solutions. The questions of existence 

and uniqueness of such solutions, as well as the ones regarding the convergence of 

the different type of approximations have consequently been extensively studied (La- 
dyzhenskaya, 1975; Temam, 1979, for a taste of the sub ject) . Though important steps 

were made, leading to a greater insight, sorne fundamental issues stili remain open 

(Temm, 1995). This said, we will not go a.ny deeper into these rather theoretical, 

though much interesting, considerations and assume to  meet here al1 the minimum 
analytical requirements as to insure the existence of an "acceptable" solution a t  some 

finite time. 

Let us now go back to  ( 2 4 ,  where by using the identity 
1 

with w being the vorticity vector defined as 

w = v x u ,  

we may rewrite the equation as 

where now P (E p+ 3 lu[*) is the total pressure and F -= u x w is a nonlinear forcing 

term. This equivalent "forced Stokes equation" formulation1 of (2.1) helps relate many 
important analytical results obtained from the study of the hear Stokes problem 
to the more complex, nonlinear Navier-S tokes equations (Temam; 1979; Pasquarelli 

et  al., 1987). Some of these particular analytical considerations will be carried over 

to the variational formulation of Sec. 2.2. 

lNote that there are other possible forced Stokes formulations than the one used here. The most 
simple example being of course for F -u Vu, but F -V (uu) is also an other acceptable form 
(both of these leading to p instead of P in (2.3)). Although al1 analytically equivalent, the discrete 
versions of these Werent tenns may lead to different types of discretization errors (Kravchenko & 
Moi., 1997). 



The set of equations (2.2)-(2.3) has to be complemented with auxiliary (initial 

and boundary) conditions. The initial condition is given in a general f o m  by 

where Uo(x) is a known vector field, function of the space coordinate x only. As for 

the boundary conditions, they are expressed, in the cylindrical coordinates 

x = ré ,  + eê* + zê, = { r ,  6, z ) ,  

as: i) penodicity in the longitudinal z direction such that 

with L, the given periodicity length, and ii) finite and uniform velocity at infinity 

such that 

limu(x,t) = U, with lu,[ c 0 0 .  
r-xm (2.6) 

If we furthemore decompose the velocity field u into a homogeneous part uh and a 

non-homogeneous one u,h such that 

it is then always possible to choose u,h = -U, and solve (2.3) under fully homo- 

geneous boundary conditions. For simplicity, we will drop the subscript '%" and 

consider for now that the vector u is always defined in terms of homogeneous bound- 
ary conditions, i.e., with 

lim u(x,t) = 0 ,  
r-mo 

Note that al1 the non-homogeneous contributions can easiiy be accounted for by 

a slight modification of the nonlinear forcing terni, where for example, 

1 
F = u x w + -v2u,h + other terms, 

Re 

Here the vector u is understood in its complete form (2.7); the same remark obviously 
applies tu the vector W .  A further generalization of the forcing vector F can also 



allow for the inclusion of such contributions that would &se by considering the 

equations in a rotating frame of reference, Say. In that particdar case, the Coriolis 
acceleration -2a x u ( SZ being here the angular velocity vector) would simply be 

added in the "other terms"; the centrifugd contribution +R2rt2 (r' is the distance 

from the axis of rotation) would also have to be added to the totai pressure P. As a 

further simplification of notation, we introduce the generd extra forcing vector Fe; 
which inciudes al1 of the above contributions, and mite 

F = u x w  + Fe. 

Finally, the complete mathematical problem to solve is summarized by: 

au - -  1 
at - -VP + -v2u + F 

Re 

v - u  = O 

u(x, t = 0) = Uo(x) 

2.1.1 Radial regularity 

In cylindricai coordinates, the differential operators involved in (2.9) are singular (in 

r )  at both the origin (r = 0) and at  infinity. If the solution u is to remain bounded at 

both these singular points-the boundedness condition at infinity is even more specific 

in this case since it is in fact the decaying condition (2.8)-then some regularity or 

"behavioral)' conditions are needed. The particular restrictions that these conditions 

impose on the different field quantities are discussed in what follows. 

We first consider the center point r = O.  Let us use the vector @ to denote a 



general vector field. Using separation of variables and a Fourier series expansion for 

the naturally periodic azimuthal (8) direction, we write 

M 

( O )  = C S(r; ke) eikue , 
ke=-M 

where i fl and where M may be infinite. The variable dependence on z and t 
is omitted or implicitly assumed without loss of generality. 

The fint necessary "unicity" condition requires that 

a t  the origin. In terms of the Fourier-transformed vector components 

gives2 

which simplifies to 

h A 

1/1, = i f g  = O for 

A = O for 

of \k, this 

Note that any scalar cornponent in general, such as the pressure, follows the same 
type of conditions as &. 

The radial behavior of each component can even be further specified if the vector 

field is required to be analytic in the neighborhood of the origin. There are different 
ways to derive the next result, one of them is presented in App. A.2. By considering 

first the Cartesian vector components3, we may show that the analyticity condition 

2 f i e~a l~  that in cyiindrical coordinates: a &/a0 = +êo and a êe/aû = -ê,. 
31n this case, each vector component behaves as a scalar because the Cartesian basis vectors are 

independent of the position, Le., they al1 have zero derivatives. 



requires that (see (A.21)) 

{ L, a, & } = ~ ( r l * r l + ~ p  1 ,  

as r + 0, and where p is a non-negative integer, Le., p = 0,1,2, . . . . In terms of the 

polar vector components (see (A.25)), the complete set of parity or pole conditions 

become 

The unicity conditions (2.10) can obviously be directly deduced from (2.11) by simply 

considering the limit point r = 0. 

Two additional points are worth noting at  this moment. The fmt is related to 

the general nature of (2.11), and thus (2.10). Any analytical operations on the vector 

d l  obviously leave the radial behavior unchanged, Le., the vectors resulting from 

V x 8 or V2 3 will follow the exact sarne behavior as in (2.11). The same applies 

to scalar components which, as we already mentioned, follow the z vector cornponent 

behavior. The second point regards the nature of the boundary conditions that 

need to be imposed for solving (2.9). Borrowing fiom the finite element literature 
(Strang & Fix, 1988), the conditions in (2.10) can be described as "essential" while 

those in (2.11) would be referred to as 'katural" boundary conditions. If the two 

conditions are analyticdly equivalent they, on the other hand, Iead to different types 

of approximation functional spaces. We leave this matter pending for now as we shall 
return to it in the construction of the radial basis functions, later on in this chapter. 

At the other extremiv of the radial coordinate, i.e., as r tends to infinity, the 

decaying condition (2.8) is somewhat less stringent on the vector fields. For example, 
if the initial condition (2.4) is related to a vorticity field having a compact support, 

the flow in the far field could then be considered irrotational since the vorticity there 
would be a t  most exponentially small, in the presence of diffusion. The same problem 



could also be formulated in t e m s  of a more general class of flows that wodd d o w  

algebraically decaying (Le., with some negative power of r )  vorticity instead. This 

would obviously lead to a different (decaying) radial form that would encompass the 

potentid flow condition as a particular case. With such level of flexibility, the final 

choice of a specific decaying behavior-assuming the minimum requirements imposed 
by the type of flow considered-will therefore usuaily end up being determined by 

practical reasons related to the construction of the approximation functions. 

Following this last remark, let us consider the harmonic4 decaying behavior of the 

vector field 8. Details on the derivation on this particular condition wiU be found in 

App. A.3. As for the practical motivations, they will become clear in the light of the 

choice of the radial basis functions, particularly when considenng the implementation 

of the boundary conditions. Now, if a vector field is to decay harmonicaily as r -t m , 
we can show (see (A.26)-(A.31)) that its Cartesian components should be in the form 

{ Jz, a, iL } = 0(7--1~1) , 

with the additional constraint (see (A.32)) that 

lim rlkOI GZ = isgn(ke) lim rIke1 , 
r-00 r+m 

where sgn(ko) = ke/ 1 ke 1 . The coupling between & and Gy c 

(2.13) 

ired as result 

of the Cauchy-Riemann equations because both real functions q!~= and form a pair 

of harmonic conjugates in the complex 7-8 plane. The complete conditions (2.12) 
and (2.13) expressed in terms of the cylindrical vector components give 

4The term "harmonic" refers here to the complex analysis meaning of the word. Each of the 
Fourier-transformed vector components can be represented by a complex valued function. If such 
vector components behave as (complex) analytic, or equivalently harmonic, functions they must 
then follow the above described behavior. S e  &O App. A.3 for more details. 



Before closing this section, some last observations are worth noting. First, both 

(2.11) and (2.14) are the result of analyticity considerations, but were derived from 

different perspectives (see App. A.2 and A.3). Around the origin, the real vector 

components were assurned to be defined at the point r = O itself, and were then 

extended analytically in some neighborhood of that point. After that, the results 

were transposed into the (complex) Fourier spectral space. Analyticity at infinity 

was, on the other hand, considered directly in the complex (Fourier-transformed) 

plane. The vector components were assumed to be defined at some finite radius in 

the complex plane, and then were extended andyticaliy to infinity. 

Second, analyticity a t  the o f  gin applies to al1 vector fields whereas the condition 

a t  i n h i t y  must be imposed on a specific vector field. In the present case, the harmonic 

decaying behavior is imposed on what wil  be defined as the vector potential \k- 
anticipating on the material related to  the construction of the approximation vector 

functions in Sec. 2.3-from which the velocify vector field u wiIl be defined as u = 

V x @ .  As we already mentioned this choice of decaying condition is motivated by 

practical implementation considerations that will be better explained later. It  can 

also be shown that this condition is general enough to include far field potential flow 

conditions as a particular case. 

Variat ional formulation 

Before we get into the details of the numerical method developed to solve (2.9), 
let us briefly consider some of the analytical background material on which rests the 

method. More precisely, in this section we present the variational formulation used to 

construct the general approximation of (2.9). Since the purpose of our presentation, 

here, is only to help sit the numerical method on firrn mathematical ground, we 

shall limit ourselves to a general o v e ~ e w  only. A rigorous account of the complete 

analytical framework would involve a fair amount of functionai analysis material that 

goes far beyond the scope of the present work. For a more complete treatment of the 

subject we therefore refer the reader to some of the specialized works dedicated to the 
approximation theory of the Navier-Stokes equations, from which we may cite Temam 

(1979) and Temam (1995) amongst others. Other theoretical and practicai aspects of 



approximation theory, in the more specific context of spectral methods, c m  also be 

found in Boyd (1999), Canuto et al. (1988) and also Gottlieb & Orszag (1977). 

The general variational approximation of the Navier-Stokes equations was intr* 

duced in a series of papers by Leray (l933), (1934a) and (1934b) (cited from Temam, 

1979). In this approach the approximation of the solution is constructed by taking 

the inner product of (2.9) with some "weight" basis vector function 4D such that 

where 

The inner product (2.16) is defined in a general sense where both u and v may be 

complex valued, the superscript "1." stands for the complex conjugate. Solutions of 

(2.15) are sought for u E X and O E Y where both functional spaces are given by 

Hn defines a general Hilbert (inner product) space for which al1 the vector basis 

functions v and their derivatives up to order n are square integrable. We furthemore 

define a subspace HA C Hl such that 

HA = ( v  : V E H ' , V ( X ) = V ( X + L , ~ , )  and l i m v = O ) .  
r * O 0  

This subspace defines the set of basis functions v E Hl that satidy the general 

homogeneous boundary conditions of (2.9). 

It can now be shown, making use of the following vector identity 

that if 9 E X then 

i.e., that the pressure term in (2.15) drops out. In (2. El), o62 symbolizes the surface 
enclosing the volume C2; this surface must obviously be understood here in its limiting 



sense since R is theoretically unbounded. The actual requirernents to obtain such a 

resdt are that 

V - @ = O  and lim a-n  = O ,  
r +O0 

More specifically, the vanishing of the pressure surface integrals (the first integral on 

the right hand side of (2.19)) requires that the integrand P(4D n) decays at  least as 

O(r-*) or faster. This iast condition is in turn granted as long as the total pressure 

P satisfies a decaying condition in the form of 

in the far field. For P to tend to some finite value at infinity, we would then obviously 
need to have that @ - n = O ( T - ~ ) .  It is interesting to note that in bounded domains, 

there is no requirement for the pressure value on the bounding surface, as long as the 

value remains with a finite amplitude of course. Only the no-through flow condition 

@ n = O is sufEcient to ensure the vanishing of the pressure term. 

Reduction of the requirements on the differentiabili~ of u can be achieved by 

integration by parts of the viscous term. This result c m  be denved in different ways, 

here, it is obtained by first making use of the following identity 

v2u E V ( V - u )  - V X V X U ,  (2.21) 

for which the first term on the right hand side is identically zero. Then, with the 

second identity 

we obtain 

under the provision that the normal component of a x (V x u) decays fast enough, 

a condition granted by the fact that both O and u belong to HA. The weak form of 



(2.9) is finally obtained by replacing (2.23) in (2.15) taking into account the complex 

conjugate of the inner product definition (2.16), combined with (2.20), and is written 

where now both *, u E Y. 

In summary, the problem of finding solutions for (2.9) has now been transformed 
into the variational, initial value problem 

u E Y and u(t = O )  =Uo 

A 1 s t  remark can be made regarding the equivdent projection formulation of 

(2.25). Based on the Helmholtz-Hodge vector decomposition (Chorin & Marsden, 

1993), the strong form of the above mentioned variational problem can be formulated 

in terms of a divergence-free projection operator IP, such that the new problem is 

written as 

Using a similar procedure as for the above variational formulation5 we obtain, for 
- - v E Y,  that 

P v = v  and I P ( V P ) = O .  

Theoretical considerations related to this type of projection operators can be found 
in Ebin & Marsden (1970). In the path of Leonard & Wray (1982), the numencal 

=Here again, the standard results are established for bounded dornains with a no-through flow 
condition at the boundary. For unbowded dornains, special considerations on the decay rate of the 
various terms must be taken into account. 



method presented here can then be viewed as a means for constructing an  approx- 

imation of such a projection operator. Examples of application to the numerical 

approximation of Navier-Stokes equations are given in Chorin (1969) and also in 

Moser & Moin (1984). 

Basis vect or funct ions 

The overall idea behind the present numerical methodology, first introduced by Leon- 

ard (1981), is to construct a finite dimensional approximation of the variational prob- 

lem (2.25)- In the mathematical formulation of the previous section, we need to 

construct a finite dimensional space VJ (of dimension J )  such that, VJ is dense in 

Y in the limit of J + m. Our first objective in this section is therefore to construct 

a basis Vj such that V J  = span{ Vj ). Once the basis is determined, the velocity 

vector u is then expanded in terms of this basis, viz., 

The next step is to construct a weighted residual method that mimics the variational 

formulation (2.25). The weight functions are chosen as the complex conjugate of 
the Vj; keeping in mind the definition of the inner product (2.16). This spatial 

discretization process-from which is obtained the set of time evolution equations for 

the aj (t) coefficients-gives rise to a Galerkin method. The Galerkin method is well 

known for i ts many advant ageous propert ies: energy conservation (in the absence 

of dissipation), minimization of the approximation error, positive definiteness of the 

discrete operators, to cite a few; more can be found in Canuto et al. (1988) for 

example. 

From this general outline, let us first start with the construction of the Vj. It 
can be shown, although it may become quite involved, that solutions of either (2.9) 

or (2.25) may be constructed by separation of variables (see, for example, Morse & 



Feshbach, 1953). It is thus possible to start with a genenc expression in the form of 

For V J  to  constitute a dense subspace of Y,  we must then have 

0 - V j  = 0 , Vj(x) = Vj(x + L A )  and lirn Vj = O V j  , (2.28) 
r+oO 

and also have that the set of generic functions { R, , ei , Zi ) ( i  = 1,2,3) be cornpiete 

for each of the vector components. 

Since both the longitudinal (2) and the azimuthal ( O )  directions are periodic, 

Fourier series (trigonometric polynomials) form a natural basis for these directions 

and (2.26) may be directly simplified to 

l m n  

where 

27r 
ke = m -  with - Ng < m 5 Ne , 

Le 

27r 
k, = n- with -N, 5 n 5 N,, 

L* 

and 1 5 1 5 N,. In terms of the basis functions Vj , (2.29) implies the following 

definit ion 

in whioh the global index j has been split into the three indices Z , m , and n associated 

respectively with the r ,  0, and z coordinates. According to the different ranges 

covered by the new indices, the global index j rnay now be written 

In (2.29), the Fourier periodicity lengths Le and L, are both adjustable parameters 

that c m  be modified according to the naturai periodicities of the problem under 



consideration. In the azimutha1 direction though, because the point r = O belongs 

to the domain, Le is constrained to entire fractions of the basic periodicity 2s and 

ke to integer values, Le., 

and 

where here p is a positive integer. An example in which such particular periodicity 

(symmetry) of the flow problem can advantageously be taken into account is given 

in Sec. 4.3, with p = 3. Let us aiso make a note on the identification of the Fourier 

"modal pairs". According to the values of Le and L, , the Fourier summation indices 

m and n and the corresponding wavenumber ke and k, wiU obviously only differ by 

a constant value. Thus, for a particular problern in which both periodicity lengths are 

given and h e d  we may identim a particular modal pair by either its characteristic 

wavenumbers ke, k, or by its modal indices (m, n), in parenthesis. 

The use of Fourier series in (2.29) also calls for an other comment. Since the 

vector field u is limited to real values, the general complex conjugate symmetry of 

the Fourier basis (for the modal pair ke , k, ) , viz., 

can therefore be applied to the coefficients al,, such that 

= a&, and al-- = - (2.31) 

The number of coefficients that need to be effectively accounted for can thus be 

reduced by half. For practical reasons that will be considered in Sec. 3.4, we shall 

only consider explicitly, for now on, the set of coefficients for which m 2 O,  Le., the 

ai,, and ai,-, (where in this case rn 2 O and n 2 O).  Note that the second half of 
the coefficients is always accounted for implici tly according to (2.31). . 

2.3.1 Divergence-free vector functions 

Following (2.29), the next step is the construction of the divergence-free bais  vectors 

Wl(r;  ke, k,). This is indeed the step at the heart of Leonard's divergence-fiee 
expansions method. Now, it can again be shown that if the general vector WI is 



divergence-fiee, then only two independent basis vectors are actually required to 

completely define it (see again Morse & Feshbach, 1953). These vectors are associated 

with a "+" and "-" class, as  in Leonard & Wray (1982), and are written such that 

There are many possibilities for the construction of the w:, the choice of one over 

another being usually determined from practical implementation reasons. In this 
case, because of the similarities that bear the present method with the one developed 

by LMMC, we directly make use of the sarne set of vector expansions given in their 

report. From the vectorial identity 

result, according the modal pair kg, kz, the following vector basis function families: 

The V x  stands for the Fourier-transformed curl operator and the G l ( r )  are real 
valued functions that form a basis for the radial direction (the variable dependence 

has been omitted to simplify the notation). This construction will be seen to be par- 
ticuiarly advantageous when considering the imposition of the regularity/boundary 
conditions lateï on in Sec. 3.3. The details of the G1 functions are also postponed, 

but only until later on in this section. Because (2.33) and (2.34) are incomplete 

when k, = O (no radial nor azimutha1 components), the following expansions must 
be added: 



Both of the above families of expansion are also incomplete when ke = O. This maybe 

less obvious observation is related to the fact that for an avisyrnmetric vector field 

the divergence-free constraint only links the radial and the longitudinal components 

together6. The azimuthal component must therefore remain independent. According 

to this requirement, the "+" class family of expansion is modified to give: 

Finally, when both wavenumbers are simultaneously zero, i.e., for a uniforrn, axisym- 
metric field, ail vector cornponents are decoupled (the radial component becomes 
identicaiiy zero) and the following set of vectors is used: 

'The Fourier-transformed divergence-free constraint is given by (see (A.4) in App. A) 

ke - 3 + q + i - ~ e + i k ~ ~ ~  T r = O  

The iuasymmetric condition is simply obtained by  puttiag ka = 0 .  



Now that the set of vector expansions has been defined, let us recapitulate. First, 

it may clearly be seen that the requirements in (2.28) for the Vj to f o m  an acceptable 

basis are satisfied, under the provision that the G1 satisfy the appropriate decaying 

behavior which will be confirmed later. Second, proceeding from (2.25), the Galerisin 

method is obtained through the following steps: i) both and u are replaced by 

their respective discrete expansion, (2.30) and (2.29); ii) in each of these expansions, 
we introduce the "+" and "-" vector decomposition of (2.32); and iii) the different 
integrals of the inner product (2.16) are then evaluated. A simple example should 

probably better illustrate these general steps. Let us consider the inertia term of 

(2.25). Making use of the different definitions, we obtain 

which must be evaluated for the whole set of weight function indices Z', rn' and nt. 

These are the analogs of the expansion coefficients of u, i.e., they span the same 

values as 1 ,  rn and n. Now, because of the orthogonality of Fourier series, both 

integrals in B and z can be performed, resulting in a complete decoupling of these 
two directions. Making use of these orthogonality properties, we end u p  with the 

much simpler expression 



The same procedure applies to  the viscous and the nonlinear terms of (2.25). Note 

that in the latter case the procedure is somewhat more involved and will be the object 

of Sec. 3.2; at nay rate the details are not so important here. The final result of al1 this 

is a set of s m d  systems of differentid-algebraic equations, one for each modal pair ke , 
k,, or their equivalent modal indices7 (m, n). These systems of ordinary differential 

equations (ODEys)-that are the evolution equations of the a , ,  coefficients-are 

syrnbolicdy writ t en 

The h* represents the time derivative of a"; the various indices, as well as the 

summation in I are irnplicitly assumed. The time marching of (2.43), including the 

cornputation of the nonlinear vectors { F* )p , will be discussed in Chap. 3. As for 

the difFerent terms of the inertia A i ,  and viscous 6: matrices, they are respectively 

given by 

with 6 and y being equal to " f " or " -" according to the respective class coupling. 

The specific form that will take (2.44) and (2.43) varies in correspondence with the 
modal pair considered and the relevant set of vector functions defined in (2.33)-(2.40). 

The detailed forms are given in App. C. 

The present choice of vector expansions leads to a coupling of the "+" and "-" 
# 

classes in (2.43). Although it rnay sometimes be more advantageous to avoid such a 
coupling, in order to minimize the matrices' bandwidth (Leonard & Wray, 1982), it 
will be shown later on that the choice of radial function Gt discussed next, combined 

with a proper reordering of the unknowns, will have no major impact on the global 

bandwidth of the system of equations. 

?The reader may recall that only half of the total modal indices are dectively accounted for in 
this procedure. See (2.31) and the related discussion. 



2.3.2 Radial direction: Background 

The numerical solution of (2.25) requires essentially two levels of approximation. The 

first and main one consists of approximating the infinite dimension functional space 
Y by a finite one, i.e., passing from the continuum problem to the discrete Galerkin 

method. This part is being taken care of by constructing specific vector basis functions 

in terms of e*@* , eikzz, and GL(r) leading to (2.43). The second level is, in certain 

manner, an indirect one. The numerical evaluation of the Gi(r)  can only be done 

for finite values of r ,  so the unbounded domain has to be somehow approximated by 
one of some nnite size. In other words, an approximation of the boundary conditions 

must be made. The problem is not new, and many diEerent techniques have already 

been developed. Excellent reviews on this subject, applied in the context of spectral 

methods, are presented in Boyd (1999) and in Canuto et al. (1988). We also mention 
the article of Grosch & Orszag (1977) which is entirely devoted to the latter problem of 

unbounded domain approximations. Before considering the present choice of B-spline 

discretization for the Gi (presented next in Sec. 2.3.3), let us fnst begin with a brief 

description of the two principal methods8 for approxirnating unbounded domains: 

"domain truncation" and "mappings". This wilI be followed by some additional 

considerations regarding the use of piecewise polynomials in the latter method. 

One of the most direct and simple way of dealing with unbounded domains is 

to impose the decaying condition (2.8) at some finite distance. This mimics what is 

the cornmon situation found in any laboratory experiments where some no-slip, or 

any other type of wall bounded condition is always present. This approach is often 

called domain tmncation. One of the main advantages of such a choice is the direct 
application of many already existing numerical methods (spectral or not). A List 

of spectral methods designed for bounded cylindncal coordinates is given in Boyd 

(1999). As long as the solutions sought have a "fast7' (exponential, or faster than 

algebraic) decaying behavior, the approximation error on the boundary condition 

remains (exponentially) small. In the presence of "slow" or algebraically decaying 
fields-typical of rnany problems in fluid dynamics-special care must be taken before 

*We do not discuss the Laguerre functions (Abrarnowitz & Stegun, 1964), that do form an 
orthogonal basis for the semi-infinite interval [O,  oo [ , because they are limited to exponentially 
decaying behaviors and are seldom used for Navier-Stokes approximations. See Boyd (1999) and 
also Gottlieb & Orszag (1977) for additional comments on this set of functions. 



applying the equivalent no-slip condition at some finite radius. Of course this does not 

lead to any particular problems as long as the boundary effects (e.g., the presence of a 

boundary layer) do not propagate too far inside the domain as to affect the dynamics 

of the main fiow structures. This may be interpreted as a tirne limit before which the 

unbounded approximation rernains valid. To minimize the effects associated with the 

presence of the artificial boundaxy, other type of approximate conditions can be used. 

A slip or shear-free condition, instead of the possibly too simple no-slip, may certainly 

help prevent/retard the propagation of the spurious boundary effects. This of course 

does not include the pressure "confinement effects" that are throughout supposed to 

be negligible. The elliptic character of the pressure in incompressible flows obviously 

results in an instantaneous (infinite speed of propagation) effect on the whole flow 

field. 

A different way of considering the approximation of the boundary conditions is by 

working with a mapped domain. The main idea is to map the semi-infinite interval 

r E [O, oo [ ont0 the finite interval q E [O,  11, Say, and then use a standard polyno- 

mial approximation in terms of the 7 coordinate. It has been argued by Grosch & 
Orszag (1977) that, for the type of problems found in fluid dynamics (i.e., smoothly 

decaying fields), algebraic mappings are better suited than exponential onesg. The 

authors compared both types of mapping with the truncated domain approximation 
for rnany different problems, including those considered typical of fluid dynamics. One 

of the advantages of the algebraic mapping is that algebraically decaying functions 
caa be exactly represented by polynomial expressions in the mapped domain. Note 

that, when using such algebraic mappings, it  only becomes a matter of convention to 
talk about a polynomial approximation in terms of the mapped q coordinate instead 

of a rational function approximation in r . One way or the other, this may certainly 

be seen to represent a better approximation of the infinite than just a simple domain 

tmncation. 

On the other hand, at the sarne time as they provide a better approximation of the 

asymptotic behavior of the field equations, mappings also have the foreseeable side- 
effect of steepening the already existing gradients. In that context, some flexibility 

QThere is the notable exception of Spalart et al. (1991) who used an exponential mapping for the 
boundary layer problem. In that case, extra functions were added to take into account the specific 
slower decaying behaviors. 



in the resolution posit ioning would seem a desirable feature since standard global 

polynomial expansions only provide very regular resolution spreadings. This last 
characteristic can in turn result in an important efficiency loss in the approximation 

of functions having very steep gradients, i.e., the requirement of a practically too great 

number of expansion functions to reach spectral convergence, or even only a certain 

level of error. To gain in resolution flexibiliw, more sophisticated mapping functions 

can be used, e.g., as in Stanaway et al. (1988), but the price to pay in that case was 

the systematic loss of spectral convergence, and full matrices in (2.44) and (2.45). 

Another way of gaining in resolution Rexibility is by considering domain partition- 

ing. Instead of using polynomial approximations over the whole mapped domain, the 

latter can be partioned into sub-domains in which, then, polynomial approximations 

are used. In other words, this means using a piecewise polynomial approximation 
instead of a polynomial one. The use of piecewise polynomials, Le., of a local a p  

proximation, brings us back to the definition of the functional space Y in (2.18). 

The requirement that the approximation space v-' fonn a dense subspace of Y com- 

bined with the set of vector expansions defined in (2.33)-(2.40) leads to the necessary 

condition that Gl has a continuous first order derivative, Le., that 

This condition is defined in terms of the standard radial coordinate r and must be 

presenred under mapping transformations. 

Because of the "continuity constrainty' (2.46), the choice of basis, or interpolation 

functions, for the Gl becomes somewhat more limited in practice. Indeed, the explicit 

imposition of this Cl -condition would result in cumbersome implementation techni- 

cdities that could be avoided by using a set of basis functions that naturally sa t i se  
, 

(2.46). This of course precludes, among other things, the use of spectral elements 

(Patera, 1984) which only satisfy a Co-condition. On the other hand, following the 

standard formulation used in the finite element rnethod (Strang & Fix, 1988), C1- 
continuity can be implicitly taken into account by considering the h c t i o n  derivative 

value as a degree of freedom. Hermite interpolation Eunctions are a good example of 

such built-in Cl -continuity. Higher order interpolation functions can also be built by 

a generdization of this approach, Le., by increasing the number of nodal unknowns 



(function or derivative values). There are many clever ways of doing this and we 
directly refer to the abundant literature for more details (see for example Zienkiewicz 

& Taylor, 1989 and 1991). 

It is nevertheless important to note that, in the context of the present numerical 

method, imposing the continuity by nodal derivative values is limited in practice to 

Cl, at most C2, Le., the first or second order derivative. A spectral/finite element 

method, similar to the Petrov-Galerkin formulation of Leonard & Wray (1982), but 

using a C Birkhoff interpolation (Hamming, 1973) for the radial direction-instead 

of the shifted Jacobi polynomials-was developed by Dufresne & Dumas (l998a). 
Although workable, the method showed some stifhess problems that impaired its use 

as an efficient Navier-Stokes solver (see also Dufresne & Dumas, 1998b, for additional 

comments). Finally, there is another important type of local interpolation functions 

that c m  sati* an almost arbitrary level of continuity without the stiffness drawback 
just mentioned: the B-spline interpolation functions, that are discussed next. 

2.3.3 Radial direction: B-spline interpolation 

In the Iight of the previous observations, we are now in a position to completely define 

the radial discretization of (2.43). In order to do so, we first introduce the mapping 

function that determines the bounded domain, q E [O,  11, on which the B-spline 

discretization will be considered. Then, we get into the presentation of the B-spline 

interpolation functions themselves. 

As precedently discussed, for the type of boundary conditions considered earlier 

in Sec. 2.1.1, i.e., for smooth (algebraically) decaying functions, algebraic mappings 

are better suited. In that regard, one the most simple relation that allows to go from 

the unbounded radial domaio, r E [O,  w [, into the new bounded one, q E [O,  11, is 

certain1 y 

with L as the adjustable scaling parameter. There are no requirements for a more 



FIGURE 2.1. The mapping function = r / ( r  + L) for the different values of 
L directly shown on the figure. The "on symbols identify a sequence of 20 sub- 
domains uniformly distributed dong the q-axis ( Aq = 0-05 ) . 

complex function to improve resolution positioning, as in Stanaway et al. (1988) 
for example, since it can al1 be directly taken into account by the local B-spline 

discretization. A plot of (2.47) is shown in FIG. 2.1, for some values of L. For a 

uniform domain partitioning of Aq = 0.05, the resulting Ar discretization is also 

shown by the set of points on each curve. We may observe that for a given value of 

L, Ar increases with r ,  and also that the position of the penultimate point increases 

with L . At the opposite, the smaller the value of L , the closer to the origin the points 

are located. As a quick scaling rule of thumb between the two systems of coordinates, 

let us mention the following simple equivalences: 

Other complementary information c m  be found directly in the paper of Grosch & 
Orszag (1977). 

As a consequence of the mapping function (2.47), the algebraic decaying behavior, 



expressed by (2.14), is transformed as follows. If a function g ( r )  behaves as 

then it can be shown, after only a few manipulations, that the equivalent condition 

transforrns to 

in tenns of the mapped coordinate 7. Here, without loss of generality ka is assumed 

to be non-negative (Le., ke 2 0) and the new function f (q) is simply defined by 

where r (v )  is the inverse of (2.47), viz., 

One may consequently note that the condition (2.49) is exactly representable by a 
polynomial of degree ke . More specifically, (2 -49) is expressed as a ke -fold zero 

condition at 17 = 1, i.e., the function f (7) and its ke - 1 first derivatives are zero 
a t  that point. As for the regularity conditions in (2.11), they remain practically 
unchanged because 7 - r / L  as r tends to zero. Further considerations and details 

related to the implementation of these specific conditions are presented in Sec. 3.3. 

Now that we have deterrnined the bounded coordinate domain E [ O, 1 1, through 

the mapping function (2.47), we may complete the radial discretization process by 

giving a specific definition for the basis functions Gi in (2.33)-(2.40). The piecewise 

polynomial approximation in the q coordinate allows us to directly define 

where Bl is a basis spline hinction, or B-spline for short. This simple and direct 

definition is made possible by the Curry & Schoenberg theorem that estabiishes B- 
splines as a basis for spline functions (de Boor, 1978). This statement is expiained in 

the presentation of the B-spline basis functions, with some relevant definitions, that 
is introduced in the remainder of this section. 



Before we begin the presentation, let us ody  mention that a more complete ana- 
lytical and "practicd" description of B-spiines can be found in the reference book of 

de Boor (1978). The material presented here-some of the more technical matenal 

being put in App. B-cornes, for the major part, fiom that reference book. It is 

repeated here for both convenience and completeness purposes only. 

-4s a kst  step, let us consider the partition of the mapped interval [O,  11 into 

Nd sub-domains. The set of & + l partition points that define these sub-domains is 

called the set of breakpoints and is defined such that 

written { )z:' for short. To simplify the presentation, we define here the spline 

function f (q) , of order k (or equivalently of degree k - 1) ,  as a piecewise polynornial 

function having k - 2 continuous derivativedo at each inner breakpoint {qi )b2, 
which @ves f (7) E B-splines actually are normalized spline functionsu having 
the smallest support in terms of subdomains. More specifically a B-spline of order 

k spans exactly k sub-domains. An example of a cubic (k = 4) B-spline function 
Nd+2k-f is shown in FIG. 2.2. We now define an additional set of points ( ti )i=i , called 

b o t s ,  such that 

This particular definition implies considerations related to the level of continuity 

imposed a t  the breakpoints. A one to one correspondence between knots and break- 

points implies the imposition of k - I conditions of continuity at the breakpoints, 
while k knots for a breakpoint implies no continuity condition a t  the breakpoint (see 

l0This more restrictive definition is indeed a particular case of the generd s p h e  functions in- 
troduced in the Curry & Schoenberg theorem, for which the level of continuity may vary £rom an 
ianer breakpoint to another. Such general s p h e  functions, to which are associated "generalizedn 
B-spiines, are presented in App. B. 

l'The normalkation is based of the fact the B-splines are constructed to fonn a partition of unity. 
The precise meaning of this statement will be made clearer after a few more definitions. 



FIGURE 2.2. A cubic B-spline funetion ( k  = 4). The 4 sub-domaias spanned by 

the function are delimited by the breakpoints identiiied by the " syrnbolç. 

App. B for the details). The difference between the knots associated with the inner 

breakpoints and those of the frontier breakpoints (gl and i)~,+l) is a consequence of 

such considerations and will be explained a little later. For a given set of knots, the 

l t h  B-spline of order k ,  noted here ~,(')-this more general notation will be used for 

B-splines of generic order k , the more simple notation Bi being used otherwise-can 

be directly evaluated by the recurrence relation 

First order B-splines are simply defined as unitary "top hat" hinctions, viz., 

1 ; tr 5 v < t l+l 

O ; otherwise 

From the above definitions, many important B-spline properties can be deduced. 

For example, the recurrence relation (2.55) combined with the k s t  order B-spline 



definition (2.56) leads to the support rule 

Application of this mle to the product of B-splines gives 

# O  ; 1 ' - k + I  5 1 5  l f + k - 1  

= O ; otherwise 

This latter result will prove useful in the computation of the dBerent matrices in 
(2.43) since it confines the non-zero values to a narrow bandwidth of 2k - 1 (see also 

Sec. 3.3 and App. C for additional information regarding these matrices). I t  can also 

be shown, from the above result, that the complete set of B-spline functions-for a 

given order k and 

where the number 

a given set of knots { ti )z:2k-1 -form a partition of unity, i.e., 

of B-spline functions N,  is given by 

The value of N,  is obtained, in a general manner, by taking the total number of 

piecewise polynomial coefficients minus the number of continuity conditions. Note 

that  the number N. also represents the dimension of the B-spline space. The value 

determined in (2.60) may therefore be seen to be the smallest dimension that can 

bear a piecewise polynomial spacel*, of a given order k ,  defined by the set of break- 

points { %  )ET1. This particular property of B-splines is indeed due to their great 

smoothness, which in turn leads to their relative spreading. 

On the other hand, because B-splines extend over mious  sub-domains, they can- 

not be considered as a strictly local basis. Foi that reason, special considerations 

121f additional continuity conditions are added between any two sub-domains, to reduce the number 
of coefficients, then the two adjacent piecewise polynornials will collapse into one. UItimately, 
imposing k continuity conditions at ail the inner breakpoints would result in a single polynomial, 
of order k ,  for the whole domain. 



must be given to basis functions lying near the edges of the domain. Regular or 
standard B-spiines, i-e., spanning k sub-domains, would need to extend outside the 

physicd boundaries. One way of coping with that would be to extend the domain 

with an artificial buffer region. Another more convenient and consistent way-the 

interpolated function making no sense outside the physical limits-would be to re- 
duce the continuity at the edges from Ckd2 to zero-continuity (or C-' by extension 

of notation). In other words, it means collapsing the buffer region into the frontier 

points themselves. Note that this is the procedure implied by the h o t  definition in 

(2.54). This will partly affect the k - l B-splines located near the edges. A resulting 

simple but complets set of basis functions is shown in FIG. 2.3, for both a uniform 

and a non-uniform domain partitioning with Nd = 4 and k = 4. A more'realistic 

picture of what would typically be used for a radial discretization is shown in FIG. 2.4 

where again k = 4 but with this time Nd = 50 (uniform distribution of breakpoints). 

In terms of the basis function Gl used in the definition of the vector expansions 

(2.33)-(2.40), the radiai equivalent of ail of the above B-spline results can be rewritten 

by simply applying the coordinate transfonn (2.47) to the definition (2.52). An 
illustration of the function Gl that corresponds to the B-spline of FIG. 2.2 is given 

in FIG. 2.5, for different values of L. Since it only becomes a matter of convention to 

use Gi(r) instead of Bl(q) , we do not elaborate any further except maybe to stress 

the point that in the vector expansions, as they were defined, dl derivatives are given 

in terms of the radial coordinate r . In terms of the coordinate 77 and the B-spline 

Bi,  the first order radial derivative of G,(T) is thus given by 

with 

Higher order derivatives are obtained by a successive application of this operation. 

We conclude this presentation by the introduction of the modal (cornplex valued) 

spline fùnctions that will serve for the implementation of the regularity/boundary con- 

ditions, discussed in the following chapter. For each modal pair (m, n ), the two "+" 



, 
FIGURE 2.3. A uniform a) and non-uniform b) B-spline partition for the domain 
[O, 11. The number of sub-domains is Nd = 4 (identifid by the "0" symbois) and 
the order of the B-splines is k = 4; for a total of 7 basis functions. The respective 
index 1 is shown on top of each function. The B-spline of FIG . 2.2 corresponds to 
Bq of a). Also note the "irregularityn of the 3 adjacent Bspiines at each one of 
the end points O and 1. 



FIGURE 2.4. A uniform B-spline partition for the domain [O,  1 ] with Nd = 50 

and k = 4. The complete domain and B-spiine partition is shown in a). A close-up 
vue of the interval [0.4,0.6] is shown in b) ; the uniformiy distributed breakpoints 
(the "0" symbols) are ais0 shown in that second figure. 



FIGURE 2.5. The basis functions correspondhg to the B-spline of FIG. 2.2 for 
the dinerent mapping parameters L = 1,2,5,10. The values are shown on top of 
each respective function. 

and "-" functions can either be written in r or in r] to give 

This complet es the spatial discretization and thus completely determines the nature 
of the semi-discrete (continuous in time) system of differential-algebraic equations in 
(2.43). 

2.4 Spatial discretization: 

This section provides a synoptic presentation 
in this chapter. 

0 The equation to be discretized 

Summary 

of the spatial discretization described 



wit h 

F = u x w  + Fe 

Definition of the inner product 

Velociw and weight vector expansions 

l m n  

Vector decomposition (the W: are specified in TABLE 2.1 that follows) 

Mapping function 

0 Radial basis functions 

. 
B-spline recurrence relation 

with 

1 ; t l  5 7 < tl+l 

O ; otherwise 



a Radial scalar (spline) functions 

Modal evolution equations for the a!&= coefficients 

a Inertia and viscous matrices 





Chapter 3 

Implement at ion 

In this chapter we cover some specific considerations related to the implementation of 

the spatial discretization presented in Chap. 2. More specifically, we discuss the tirne 

discretization and the computation of the nonlinear term. Related to these two main 
topics are the implementation of the regularity/boundary conditions on the effective 

matrices as weU as the inclusion of an azimuthal modal reduction algorithm. Due 
to their relative importance, these two latter subjects are the object of a separate 

presentation. Also discussed in t his chapter are the bounded domain formulation, 

and the application of the spatial discretization to obtain a linear st ability eigenvalue 

solver. 

For the presentation of the material in this chapter, we have voluntarily chosen 
a simplified notation, trying to avoid the sometimes quite cumbersome implementa- 

tion details. The more technically oriented reader may however be referred to the 

appendices in which we have relegated most of that specific information. Frequent 

references will indeed be made to both App. C and D. In the first, is included al1 
the material related to the construction of the different matricés (Sec. C.l) as well as 
some of the material related to the treatment of the nonlinear term (Sec. C.2). The 
rest of the implementation information is found in App. D, e.g., regularity and bound- 

ary conditions, time integration, modal reduction, etc. Because of the similarity that 
bears the present method with the one presented by LMMC, some of the material 

included in these appendices may appear redundant with what can be found in their 

report. We nevertheless chose to include it here too for reasons of completeness and 



ease of access. 

Finally, let us simply mention that al1 the coding was done in standard, double 

precision, FORTRAN 77. The different resdting codes were run on various types of 

Unix p i a t fom,  ranging from HP workstations to a SGI Origin2000 supercornputer. 

Some smaller 2-D venions of the different codes (Houde, 2001) have also been ported 

on Pentium personal cornputers. 

3.1 Time integration 

At this point, the system of ODE'S in (2.43) only rernains to be discretized in tirne. 

Standard time integration for such a set of equations is usually carried out using 

mixed explicit/implicit schemes (Canuto et al., 1988; Gottlieb & Orszag, 1977). The 

nonlinear term is integrated explicitly to avoid the costly iterations associated with the 

nonlinearities while implicit integration is used for the linear viscous term to avoid the 

too stringent stability criterion that cornes with the second order Laplacian operator. 

Because of the time step size imposed by the stability criterion of the explicit part 

of the scheme, time discretization errors generally remain significantly below spatial 
errors and standard integration techniques-finite difference type discretization of the 

time derivative-are sufficient. Cornmon practice rnakes use of a t  least second order 

tirne schemes to prevent the leading order error term to directly affect the physical 

viscous dynamics of the problem. 

Note that there are some lower order exceptions-like in Matsushima & Mar- 
cus (1997) who used a first order scheme-that could possibly be well justified by 
a more proper balance between spatial and temporal errors. The presence of "nu- 

merical diffusion" could also be used to filter the high wavenumber structures and 
e 

hence prevent the saturation of the spatial discretization when using marginal reso- 
lution but it should be considered an unorthodox procedure that deserves caution. 

Instead, the use of an additional higher order dissipation term (e.g., the biharmonic 

term -v4V4u) should be considered for this particular task. 

For the present implementation, we adopted the mixed low-storage, Runge-Kutta 

type scheme presented by Spalart et al. (1991), and suitably called here the SMR 



scheme (for Spalart, Moser and Rogers). The scheme is formally third order for the 

convective and crossed terms, and second order for the viscous one. The marginal 
stabiliw curve of this scheme is presented in FIG. D.1. Supplementary information 

regarding this scheme can be found direct- in the reference paper or in the appendices 

(Sec. D. 1). Some comparison results with the other mixed Crank-Nicolson/Adams- 

Bashforth-2 scheme are also included in Sec. D.1. The application of the 3 s u b  

steps of the SMR scheme (see also (D -4)-(D .6)) to the differential-algebraic system 
of equations (2.43) is shown in TABLE 3.1. 

The A and Ë are respectively the inertia and diffusion matrices introduced earlier 

in Chap. 2, but in a reorganized form that combines simultaneously the "+" and " -" 
classes. The computation of these matrices is discussed in more details in Sec. 3.3. 
The Fp , the "+/- combined" nonlinear term, to be detailed in Sec. 3.2. As for 

the spectral/B-spline coefficients QI, they follow the same convention used for the 

other terms. The modal pair (ka, k,) dependence of the various expressions has been 

implicitly assumed through out. Finally, the subscnpts " *" and "*+" identi& the 

two intermediary sub-tirne steps used when marching from time step n to n + 1. 

The implementation of these sub-steps c m  be synthesized by the algorithm given 

in TABLE 3.2. Since the same algorithm applies drnost identically for the three sub- 
steps, we make use here of a generic notation in which the index i identifies the 

sub-step number and the subscripts 1 and 2 identify respectively the present known 

time level (viz., n,  * or **), and the next one to be computed. Note that for the first 
sub-step (i = l ) ,  the {F)o vector is zero, and so the transfer in line 3 need not be 

executed at  the end of the third sub-step ( i  = 3). Some of the operations described 

in the algorithm are themselves the object of a specific section in this chapter; the 

relevant section numbers are directly pointed out in TABLE 3.2. 



TABLE 3.1. The SMR time integration scheme proposed by Spalart et al. (1991) 
and applied to the algebraic system of equations (2.43). The " - " symbol stands 
for a combination of the "+ " and " - " classes. See text for further information 

[ A - a l a t ~ ]  { G }  n + y l ~ t { ~ i I  ) n 



TABLE 3.2. Generic time rnarchïng algorithm for each one of the sub-time steps 

of the time integration scheme of TABLE 3-1. The particular sub-time step is 

identifieci with the index i . See text for further information. 

1. From { 5 ), evaluate { } + Sec. 3.2 ; 
1 

2. For each modal pair kd > O and k, : 

(a) Compute the effective matrices A and B + Sec. 3.3 ; [-1 [-1 
(b) Evaluate the RHS vector { f ) : 

i. Evaluate [Kt ] = [ A  - p i ~ t E ]  ; 

ii. Evaluate {fK) = [Kl] { a i ) , ;  

iii. Sum the contributions from the nonlinear vector(s): 

(c) Evaluate [ K2] = [A - * A ~ B ]  ; 
(d) Impose the regularity/boundary conditions on the system of 

equations [ K2 ] { i5 ), = { f ) + Sec. 3.3 ; 

(e) Solve [ K Î ]  { C l 2  = { f ) ;  

3. Replace { F }  b { F } , ;  
O 

Because of the explicit integration of the nonlinear convective terms, the scheme is 
only conditiondly stable. The stability condition is characterized by a ratio between 
the magnitude of the local convective velocity over the "grid velocity": the CFL 
number (Ferziger, 1981). Here, we use the following hyperbolic type definition 

where Ar, A6 and Az are the collocation points spacing (see also Sec. 3.2), and the 
"max" is taken over the whole computational domain. The 213 and the r factors 

come from the spectral equivalent of the condition where, for example, the maximum 
wavenumber k, ,, is related to the "de-aliased" grid (coilocation points) spacing Az 



by k, ,, Az = r . This is a rnatter of convention that only affects the critical limit 

value of the CFL condition. The effective stabiliw limit of a particular computation, 

whatever the definition used, can obviously always be found by numerical testing. 

With definition (3.1) though, the scheme has a critical stability limit, for purely 

convective flows, of CFL 5 \/3 = 1.73, as shown by the marginal stability curve in 

FIG. D.1. Note that this numerical value actuaily cornes from a 1-D linear analysis of 

the scheme, but its application to the conservative 3-D criterion (3.1) certainly poses 

no problem. When difision is present, values up to 2 (and possibly higher) can be 

used, as reported by Spalart et al. and confirmed by our own testing. 

The evaluation of the maximum time step allowable (granting stability) is done at 

regular intervals during a simulation to ensure that (3.1) is indeed satisfied throughout 

the computational domain. Thus, each one of the velocity vector components has to 

be cornputed on al1 the collocation points. In cylindricd coordinates, there is a 
clustering of these collocation points near the center of the domain (Le., as r -t O )  

and this may lead to some very severe limitations on the time step size if no special 

care is taken. This particular but important issue is one of the main topics of Sec. 3.4. 

For this reason, we put that rnatter aside for now as we shall corne back to it in a 

little later. Let us note, in addition, that some specific examples of collocation grids 

are also presented in that latter section. 

Another point worth mentioning when evaluating the time step size is that the 

CFL condition has to be considered in terms of the total velocity field (2.7) 

The background flow velocity, if different from zero, must therefore be added to the 

homogeneous (computational) velocity 

in (3.1). The set { ri, O,, } defines the set of collocation points on which the "ma." 

is determined. The particulôr evaluation of each one of the velocity cornponents is 
detailed in App. C, more specifically in (C.lO)-(C.12). Since this operation is quite 

similar to what is done in the cornputation of the nonlinear term (see more in Sec. 3.2), 
the time step update procedure is inserted there. On the other hand, because the 



Espline evaluation (the summation in 1) represents an additional cost-as will also 

be seen in Sec. 3.2-the time step is updated only after a certain, user-defineci, time 

interval (or number of time steps). In rapidly evolving flows, the update interval must 
be chosen with some care, otherwise numerical instability could possibly set in. 

Some care should also be taken in very diffusive flows (low Reynolds number) 

when only using (3.1) to determine the t h e  step size. The SMR scheme does tend 

to  unconditional stability in the limit of pure difision, as can be seen again from 

FIG. D.1, and large values of At rnay result. The computation would then remain 

stable but with possibly important precision losses. Note that this type of problem is 

not a concern here because the flows of interest are dominated by convection. It would 

nevertheless be advisable, for low Reynolds number flows, to include a diffusive time 

step criterion based on accuracy rather than stability. From the typical 1-D result 

a 3-D generalization is proposed as 

where the local "grid Reynolds number" rnay in turn be defined as 

This accuracy check can easily be implemented by comparing the ratio of the CFL 
number with the local ReynoIds number ReA when updating the time step size. 

3.2 Nonlinear term 

The computation of the nonlinear term (line 1. of TABLE 3.2) is certainly one of 
the most complex parts of the Navier-Stokes solver. For its implementation, we 

followed the procedure described by LMMC which is based on a modified version 

of the classical pseudo-spectral algorithm (Canuto et al., 1988; Boyd, 1999). In the 

presentation given below, emphasis is mostly put on the non-standard treatment of 
the B-spline radial direction. Because the mathematical expressions that result from 



this particular treatment are quite involved, we have relegated them in the second 

half of App. C, making use here of only generic formulas. In this attempt at keeping 
the expressions as  light as possible, we adrnittedly sacrificed some rigor of notation 

for simplicity. 

First, let us recall from Chap. 2 that the nonlinear t e m  is given, according to the 

definition of the inner product in (2.16), such that 

where 

and Vj as given in (2.30). Both vectors u and w are understood to be hornogeneous, 

according to the notation convention set in that chapter. Al1 the non-homogeneous 

extra forcing known terms are included in Fe, where for example 

The vorticity field follows, by definition, a similar decomposition and may also lead 

to rotational non-homogeneous forcing. 

Now, since the nonlinear terrn is treated explicitly in the time integration scheme 

(see TABLE 3 4 ,  the integrals in (3.3) are evaluated at a specific time where all 

quantities are known. In a general manner, the integrals in (3.3) can be evaluated 

numerically by some general quadrature rule. This requires that the integrand 

needs to be evaluated on some set of quadrature points defined by { ri, O,, z, ) . The 

particular choice of quadrature points obviously depends on the type of expansions 

used to represent the basis vector functions Vj, and the forcing vector F. 

To get a better idea of the algorithm, let us go one step ahead by substituting 

the vector expansions defined in (2.29) and (2.30) into (3.3). For simplicity, we only 



consider the homogeneous part of the nodinear term, and obtain 

C 

2 JIJ wFGn, e-iGde-igz 
L0Lz l m n  

The pseudo-spectral aigorithm is a very standard, well documented (Canuto et al., 

1988; Boyd, 1999), efficient procedure for evaluating the sequence of operations ü- 
lustrated in (3.5). The reader is therefore directly refered to the specialized books 

just cited for a complete description, and additional considerations regarding the 

part icular technicd det ails. 

However, to better explain how the present B-spline treatment differs from the 

standard procedure, we first give a brief qualitative description of the sequence of 

operations of a standard pseudo-spectral approach applied to (3.5): 

The physicai velocity and vorticity vectors are evaluated on a cotIocation grid. 

This means that the two triple sums (in l,m,n and E.,rn.,n.) are evaluated 

first* In terms of the Fburier components, for example, it amounts to the inverse 

transform. The choice of collocation points is simply the zeros of the Fourier 

expansions, and because of particular symmetry properties that corne with this 

choice of points, the operation can be done in a fast way, i.e., by a Fast Fourier 

Transform (FFT). A similar procedure-that depends on the particular choice 

of basis functions-is used for the radial direction. 

2. Once the physical components are obtained on the collocation/quadrature grid, 

the noniinear product u x w is simply evaluated a t  each point. Note that since 

the complete velocity field is now available at this step, the evaluation of the 

CFL condition (Sec. 3.1) may be done here. 

3. Then, the triple integral is evaluated. Because the choice of collocation points 
corresponds to the quadrature points of the different expansions, the transfor- 

mation integrals can be computed exactly. Considering again the Fourier direc- 

tions for exarnple, this step simply corresponds to a direct transform which is 



again done with a FFT. According to the type of (global) expansions used for 

the radial direction, the integral can be evaluated with either a fast transform 

(using Chebyshev polynomials) or with a slow one (using Jacobi polynomials 

for example), as in step 1. 

In brief, these three steps state that because of the fast (Fourier) transforms, it 

is more efficient to start kom the spectral space, go into the physical space to carry 

out the nonlinear product, and then corne back into the spectral space. Of course the 

equivalent result could be obtained much more expensively by doing the operation in 

reverse order, Le., by evaluating first the integrals (analytically) and then compute 

the summations. This implies that one stays at ô11 times in the spectral coefficients 

space. The computational cost associated with this second approach wouId be far 
more expensive, as mentioned, because of the convoIution sum that would then need 

to be computedl. 

Before considering in more depth the technical aspects of using B-splines in (3.5) 

that led us to a different dgorithm, iet us first introduce a more symbolic nota- 

tion in which we completely separate the spectral-Fourier functional dependency 

from the radial B-spiines2. Following this, the spectral velocity and vorticity vectors 

components-expressed in detailed f o m  in App. C by (C.lO)-(C.12) and (C.7)-(C.9) 

respectively--cari be written in t e m s  of some scalar functionals, symbolized by 

LThis result is a natural consequence of the convolution theorem associated with Fourier (or other) 
t r d o r m s  that States in simple terms that: the product of two functions in one space (physical) 
amounts to the convolution of these two functions in the transformed (spectral) space, and vice 
versa 

*This operation is feasible in principle because of the separation of variables approach that was 

used to construct the expansions in the first place. It can be teciinically achieved by rewriting the 
problem in terms of the scalar functions used to construct the vector expansions. Again, see Sec. C.2 
for det ails. 



and 

The unit directional vector % (or ê,) takes either one of the three values of (4, ê,, ê,). 

To keep the notation as simple as possible, we also discard spatial variable dependen- 

cies that should be made clear from the context. 

The physical scalar coefficients 24: (O,,.,, G) and W19 (O,, z,J are simply obtained, 

for the set of collocation points { B,, } , by an inverse Fourier transform such that 

and where here 

3 3 3 3 
--Ne 5 rn 5 -5N. 

2 and --IV, 2 5 n 9 

The additional, zero valued, Fourier coefficients (see (2.29) for reference) are included 

for the complete elimination of aliasing errors that may arise from evaluating the 
Fourier transform of the resulting product: the " 3/2 de-aliasing rule '' (Canuto et al., 

1988). As for the set of Fourier collocation/quadrature points, it is simply defined by 

with 

Replacing the new symbolic expressions (3.8) and (3.9) in (3.5) we obtain, after 

rearranging, 



where E,, stands for the conventional permutation operator. With the symbolic 
notation used, a formd sumniation rule is somewhat awkward to define, but the 

result can be seen in the expressions (C.14) and (C.15) in the appendix. In passing, 
we have also introduced the radially integrated triiinear product 

The integral (3.12) is a purely radial expression composed of a set of 22 expressions 

in the form of (see also (C.13)) 

lm G:? ( T )  GY) (r) G::) (r) rp dr , 

that can be pre-computed before entering the time marching procedure. The super- 

scripts i, j and k refer here to different orders of derivative, and p is some integer 
(positive or negative) . 

The present method precisely differs from the standard pseudo-spectral one in 

what follows, namely the evaluation of the convolution sum 

in (3.11). Because of the locality of B-splines, their inner product is non-zero for only 

a lirnited number of indices, as one may recail from (2.58), i.e., 

j B i l B 1 d î ) # O  for - k < l t - l < k ,  

so, for a given value of Zr, there are only 2k - 1 values of 1 (similarly for 1 , )  that 

give a non-zero integral. This resuk is a consequence of the locality of the basis 
functions and is accordingly not afFected by mapping considerations; it rnay therefore 

be directly applied to (3.12). Extension of this spatial "quasi-ort hogonality" resdt 

to the trilinear product leads to a few more zeros (see FIG. C.l and C.2 in the 

appendices), but globally the scaling remains the sarne. At a given index value P, 
the convolution sum requires only 6 ( [ 2 k  - 112) operations instead of O ( e ) .  F'rorn 
this result, it can be shown that the total operation count for the cornputation of the 
nonlinear term scales Iike 

k Ne N [ci l o g ( N s K )  + C& + c3] ) , 



without having to explicitly evaluat e the physical field components (which would 

require a complete B-spline evaluation). The ci represent the principal relative scaling 

constants. 

Note that in a classical pseudo-spectral approach the velocity and vorticity com- 

ponents would be computed on a radial quadrature grid-if we put aside mapping 

considerations for the moment and work with a B-spline basis of order k-with a t  

least k - 1 points per sub-domain. These new quadrature points are associated with 

the different higher order B-spline discretization required to  represent the nonlinear 

product. This is roughly the equivalent of the 312-rule used in the Fourier direc- 

tions. For B-splines of order k ,  the velocity would be in k - 1 (see TABLE 2.1), the 

vorticity in k - 2,  and therefore their product in 2k - 3, whence the minimum of 

k - l quadrature (collocation) points. Machine precision numerical integration would 

require more points, on one hand, to account for the additional weight B-spline func- 

tions, and mostly, on the other hand, to account for the negative powers of r that 

appear in some of the expansions (see Sec. (2.2). This same last comment applies a 

fortiori if mapping considerations are taken into account . The total operation count 

in this case would then scale like 

O( Nr k Na Nz [di log(N6IV.) + d2k2 + d3k + d4] ) . 

Although the two estimates scale almost equally, the clever but less obvious construc- 

tion of products (3.13) developed by LMMC that we have just presented above leads 

to a more efficient implementation of the modified convolution sum algorithm. 

Once the convolution sum (3.13) is computed (the expressions (C. 14) and (C.l5)), 

there remains only one final step: the evaluation of the double integral in (3. I l ) ,  viz., 

8 

which will be recognized as the definition of a double Fourier transfom. The integrand 

being determined on a proper set of collocation/quadrature points, this operation is 

again done by means of the FFT. The complete procedure is synthesized in TABLE 3.3 
(see also Sec. C.2 in the appendix for a more technical description). 

Our last observation relates to the evaluation of the velocity field required for the 
determination of the time step size At via the CFL condition (3.1). As discussed 



-- - -- - 

TABLE 3.3. Generic description of the algorithm for the nanlinear term computation. 

1. For each index 1' ; 

(a) From the a:,, , evaluate the relevant spectral scalar coefi- 

cients ÛLpm- ,. and 

(b) Compute the inverse Fourier transform (3.8) and (3.9); 

(c) Compute the convolution sum (3.13); 

(d) Compute the Fourier transform of (3.13). 

in Sec. 3.1, each one of the velocity components, defined in (C.lO)-(C.12), needs 

to be evaluated on the collocation grid. Since the velocity field is never explicitly 

determined in the present computation of the nonlinear tenn, a supplementary step 

must be added. By (3.8), the scalar physical coefficients 24,: are obtained; the velocity 
vector components can thus be determined by the B-spline evaluation 

The radiai coliocation points rl are chosen here as the B-spline breakpoints. This 
additional evaluation can naturally be inserted between lines l.(b) and l.(c) of TA- 
BLE 3.3. Because (3.14) represents an extra computational cost t hough, the evaluation 
of the tirne step size is oniy done at certain predetennined t h e  i n t e ~ d s ,  as already 

mentioned in Sec. 3.1. 

3.3 Effective matrices, regularity and 
boundary condit ions 

In this section, we discuss the construction of the effective matrices of TABLE 3.1 
(see also TABLE 3.2 line 2.(a)) and the imposition of the regularity and boundary 

conditions (TABLE 3.2 line 2.(d)). Note that the construction of the matrices is ex- 

posed in more details in Sec. C.1, while the imposition of the regularity and boundary 



conditions are detailed in Sec. D.2 and Sec. D.3 respectively. 

3.3.1 Effective matrices 

To better understand how the effective matrices A and k of Sec. 3.1 are constructed, 

let us h t  staxt with a brief recapitulation. The inertia and viscous matrices were 

initially d e h e d  in Chap. 2, and respectively given by (2.44) and (2.45). By replacing 

the different vector expansions of TABLE 2.1 in these definitions, we obtain a set of 
parametric relations, in terms of purely radial sub-matrices, bearing the genenc form 

(see also (C.1)) 

where i and j are derivative order indices, and p some integer (positive or nega- 
tive). There are 14 of these generic matrices-pre-computed before entering the time 
marching procedure-that completely define the general inertia and viscous matrices. 

As the reader will have probably noticed, this holds a certain resemblance with what 
was already described for the nonlinear term in Sec. 3.2. 

Because the radial basis functions Cl (r) are locally defined, the matrices A I  (or 

B:) are mostly zero except for a nmow band of 2k - 1 values (one may recall this 

result fiom (2.58)). The general coupling between the "+" and "-" classes, on the 

other hand, requires that the systems of equations (2.43) be solved in a coupled man- 
ner in the time marching algorithm (TABLE 3.1), Le., with matrices in the form shown 

in FIG. 3.1. TO these matrices correspond the following sequences of coefficients, for 
each modal pair ka, kZ, 

where stands for the transpose.'By a simple reordering of the coefficients into the 

sequences 

accompanied by consequent reordering of the equations (i.e., of the correspondhg 

weight hc t ions ) ,  the block banded matrix of FXG. 3.1 can easily be transformed 



FIGURE 3.1. Topology of the coupled inertia matrix A of TABLE 3.1 before re- 

ordering and imposition of regularity/boundary conditions. The shaded areas 

identiS. the non-zero values. The total bandwidth of eazh one of the sub-matrices 

A: is 2k - 1. A similar figure could be sketched for the vismus rnatrix B. 

FIGURE 3.2. Topology of the coupled effective inertia matrix A of TABLE 3.1 
after reordering and imposition of the regularity lboundary condit ions; matrlx 6 
is identical. As in FIG. 3.1, the shaded area identïfy the non-zero values of the 

mat*. The total bandwidth is now of 4k - 1. The top left rectangle identifies 

the modified zone afTected by the imposition of the regularity conditions, and c is 
for the B-spiine continuity (see text for more information). 



into a single band (new dimension of 4k - 1) "effective" matrix as the one shown 

in FIG. 3.2. Note that a specific index by index value example, for k = 3, is shown 

in FIG. D.4. Since the sketch in FIG. 3.2 represents the global effective matrices 

that result fkom both data reordering and imposition of the regularity/boundary 

conditions, some further explications need to be @en. The reordering procedure 

does indeed confine the non-zero values of the different A: (the light shade areas) 

of FIG. 3.1 to the single band area ( a h  in light shade) of A in FIG. 3.2. The top 

left rectangle is the result of the imposition of the regularity condition which is now 

discussed. 

3.3.2 Regularity condit ions 

The local B-spline discretization does not naturally satis@ any specific type of bound- 

ary (including regularity) conditions. These must therefore be imposed explicitly 
(line 2. (d) of TABLE 3 -2) before solving the aigebraic system of equations (line 2. ( e ) )  . 
The whole process of imposing these conditions can become quite tedious if pre- 

sented at the algorithrnic level, and so we wiU again limit ourseives here to the main 

ideas, relegating the technical details to Sec. D.2 (regularity conditions) and Sec. D.3 
(boundary conditions). 

The set of vector expansions defined in Chap. 2 is not unique. One of its main 

advantages though relates to the imposition of the regularity conditions. Indeed, one 

needs to recall that the vector expansions were constructed in Sec. 2.3.1 by t a h g  

the curl of some vector potential such that 

Obviously, if one of these two vectors satisfies the regularity conditions then so must 
the other. Without much trouble, one can argue (see again TABLE 2.1) that it is 

easier to impose the regularity on the 9: rather than on the w:. This is where 

the cleverness of LMMC's construction cornes to light. For each one of the "+" and 
&& - 9' class, the different components of 8: naturally satise the relative behaviors 

expressed in (2.10) and (2.11). The imposition of the vector regularity conditions is 

thus reduced to the imposition of a single parity condition simultaneously on both 



( & ) splïne functions g&, defined in (2.63), 

As will be seen further dom,  this result will also significantly ease the imposition of 

the regulariw condition on the weight vectors. 

The imposition of an even (odd) behavior near r = O on gZn is done by constrain- 

ing al1 odd (even) denvatives to zero at the point itself, with the appropnate number 

of zeros according to the value of ko. Let us illustrate this with an example. For 

ke > O ,  we have from the combination of (2.11) with the expansions of TABLE 2.1, 

with p = 0,1,2 . . . . So, if we consider the particular case kd = 2,  it reduces to the 

odd behavior 

lim g& ( r )  = O ( T ' + ~ ~ )  , 
r+O 

and al1 even derivatives (including 0th order, i.e., the function value itself) must 

therefore be zero. More specifically, t his writes: 

where q is an even integer such that q 5 c, and c being the continuity Ievel of the 
spline function, viz., g&, E CC. Here, because we use maximum continuity spline 

functions, c = k - 2. Our choice of using c instead of Ic - 2 in this exarnple is 

motivated by the fact that regularity is more closely related to continuity than order, 

and that, rnost importantly, al1 the implementation has actually been done in terms 

of generalized B-splines, i.e., with c < k - 2. 

According to  the particular spline construction used near the edges (see Sec. 2.3.3), 
constraining the value of the 9th derivative at a frontier point can affect at most 

q + 1 coefficients, instead of the standard k coefficients for regular splines. By a 
combinat ion of the B-spline relations (D .l6) and (D. 17) with the conditions expressed 

in (3.15), we finally obtain for our example 



Other sets of algebraic relations for the akn coefficients can be similarly derived for 

the other values of ke . 

Because we use a Galerkin method-the weight functions belong to the same 

functional space as the basis functions-regularity must also be imposed on the weight 

vectors. This is done in a similar manner by considering the equivalent of a weight 

spline function 

f (4 = C B,f,tnt Gp ( r )  - 

The parity conditions are also applied on h Z , , ( r ) ,  thus giving a series of couphg  

relations between the @..,,. coefficients. Note that in the spline weight functions, 

the coefficients PL, are arbitrary except for the linear relations that result from 
the parity conditions. 

Another advantages of the present choice of vector expansions is that since the 

weight function regularity conditions are identical for both the cc +" and " - " classes, 

they do not need to be applied separately for each sub-system of equations but can 

be applied a t  once on the effective coupled system (line 2.(d) of TABLE 3.2). More 
specifically, the linear combinations are applied on the 2(c+ 1) first lines of the global 

K2 mat& and the vector f of TABLE 3.2. In the matrix, these coupling relations 

will partially alter the band structure; the region affected by these modifications is 

represented by the dashed-line rectangle in FIG. 3.2. The dark shade triangle covers 

the area where non-zero values from the lower lines are brought up by the coupling 

relations. An example of a modified global matrix (with index by index values) is 

given in FIG. D.4, in the appendix. 

3.3.3 Boundary conditions 

Again from the construction of the vector expansions, imposition of the harmonic 

decaying behavior (2.14) to the stream vector !Di is also done 
manner; the implementation details are presented in Sec. D.3. 
the spline functions, the conditions require for ke 2 O that (see 

in a straightforward 

Written in tenns of 

(2.48) 1 



In the mapped coordinate q (= r / (r  + L)) , this becomes (see also (2.49)) 

This (ke + 1) -fold zero is imposed by simply setting the ke + 1 last spline coefficients 

a, to zero. For exarnple, using again our value of ke = 2,  this would require that 

When ke > c, only the c + 1 first coefficients are imposed to zero. The reason fur 

this is based on similar considerations than those discussed in relation with regularity 

conditions at r = 0. 

Let us look more specifkaily at the basis functions in terms of the mapped co- 

ordinate q ,  rather than the physical coordinate r ,  Le., in the true B-spline space. 

Imposing, say, the last q + l spline coefficients-as in (3.17) with q = 2-is equiva- 

lent to imposing the function value up to the 9th derivative at the end point 7 = 1. 

The highest order derivative that can be imposed at that frontier point is c, al1 other 

derivatives being zero by construction there, whence the limit value of c + 1 coef- 

ficients3. The decaying condition is equally applied to the spline weight functions 

h&Jr), leading to the same restrictions for the O&,,,, coefficients. Note that the 

cornplete set of boundary conditions is given in TABLE D.1, in the appendix. 

There are still two points, regarding the implementation of both the regularity and 
the boundary conditions, that deserve some attention. The first one is algorithmic. 
The very particular topologies of the matrices that result from the radial discretiza- 

tion require the use of an specialized Gaussian elimination solver. In this case, we 

have implemented a Gaussian elimination (without pivoting) especially designed for 

matrices with a structure as shown in FIG. 3.2. The operation count of this solver 

scales as 0 ( N . k 2 ) ,  the same as for narrow bandwidth solvers. For this very special- 

ized solver, we chose to maintain the topology of the matrices fixed for al1 k8, and ' 

have therefore also chosen to impose all the conditions explicitly. 

3A possible ambiguity may mise if working with generaiiied B-spliies of less that maximal con- 
tinuity, Le., c < k - 2,  as to whether impose the boundary conditions in terms of k - I (for which 
indeed ail other higher order derivatives would be identically zero) or c + 1 (for which some higher 
order derivatives could then remah non-zero). At any rate, the question is eluded in the present 
case since we have restricted the B-spline discretization to regular splines (c = k - 2 )  even though 
the implementation allows for any type of generalized splines. 



The second point regards the effectiveness of such regula.rity/boundary conditions. 

At both frontiers, the conditions imposed represent some asymptotic behaviors, valid 
in the respective limits r + O and oo . In our discrete B-spline world however, these 

behaviors extend over some finite distance inward, and therefore represent an approxi- 

mation of the formal conditions. The spatial extent of the finite order approximation 

of these boundary/regularity conditions may be limited in efTect by some B-spline 

clustering near the edges; a procedure which we may recommend in most cases, to 

stay consistent with the asymptotic nature of the conditions. On the other hand, 

applying the fuli regularity conditions directly to high order B-splines, on a tightly 

clustered grid, may lead to some degradation in the conditioning of the matrices 
because 

This drawback, in practice, contributes to limit the order of splines to values not 

much higher than about k = 5, as was also recommended by LMMC. 

The practical advantages of imposing elaborate behavioral conditions a t  the fron- 

tiers should not only be of theoretical interest. A more formdly restrained approxi- 

mation space, with proper boundary conditions, allows for a reduction in the number 

of degrees of freedom without afFecting cornpleteness. In addition, irnposing the reg- 

ularity condition at the center of the domain (i.e., at T = 0)  has the effect of making 

that particular point a regular one like any others in the domain, Le., with the same 

approximation order. In terms of the error, this should also prove advantageous, but 

no formal investigations were conducted on this particular topic in the present study. 

Modal reduct ion 

The modal reduction algorithm-or zonal mesh embedding as its is sometimes referred 
to-allows in a general manner for the radial variation of the Fourier truncations Ne 
or N,, or both. It was first presented by Kravchenko et al. (1996) for a spectral/% 
spline discretization in Cartesian coordinates, and by LMMC for a similar method 

in cylindrical coordinates. The purpose of the procedure is not only to reduce the 

number of (non-essential) degrees of freedom, as will be seen below, but also and 



mostly in this case to alleviate the severe time step size restriction that may result 

from the cornpliance with the CFL condition near r = O,  with a uniform truncation 

in the azimuthal direction. In the present implementation of the procedure, because 

of its critical importance, we have given pnority to the azimuthal truncation Ne. 
However, the general and flexible set up of the algorithm used here-which can be seen 

as a generalization of the algorithm presented by LMMC in their report-could be 
extended to include the modal truncation in the longitudinal direction in a relatively 

straightforward manner. Finally, as previously, we limit ourselves in this section to 

the essential considerations and relegate the technical detail to, this tirne, Sec. D.4. 

Let us begin our presentation of the procedure by considering the CFL constraint. 

In Sec. 3.1, we mentioned that the CFL condition (3.1) was evaluated on the collo- 

cation grid. The definition of the set of collocation points { ri, O,, ) was in turn 

given in Sec. 3.2, by (3.10) for the Fourier directions, and by the B-spline breakpoints 

for the radiai coordinate. 

A simple but important point to note regards the uniform Fourier discretization 

in 0, i.e., the evenly spaced "coilocation angles". This does not a c t u d y  lead to a 

uniform resolution for that direction, as opposed to the longitudinal ( z )  direction. 

Indeed, as it appears in (3.1), the azimuthal resolution is in fact associated with TAO, 
and since A0 has a constant value, 

The module of the velocity component 'iLe need not be very large near the center 

of the domain for the ratio juel/tAt3 to become dominant there. This narrowing of 
TAO is pictured in FIG. 3.3.a by the convergence of the radial lines, where each line 

corresponds to a collocation angle O,,, . In the same figure, each circle (constant ri) 
is associated with a B-spline breakpoint. The discretization parameters used for the 

illustration are Nd = 25 and Ne = 16. For the present discussion, the longitudinal 

direction, with its uniform discretization, does not lead to any particular restrictions 

on the time step, and therefore needs not be explicitly considered here. 

As shown in Sec. 2.1.1, the analytical regularity of the fields (as T + O)  requires 

the "fast dying" of the high azimuthd wavenumber modal components. This result 
forces many of the modal spline coefficients a&, to be practically zero near the center 



(low index d u e s  of 1 and high values of m). The small wavenumber flow structures 

that effectively remain in that region are then convected through an over-resolved 

grid, leading to an artificially severe restrictions on At because of the CFL condition 

(31). One way to better reflect the analytic behavior (2.11) and alleviate the CFL 
constraint is by letting the truncation level Ne (or equivalently the A0 ) be a function 

of r. More specificly, this means letting Ne = NB(I) .  In tenns of the spline hinctions, 

this becomes equivalent to introducing an "azirnuthal £ilte?. 

A new filtered function ijz,,(r) can thus be written such that 

where the filtering coefficients si, are simply defined by 

1 ; if 1 € {LI, 1 2 , .  . . , l&}(q)  
S lm = 

O ; otherwise 
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and where the set of d, index values { l i ) ( q )  forms a modal gmup (identified by 

the index q) ,  Le., the set of spline indices that share the same cut-off truncation 

level N Z ,  see Sec. D.4 for further details. These modal groups are a generaüzed 

form of the modal zones presented by LMMC. Seen a t  the algorithrnic level, this 
filtenng procedure arnounts to the removal of some of the a:,, coefficients, for some 

pre-assigned values of the azimuthal index m, whence the name "modal reduction". 

Similar procedures were implicitly applied by Orszag (1974) in sphencal coordinates, 

by Leonard & Wray (1982) in cylindrical coordinates, and by Shen (1997) (cited from 
Lopez & Shen, 1998) as10 in cylindrical coordinates, by directly incorporating the 

analytical behavior to their global expansions. 

For the collocation grid and the CFL condition, the repercussions of letting 
vary as a function of 1 are also probably best illustrated by an example. In FIG. 3.3, 

we show both a standard collocation grid and a modaliy reduced version. The num- 
ber and distribution of radial sub-domains (breakpoints) are identical for both cases 

(Nd = 25). The standard grid has a unique truncation level of Ne = 16 while the re- 

duced version was obtained with the set of trucation levels Nez = {4,8,16,8 ), from 

the center out. The f'ontiers between the modal zones are marked by the "bold" 

lines. The different truncation levels Ne@) have now been defined as functions of 



the spiine index 1. The modal zone grid must therefore be obtained with some spe- 

cific radial spline discretization. The grid shown in FIG. 3.3.b was produced with 

quadratic ( k  = 3) splines for which 1 5 1 5 27. The precise functional link between 

the qth truncation levels and the index 1 is not so important here, but the 
reader will find al1 the relevant details again in the Sec. D.4. Let us only note that in 

this particuiar case, there are 8 B-splines with N ~ Z  = 16, 22 with ~ j 2  = N ( ~ )  oz = 8, 

and obviously 27 with = 4. 

When comparing the two grids, one easily perceives the relaxation of the TAO 
factor near the center of FIG. 3.3.b. One rnay also recall that the modal reduction 

not only serves to alleviate the CFL constra.int, as we already mentioned, but may 

additionally serve to remove some of the negligibly small B-spline coefficients. This 

possible adjustment can equaIly be applied in the far field where the decaying con- 

ditions require the fast dying of the high azimuthal wavenumber field components, 

thus allowing for a possible modal reduction in the outer region too (NBZ = 8 in 

the 1 s t  zone of the example). This globally leads to a reduction in the total number 

of B-spline coefficients that need to be computed. For example, with the quadratic 

splines used, the 1 zone truncation (standard collocation grid in FIG. 3.3.a) contains 

432 Bspline coefficients (per longitudinal k, mode) whereas the 4 zones truncation 

of FIG. 3.3.b contains only 260 coefficients: a 40% reduction. 

Because of the B-spline overlapping, the efficient implementation of the variable 

truncation N'(1) requires some special care near the zona1 fkontiers. Recall from the 
computation of the nonlinear term (Sec. 3.2) that the convolution sum (3.13), 

is done in the physical B-spline space. The physical coefficients Ulm and Wi are 

obtained via the inverse Fourier transforms (3.8) and (3.9), viz., 



FIGURE 3 -3. De-aliased coilocation grid with Nd = 25, uniformly distributed in 

the mapped q-domain, for both cases: a) Uniform modal truncation Ne = 16; b) 
Modal reduction with 4 zones, from inside out Nez = { 4,8,16,8 ). See text for 

additional idormation. 

If Ne(l.) > Ne(l) for a given 1' in (3.13), then the larger of the two values must be 
used in the Fourier transforms of both Û,, and W,:, . This particularity is taken 
into account a priori when constnicting the modal groups { li )(*) mentioned earlier4. 

When a zona1 frontier index 1 is detected such that N&) c Ne(l + 1 )  , then the 

effective modal group associated with the Iarger truncation is extended over the next 

k - 1 spline indices (the overlapping extent) into the smaller truncation zone; in this 

case, the effective frontier would be set at  1 + 1 - (k - 1). The procedure would be 

similar if Ne(l) > Ne(l + 1 )  except that the extension would have been on the other 

side, i.e., from 1 up to 1 + (k - 1). 

One of the drawbacks that cornes with the azimuthal truncation jurnps is that 

they require an extra Fourier transform-for al1 the overlapping B-spline coefficients 
that are in contact with the point at  which the jump occurs-every time one of these 

jumps is reached. According to the level of specialization with which the algorithm is 

implemented, this extra work has the effect of lirniting the number of allowable modal 

'The two superscripts q should not be confusecl. In EL, y the value of q identifies the vector 
component whereas in { li )(4) y it identifies the modal group. 



zones in practice. A limit of 6 zones was suggested by LMMC for their near unifonn 
azirnuthal resolution applied to the simulation of turbulent pipe fiows. Kravchenko et 

al., on the other hand, presented turbulent channel flow simulation results that were 

obtained with 9 zones. 

In our present implementation of the algorithm in the nonlinear term, the very 

general formulation used for setting up the procedure does not lead to any specific 

overhead limitations for the number of zones. This is because the variable tnuication 
Fourier transforms are applied in a rather systematic way for every Zr index in the al- 
gorithm shown in TABLE 3.3. This approach obviously requires some additional work 

that could be saved in a more specialized (optimized) version of the implementation. 

In terms of global code performance for a typical flow simulation problem, the time 

spent in the computation of the nonlinear term (with the modal reduction aigorithm) 

accounts for about 85% of the total computational time in the cases reported by 

LMMC while this figure is of about 92% in Our tested cases. 

We conclude this section, on the modal reduction algorithm, by briefly considering 
some of the practical points involving the possible choices of value and positioning for 

the different truncation levels N$ - The effects associated with the passage of some 
vortical Aow structures through a change of modal resolution has been checked by 

Kravchenko et al.. For their test case-the rebound of a counter-rotating vortex pair 

on a ccno-sfip'y wall-they showed that if the resolution jump was of approximately 

less than or equal to a factor 2, then there were no noticeable impacts of the zonal 

boundary on the dynamical evolution of the vortex-wall interaction; a minimum res- 

olution level must obviously be assumed on either side of the jump. This leads us 
to suggest that, in general, the choice of modal tmncation jumps in our case should 

satisfy a sirnilar criterion such that 

in regions where significant flow structures are present. 

Another, maybe more important, point regarding the determination of a particular 
modal zoning is the position of the zonal boundaries. In Houde et al. (2000), a 

criterion based on the radial distribution of the modal (azirnuthal) kinetic energy 

of the flow was proposed. A predetenriined cut-off energy ratio is first determined. 



That ratio depends on the srnallest flow structure that must be resolved, and the level 

of precision sought for the solution. Then, the radial distribution of the minimum 

truncation level, required to meet the energy ratio criterion, is evaluated. Rom 

that distribution, the zonal frontiers and truncation levels can in turn be determined 

in a straightforward manner. Although not always easily applicable in problems 

involving stability and transition flow dynarnics-because the cut-off criterion must 

be applied on a known solution field whereas the required outcome solution is not 

necessarily known or available a priori in these cases-the procedure, when applicable, 

does provide an b o s t  optimal determination of the zonal truncation levels and 

positioning. Otherwise, one has to rely on more empirical distributions that should 

mimic a relatively uniforni resolution, where the main flow structures are Iocated, 

while maintaining an affordable time step size. ,4t any rate, some particular care 

should always be taken to make sure that the modal truncation imposes no dynamical 

restrictions on the solution. 

Our last point is only to mention that near the center of the domain ( r = 0) the 
lowest truncation permitted to alleviate the CFL constraint, without requiring par- 

ticular symmetry properties of the flow field, is NBZ = 4. Indeed, the first two modes 

ke = 0 , l  are sufficient to completely determine ail (even and odd) field quantities at 

the point r  = 0, but as we depart from the point, they only provide the equivalent of 

a 0th order approximation in (2.11). The additional 1st order terms (even and odd), 

required for r > 0,  are obtained by including the next two modes ke = 2 , 3 .  

3.5 Bounded domain solver 

The flexibility provided by the radial B-spline discretization in the present numerical 

met hod allows us consider the transformation of the unbounded formulation descri bed 

in Chap. 2 into a bounded one, sirnila to LMMC's method. Indeed, if we replace the 

mapped B-spline coordinate q, in (2.47), by the simple equivaience 

17 = T ,  

then the physical coordinate r and the mapped coordinate q coincide, and we have 

Gl ( r )  = &(y) = &(v) 



In other words, we directly use the B-spline functions of FIG. 2.2 with the radial 

coordinate, in the vector expansions (2.33)-(2.40), instead of the rational piecewise 

basis functions of FIG. 2.5. This change affects the evaluation of the inertia and 
viscous matrix integrals in (2.44) and (2.45) respectively, as weLl as the trilinear 

product integral in (3.12). Note that the new bounded radial domain is now defined 
in terms of the finite interval r E [ O, Ro 1. 

If the regularity conditions discussed in Sec. 3.3 remain unaected by this change, 

the outer boundary conditions, on the other hand, must be adapted. Let us for now 
consider the simple no-slip condition u = O,  at the outer radius R, . In terms of the 

spline functions g$, , the foliowing conditions, given according to the family of vector 

expansions of TABLE 2.1, need then to be imposed: 

, 
A recapitulative index, in terms of the spline coefficients a:,, , is supplied in TA- 
BLE D.2, in the appendi. Note that in (3.21), a double zero condition must be 

imposed on the "-" class spline function in order to avoid the indeterminateness 

associateci with purely Neumann boundary conditions on g, when ke = 1. 

A bounded domain Navier-Stokes solver is obtained by applying the above modifi- 
cations to the rest of the implementation discussed in the precedent sections. Besides 



an additional mass flow conservation algonthm-which may be equivalently treated 
here in term of some non-homogeneous background flow ud-this closely reproduces 

the spectral/B-spline method for cyiindrical coordinates introduced by LMMC. 

3.6 Linear stability and eigenvalue problems 

The spatial discretization method presented in Chap. 2 may not only be used for the 

implementation of a complete unsteady Navier-Stokes solver, but can also very well 
serve for the numerical approximation of linear stability eigenvalue problems. In order 
to show how can this be done, we first briefiy review the normal mode formulation of 
the linear stability problem. A more complete presentation c m  be found in Drazin & 
Reid (1981), for example. From there, we can show how to advantageously make use 
of our spectral/B-spline discretization to obtain the targeted eigenvalue solver. We 
describe here only the principal steps, some detailed information is however provided 

in App. E.2. 

Let us begin by considering the following velocity field decomposition 

where U is a known equilibrium solution and ut some perturbation field. Both 

of these vector fields sat ise the divergence-free constraint, and ut the boundary 

conditions discussed in Sec. 2.1. A similar decomposition is also used for the pressure 
variable. After replacing (3.24) in the Navier-Stokes equation (2.1) , and elimination 

of the quadratic terms in u' , we obtain the following linear perturbation equation 

d ut 1 
dt 

+ ur - VU + U Vu' = -vpl + -v2ut . 
Re ' 

One may note that because exact equilibrium solutions of the Navier-Stokes equations 

are in fact scarce (see Wang, 1991, for a List), in many practical instances, equilibrium 
solutions of the Euler equations are used instead. An example of such a situation will 
be found in Chap. 4, when considering the linear stability results of a trading line 
vortex (Sec. 4.2). 

The perturbation vector ut is in turn decomposed into normal modes (similarly 



with p') such that 

where "c.c." stands for the complex conjugate. By simply replacing (3.26) in (3.25), 

we now obtain 
1 

Au'  + u' - V U  + U - Vu' = -Vpt  + -v2u' 
Re 

which can in tum be formuiated in terrns of the variational principle of Sec. 2.2 to 

ultimately give 

We open here a short parenthesis to mention that in temporal stability analysis- 

which is what is actually being considered in the present formulation-we are con- 

cerned with the determination of the complex eigenvalues A, and corresponding eigen- 

vectors û, that depend on the reai-valued wavenumbers ke and k,, and &O on the 

Reynolds number Re, for a given base flow field U. Furthemore, since the eigenval- 

ues X are complex, i.e., X = A, + iA i  , we have 

and the eigenmode solution û will be said to be either unstable (exponential growth) 

for A, > O or stable (exponential decay) for A, É O. We speak of neutral stability 

in the particular case of A, = O. We close the parenthesis by noting that, in general, 

the eigenvalues will be ordered here according to the decreasing amplitude of their 
real part, viz., 

The vector =ansions introduced in Chap. 2 (see TABLE 2.1) allow for a natural 

base to approximate the eigenmode û in (3.26), and application of the same Galerkin 

approximation to (3.28) yields the following generalized eigenvalue problem (for a 
given pair of modes kg, k, ) , 



The effective matrices and B. will be recognized as  identical to those appearing 

in the Navier-Stokes solver (see Sec. 3.3). On the other hand, following the same 
notation used for both the inertia and viscous matrices in (2.44) and (Us), the new 

linearized transport mat- 6 is given by, 

according to the combination of the " +" and " -" classes of the vector expansions; the 

details are included in App. E.2. To solve (3.29), we use the LAPACK implementation 
of the QZmethod (Golub & Van Loan, lW6), and compute al1 the corresponding 
discrete eigenvaiues. Findly, a bounded domain version of the eigenvalue solver can 
simply be obtained by applying the modifications considered in Sec. 3.5 



Chapter 4 

Numerical Tests 

F'rom the numerical method, presented in Chap. 2, and the implementation consid- 
erations, discussed in Chap. 3, result a set of four numerical codes: for unbounded 

domains, there is a Navier-Stokes solver narned U N C ~  and an eigenvalue solver 

named UNCYL-LS; and there are the other two equivalent codes for bounded do- 

mains, named respectively B O U N C ~  and BOUNCYL-LS. The validation of ail four 

codes is the task we undertake in this important chapter. 

At first, we shall consider the validiw of the code B o u ~ C n  and its eigenvalue 

solver BOUNCYL-LS in the context of Poiseuille flow. Complete validation of the 
viscous and inertia matrices as well as the B-spline interpolation can be carried out 

by cornparison with the analytical solution of the "Stokes flow stability problem" . The 
testing of the time marching procedure as well as the nonlinear term evaluation comes 

next. Note that since both Navier-Stokes solvers UNCYL and BOUNCYL share the 

same nonlinear term and time marching algonthms, the validation of these procedures 

is carried out here, a t  once, for both codes. indeed, the radial discretization (with the 
mapping function) and the boundaryconditions are the two principal elements that 

distinguish the bounded formulation code from the unbounded one (see Sec. 3.5). 

Let us also note that because there are no closed-form analytical solutions avail- 

able for the fully nonlinear problem, quantitative validation can only be done by 

cornparisons with other benchmark numerical or experimental data. High precision 
results are usually very limited in parametric extent and, outside of it, validation 



relies more on qualitative than truly quantitative comparisons. Consistency checks 

between the eigenvalue and the Navier-Stokes solvers may partly serve to compen- 

sate this. Indeed, even if these two different solvers make use of the same inertia and 

viscous matrices, their convective transport term foliows a very dïfFerent formulation 

and implementation. Once the vaiidity of the eigenvalue solver, Say, has been estab- 

lished by cornparison with (highly) precise extemal data, then systematic quantitative 

consistency checks between both the eigenvalue and the Navier-Stokes solvers can be 

used to increase the level of confidence in the implementation of either one of the two 

solvers. Such a procedure will not oniy be used in the first section, but throughout 

the whole validation process. 

The validation of the codes UNCYL and UNCYL-LS is discussed next, and is 

carried out in two steps. The first one is presented in Sec. 4.2 and considers the 

stability of trailing line vortices. At this point, the general algorithms of the code 

have been verified, and emphasis is put more specifically on the radial direction, Le., 
the mapped B-splines and the boundary conditions. Our main objective for that 

particular section is the validation of the two families of expansions for which k, # O 

(see TABLE 2.1). At the end of the section, we open a parenthesis to briefly consider 
the use of the code BOUNCYL for unbounded flow problems, following the domain 
truncation approach mentioned in Chap. 2. 

The other two families of expansions, with kz = 0, are examined in the second 

part of the validation, presented in Sec. 4.3. For that  purpose, the simulation of 
the instabilities of a special class of zero circulation vortex flows is considered. In 

that case, available quantitative data are more scarce, and we will thus have to rely 

to a greater extent on qualitative comparisons of the fully nonlinear evolution and 

saturation of the instability. Here again, consistency checks between the eigenvalue 
and the Navier-Stokes solvers will corne as an additional support. The chapter's 

fourth and final section will serve as summary i f  the various test results presented. 



4.1 Preliminary validation and Poiseuille flow 

The preliminary validation is concerned with the verification of sub-parts of the code 

such as matrix computations, time marching and nonlinear term cornput ation, etc. 

In each case, the verification starts with implementation consistency checks. These 

typicaliy consist in the corroboration of some relatively L'low-level" algonthmic pro- 

cedure (e.g., numencal integration) with an analytically known counterpart. These 

consistency verifications form an essential requirement and were systematically used 

during the implementation process, but because of their rather tedious nature they 

are not formally presented here. 

We directly pass to the next level of validation which will be divided in two main 

parts. In the first part, we consider the validation of the B-spline interpolation in 

relation with both the inertia and viscous matrices. The generai time marching al- 
gorithm, including the evaluation of the nonlinear term, is the object of the second 

part. For al1 cases in this section, these verifications are made for the bounded codes 

B o u ~ C n  and BOUNCYL-LS. The main reason for this rests on the availability of ex- 

act, non-trivial Stokes flow solutions (in cylindricd coordinates) for bounded domains 

only. As will be shown below, these solutions provide a complete reference for the 

systematic verification of the matrices, and indirectly for the B-spline interpolation. 

4.1.1 Matrices and B-spline interpolation 

For the Stokes flow problem (the Iimit Re -t O),  the nonlinear convective terms of the 

Navier-Stokes equations are completely neglected. By applying our divergence-free 

method to such cases, only the inertia (temporal acceleration) and the viscous terms 

remain present. If, in addition, we limit ourselves to the linear stability of such flows, 

then the t h e  integration is even hirther simplified (see Sec. 3.6) and the generalized 

eigenvalue problem (3.29) reduces itself to 

for a given pair of wavenumbers ke, k,. Note that the Re-' factor of the viscous 

matrix in (2.45) can be ornitted here, i.e., set to 1, without loss of generality since it 



only cornes as a scaling factor for the eigenvalue A. Because (4.1) only involves the 

radial discretization, it provides a good framework to assess the %-spline interpolation. 

Now, fkom the Rayleigh-Ritz approximation theoryl of eliiptic eigenvalue problems 

(of order Zd),  the following eigenvalue error bounds can be denved (Strang & Fix, 
19138)~ 

Here, A: is the approximation of the s t h  eigenvalue A,, k is the order of approxima- 

tion, h is a measure of the local discretization (h a N;' in our case) and Cl is some 

constant, independent of h. The error estimate for the corresponding eigenfunction us 

is 

The n o m  II II is given by 

foilowing the standard L2-space definition; R. being the outer lirnit of the bounded 

dornain. Note that, unless otherwise stated, al1 norms wiU be understood in this 

sense. For our particular case, d = 1, these estimates give 

The absolute value of the eigenvalues is used to account for the fact that in the 

Stokes problem all eigenvalues are (real) negative while the estimates are derived for 

positive values. This is only a matter of convention because, as suggested by Strang 

& Fix, a large but finite value could be added to every .As in order to shift the whole 

'This is related to the problem of bding the extremum of a quadratic functional (usually the 
minimum energy) and bears very close kinship with the Gderkin approximation theory. The former 
is a particuiar case of the latter because in the Galerkin approximation ody a stationary point is 
sought, not necessarily an extremum. At any rate, this distinction poses no problem here since the 
Stokes flow problem, by the self-adjointness of the operators, can also be formdated as the minimum 
of some quadratic functional. 



(discrete) spectrum into the positive domain. Some validation of Our matrices and the 

assesmient of the B-spline discretization will be carried out by the numerical testing 

of these estimates. 

For this task, complete analytical solutions of Stokes flow stability problem (in a 

circula pipe) are however required. They were derived by Salwen & Grosch (1972) 
for kz # O-by means of vector potential expansions-and extended to include the 
case k, = O by LMMC. The complete set of solutions can be found in the latter 

reference but, for ease of access, it is also included here in App. E. 

Let us first consider the verification of the matrices for the general farnily of 
expansions ke > O ,  k, # O (see TABLE 2.1 for reference) . In FIG . 4.1, we show the 
convergence rates for the 10th eigenvalue of ko = 2,  k, = 3 ; results obtained with the 

code BOUNCYL-LS. This particular choice of wavenumbers is justified by the fact 
that they are the smallest values difFerent from 1 (to account for the difTerent powers 
of ka and k, in the construction of the matrices), and different fiom each other. As 
for the eigenvalue number, it  was so chosen for its more demanding character ( recd  
that higher eigenvalues are more difficult to approximate) without being too difncult. 

The effective convergence rates, obtained by a best f i t  of the data, are shown in 
TABLE 4.1 in which the theoretical estimates are given for cornparison. Note that 

since the vector expansions include B-spline derivatives, the estimates (4.5) and (4.6) 

must be evaluated with the value of k - 1 instead of k.  This is because the qth 

order derivative of a B-spline of order k is exactly representable by B-splines of order 
k - q. One observes that the tested convergence rates are al1 below the theoretical 
estirnates; higher order B-splines having a faster convergence rate. In ail cases, both 

the eigenvalue and the eigenfunction rates are consistent between themselves, viz., 

if IIû:-Û,II o: NF" then IX:-X,I oc NF*("-'), 
I 

where R is either the observed or the theoretical value. 

The present B-spline approximation not only ailows for error reduction by in- 

creasing the nurnber of splines N, for a given order k (h-convergence), but also by 

increasing the order k for a given number of splines (p-convergence). The (quasi-) 

spectral convergence that results from this second approach is shown in FIG. 4.2. 
Theory also predicts that the eigenvalues should be approximated from above (Le., 



A. 5 Ad). Although this is not apparent from the data shown, it has indeed been 

confirmed by our tests. Furthemore, the higher the eigenvalue, the more difncult it 

becomes to approxïmate it. This can be seen from the eigenvalue dependence of the 

right band side term of estimate (4.5). In FIG. 4.3, we show the relative error as 

a function of the eigenvalue index S .  In this case, the number of B-splines was set 

to Nr = 30 for the same order values used in FIG. 4.1. Again the obsewed values 

are in accordance with the theoretical behavior. It can be shown that in this case, 

the eigenvalue spectrum gives A, = 0(s2) .  The relative error is then expected to be 

of u ( s ~ ( ~ - ' ) ) .  Rom a best fit of the data, we obtained exponent values of approxi- 

mately 4, 7, 9 and 12 in cornparison with the theoretical values of 4, 6, 8 and 10 (for 

respectively k = 4, 5, 6 and 7). This is again consistent with our other results. 

The above results-the accurate prediction of the eigensolutions and convergence 

rates-strongly contribute to validate the matrices A and Ë for the general family of 

expansions ke > O: k, # O. Validation of the particular cases, for which either one or 

both ke = O ,  k, = O apply (again see TABLE 2 4 ,  is carried out in a more focussed 

manner. 

In FIG. 4.4, we show the relative eigenvalue error (5th eigenvalue) for these par- 

ticular cases. The results are shown only for quartic B-splines ( k  = 5); the respective 
convergence rates are presented in TABLE 4.2. When the " +" and " - " classes are de- 

coupled, the verification is made independently for each class, yielding the two curves 

in FIG. 4.4.a and 4.4.c. The difference of convergence rates between the ke > 0, 

k, = O and the ke = O ,  k, = O cases (FIG. 4.4.a and 4.4.c respectively) is consis- 

tent with the fact that in the former, velocity expansions include B-spline derivatives 
(first order) while in the latter, the expansions are formed without derivatives. In 
the general axisymmetric case ke = O ,  kz # O ,  both classes are coupled through 

the azimuthal swirl component but, according to the structure of the eigenmode, the 

convergence rate may exhibit or not (as it is the case here) the %rst order denvative 

rate". 



FIGURE 4.1. Relative error for a) the 10th eigenvalue, and b) its corresponding 

velocity eigenmode, as a function of N, and k,  for ke = 2,  k, = 3.  The lines 

are drawn fkom a best fit of the data; the corresponding convergence rates hence 

obtained are given in TABLE 4.1. 

TABLE 4.1. Observed convergence rates in FIG. 4.1 vs. the theoreticai esti- 

mates (4.5) and (4.6). 

IX:O - ~ i o l / l ~ i o l  Ilû?,, - ûio l l / l l ~ io l l  
k Observed (4.5) Observed (4.6) 



FIGURE 4-2. Relative eigenvalue error as a function of the B-spline order k (N, = 

20), for k6 = 2, kz = 3. A straight line alignment of the data points on this 
"iog-linn graphics amounts to an exponential (spectral) convergence rate. 

FIGURE 4.3. Relative eigenvalue error as  a function of the index nwnber s , for 

ke = 2, k, = 3. Results are obtained with N, = 30 and different values of k , 
shown in the figure. 



FIGURE 4.4. Relative error for the 5th eigenvalue of a) k8 = 2, k, = O; b) ke = 0,  

k, = 2 ; and c) = O,  kz = O .  Results are shown for k = 5 only. Here, the 
symbols "O" stand for "tn class and " A n  for "-" class expansions except in 
b) where both classes are combined into one. The observed convergence rates are 
given in TABLE 4.2. The lines are drawn from a best fit of the data. 



TABLE 4.2. Observed convergence rates in FIG. 4.4 vs. the theoretical estimate (4.5). 

lx: - &il/lXsl 
ka kz Obsenred (4.5) 

In terms of the accuracy of the radial approximation, the evidence so far certainly 

speaks in favor of the higher order B-splines. However, it is not so clear that this 

observation carries over directly to the general t h e  marching procedure. One way to 
get a better idea on this question is by a rescaling of some of the above results. When 

discussing the computation of the nonlinear term (Sec. 3.2), the "radial" operation 

count of that procedure was shown to scale as 0(Nrk2) .  Let us use this value as an 

estimated cost for the nonlinear term, and rescale FIG. 4.1 accordingly, to see what 

happens. 

The results are shown in FIG. 4.5 where we also present the error for the 20th 

eigenvdue. The behavior between the two eigenvalues is similar except for the level 

of the error itself (higher eigenvalues are more difficult to approxirnate). From this 

figure, the most efficient B-spline order is obtained by mentally drawing a horizontal 
line, from a given level of accuracy, and see which one of the different order curves is 

intercepted first, giving thus the lowest computing cost. Unless very high precision 

is sought, the error to cost ratio rather favors medium order splines with k = 4 or 
5. These order values are consistent with the one used by LMMC for their turbulent 

pipe flow simulation ( k  = 5 in that case). 

These observations clearly support the use of B-splines of orders of about k = 5 

(or less) in practice for the Navier-Stokes solver. The possible stifhiess problems, 
mentioned at  the end of Sec. 3.3 in relation to the regularity condition at the center 

of the domain, are also much less likely to occur at these orders. Note however 

that values up to k = 7 were used with the eigenvdue solver without noticing such 



FIGURE 4.5. Relative error for the a) 10th eigenvaiue and b) 20th eigenvalue as 

a function of the cost parameter Nrk2, for ke = 2, k, = 3. The iines are drawn 

from a best fit of the data. 

specific stifhess problems (see FIG. 4.1 and 4.4). Finally, recall fkom Chap. 2 that 
the minimum analytical requirements imposed by the present numerical method (see 
(2.46)) are satisfied provided k 2 3. 

4.1.2 Nonlinear term and time integration 

The matrices of both codes, BOUNCYL and BOUNCYL-LS, have been convincingly 
validated in Sec. 4.1.1, using cornparisons with analytical results for each family of 

vector expansions. For the validation of the nonlinear term, a difTerent strategy must 
be devised for lack of generd analytical solutions. Also, because of the explicit time 
integration of the latter term, the validation must be done while marching the solution 
in time. Note that the time marching algorithm could be validated independently of 

the noniinear term via the Stokes flow problem but we chose here to do both at 
once. Besides cornparing Our numerical results with other benchmark (numerical or 



experimental) data, a simple test can be devised from the time propagation of Orr- 
Sommerfeld waves, Le., linear stability perturbations that are solutions of (3.27). This 
is the approach we use here and the procedure is explained in what follows. 

Let us first introduce the Fourier-transformed perturbation vector û(r , t ) ;  the 

parametric dependence on the modal pair ke, kz is implicitly assumed. If this per- 

turbation is defined from the s t h  eigenmode Û , ( r ) ,  then we have, from (3.26), that 

Let us use here the notation ûh(r, t )  for the t h e  approximation of û(r, t) . Further- 

more, let us i s o  assume a given, sufficiently high level, radial resolution so that the 

spatial error in the approximate B-spiine solution of (3.29) may be considered negli- 

gibie. Without loss of generality, the radial discretization may thus aIso be implicitly 
assumed and we then write ûh(t) for short. it is known from standard temporal 

discretization error analysis that, for a scheme of order K ,  

with t, = nAt and C is some constant independent of At. For small At ,  the error 

should grow linearly in tirne. 

From (4.8), the validation of both the nonlinear term and the time marching 
algorithm can be verified by testing the time propagation error of the initial condition 

where E is a small amplitude parameter, Le., e « 1. Indeed, since the Orr-Sommerfeld 

wave (4.7) is a solution of the linearized Naxier-Stokes equations, this linearity of the 
solution should also be preserved by the fully nonlinear tenn. The implications of 
this statement are that: i) the evolution of the initial perturbation (4.9) is completely 

determined by the nonlinear interaction of the perturbation with the base flow field; 

and thus ii) al1 other nonlinear interactions, e.g., from the perturbation with itself, 

are negligibly small. For example, 

and so on. As one would recall, the nonlinear interactions of two modal pairs, one in 

ke , k, and the other in ké , k: are four-fold: t here is the "first harmonic" i) ke + ké , 



k, + k: ; the two LLcross-interaction harmonies" ii) kg + kb , k, - k: ; iii) ke - ki , k, + kt ; 
and h a l l y  the "retrograde harmonie" iv) ke - ké , k, - kt. 

That this test represents a necessary condition for the validation should not pose 

any problems. The fact that it also constitutes a sufficient condition may on the 

other side appear somewhat less obvious. We nevertheless believe that the following 

two part argument should help to remove any doubts about the sufficiency issue. In 
the &st part, we want to establish that, by covering al1 the vector expansion families 

of TABLE 2.1, we do cover a l l  the nonlinear interactions. The second part serves 

to establish that complying with the temporal error behavior (4.8) may be used to 

confirm the validity of the "spatial calculations". 

For the eigenmode to gow or decay exponentially (the linear dynamics behavior), 

all modal nonlinear interactions should be negligible in cornparison with the interac- 

tion of the base flow with the eigenmode. From this, we can see that there remain 

indeed some significant nonlinear interactions that need to be accounted for. The 

small parameter E is only there to ensure the "exclusivi~" of the interactions when 

evaiuating the back and forth Fourier transforms, and the convolut ion sum discussed 

in Sec. 3.2. The fact that the convolution sum is evaluated in the physical space 
ensures in turn that indeed all the nonlinear interaction terms are covered, although 

the tests are made for one vector expansion family at a time; the whole four families 

of expansions obviously need to be checked for the verification to be complete. 

To f i r m  that the "spatial evaluation" of the nonlinear term is done properly by 

monitoring the temporal error requires not only that (4.8) be satisfied, but also that 

the magnitude of this latter error remains very low. Indeed, complying with (4.8) only 

means that the total error is dominated by the temporal discretization error. A smdl 

magnitude requirement must therefore be added, and it is this combination of bath 

conditions that guarantees in return the validity of the nonlinear term computation, 

i.e., an even much lower spatial computation error. Now, it is by putting together 

these two lines of reasoning that we may confidently amve at considering the test, 
taken as a whole, as sufficient. Let us finally note that a similar validation procedure 

was also used by LMMC. 

The reference eigenmode solution for each one of our tests is obtained via our 



eigendue solver BOUNCYL-LS with the parabolic base flow profile 

at Re = 9600 (based on the centerline velocity and the pipe radius). In this case, the 

linear transport matrix 6 of (3.29) is non-zero and the eigenvalue solver therefore 

requires an independent validation. Such a validation was previously carried out by 

comparing our results with other available benchmark data for the pipe flow case. 

Additional information on this extra validation procedure can be found in App. E.2. 

For these tests, the (uniform) B-spline discretization was chosen to maintain the 

spatial discretization error very much under the temporal discretization one; N, = 35 

with k = 7 proved sdc ien t  (more than six significant figures on the eigenvalue). 

This solution was given as  an input to the code B O U N C ~  (with E = 1W6) and ad- 
vanced for 50 time steps. The error was then determined by comparing the computed 

eigenmode ûh (t,) to the reference solution û(C) , which was determined by 

In FIG. 4.6, we show the wave propagation error of the first eigenmode (s = 1) 

as a function of time, for the modal pair ko = 2,  k, = 3. As expected, the error 

amplitude remains small and behaves lineariy in time. Furthermore, the behavior 

of the first harmonic-the result of the nonlinear interaction of the eigenmode with 

itself-was verified to give 

also as expected. 

In FIG. 4.7-4.9, sirnilar results are shown for the other families of expansions 
, 

(see again TABLE 2.1); al1 in agreement with the predicted behaviors. The following 

observations are worth adding. Fint, in FIG. 4.8, the time step size was set to a much 

larger value than for the other cases in order to keep the temporal error significantly 

higher than the spatial error. Note also that for this case, the error amplitude still 

remains much srnaller than for the first two cases. Second, for the purely uniform 

axisymrnetric case, ko = O ,  k, = 0, the test was to nieasure how well the base flow 

profile maintained itself. 



This indirectly brings us to the imposition of the forcing term required to preserve 

the mass flow. As we already mentioned in Sec. 3.2, any (linear) non-homogeneous 

forcing-such as the equivalent pressure gradient that maintains the m a s  flow here- 

can be taken into account by the addition of some background component (e.g., 

unh,  &-'v2unh, etc.) in the noniinear term. An illustration of a background flow 
application has been included in App. F. Here, we exceptionally use a slightly different 

procedure based directly on the conservation of the mass flow instead; the details of 

this latter approach can be found in LMMC7s report. This choice was made for a 

matter of convenience and c m  be shown to have no effect on the solution. 

Indeed, the use of a non-homogeneous parabolic background flow would be strictly 

equivalent to the imposition of an extemal pressure gradient in this case. By thus 
fixing the extemal forcing, the mass flow must be left free to adjust itself to some 

possible non-laminar dynamical equilibrium. The m a s  flow conservation algorithm of 

LMMC is based on a reversed approach for which the mass flow is the f i e d  parameter 

and the external forcing is the free one. For the linear stability dynarnics considered 

here, this obviously makes no difference since the global base flow field always remains 

Iaminar. The point is additionally supported by the fact that the error between the 

cornputed ûh (t; O, O) and the base fiow U(T) , defined above in (4. IO), remains close 

to  the machine round-off error as indicated by the 1014 factor in FIG. 4.9. 

The third and final point regards the order of the time integration scheme, rc 

in (4.8). Although the precise value is not necessary to conduct these tests, it is 

nevertheless worth noting that it c m  be determined "experimentally" by cbecking 

the variation of error curve slope as a function of the time step size. Recall that the 

time integration scheme is of third order (except for the diffusive terms, see App. D.1). 
This particular test was conducted on the benchmark case shown in App. E.2, and 
a d u e  of tc = 3 was determined in accordance with the smail diffusion Reynolds 

number chosen for the tests( Re = 9600). 



Relative eigenmode error as a function of time, 
The discretization parameters are k = 7, N, = 35 and At = 
0.05). 

for kg = 2, kZ = 3. 
9.4 x 10-~ (CFL = 

Relative eigenmode error as a b c t i o n  of time, for ke = O ,  k, = 2. 

Discretization parameters as in FIG. 4.6. 



Relative eigenmode error as a function of tirne, for ke = O ,  kZ = 2. 
Discretization parameters as in FIG. 4.6, except for At = 9.4 x 10-' (CFL = 5.0). 
See text for additional comments on the time step size value for this case. 

Relative eigenmode error as a function of t h e ,  for ka = O, kz = 0 .  

Discretization parameters as in FIG. 4.6. Notice that the error here is at about 
the machine round-off level. 



4.2 Trailing line vortex 

The preliminary validation presented in the last section was focussed on the bounded 

domain codes BOUNCYL and BOUNCYL-LS. This allowed cornparisons of the nu- 

merical results of B-spline discretization with some closed form analytical solutions 

for the Stokes flow in a pipe. Additional results from the linear stability of Poiseuüle 

flow served for the validation of the nonlinear term computation and the global t h e  

marching algorithm of the Navier-Stokes solver. 

In this section, we proceed with the verification of the unbounded flow codes 

UNCYL and UNCYL-LS. Both Navier-Stokes solvers (bounded and unbounded) share 

the same algorithms for the time integration and the computation of the nonlinear 

term-validated in the preceding section-but clearly differ in the radial discretization 

and the outer boundary conditions. These dserences have repercussions on both the 

inertia and viscous matrices as well as on the nonlinear term radial integrais (see 

Chap. 3). The objectives of this section are therefore focussed on the verification of 

these new radial terms. 

More specifically, in this section emphasis is put on the expansion families for 
which k, # O (see TABLE 2.1); the 2-D polar cases, i-e., with k, = O ,  being the 

object of next section. In the first part of the present section, we will be pnmarily 

concerned with the validation of the eigenvalue solver UNCYL-LS . The validation 

of the complete Navier-Stokes solver UNCYL will then be considered in the second 
part of the section, not only in relation with external reference data but also with 

its consistency with the eigenvalue solver. Finally, a t  the end of this section, a brief 

digression is made to comment on the use of the bounded B-spline formulation for 

the solution of unbounded flow problems. 

4.2.1 Linear stability: Eigenvalue solver 

To carry on with Our task of validating the radial terms (and the code itself), we 

propose to consider the stability of trading line vortices, more precisely of the Batch- 

elor q-vortex. The problem is described in more details just below. Since there are 

again no closed form solution for this problem, validation wili be done by comparing 



Our results with the predictions of Lessen et al. (l974), Mayer & Powell (1992) and 

Matsushima & Marcus (1997). 

In order to better standardize our results with those found in the references, let 
us introduce the new variable A?:, that represents the number of "fkee" B-splines 

or equivalently the number of "radial modes". The terminology of radial mode 

cornes fiom the global expansion approach. One may also recall that because of 
the divergence-free formulation used here, there are only two unknowns (cornplex 
valued) per computational nodes, namely ahIL and a,,. In that sense, N; repre- 
sents half the number of degrees of freedom per Fourier modal pair. The number of 

free B-splines N,* differs £rom the total number of B-splines N, by the number of 
regularity/boundary conditions imposed, which in t u m  depends on the value of ke 

(see again Chap. 3). 

The q-vortex flow was initially presented by Batchelor (1964) as a self-similar 
solution for an aircraft trailing line vortex. It is composed of a standard Gaussian 
(Lamb-Oseen) vortex to which is superposed an axial jet-like flow. As argued by 
Batchelor, this axial flow (relative to the free stream flow) cornes as a dynamical 
necessity from the pressure differences within the vortex ccre (see also Sahan,  1992, 
for additional cornments). This "basic flow" combination is not only a mode1 problem 

of interest for aircraft vortices, but also for swirling jets. The difference between these 
two flow problems being only a matter of relative proportions. To describe the base 

flow field, we use the following normalization 

where q scales the swirl intensity, h the centeriine axial veiocity, and p the relative 
radial dimension of the axial flow to the vortex core size. The dirnensional reference 
length and velocity scales that have been used for this normalization are respectively 

the vortex core size radius ü and the fraction 1/h of the centerline axial velocity 
Ü , ( r  = O). The corresponding Reynolds number is thus written 

Note that the vortex core size radius a has been defined as 0.893Fu0 ;,-. The maxi- 
mum swirl velocity U ,  ,, therefore occurs at a non-dimensional radius of 1.12. These 
choices have been made in accordance with the convention used in the references. 



FIGURE 4.10. Perspective view of a q-vortex having parameter values of q = 
0.5 and h = B = 1. The vortex tube is represented by the two iso-surfaces of 

longitudinal vorticity, w, = 0.8 (inner surface) and oz = 0.2 (outer surface). The 
spiral lines represent the fluid particle trajectories at the surface radius. Both 

azimuthd and longitudinal velocity profiles are also shown on the figure. [Figure 
by courtesy of R. Broch4 

To better illustrate the base flow field, we show in FIG. 4.10 a perspective view 
of a q-vortex with q = 0.5 and h = P = 1. The vortex tube is represented by two 

iso-surfaces of longitudinal vorticity: for the long inner surface, w, = 0.8, while for 

the short outer one, w, = 0.2. On each surface: the typical spiral path of the fluid 

particles is also shown. From inside out, the flow passes from purely axial, on the 
centerline z axis, to purely azimuthal at a sufficiently large radius. The variation 

of the pitch angle between these two extrema is determined by the value of the 
parameter p. The two velocity profiles UB and U, are also included in the figure. A 
more formal graph of these specific velocity profiles is presented in FIG. 4.11 in terms 
of both the mapped coordinate q and the physical coordinate r .  



Axisymmetric base flow field for a q-vortex dehed with q = 0.5 

and h = p = 1. The profiles are plotted in relation to a) the mapped coordinate 
q with L = 11, and b) the radial coordinate r .  See ais0 FIG. 4.10. 



Let us first consider the linear stability problem (3.27) for the q-vortex just defined 

above, i.e., with q = 0.5 and h = ,û = 1. We remind the reader that this test not 
only serves for the vaJidation of the inertia and viscous matrices of the code U N C ~  
(via the eigenvalue solver U&n-LS), but it also serves for the validation of the 

linearized transport matrix. The importance of this point lies on the fact that later 

verifications of the complete Navier-Stokes solver wiil rest, in part, on these validation 

results. 

Now, for the given set of parameters and a Reynolds number of Re = 25, it is 

known that the flow is unstable (Re&) > 0) for perturbations in the modal pair 

ke = 1 ,  k, = 0.05 (Mayer & Powell, 1992). Note that this stability problem is well 
suited for testing the radial discretization because it involves the slowest decaying 

rate of swirl velocity (Ue oc T-' in the far field region), i-e., a wide spreading of 

the base flow, easily representable by the built-in decaying behavior, together with a 

smooth but relatively localized eigenmode. The computed most unstable eigenvaiue 

XI is given in TABLE 4.3 for different values of A?:. All values shown in the table 
were obtained with quintic Bsplines (k  = 6), uniformly distnbuted in the mapped 

domain q with L = 11. The corresponding values computed by Mayer & Powell and 

Matsushima & Marcus are given for cornparison. Note that both of these reference 

values were obtained by global expansion approximations. In the fbst case, Chebyshev 
polynomials were used in combination with a no-slip condition imposed a t  a large but 

finite outer radius R, . In the second case, radial discretization was done with rationd 
Legendre functions on an unbounded domain, with similar boundary conditions as 

the ones used here. 

The most unstable corresponding eigenmode (Ûo) is shown in Frc. 4.12. The data 
used to make the figure are the ones of the N; = 70 solution. Note that at 7 = 0.5 

(or T = the eigenmode is practically zero. This means that there are in fact 

about only half the B-splines that are effectively used for resolving the eigenmode. 

A more efficient use of the local node positioning flexibility would rightly suggest to 
reduce some of the superfluous B-spiines in the outer region. 

2The reader may recall the quick rule of thumb, given in Chap. 2, for passing from the rnapped 
coordinate q to the true radiai coordinate r: 71 = 0.25 u r = L / 3 ,  q = 0.5 u r = L, and 
q = 0 . 7 5 # r = 3 L .  



TABLE 4.3. The most unstable eigenvalue of ke = 1, k, = 0.05, for q = 0.5 

and h = ,û = 1 at Re = 25. The results are obtained with d o d y  distributed 
B-splines (in q ) with k = 6 and L = 11. 

t Matsushima & Marcus (1997): N: = 60 and L = 12 
$ Mayer & Powell (1992): N. = 300 and R, = 200 

The present choice of using a uniform node distribution (in q ) was made to ailow 

for a standard point of cornparison with the global expansion approximations, and also 

with the different B-spline results between themselves. In mapped global expansion 

approximations, e.g., as in Matsushima & Marcus, the radial resolution positioning 

(Le., putting the degrees of freedom where they are needed) is determined only by 

the rnapping parameter(s). In a mapped local method, such as this one, a great deal 

of flexibility is added by allowing for the independent adjustment of the mapping 

parameter and the node positioning. This certainly constitutes one of the original 

characteristics of the numerical method presented in this thesis. The resulting extra 
flexïbility may lead to many possible combinations of mapping and domain partionhg , 

for practically simiiar effective resolution. This last point will be the object of further 

considerations in Sec. 4.2.4. 

Assessrnent of the convergence rates for the mapped B-splines in this case is more 
dificult to carry out for lack of known analytical solutions. Instead, we make use 

of our new benchmark data of TABLE 4.3 (with N: = 70) as a reference solution 

and compare lower resolution results with it. This, of course, constitutes more of a 



Most unstable computed eigenmode ( ûe ) correspondhg to the 
problem of TABLE 4.3. The real part of the eigenmode is represented by the solid 
line, the imaginary part by the broken ("dash-dot-dot") line. The light dashed 
lines represent the base flow field, given as a reference. 

consistency check than a tme validation test for the radial interpolation. 

The h- and p-convergence of the "approximated" solution hence obtained are 

shown in FIG. 4.13, again with a uniform node distribution in q. The h-convergence 

results shown in 4.13.a were obtained with k = 5 and L = 11. The convergence rate 

evaluated by a best-fit of the data is -7.19, which is in very good agreement with the 

results obtained in the Stokes pipe flow problem of TABLE 4.1. The p-convergence is 

shown in 4.13.b; the results were obtained with N .  = 20 and L = 7. These parame- 
ters were chosen to produce a significant and reliable clifference between the approxi- 

mated and the reference eigenvalues. In this case, the quasi-spectral convergence-a 
straight line alignment of the data points in a "log-lin" plot-is not as much apparent 

as it was in FIG. 4.2, but can nevertheless be considered relatively satisfactory. One 

should note that it is indeed not clear that if7 by fixing the node distribution and the 

mapping parameter L in t his error analysis, the resolution varies consistently with the 

B-spline order. We must also remember that these expected convergence behaviors 



FIGURE 4.13. Relative error of the most unstable eigenvalue for the stability 
problem of TABLE 4.3. a) Resuits obtained with k = 5 and L = II. The iine 

represents a best-fit of the data for which IX? - Xil / lAi l  o: N:-7-19, showing the 
h-type convergence. b) Results obtained with N,' = 20 and L = 7.  The data 
show the p-type (quasi-spectral) convergence of the mapped B-splines. 

may be obsewed only after a certain minimum level of resolution is achieved. Both 

of these considerations could help in explaining some of the observed fluctuations in 

the data points. 

As another validation test for the eigenvalue solver UNCYL-LS , we computed the 

neutrally stable (A, = O )  asymmetric oscillations (ke = 1) of an inviscid columnar 

vortex for different values of the defining parameters q ,  h and P .  The results were ob- 
tained with N: = 20 (uniformly distributed) and k = 5, and are shown in TABLE 4.4. 

Al1 four digits shown are significant; computations with N: = 40 were also carried 

out to check the accuracy. The mapping parameter L was chosen in order to minirnize 
the difference between the two separate resolution sets of results, a procedure some- 

what equivalent to the choice of optimal mapping parameter used by Matsushima & 
Marcus. For cornparison, we include the values computed by Matsushima & Marcus 



TABLE 4.4. The positive imaginary part of the eigenvalue (ke = 1 ) of the neutrally 

stable (Ar  = O )  inviscid columnar vortex (4.11). The UNCYL-LS values were 
obtained with N,' = 20 and k = 5 .  As references, we indude the equivalent resdts 

of Matsushima & Marcus and the theoretical predictions of Moore & Saf£man given 

in (4.12). 
X i / q  x 104 

t Matsushima & Marcus (1997): N,' = 59, see &O TABLE V in the ref. 
* Moore & Saffman (1972) 
*: No positive eigenvaiues were found 

with 59 radial modes. Also, as a reference, we include the asymptotic solution results 
of Moore & Safnnan (1972, cited from Matsushima & Marcus). Their long wavelength 
asymptotic solution gives the imaginary part of the eigenvalue as 

where X i  = Im(A) and y = 0.57721566 . . . (Euler's constant). 



As reported by Matsushima & Marcus, this problem also constitutes a good test 

for the radial discretization since as k, becomes smaUer, the eigenfunctions have a 
slower radial decay, i.e., a wider extent. Technically the probiem therefore becomes 

increasingly difficult as k, decreases because of the scde ciifference between the base 

flow and the eigenfimction. This scale difference can also be accentuated as f l  in- 

creases, for example, because of the narrowing of the axial jet flow. At a,ny rate, 
for the range of parameters shown, systematic agreement (ail four significant digits) 

between the two numerical methods is observed. The agreement with the asymptotic 
predictions improves as expected when k, diminishes, i.e., as k, approaches the long 

wavelength limit of (4.12). It is worth noting how the B-spline discretization com- 

pares advantageously to the rational Legendre functions of Matsushima & Marcus in 

this particular case (our N: = 20 vs. their N: = 59). We must note however that 

is not entirely cleax if the = 59 results of Matsushima & Marcus do have more 
significant digits t h m  the four shown in their table. 

The stability of the inviscid q-vortex was also investigated numericaily by Lessen 

et al. (1974). The method they used is based on a different approach than the one used 

by both Mayer & Powell and Matsushima & Marcus which are somewhat closer to 

ours. These last two methods, like ours, are based on some weigbted residual formula- 

tion in combination with an eigenvalue solver of the QZ-type, as discussed in Sec. 3.6. 

Note that the precise details for the eigenvalue solver were not given by Matsushima 

& Marcus, but are presumed to follow this line of approach. As for Lessen et al., they 

first integrated the ordinary differential equation for the dispersion relation using a 

Runge-Kutta scheme and Frobenius power series. Then the eigenvalues were found 
as the zeros of this integrated equation using a Newton-Raphson method. With this 

approach, they identified a series of unstable %wiscidn modes from which, according 

to the azimuthal wavenumber ke, the maximum growth rates and the corresponding 

flow parameters are given in TABLE 4.5. Also shown in the table are the results from 
our code UNCYL-LS for the same parameters. The agreement between the two sets 

of results is again very satisfactory. Note that in this case, we used different radial 

discretizations (difFerent values of N,, k and L), according to the different sets of 

parameters, in order to obtain the four significant digits shown in the table. 



TABLE 4.5. Maximum growth rates dong with the conesponding longitudinal 
wavenumber kz and swirl parameter q for difFerent values of ke ( h  = P = 1 ). Our 

UNCYL-LS results are compared with the inviscid a d y s i s  values of Lessen et al. 

t ~ess&et  al. (1974): see also TABLE 1 in the ref. 

4.2.2 Linear stability: Navier-Stokes solver 

Up to now, our q-vortex results served to verify the eigenvalue solver, for the general 

expansion famiiy of ke > O, k, # O. At this point, we begin the second part of this 

section and make use of the validated eigenvalue solver-in conjunction with other 

external linear stabilie results-to veri& the unsteady Navier-S tokes code UNCYL. 
The validation of the axiqmmetric family of expansions, ke = O ,  k, # O is also 

considered in the process. The verification procedure used in this part is separated 

in two. On one side, it involves the direct finding of the most unstable mode and its 

growth rate using the Navier-Stokes solver. An unsteady Navier-Stokes solution does 

indeed only provide information about the most unstable, or the least stable radial 

eigenmode solution (i.e., s = 1 in Our ordering convention) for the given modal pair 

ke , k, . On the other side, it involves the use of consistency verifications between 
both the Navier-Stokes and the validated eigenvalue solvers. 

Longitudinal asymmetric modes: k@ > O, k, # 0. 

In the linear stability problern (3.27), the base flow field was defined as an equilib- 

rium solution of the Navier-Stokes equations, such as the parabolic profile (4.10) used 
in the pipe flow problem of Sec. 4.1.2. Because such solutions are seldom avdable for 



unbounded domains, it is usually more convenient to work with equilibrium solutions 

of the less stringent (no diffusion) Euler equations. The present q-vortex problem 

is certainly a good example for this type of situation. Now, in order to formally re- 

cover the eigenvalue results associated with an Euler equilibriurn solution, through a 
simulation of the complete Navier-Stokes equations, special care must be taken. The 
procedure used here to reproduce, and maintain, the Euler equilibrium state is simply 

to "fkeezeYy the diffusion of the base flow. This simply amounts in skipping the time 

marching of the modal pair ke = O, kz = O. By doing so, the initial condition for 

that modal pair (the base flow) remains thus constant for the whole computation. 

As a first test case, we study the stability of the q-vortex for the following set of 

base flow parameters: 

Note that unless otherwise stated, the axial flow parameters will, for now on, rem& 

fixed to h = P = 1. For the modal pair ko = 1, k, = 0.436, noted in its index form3 

( 1 , l )  for short, Mayer & Powell give a perturbation growth rate of A, = 1.06 x IO-*. 

As an initial condition for the Navier-Stokes solver, in addition to the base flow, we 

add a small amplitude white noise perturbation, with a modal energy of Eke,& = 

on al1 the computational modes; the modal energy is given by 

Etszkz = $ JO S ( r ;  ke,kz) û(r; ke,kz) rdr . 

The 

7 5 

radial scalar fields are constructed from random B-spiine coefficients values for 
0.5, and zero afterward. An example of equivalent energy spectra is s h o w  in 

FIG. 4.20 of Sec. 4.2.3. 

Because we are here interested in the behavior of the specific modal pair (1, l), 
low order spectral truncation is sufficient since that for linear stability dynamics, dl 
nonlinear interactions besides those relating the perturbations with the base flow are 

of negligible order. Accordingly, the computation of the nonlinear term need not be 
done on a de-aliased collocation grid (see Chap. 3). Indeed, for this type of problems, 

3Recall fiom Chap. 2 that the modal index pair ( m, n) , written in parenthesis, corresponds to the 
modal pair ke , kk, via m = koLe/2a and n = kcL,/2n. By choosing Le = 2r /kO and L, = 2.rr/kz, 
the modal pair ko , k, has the index values ( 1,l) . 



TABLE 4.6. Cornparison of modal growth rate results for the asymmetric mode 

k6 = 1, kr = 0.436 with q = 0.537 ( h  = P = 1) and Re = 40. Navier-Stokes 
results are identified with the equation used to determine the d u e s  shown in the 
table. 

U N C ~  (D) 1 1.055 

UNCYL-LS 1 1.05563 

t Mayer & Powell (1992) 

the resolution effort mostly concerns the radial direction. The spatial discretization 

parameters used for the code UNCYL are: 

The B-spline breakpoints are uniformly distributed in q with L = 10. For the time 

discretization, we used CFL = 2 (At = 0.4). Once the perturbation growth rate 

becomes relatively stable, the value is reduced to CFL = 0.2 for 25 time steps from 
which we determine the results appearing in TABLE 4.6. The number of digits shown 

in the table corresponds to the number of digits that remained constant over these last 
25 time steps. The "(1)" and "(D)" labels associated with the UNCYL results, in the 

table, refer to method used to estimate the growth rate; the methodological details 
are supplied in Sec. D.6, in the appendices. For now, let us simply mention that 
method (1) is based on an instantaneous variation of modal energy (see (D.37)) while 

method (D) is based on a discrete estimate of this variation (see (D.38)). We make 

use of method (1) here because it is readily available from the Galerkin approximation . 
(again see Sec. D.6). On the other hand, according to the level of energy a t  which the 

value is determined, method (D) may sometimes appear to be more precise, provided 

that the time step size At used in the evaiuation of the estimate is small enough. To 
compare with the Navier-Stokes solver values, we give the result obtained with the 

eigenvalue solver for the same radial discretization. In that latter case the number of 

significant digits is, as previously, determined by cornparison with other eigenvalue 
results obtained a t  higher resolution. 



To illustrate how much of the B-spline resolution is effectively put to contribution, 

the corresponding eigenmode Go obtained from the Navier-Stokes solution is shown 

in FIG. 4.14. Eigenfunction values were amplified by a 3 x IO4 factor to allow a 

cornparison with the base fiow velocity components shown in dashed lines. Also 

included in the figure are the unifonnly distributed radial breakpoints. Since the 
eigenmode is non-zero for only approximately r < 4.5 (9 < 0.33), a uniform radial 
resolution is clearly not the best choice in this case. 

Owing to the very good agreement, in TABLE 4.6, of our Navier-Stokes results with 

those of the validated eigenvalue solver and of Mayer & Powell, we may directly infer 

the validity of the code UNCYL in regard to the general family of vector expansions 

having kg > O ,  k, # 0 .  

This point is additionally supported by the monitoring of the modal energy Ek8,kr 

that was done during the simulation. The tirne variation of some of these modal 

energies is shown in FIG. 4.15. One may recall that a straight line on this "log- 
lin" figure represents an exponential growth/decay. The modal growth rate values 
(obtained with method (1) at t = 126) corresponding to the dinerent curves are 

presented in TABLE 4.7; the UNCYL values of TABLE 4.6 are taken from the (1 , l )  

curve. For the selected modal pairs shown, the unstable predictions (A, > O )  from the 

eigenvalue solver are well reproduced by the Navier-Stokes results, confirming thus 
the consistency between both solvers. As for the discrepancies between the eigenvalue 

solver stable mode predictions (A, < 0)  and the Navier-Stokes values, they can be 

shown to be the result of some significant nonlinear interactions. At t = 125, the 

energy level of the (1, -1) and (2, -2) modes has certainly become way too important 

for t heir nonlinear interactions to be considered negligible. 



Asymmetric eigenmode (ûe) associated with the eigenvalue of TA- 
BLE 4.6. The eigenmode is shown as a function of a) the mapped coordinate t) 
(L = IO), and b) the physifal coordinate r . The eigenfunctions are amplified by 
a factor of 3 x 104 and the dashed lines represent the base flow field given as a 

reference. The points on the radial axis identify the B-spline breakpoints. 



FIGURE 4.15. Modal energy as a function of tirne for q = 0.537 ( h = P = 1 ) and 
Re = 40. The values in parenthesis identify the modal pair indices associated with 

the curves. The corresponding growth/decay rates are given in TABLE 4.7. 

TABLE 4.7. Observed growth rates from Navier-S tokes simulations for the modal 
index pairs (m, n)  shown in FIG. 4.15. The given values were taken at t = 125, 

when some of the modal pairs have left the linear regime. The corresponding eigen- 
value solver results are given as a reference. See text for additional information. 

(m,n) UNCYL UNCYL-LS 

(1, 1) 1.06 1.05565 

(2, -2) 5.75 5.7388 

(1-) 5.60 5.7351 

(O, -2) 11.3 -1.90096 

(O, 2) -1.41 -1.90096 

(2, 2) -2.66 -1.9010 



Longitudinal axisymmetric modes: ko = 0, kz # 0. 

Let us now consider the verification of the axisymmetric family of expansions 

ke = O ,  k, # O (see TABLE 2.1). The validation of both codes UNCYL and UNCYL- 
LS will be carried out simultaneously by considering this time the unstable growth 

rate values Ar as a function of the swirl parameter q , again with h = p = 1. More 

specifically, the validation test will be realized for an axisymmetric perturbation with 

kz = 0.444 at Re = 1000. The computed results are compared with those of Mayer 
& Powell (1992), and are presented in FIG. 4.16. In the reference, the q instabiiity 

range for this specific set of parameters is given by 

with a maximum growth rate of A, = 9.03 x 10-4 occurring at q = 1.05 ; these three 

characteristic points are shown on the figure. 

In this case, because the growth rates are quite small and the evolution from a 

random perturbation to a well stmctured eigenrnode may be quite long, we directly 

use the eigenmode (from the eigenvalue solver) as the initial condition for the Navier- 

Stokes simulation (a 1oe6 amplitude factor is used to maintain %econdary" nonlinear 

interactions negligible). Note that this test amounts, in a certain way, to the one done 

for the Orr-Sommerfeld wave propagation for the pipe flow problem of Sec. 4.1.2. 

The growth rates evaluated with the Navier-Stokes solver agree to almost al1 
significant digits with the values found by the eigenvalue solver, for the same radial 
discretization: N, = 54, k = 5 ,  with a uniform domain partition in q (L = 5 ) .  

This certainly confirms that both solvers are consistent between themselves. Again, 
the number of significant digits of the UNCYL-LS growth rates is determined by 

cornparison with higher order approximations ( N ,  = 55, k = 6). The maximum 

growth rate vahes A, hence obtained are shown in TABLE 4.8. The UNCYL value 
was computed with CFL = 1.7 (At E 0.2). Al1 values are seen to  be in very good 

agreement with each other. Furtherrnore, a linear interpolation between the two h t  
and the two last data points gives the loci of the neutrd stability (A, = O)  limit 

points, which yields an instability range of 

also in very good agreement with the reference values given above. 



FIGVRE 4.16. Growth rate value A, as a function of the swirl parameter q for 
the axisymmetric 4'viscous moden ko = O ,  k, = 0.444 at Re = 1000. The symbols 
identify the following results: Y on UNCYL-LS values; "O" UNCYL values; and 
"O" Mayer & Powell reference values. The lines are drawn kom the eigenvalue 

solver data points. Note that the maximum growth rate value at q = 1.05 coincides 
for a.ii three sets of data points (see also TABLE 4.8). 

TABLE 4.8. Cornparison of modal growth rate results for the axisymmetric mode 
kg = O, k, = 0.444 with q = 1.05 and Re = 1000 (see text for additional 
informat ion). 

UNCYL (D) 9.0281 MPt l 9*03 
U ~ c n - L S  1 9.028086 

Mayer & Powell (1992) 



FIGURE 4.17. Growth rate A, as a function of the swirl parameter g for the 
asymmetric viscous mode ka = 1,  k, = 0.436 at Re = 40. The symbol definition 
is the same as in FIG. 4.16. The maximum growth rate value at q = 0.537 coincides 
for the three sets of data points. See text for additional comments on the stability 

bounds. 

Revisi'ting the Iongitudinal aspmetric case = 1, k, = 0.436. 

The test just described above for the longitudinal axisymmetric modes was also 

cmied  out for the asymmetric case ke = 1, k, = 0.436 at Re = 40. Recali that 

for these panmeters, the most unstable viscous mode computed with our method 

was in good agreement with the predictions of Mayer & Powell, as we showed in 
TABLE 4.6. In terms of the swirl parameter q, Mayer & Powell give the following 

inst abiiity bounds 
C 

Using a similar procedure as described precedently, we obtained the results shown in 

FIG. 4.17, with this time a much narrower instability range of 



Owing to the excellent standing of our results in ail the different vaiidation tests 

presented so fa-including agreement with other results of Mayer & Powell-we are 

quite confident that Our computed values provide a more accurate and reliable set 

of instability bounds for this specific case. A formal explanation for the discrepancy 

observed between both sets of values is however left to some further study. 

4.2.3 Nonlinear dynamics 

Having now established a good deal of confidence in the code UNCYI,, let us leave 

the linear stability regime and make a brief "qualitative excursion" into some early 

stages of the nonlinear dynamics. For this purpose, we consider the low swirl case 

q = 0.05 a t  Re = 1000; the axial Aow parameters are still h = ,û = 1 so that the 

flow of interest here is basicaiIy a swirling jet. The initial condition, besides the base 
flow, consisted of a white noise perturbation with an energy level of Eb,& = 

The spatial and temporal discretization parameters used were: 

N, = 54, k = 5, uniform distribution of breakpoints in r )  (L = 11); 

4 modal zones (Le  = 274 with 

Ne = 6 (O 5 i )  < 0.075), Ne = 10 (0.075 5 71 < 0.1), 

Ne = 18 (0.1 5 7 < 0.5), Ne = 10 (0.5 5 9 < 1.0); 

N, =20 (L, =30);  and 

CFL = 1.7 for which At = 0.5- 

The time evolution of the solution is shown in FIG. 4.18. To illustrate the development 

of the instability, we show iso-surfaces of enstrophy +l w l2 = 0.1 ; the "vortex tube" is 

shown for two longitudinal periodicity lengths. The energy variation (in time) of the 

most unstable modal pairs corresponding to FIG. 4.18 are also shown in FIG. 4.19. 

Although we do not aim at making an in-depth study of this q-vortex dynam- 
ics, many interesting observations can be made from the simulation results. First, 

the most unstable modes have an azimuthal index number m = 1 ,  combined with 





FIGURE 4.19. Time evolution of the perturbation energy for the five moût unstable 
modal pairs (m,n) of the simulation shown in FIG. 4.18. Note that all  c m e s  are 
for m = 1,  the index n is shown on the figure. 

negative longitudinal index numbers n (see FIG . 4.19). This "asymmetric" character 

of the instability can also be partly observed from the azimuthal energy spectra (r and 

z integrated) in FIG. 4.20.a. The white noise perturbation is seen from the constant 

energy level in the spectmm at t = 0; the peak at m = O is associated with the base 

flow field. Continuing with FIG. 4.20.a, at t = 50, the unstable modes have started 

to grow (see Frc. 4.19) but still with a net decrease of the perturbation energy. At 

t = 100, the dominance of the m = 1 mode becomes apparent since an increase of.  
the perturbation energy above the initial level is only seen for this azimuthal mode. 

Also from FIG. 4.20.a, we can see sorne of the effects of the modal zoning. The 
sudden energy Ml-off observed for m 2 10 is one such effect, and is explained by what 
follows. When defining the white noise perturbation, a uniform amount of energy is as- 
signed to each modal pair to obtain a uniform initial (t = 0) spectrum. Because of the 

(uniform) random character of the initial perturbation energy, there is no radial region 



FIGURE 4.20. a) Azimuthal energy spectrum at different times for the q-vortex 

shown in FIG. 4.18. b) The corresponding longitudinal energy spectrum. Note 

that the time intervals are the same for a) and b) but different from those in 
FIG. 4.18. The step fd-off at rn = 10 in a) is associated to a change of modal 

zone (see text for additional cornments) . 



in which the modal truncation could be applied with only negligible losses of energy, 

as discussed by Houde et al. (2000). In other words, if the perturbation energy has a 

uniform random distribution in the radial direction, then applying directly the modal 

reduction would result in %tep decreases", or energy losses in the initiai spectrum. 

In the present case, we opted for a different strategy in which the perturbation energy 

density is augmented in the truncated zones, yielding the uniform radidly integrated 
energy distribution a t  t = O. No modal energy is therefore lost by the modal tnrnca- 

tion. Note that for practical reasons, the perturbation energy was radially confined 

to q 5 0.5, for aJ modes. 

The important point of al1 this remains that, although different initial perturba- 

tions will O bviously lead to different transient behaviors, the natural ensuing dynamics 

of the problem should not be aEected (in most cases a t  least) as long as the initial 

perturbation does not exhibit any preferential structure. The spatial discretization, 

including the modal zoning, should be adequately devised to allow for the proper r e p  
resentation of al1 relevant eigenmodes. As can be seen by the shape of the different 
spectra and the energy level at which the step cut-off occurs, we may certainly feel 

confident that it has indeed no significant impact on the solution. 

Let us now consider the longitudinal spectra ( r  and 0 integrated) in FIG. 4.20.b, 
keeping in muid that the energy dominant modes have an azimuthal index of m = 1. 

There are many interesting points that can also be observed £rom that figure. First, 
one may note the k,-asymmetry of the spectra. Even if the base Aow is dominated 

by its "jet character7', the slight presence of a mir1 component results in a symmetry 
break-off, as discussed by Lessen et al.. Only in the case of a purely axisymmetric 

jet (q = O),  both the k, and -k, modes have the same instability characteristics 

and, as Batchelor & Gill (1962) showed, the corresponding unstable modes are only 
possible for ke = 1. Although this latter demonstration was made for a different 

velocity profile than the one in (4.11), it is also supposed ta apply in this case. 

For very low swirl values such as q = 0.05, Lessen et al. showed that there remain 
some positive (k, > O )  unstable inviscid modes but with much smaller growth rates 
than those of the negative modes (k, < O). At finite Reynolds numbers, Mayer & 
Powell also showed that there is a possibiüty for some asyrnmetric (m = 1) positive 

viscous modes but again with significantly lower growth rates than those associated 



with the inviscid-like modes observed here. None of these positive modes were how- 

ever seen to emerge from the white noise perturbation we used, due precisely to the 

smallness of their growth rate. Another point worth noting is that, according to our 

results, the most unstable longitudinal mode (with m = 1 ) has a value k, -0.6, 

which is in good agreement with our linear stability predictions, as well as in good 

qualitative agreement with the inviscid andysis predictions of Lessen et al.. 

Finally, from the shape of the spectra and the relative amplitude of the modal 

energies, we are able to confirm that a truncation level N, = 20 was sufficient to 

properly resolve the problem up to the considered time t = 150. With this, we 

conclude our brief illustrative excursion and at  the same time, the verification of 

the kz # O families of vector expansions. The reader may note that more complete 

nonlinear dynamics, with instability saturation, will be presented for the triangular 

vortex problem in the next section. 

4.2.4 Radial direction: Domain truncation vs. mapping 

As the reader will have noticed, most of the radial discretizations used so far were 

with a uniform distribution of breakpoints in the 7pdomain. The reason for this, 

as we already mentioned, was in part to allow for more standard cornparisons with 

the global expansion results. Even if the local flexibility was not used to its full 

potential, the present method compared advantageously well with the other ones 

used as reference. The question that could naturally corne to one's mind at this point 

is: how much could be gained by taking advantage of the additional flexibility offered 

by the variable node positioning? 

Tkying to give a relatively complete answer to this question is, in our view, a task 
that goes beyond the scope of the present work4, and so we shall limit ourselves to 

some particular considerations only. More specifically, the use of a local method in 
unbounded domains may certainly cal1 for a reconsideration of the tnuicated domain 

approach, briefly introduced in Sec. 2.3.2. As one may recall from that section, 

there are two main sources of error in the approximation of unbounded problems: 

'As far as we are aware, mesh refinement and optimal node positioning-which is indeed the 
point of interest here-is still an active field of research of the "finite element community". 



i) the approximation of the boundary conditions, and ii) the approximation of the 

continuum solution by a discrete set of values. 

In the truncated domain approach, the outer radius R, can always be chosen large 

enough as to bring the boundary condition erro? to a negligibly small value compared 

to the other source(s) of spatial error. By doing so, the "doubley7 approximation 

problem has now become one of spatial resolution ody. This point is particularly well 

illustrated by the "bounded" results shown in TABLE 4.9. The significant differences 

o b s e d  between the error of our two B-spline values and the Chebyshev result of 

Mayer & Powell must indeed be attnbutable to differences in the spatial resolution 

since the boundary conditions are the sarne for dl three cases. 

Based on a sirnilar argumentation, we may also conclude that the important differ- 

ence, in the number of radial modes, between the solution of Matsushima & Marcus 

and that of Mayer & Powell (see TABLE 4.3) is again attributable to a difference in the 

spatial resolution. Following this, we can certainly see that the h e d  and very regular 

resolution of global expansions, applied directly to the domain truncation approach 

does not seem so much appropriate, at  least for the type of problems considered 

here. The mapped Legendre polynomials, or equivalently the rational Legendre func- 

tions, of Matsushima & Marcus corne as marked improvement in terms of a more 

appropriate resolution positioning. 

As opposed to global expansions met hods, local methods wit h t heir intrinsic node 

or resolution positioning flexibility-which may Vary according to the particular type 

local of interpolation chosen-thus appear to be naturally better fitted for the do- 

main truncation approach. Regarding that point, let us mention that Houde (2001) 

has undertaken a more systernatic validation and pararnetric study of some 2-D po- 

Iar and axisymrnetric versions of the code B o u ~ C n .  Many of the reference Bows 
he successfully compared with were in fact unbounded flows. In this context, if 

unbounded problems can then seem to be efficiently approximated by a local interpo- 
lation bounded formulation, the question is then: how well does the mapped B-spiine 

formulation of the code UNCYL compares to the standard B-spline one of the code 
B OUNCYL? 

'As &O meationed in Sec. 2.3.2, the approximation can even be improved by considering other 
types of boundary conditions than the no-slip one, e-g., shear free, etc. By extension, mappings could 



TABLE 4.9. Relative error for the most unstable eigenvalue Xi of ko = 1, k, = 

0.05, for q = 0.5 ( h  = P = 1) at Re = 25 (see also TABLE 4.3 and text). In ali 

cases, quartic (k = 5 )  B-splines are used. 

M P ~  50 100 1.32 x 10' 
B o u ~ C n - L S  ( I) 20 100 1.85 x 10-~ 

BomCn-LS (II) 20 100 8.42 x 10-~ 

t Matsushima & Marcus (1997) 
$ Mayer & Powell (1992) 

Note that because the new question only involves the radial discretization, it can 

as well be considered in terrns of the eigenvalue solvers. Furthemore, since both 

general Navier-Stokes solvers share the same time marching procedure (including 

the computation of the nonlinear term), the linear stability comparison results are 

expected to carry over without restriction. Parts of these considerations are also 

included in Dufresne & Dumas (2000). Let us now revisit the benchmark case of 

TABLE 4.3 which will again serve as a reference. The procedure used here is similar 

to the one used for determining the convergence rates of FIG. 4.13. 

In TABLE 4.9, we first compare the results obtained with UNCYL-LS, with those 

of Matsushima & Marcus for N; = 20. Also shown in the table are the results of 
Mayer & Powell against those obtained with the code BOUNCYLLS (both with a no- 

slip condition at  R, = 100). For that comparison, case-1 corresponds to a simple but 
reasonable node distribution (4 regions of different but uniform node density) while 

case-II intends to mimic the (algebraically mapped) node distribution used for the 

unbounded calculation, with the mapping parameter set to L = 12.5. Al1 B-splines 

results are obtained with k = 5. Lookùlg at the error of the bounded cases, one can 

even be seen as a different form of such "modifiedm boundary conditions. 



easily see the advantages of local approximations. Indeed, for the large value of R, 
used here, the imprecision of the Mayer & Powell and, to  a lesser degree, of the case1 

solutions can be attributed to a lack of resolution. As for the unbounded solutions, we 

see that the mapped B-spline method compares advantageously well with the method 

of Matsushima & Marcus, as it was already noted earlier in the section. 

The main point of interest though, remains how the two B-spline codes compare 

between themselves. In order to assess that issue, a point of comparison needs to be 

established. The best comparison would obviously be at the lowest possible error for 

each method. Due to  the inherent difficulties that axe associated with the determina- 

tion of such optimal results, we opted for a more accessible comparison point. Trying 

to approximately mimic the lowest error result on a comparable discretization, we 

used a similar but slightly different domain partitioning for each code. The break- 

points of the bounded code were uniformly distributed in a pseudo-mapped truncated 

domain q E [ O, qo ] (with rl, = a/(& + L) and consequently qo < 1 1). These nodes 
were then projected back into the radiai domain, and used as breakpoints. This is the 

case-II method used in TABLE 4.9. The unbounded solution was determined using a 

standard uniform distribution in the mapped q-domain. The rnapping parameter L 
was chosen, in each case, to minirnize the error. This choice was privileged over, Say, 

an exact radial (minus the last point) domain partitioning because such breakpoints 
distribution do not lead to s minimum error simultaneously for both methods (recall 

that the effective radial interpolation functions are not the same). 

Following this procedure, many comparison tests were done. The results of one 

such typical test are illustrated in FIG. 4.21, and are weil representative of the whole 
series. Both eigenvalue and eigenmode (the scalar spline functions gs,, , instead of the 

the velocity û, are used here) relative errors are shown as a function of the number of 
free B-splines N:. Also for comparison purposes, the radial L2-nom was evduated 

over a finite radius ( r 5 50). The number of B-splines was lirnited to 20, to keep the 

relative error at a meaningful level; the reference data being the N: = 70 solution 

of TABLE 4.3. Note that the leveling of the eigenvalue error, for the unbounded 
solution, is only associated with the fact that only a small number of B-splines were 

used, and that the discretization parameters are not identical for each point. At 

constant discretization parameters, the error value is not as small but does not Ievel 

off. The proper behavior of the solution is nevertheless confinned, even at varying 
discretization parameters, by the decay of the corresponding eigenmode error. 



FIGURE 4.2 1. a) Relative eigendue mer and b) scalar spline funet ion eigenmode 

error, both as a function of N,' . The "O" symbols are for B o m C n - L S  solutions 
whiie the " o n  are for the UNCYL-LS ones. In b), the solid lines refer to the "+" 
class and the broken ("dash-dot") iines refer to the "-" class solutions error. 

Globally, the unbounded solutions prove more precise for the tested cases, but 

this observation calls for additional comments. The tests were all with the slowest 

decaying base Row field (Uo OC r- ' ) ,  which requires some resolution in the  far field. 

For faster decaying fields the difference between the two solutions would probably 

not be so apparent. The bounded solution was also obtained with a no-slip condition 

at the outer radius. This is not the only possible choice, as we already mentioned, 

and other types of less stringent boundary condition approximations could have been 

used. These lasts points are certainly quite familiar to numericist who already very 

successfuliy used local interpolations on bounded domains approximating the infin- 

ity. It is nevertheless believed that-because of its built-in decaying behavior, and 

because whatever the distribution of standard Bspline breakpoints used, a similar 

distribution can always be obtained for the mapped B-splines-the present mapped 

B-dpline formulation should always maintain itself a step ahead of the standard B- 
spline one. This difference may become marginal though, depending on the Srpe of 
problems considered. 



4.3 Triangular vortex 

In this section, we now undertake the validation of the 2-D polar (k, = O )  families 

of vector expansions of TABLE 2.1. TO do so, we follow the same validation strategy 

used precedently an apply it to the stability and nonlinear dynamics of a circular 

vortex patch whose vorticity profile was given and studied by Kloosterziel & Car- 
navale (1999) and Carnavale & Kloosteniel (1994). In addition to the quantitative 

comparisons made with the linear stability results, the present validation tests ais0 

include qualitative comparisons wit h the nonlinear evolution of the flow structures. 
In view of our present verification objectives, this combination of quantitative and 

qualitative type of comparisons will prove sufficient. 

Let us begin by a brief description of the problem. 

non-dimensional vorticity and corresponding velocity 

by 

and 

From the cited references, the 

profiles are respectively given 

with a! > O. These profiles define a basic axisymmetric flow which can be described 

as a negative vorticity core inscribed in a positive vorticity annulus of equaI but 

opposite sign circulation; the resulting vortex patch having a zero net circulation. 
These profiles are shown in FIG. 4.22; for different values of the parameter a. The 

reference time and length scales used for normalization are defined by the inverse 

of the core center vorticity fi;' (with no r &(f = 0)) and the velocity profiles 

"crossing point" &. The velocity scale directly follows as no& which in turn gives 

the Reynolds number 

It is worth noting that these "theoretical" profiles have an experimental counterpart 

(close to the a = 2 profile) as mentioned by Kloosterziel & van Heijst (1991); they also 

are part of a group of mode1 problems of interest in geophysical flows, and possibly 

in coherent structure dynamics of 2-D turbulence. 



a) Vorticity and b) velocity profiles correspondhg to (4.16) and 

(4.17) respectively. The c w e s  are plotted for every unitary value of a between 3 
(the smoothest) and 8 (the steepest) . 



For our validation purposes, we will iimit ourselves to the study of the  a = 7 

profile. At this parameter value, Carnavale & Kloosteniel have shown that the vortex 

is unstable to 2-D perturbations with azimuthai wavenumbers of ke = 2, 3 and 4; 
the maximum growth rate being for ke = 3. The velocity profile does indeed s a t w  

Rayleigh's inflexion point theorern that establishes the necessity of an inflexion point 

in the velocity profile for the existence of instabilities (Drazin & Reid, 1981). Note 

that the vortex may also be centnfugally unstable. Indeed, since the net circulation 

is zero, there must be a region in which the circulation (absolute value) decreases, 

violating thus Rayleigh's circulation criterion (Drazin & Reid, 1981). This second 
type of instability will however not be considered here since, as we already mentioned: 

we lirnit ourselves to perturbations with k, = O.  We refer the reader directly to 

Kloosterziel & van Heijst (1991) for additional comments on these specific stability 

issues. 

4.3.1 Linear stability 

As a first test, we compare, in TABLE 4.10, the growth rate results given in Car- 
navale & Kloosteniel (1994) with the ones predicted by both Our eigenvalue and 
N avier-Stokes solvers. Eigenvalue solutions were ob tained with about 100 B-splines, 

uniformly distributed in the q-domain. The number of significant digits of the solu- 

tion was determined by comparing the results obtained with k = 5 and 6, at different 
values of L ranging from 1 to 5 according to the specific case. The UNCYL re- 
sults were obtained with the same radial discretization as the one used to obtain the 

UNCYL-LS results. Note that our 'Snviscid" values (Re + m) were in fact computed 
with Re = 108 for both the eigenvalue and the Navier-Stokes solvers. For the eigen- 

value solver, the choice of a finite value for Re instead of directly using the inviscid 

limit (setting the rnatrix to zero in (3.29)) was made because of some difficulties 

associated with the structure of the matrices in relation with the Q Z  algorithm. Small 
but non-zero values for the viscous term were necessary for the convergence of the 

solution. At any rate, this does not affect the ensuing results as can be seen by the 
good agreement between the different sets of values shown in TABLE 4.10. Let us 

additionally note that the results of Carnavale & Kloosterziel were obtained by nu- 

merical simulations, using a Cartesian Fourier spectral code (with a periodic array of 



TABLE 4.10. Most unstable inviscid perturbation growth rate values for ke = 2, 
3, and 4, with a = 7. The Re = 104 d u e s  are included for cornparison. 

t Carnavale & Kloosterziel (1994): Data graphically interpolated 

vortices), of the inviscid, linearized vorticity equation. These reference values were in 

turn found to be in agreement with those of Carton & McWilliams (1989, cited from 

Carnavale & Kloosteniel) who also worked on this problem. 

Also inciuded in TABLE 4.10 are the results for Re = IO4, from both the eigen- 

value and the Navier-Stokes solvers. These last two sets of values are found to be 

in good agreement between themselves and also with the inviscid results. This ob- 

servation will allow us to use with confidence our Re = IO4 flow fields to compare 

with the "inviscid" simulations of Kloosterziel & Carnavale (1999) in the following 

part (nonlinear dynamics) of the validation process. It is worth noting that in this 

latter work of Kloosterziel & Carnavale, a hyperviscosity dissipation term was used 

to prevent the built-up of small scale structures at high wavenumbers while in our 

case, we solely relied on standard physical dissipation (the Laplacian viscous term) to 
carry the same task. This is why we had to limit ourselves to only moderateiy high 

Reynolds numbers. 

4.3 .2 Nonlinear dynamics 

The next validation test thus consists in comparing the ensuing nonlinear evolution 

of the specific perturbation mode ke = 3 with the simulations of Kloosterziel & Car- 
navale. Their results show that the perturbation will maintain its linear growth regime 

for a certain time, but noniinear interactions will eventually lead to a saturation of 
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FIGURE 4.23. Formation of a triangdar vortex with cr = 7 at Re = 104 . Dark 
grey represents negative vorticity whiie light grey stands for positive values. The 
white region encompasses the near zero vorticity -0.05 < w, < 0.05. See next 
page for continuation. 
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FIGURE 4.23. [Continued.] Minimum and maximum values of w, are shown on 
each fiame, as weil as the solution time t . The discretization parameters and the 
initial condition are desmibed in the text. 



this instability. A new state of time periodic equilibrium (for the Euler equations) is 
then reached in the f o m  of a triangular vortex rotating as a whole about its central 

core. More specifically, the new vortex is constituted of a triangular central core of 
negative vorticity surrounded by three penpheral positive valued vortices6. This new 

systern may in turn be subject to other types of instability (Kloosteniel & Carnavale, 

1999) that are not considered here. 

This dynamical behavior was weil captured by our simulations, from which we 

show some general evolution illustrations in FIG. 4.23. Note that to Save on compu- 

tational time, these simulations were obtained with a specialized 2-D polar version 

of the code. Also, taking advantage of the natural periodic symmetry of the prob- 

lem, we set Le = 2n/3 so that in this case ke = 3772 (with m = 0,1, .  . . , Ne). The 

complete vorticity fields of FIG. 4.23 are thus simply produced by periodic extension 

of the basic "piece of piey7 domain solution (see FIG. 4.24). As for the initial condi- 

tion, we used a single mode ke = 3 perturbation with a random radial stmcture (see 

FIG. 4.26). The discretization parameters are summarized in what follows: 

NT = 74, k = 5, partially uniform distribution of breakpoints in 77 (45 points 

for O 5 7 < 0.5 and 25 points for 0.5 5 q < 1) with L = 2; 

6 modal zones (Le = 2?r/3) with 

Ne = 6 (O 5 77 < 0.1 ), No = 12 (0.1 5 < 0.2 ), 

Ne = 24 (0.2 $ 7 < 0.25), Ne = 32 (0.25 5 11 < 0.55), 

Ne = 24 (0.55 5 Q < 0.75), Ne = 12 (0.75 5 c 1.0 ); 

CFL = 1.7 for which At x 3.5 x IO-*. 

An illustration of the pseudo-computational grid is shown in FIG. 4.24. 
, 

Note that the modal reduction used here mainly allows for an economy on the 

number of degrees of freedom (about 40% less for the present choice). The maximum 
CFL nurnber that determines the critical time step only changes position-rcn ,, = 
0.5 for the present multi-zone while r m ~  max 0 0.01 in the single zone case-without 

61t is interesting to note that this triangular and other multipolar vortices can be Iùiked to 
some exact solutions of the Euler equations; see Crowdy (1999) for more details on such rnultipoIar 
analytical solutions. 



FIGURE 4.24. The pseudo-computational grid used to obtain the results shown 

in FIG. 4.23. For the radial discretization, we show the breakpoints (in r ); for 

the azimuthal discretization, we use twice the number of computational modes to 

represent the pseudo-grid. Bold lines are used to show the frontiers of the modal 

zones (the fifth zone appears only partiaily and the sixth zone is not seen at ali) 
and also of the periodic (2n/3) domain. The discretization parameters are detailed 

in the text. The t = 50 solution of FIG. 4.23 is added for a scaling cornparison. 

practically changing the value of At. For a uniform azimuthal resol6tion in this type 
of problem (purely axisymmetric base flow field) we would expect the cntical time 
step to be located at the point of maximum azimuthal velociw, which is indeed almost 
the case ànce for cr = 7, ue ,, is located at r = 0.757. The agreement between the 
single (not shown here) and the multi-zone computations is better than five digits 

accuracy on the total energy, and no visuai differences can be detected between the 
two flow fields. 



4.3.3 Other results 

Besides the globd macroscopic agreement with the reference solution, other more 

specific verifications with the reference results of Kloosterziel & Carnavale were also 
undertaken. In FIG. 4.25, we show the time evolution of the modal components of 

kinetic energy Ek@ and enstrophy Ek@. Following the definition of the modal kinetic 

energy in (4.13), we write for the modal enstrophy 

Since the velocity field is entirely rotational (no potentid flow region) both Eko and 
Ek4 behave similarly, and so observations from either one of two the quantities are 

almost directly transposable to the other. Because of the natural formulation of the 

problem in terms of vorticity, let us consider the modal enstrophy evolution. 

From the initial condition to about t = 5, the mode-3 random perturbation-since 

we only speak of azimuthal modes here, let us use the sirnplified "mode-3" notation 
to designate the azimuthal wavenurnber ke = 3-is restructunng itself giving rise 
to the most unstabie eigenmode. In FIG. 4.26, we show the w, contours of the 

initial perturbation, i.e., the total vorticity field minus the axisymmetric component 
4 0 )  w, . Here, we use the notation G$") to designate the specific modal component 

of the Fourier-transformed vorticity G,. The radially unstructured character of the 

perturbation is still visible a t  t = 5 (just before the start of linear growth) as can be 

seen from the w ! ~ )  profile shown in Fro. 4.28.a. In FIG. 4 . 2 7 . ~ ~ ~  we show the vorticity 

contours at t = 20; the corresponding zL3) profile is shown in FIG. 4.28.b. Note that 

from FIG. 4.25, we see that the perturbation field is entirely dorninated by mode-3 at 

that time. The contours of the corresponding eigenmode determined by ~iooskerziel 

& Carnavale are shUwn in FIG. 4.27.b, for cornparison purposes. Going back to 

FIG. 4.25.b, we observe that the linear growth regirne extends to about t = 40, the 

time at which nonlhear interactions are seen to corne into play by a rapid modification 
of the growth rates of the initially perturbed mode and its harmonies. At t x 50, a 

complete saturation of the instability is reached. After that, follows a readjustment 
of the modal vorticity components leading to the new (quasi-) equilibrium state. 



FIGURE 4.25. Time evolution of a) the modal kinetic energy Ek, and b) the 
enstrophy Ek, correspondhg to the vorticity fields shown in FIG. 4.23. Note that 
since Le was set to 2n/3 for the simulations, the modal values of ke shown here 
correspond in fact to numerical indices m = 0, 1, 2, 3 and 4, i.e., the base flow 
field, the initially perturbed mode and its first three hannonics. 



FIGURE 4.26. Initial mode-3 perturbation vorticity iso-contours with a random 
- radial structure. The contours are given as foilows: w, min = -5 x  IO-^, w, ,, - 

+5 x with increments of 5 x IO-' . Solid iines are for positive values, dashed 
lines negative values. Note that for visibility reasons, the box dimensions are 

smder than those of FIG. 4.23. 

FIGURE 4.27. a) Computed perturbation vorticity field at t = 20. The contours 

are defined as follows: w, ,. = -1.3 x 10-~, wz , = +1.3 x 10-~, with incre- 

ments of 1.3 x 10-~. See also FIG. 4.26 for dehitions, and FiG. 4.28.b for the 

correspondhg w ! ~ )  profile. b) The eigenmode obtained by Kloosteniel & Car- 
navale (FIGURE 6.b in the reference paper), shown for cornparison. In this case 

negative values are identined with thin lines while thick lines are for positive values. 

Not in scale with a). 



FIGURE 4.28. Radial profiles of the modal vorticity G ! ~ )  . a) Computed solution at 
t = 5 ;  the d u e s  are ampMed by a factor of 103. Note that the initially random 

perturbation still retains a rather unorganized character. b) Computed solution 

at t = 20; the amplitude is now about 10 times that of a). The most unstable 

eigenmode has clearly emerged fkom the initialiy random perturbation. See also 
FIG. 4.27.a for corresponding w, contours. Finally, the "O" symbols identify the 

B-spline breakpoints used to compute the results shown. 



FIGURE 4.29. Tirne evolution of the modal enstrophy Eh at Re = 105. Even 
if the general behavior is quite similar to what was obtained for Re = 10' (see 

FIG. 4.25.b), the levels and ratios of rnodalenstrophy, e-g., Eo/E3,  bave sigtuficantly 

Additional observations and cornparisons with the results of Kloosterziel & Car- 

navale are worth mentioning. Indeed, if the good agreement observed so far between 

our results and those of the referencquantitative for the linear and qualitative for 

the nonlinear dynamics-allows for a good level of confidence in the validity of the 

code UNCYL, the difEerence of equilibrium ratio values Eo/E3 raised an interroga- 
tion. Kloosteniel & Carnavale obtained a value of £OIE3 = 1.2 while in our case this 

value is Eo/E3 c 6! Without engaging in a thorough investigation of finite Reynolds 
number effects on such specific quantities, we nevertheless wanted to confirm that 

the modal enstrophy ratio was indeed "Reynolds dependent". We therefore ran other 

simulations, but this time at Re = IO5, on a higher resolution "grid", from which 
we obtained EO/& = 2.6. The time evolution of the modal enstrophy for this case is 

shown in FIG. 4.29. Besides the Eo/E3 ratio, the overall agreement with the equivalent 
reference results is better in this case than it was for Re = 104. 

This 1 s t  observation, combined with similar observations made by Kloosterziel & 
Carnavale for the inviscid vs the viscous vortex tripole (mode-? instabiiity) tends to 

confirm the dependence of some such specific quantities on the Reynolds number. 

If the global dynamics can be considered as inviscid, i.e., the convective tirne scales 

remain much smaller than a l l  the relevant difisive ones, the particuiar equilibrium 



FIGURE 4.30. Radial profiles of G?) corresponding to the results of FXG. 4.23. 
The full line represents the initial profile ( t  = 0); the dashed line, the solution 
at t = 100; the dotted line represents the profile for the case of pure diffusion, 
also at t = 100. Nonlinear interactions are seea to play a significant role in the 

modification of the base flow profile. 

state that will be reached, on the other hand, depends on the complex interactions 

that occur during the saturation process which will in turn depend at some level on 

the viscous scales. Although this is a very interesting subject, which is also the object 

of the reference paper of Kloosterziel & Carnavale, we must put it aside for now since 

it brings us beyond the scope of our present objectives. 

Let us continue with the comparison of our Re = IO4 results with those of the 

reference. In FIG. 4.30, we show the axisymxnetric base flow profile i2L0) of FIG. 4.23 a t  

t = O and 100. The profile that would have resulted if only diffusion would have corne 

to play is also shown for comparison. From this, we see that nonlinear interactions 

have a noticeable effect in the modification of the base flow profile. This is again 
in agreement with the results of Kloosterziel & Camavale. As a final verification 

step, we compare Our t = 200 (equilibrium) results of FIG. 4.23 with the reference 

equilibrium solution. In FIG. 4.31, both global vorticity contours are shown, and in 

FIG. 4.32, we shown the mode-3 contours. The particular modal vorticity profiles 

corresponding to the mode-0 and the mode-3 components of Our t = 200 solution are 

given in FIG. 4.33. 



FIGURE 4.31. a) Global vokcity contours of the t = 200 solution of FIG. 4.23; 

the contours are shown for w, ,in = -1, w, ,, = +0.3, with increments of 0.05. 

b) The equivalent vorticity contours of the inviscid equilibrium solution of Kloost- 

erziel & Carnavale (Frcum 7.b of the reference paper), shown for cornparison; the 

contours have an increment of Aw, = Iwzl,,/lO. Again not in scale with a); the 

other usual definitions also apply. 

I- 

FIGURE 4.32. a) Mode-3 vorticity contours of the t = 200 solution of FIG. 4.23; 

the contours are shown for w, mi, = -0.3, w, ,, = +0.3, with increments of 0.03. 

b) The equivalent mode-3 vorticity contours of the inviscid equilibrium solution 

of Kloosterziel & Carnavaie (FIGURE 7.e of the reference paper), shown for corn- 

parison; the contours have an increment of Aw, = lwzl,,/lO. Agaia not in scde 

with a) ; the other muai definitions also apply. 



FIGURE 4.33. Radial profiles of the modal vorticity components GY) at t = 200; 
in a) mode-0, and in b) mode-3. Note that the mode3 values are amplified by a 
factor 10 in cornparison with the mode-0 component. The usual definitions apply. 



4.3.4 Complementary tests 

In addition to the cornparisons made with the reference results of Kloosterziel & Car- 

navale, we present here supplementary results that confirm the overall good behavior 

of the numerical method. More specifically, these extra venfications involve symmetry 

and symmetry brake off in the nonlinear evolution of the vortex problem discussed 

in Sec. 4.3.2. Since the points to be made here are very specific, we choose to use for 

this part a more direct "item by item" presentation. 

In a first step, we verify how well the mode-3 "physical" symmetry is preserved 

when not explicitly imposed. Recall that the results presented in FIG. 4.23 were 

obtained on a computational domain where Le = 2a/3, Le., with a mode-3 forced 

periodicity. We show in FIG. 4.34 three different computations for the same physical 

problem: cr = 7, Re = IO4, with a mode-3 initial perturbation. The following points 
provide a generai description of the figure content: 

On the left, we show iso-contours of vorticity from w, = -1 to +1, with steps 

of 0.1 (the zero contour is not shown); the solid lines refer to positive values 

while the broken ( "dash" ) lines are for negative values. 

On the right, the corresponding modal entrophy spectrum is provided. 

The different solutions are given at comparable, though not identical, times 

that correspond approximately to the saturation of the instability, i.e., at about 

t = 50 in FIG. 4.25. This is the most demanding phase of the computation in 
terms of spatial resolution requirements due to the important "filamentation" 

of the three arms of negative vorticity. 

The particular context of each simulation case is described below: 

Case a) Solution obtained with the imposed symmetry Le = 2n/3, as in FIG. 4.23. 
Thus, al1 the computational modes m = 0,1,2,. . . , Ne - 1 (with ke = 3m) are 

invohed and "active" al1 along the simulation. 

Case b) Solution obtained on a "full size" domain Le = 2a ,  with the same initial per- 

turbation in mode ke = 3. In this case ke = m , and only one third of the total 



Min = -1.000 
Max = +0.821 1 

Min = -1,000 
Max = +0.812 

Min = -1 .O02 
Max = +O -750 

FIGURE 4.34. Cornparison of different symmetry conditions for the triangular 
vortex (a = 7) evolution at Re = 104. On the left, we show iso-mntours of 
vorticity and on the right , the corresponding enstrophy spectrum. A more detailed 
description is provided direct ly in the text . 



number of computational modes are effectively involved. Many more modes 
are therefore required to achieve the resolution of case a). Although present in 
the computation, the other "inactive" modes do not appear in the enstrophy 

spectrum because they remah at values of 1 0 - ~ ~ ,  weU below the limits of the 

figure. 

Case c) Solution again obtained with Le = 27r, but this time with the initial vortex 

having an offset of As = A y  = 0.1 relative to the center of the domain. The 

initiai perturbation for this case is applied on the physical mode k0 = 3 based 

of the vortex center. Since there are no azimuthal symrnetries left, the proper 

representation of the vorticity field requires ail the computational modes. 

Al1 three solutions were obtained using the following radial discretization: 

N, = 99, k = 5,  partially uniform distribution of breakpoints in q (75 points 

for O 5 71 c 0.5 and 20 points for 0.5 5 71 < 1) with L = 2 ;  

while, according to the particular case, the following azimuthal truncations were used: 

Case a) 
6 modal zones (Le = 2 ~ 1 3 )  with 

Ne = 6 ( O  5 i )  < 0.1 ), Ne = 12 (0.1 5 q < 0.2 ): 
Ne = 24 (0.2 5 q < 0.25), Na = 32 (0.25 5 i )  < 0.55): 

Ne = 24 (0.55 5 i )  < 0.75), No = 12 (0.75 5 q < 1.0 ); 

Cases b) and c) 

6 modal zones (Le = 2a) with 

N g = 6  ( O  < 7 < 0.1 ), N'=20 (0.1 5 r] < 0.2 ), 
Ne = 42 (0.2 5 q < 0.25), Ne = 84 (0.25 5 q < 0.55), 
Ne = 42 (0.55 5 q c 0.75), Ne = 12 (0.75 $ < 1.0 ). 

One may note that case a) has a slightly higher azimuthal resolution (kg ,, = 95 in 

cornparison with kg ,, = 83 for cases b) and c)), but this does not affect the results 

shown. As for the time discretization, the CFL criterion was again set to  1.7. This 



led to a general tirne step size of At = 3.5 x IO-* (similar to the case of FIG. 4-23), 

except for case c)-because of the offset of the vortex and the presence of velocity a t  

r = O-for which the CFL limit imposes a lower At = 6.5 x 10-~. 

From the above description and the results shown in FIG. 4.34, the following 

observations can be made: 

* All three results agree quite well confirming thus, once again, the overall good 

behavior of the method (including the modal reduction procedure). 

* Case a) was done with approximately one third of the number of degrees of 

freedom of cases b) and c). Taking advantage of the natural physical period- 

icity of the solution, when possible, therefore allows for an important gain in 
computational efficiency. 

* In a similar point of view, any departure fiom axial symrnetry in the azimuthal 

direction leads to an increase in the resolution requirements (and computational 

costs) for that direction, as can be seen from the enstrophy spectrum of the off- 

centered vortex in case c). 

To verify the level of spatial resolution used, besides looking at the modal enstro- 

phy (or energy) spectrum, we may use the more "global" diagnosis 

the total energy E and enstrophy E being given by 

It has been confirmed that (4.19) was satisfied to almost seven digit accuracy when 

applied to test case b) in FIG. 4.34. The tirne variation of the energy was evaluated 

for that check with the backward difference scheme 

d E  - - - E (t + At) - E(t)  
dt At + o(At) , 

and time step size of the order of 10-~ were used to maintain enough precision on this 
first order estimate. The "less accurate" results were observed during the saturation 



phase of the instability, Le., at about the time solution shown in FIG. 4.34.b; equation 

(4.19) was then satisfied wit h an accuracy of approximately six digits. These accuracy 

levels confirm the proper capturing of the s m d  viscous scales for the discretization 

parameters used. 

The triangular vortex solution represents only one of the possible outcornes of 

the initially unstable configuration with a = 7. The mode-3 intability has indeed 

the highest growth rate, but mode-2 and mode-4 instabilities have similar, though 

slightly smaller, values (see TABLE 4.10). AS another test, the case b) of FIG. 4.34 
can be reconsidered, but this time with an initial white noise perturbation instead 

of a single mode-3. The partial evoiution of the resulting vorticity field is shown in 

FIG. 4.35; the time evolution of the corresponding modal enstrophy (the first five 
modes) is in turn shown in FIG. 4.36. Aithough the mode-3 instability dominates 

the early stages of the evolution, the important nonlinear interactions with the other 

unstables modes do not lead to any equilibrium structures in this case. The results 

presented here-including the vortex merging observed in the sequence t = 60, 65, 

and 70 in FIG. 4.35-are once again in good agreement with the experirnental and 

numerical results of Carnavale & Kloostemiel, as well as with the simulation results 

of Winckelmans (private communication) obtained with a 2-D vortex method. 

This concludes Our present section on the triangular vortex, and based on the 

quantitative agreement of our linear stability results, including the consistency of 

both codes UNCYL-LS and UNCYL, and the qualitative agreement of the overall 

nonlinear evolution, we feel confident in the cornplete verification of the k, = O fan- 

ily of vector expansions. &O indirectly verified in this test case was the global modal 

reduction algorithm and the regularity conditions. Note that these were also indi- 

rectly verified in the q-vortex problem, with a restriction to the ke = O and 1 cases. 

Because of the very confined nature of this flow field though-the velocity is effec- 
tively zero a t  sorne finite radius-the nature of the outer boundary conditions could 

not have been directiy checked. We had to rely on a more specific, independent proce- 
dural verification to ensure that they were indeed correctly impiernented for all cases 

of ka. An additional point regarding the very limited radial extent of this type of zero 
circulation vortex is the relevance of an unbounded method for computing such prob- 

lems. In his parametric study of a 2-D version of the BOUNCYL code, Houde (2001) 
also very successfully cornputed the Aow dynamics of this test case, showing that it is 



Min = -1 - 0 0 3  
Max = +O - 8 3 1  

Min = - 1 . 0 0 1  
Max = +0.820 

M i n  = -1 .001  
Max = +0 .808  

Min = - 1 . 0 0 2  
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FIGURE 4.35. Partial evolution of the vortex of FIG. 4.23 (a = 7 and Re = 10' ) , 
but from this time an initial white noise perturbation. We show here the iso- 

contours of vorticity, from w, = -1 to +1, with steps of 0.1 (the zero contour is 

not shown); solid iines are for positive values while broken ("dash") lines are for 

negative values. See FIG. 4.36 for the correspondhg modal enstrophy evolution. 



FIGURE 4.36. 
vorticity fields 

Time evolution of the modal enstrophy Sk, associated with the 

shown in FIG. 4.35. The most unstable mode-3 perturbation is 
closely followed by mode-2 and the other low order modes. 

almost insensitive to confinement effects, Le., the distance R, at which the no-slip 
boundary conditions are imposed. These particular considerations do obviously not 
affect, at any rate, our validation conclusions. 



4.4 Summary 

Before we bring this chapter to an end, let us summarize. In Sec. 4.1, we used 

the circular pipe Stokes flow analytical solution to verify the B-spline interpolation 

and the matrices of the bounded B-spline formulation (the codes B o u N C ~ - L S  and 

BouNCYL). Linear stability results of the Poiseuille flow served in the verification 

of the nonlinear terrn computation and the time integration schemes of the Navier- 

Stokes solver B o u N C ~ .  Consistency between the eigenvalue and the Navier-Stokes 
solvers was used as a global validation test to verify the code as a whoIe. 

Because both codes UNCYL and BouNCYL make use of many common subrou- 

tines, some of the verifications presented in the first section, for the code BOWNCYL, 
were implicitly carried over to the code UNCYL. This led us, in Sec. 4.2, to focus 

on the unbounded radial discretization for the family of vector expansions for which 
kz # O. The radial interpolation and boundary conditions indeed represent the main 

difference between the present unbounded and bounded numerical methods. Lin- 
ear stability results of the Batchelor q-vortex problem were used to first verify the 

eigenvalue solver UNCYLLS. Then, using a slightly different procedure than the one 

used in Sec. 4.1, verification of the Navier-Stokes solver UNCYL was undertaken by 

direct computation of some of these linear stability results. Consistency between the 

Navier-Stokes and the eigenvalue solvers was dso  used as a complementary check. 

The k, = O family of vector expansions of the code UNCYL was in turn verified in 

Sec. 4.3, computing the complete nonlinear dynarnics that leads to the formation of a 
triangular vortex. In that case, quantitative verifications through the corroboration 
of numerical linear stability results were of a more limited extent, but consistency 

between the eigenvalue and the Navier-Stokes solvers was again established. Qualita- 
tive verification of the complete nonlinear evolution of the mo,de-3 instability up to its 

saturation and the resulting triangular vortex formation also served as an additional 

confirmation. 

Although not directly accounted for in the different tests, the reguiarity condition 

and the general modal reduction algorithm were implicitly verified in the series of 

fiow problems considered. The verification of the harmonic decaying condition, on 

the other hand, was not directly nor indirectly invoIved, except for the base flow of 



the q-vortex, i.e., only for U' a r-'. For the other cases examined, the solutions were 

found to decay much more rapidly than the minimal rates imposed by the condition. 

As it was the case for numerous algonthm tests that were ca.rried out but not explicitly 

presented here, verification of the outer decaying boundary condition was nevertheless 

systematically performed. 

As a final remark, anticipating the general discussion of the concluding chapter, 

let us note that in terms of radial interpolation, Our B-spline results certainly com- 

pared very well and, in most cases, advantageously to the reference data found in 

the iiterature and obtained by global interpolation (spectral expansions) methods. 

On the other hand, Our bnef cornparisons between the regular B-spline discretization 

of the code BouNCYL-LS and the mapped B-splines of the code UNCYL-LS seem 
to show only a marginal advantage of the latter mapping approach over the former 

standard B-splines in the approximation of problems in unbounded domains. 



Chapter 5 

Conclusion 

In this thesis, a novel extension of Leonard's divergence-free vector expansions method 

(Leonard, 1981) for the solution of the incompressible, unsteady Navier-Stokes equa- 
tions in unbounded (cyiindrical) domains has been proposed. The spatial discretiza- 
tion, presented in Chap. 2, is based on a series of vector expansions that intrinsically 

satisfy the divergence-free constraint. These vectors are constructed by a combination 
of Fourier series for both the longitudinal and azimuthal directions, and algebraically 

mapped B-splines for the serni-infinite radial direction. Specid care has been taken 

to account for the particular analytical behaviors at the center of the domain (r = O ) ,  

and for the asyrnptotic behaviors as r tends to infinity. The implementation of this 
numerical rnethod was discussed in Chap. 3, and its validation in Chap. 4. 

The present, unbounded domain, B-spline formulation has also been modified to 

allow for the solution of the Navier-Stokes equations in radially bounded cylindri- 

cal domains (Sec. 3.5). For that particular instance, the resulting numerical method 

is similar to the one proposed by Loulou et al. (1997), except maybe for some few 

technical points. Also, as by-products of the two Navier-Stokes solvers, the genéral 

divergence-free Galerkin approximation was in turn used to develop two corresponding 
Linear stability eigenvalue solvers; one for unbounded domains and one for bounded 

domains. Implementation and validation of these additional solvers were likewise con- 
sidered in Chap. 3 and 4 respectively. Accordingly, al1 the thesis' main and secondary 
objectives presented in Chap. 1 have been successfull y fulfilled. 



We now conclude our work by first briefly discussing some of the issues that 

concem the use of local B-spline functions for the approximation of the unbounded 
radial direction, in light of the numerical tests presented in Chap. 4. Following this, 

we give some recomrnendations for future work related, on one hand, to the numericd 

methodology, and on the other hand, to some physical investigation that  could be 
carried out following the resul ts ob tained in the various numericd tests. 

5.1 Discussion 

While testing our numerical method in Chap. 4, the comparisons made with the 

other numerical results obtained by global expansions methods proved the mapped 
B-splines to be an advantageous alternative for use as ba is  functions in the radial 
direction. Indeed, even wit hout making use of any particularly refined distribution 

of radial breakpoints, the B-spline results were shown to be either more precise for a 

similar number of radial coefficients, or for a given error, usually required l e s  degrees 

of freedom. 

On the other hand, comparisons made between the unbounded B-spline code 
UNCUL-LS and its wall-bounded version BOUNCYL-LS did not prove as much advan- 

tageous, as may be recalled from TABLE 4.9 in Sec. 4.2.4. Despite this less favorable 
occurrence, we were nevertheless able to conclude-on the basis of our tested cases 

with a slow decaying base flow field (see FIG. 4.21)-that whatever the bounded B- 
spline discretization used, a similar unbounded mapped B-spline discretization could 
always be used to obtain better results. The gain of the latter approximation over 

the former may however be only marginal, particularly if the field solutions exhibit a 
fast decaying behavior. F'rom this, we are led to admit that the present unbounded 
mapped B-spline method does not seem to provide a significant improvernent over 
the more standard (wall-bounded) B-spline approach. 

This last observation certainly cornes in a marked contrast with the similar com- 
parison made between the bounded domain Chebyshev polynomials of Mayer & Pow- 

ell (1992), for exarnple, and the unbounded rational Legendre functions of Matsushima 
& Marcus (1997). Since one of our motivations to include a mapping into the B-spline 



formulation originated from the perspective of global expansions methods, we may 
clearly see that global expansions considerations do not necessarily carry over to local 

approximation formulations. Following this line of reasoning, one could legitimately 
raise doubts about the practical advantages-the theoretical advantages making no 

doubts-of imposing more complex regularity conditions at the center of the domain 

r = O, i.e., from Chap. 2, imposing (2.11) instead of the more simple conditions given 

in (2.10). As we already mentioned, no special investigation was made in this work 

to supply a specific answer to this question. Such a task must therefore be considered 

as a recommendation for future work. 

Although our comparison tests between both the bounded and the unbounded 

B-spline methods only led to partially satisfying concIusions in terms of the rele- 

vance of developing a special unbounded version, we are nevertheless convinced that 

the unbounded spectral/B-spline method presented in this thesis remains of great 

interest and usefulness. The successful and efficient stability results obtained, while 
testing both codes UNCYL-LS and UNCYL, do certainly allow us to conclude very 

positively on the efficiency of the mapped B-splines in comparison with the other 

global expansion approaches. The present method is indeed particularly well suited 

for fiow problems having an intrinsic axial symmetry, as in the the q-vortex problem 

of Sec- 4.2, or the triangular vortex of Sec. 4.3. 

5.2 Recommendations for future work 

In the continuation of what has been initiated in this work, we suggest that the 

following elements be considered. Relating more specificdy to the numencal met hod: 

The study of the effects of the regularity conditions (at T = O )  on the error of 

the solution, to see how effective are these conditions in practice; 

The development and implementation of a higher order dissipation term (e.g., 

like the biharmonic term -v4V4u) to allow for simulations a t  higher Reynolds 

number with only moderately high spatial resolution; 

a The specialization and optimization of the modal truncation and nonlinear term 



Other optimization considerations such as the development of a parallel version of 

the code should also be considered. 

On a more physical point of view, the following lines of investigation could offer 

some interesting propects: 

Regarding the q-vortex problem presented in Sec. 4.2, the discrepancy observed 

between the results of Mayer & Powell (1992) and ours (see FIG. 4.17) was left 

unexplained. Further investigations on that matter could probably help solve 

this question. 

0 In the simulations of the triangular vortex of Sec. 4.3, finite Reynolds number 

effects were seen to have an influence on the final state of equilibrium. Up 
to what extent these effects corne into play in the formation of the triangular 

vortex could also be studied using the codes presented in this thesis. 

0 Another problem of interest that could well be studied using the mapped B- 
splines codes, but that is not mentioned in this thesis, is related to the dynamics 

of a vortex tube in a straining field. 

Note that since the present numerical method is particularly well suited for unbounded 

flow problems having an intrinsic axial syrnmetry, any problems falling into this cat- 
egory could also be considered. 
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Appendix A 

Principal Differential Operators and 
Vector Field Representation 
in Cylindrical Coordinates 

A. 1 Principal different ial operat ors 

First, let us assume that the veiocity vector u may be written as 

= ~ ( ~ 1  e'kOee'k~z 

then let " " be the double Fourier transfoxm operator in ( O ,  z) such that 

where a penod of 27r is assumed for both directions. The divergence, curl and Lapla- 
cian operators in cylindrical coordinates for both physical and spectral spaces are 
given sts follows: 

Divergence The divergence of the vector u is given by 

l a r u ,  l d u e  du, v.us--  +--+-. 
r ar r de dz 



In the spectral space this becomes 

Curl The curl operator applied to u gives 

The vorticity components are therefore written 

In the spectral space, we obtain 

which may be written in a more compact way by 
# - 

G = V x Û .  

Laplacian Findy, the Laplacian of u is defined by 

(A. 10) 



with a &/BO = ês and 8 = -& . In the spectral space, the vector components 

thus becorne 

(A. 12) 

Note the coupling between the radial and azimut ha1 components. 

A.2 Analyticity at the origin 

The equivalent of the foilowing analyticiw results, derived in a somewhat difEerent 

rnanner, can also be found in Boyd (1999), or in Loulou et al. (1997). 

The Taylor expansion theorem gives for an analytic vector function u in some 

neighborhood of the point x = O 

with the following definitions: x = { x, y, z ) ; u = {uz, %, u,) ; n = a + b + c; and 

Dn = 8 / & a a y b 8 z C .  Note that the series (A.13) is convergent within a "bounded 
sphere" R = [G + y2 + z2I1/* < w that defined the region of analyticity. Because in 
Cartesian coordinates, the basis vectors independent of position, we only need to 

consider one vector component at a time, namely u, in the derivation shown below. 

In ( A X ) ,  the terms Dnu(x = 0) act as constants so that if we rewrite for u, in 

cylindrical coordinates (x = { r,  O ,  z ) ) , we then get 



where the triple sum of (A.13) has been symbolicdy reduced to z2=0 and 

Let us rewrite the "cos" and "sin" terms such that 

Replaced in (A. 14), this gives 

with d = al - a:! + bp - bl and 

We now apply the double Fourier transform (in 0 and z )  

to (A.15), to obtain 8 

Here 6d,ke is the Kronecker delta, viz., 



Note that  carring out explicitly the z Fourier transform on zC gives, for k, # O 

and c > 0 ,  

c-l c ! (- l)j+l (2 ,p -1  zc e-ik,z dz = - 
ik, j=o (c-j)!  (ik,)j 

and when k, = O, it equals to (2n)"/(c + 1). This is implicitly taken into account in 

, b , c ( k ) .  If we now take the sum of only the non-zero values in (A.16), for a given 

ke , we finally obtain 

where p is a function of a and b or more specifically of a l , 2  and blS2 - The functional 

relation between p and the set of al1 admissible values of  al,^, biV2 is not so easily 

expressed but can be determined by the set of non-negative integer values satiswng 

(A.18) 

(A. 19) 

(A.20) 

Similar reasoning applied to Û, and hence leads to the general form of the radial 
behavior: 

lim {Û&,U,) = ~ ( i I ~ @ i + ~ p  
r + ~  1 ,  

with p = 0,1,2, . . . . 

In order to get the behavior of the cylindrical coordinates vector cornponents 

{ Zr, Ce, Û, } , we only need to  apply, to the former result (A.21), the transformation 

rules 

ri = uZcos8 + y s i n 8 ,  

ue = u, cos 0 - u, sin 0 . 

Using the symbolic notation 



we obtain after dropping the pararnetric dependence of the variables as well as the 
summation notation, for sirnplicity reasons, and after the 6-Fourier transform, 

Now, after combining the same powers of r ,  we finally get 

which can also be equivalently written in the more detailed form 

again with p = 0,1,2, . . . . 

A.3 The harmonic decaying behavior 

We know from cornplex function analysis that if an analytic (or equivalently harmonic) 
complex valued function f ( 5 )  (of a complex variable C = reàe) is to tend to zero as 

r + cm, then f (C) can be written in terrns of the principal part of a Laurent series 

such that (Shilov, 1973) 

where M may be infinite. There is a modulus ro = ]Col > O defining the domain of 
analyticity of f (C) to be for all IC 1 2 ro and accordingly 



where C is some contour in the domain of analyticity- It is then a simple matter of 

changing variables to rewrite (A.26) as 

There are two real valued functions g(r, 8) and h(r, 8) such that 

f a  being the complex conjugate of f . When applied to (A.27), this gives 

where we have defined c-, = ck ( m  > 0) and sgn(m) m/lml. From (A.28), it is 

then possible to wnte 

valid for T 2 ro > 0.  

function Sz (r; ke, kz) 
Now, from (A.30) we may conclude that if the complex valued 

is to decay "harrnonically" as r + w, then we rnust have 

lirn û&; kg, kz) = ~( r - lk@l )  . 
r 3 w  

A similar argument applied to Ûz and i&, leads to . 

iim (ûz, G,, û, ) = 0(r-1~@1) . 
r+OO 

Because u, and u, form an orthogonal pair in the plane r-0, it is possible to wrïte a 

complex valued function f = u, -ou,, in the same fonn as in (A.27). In the particular 

case of 2-D incompressible and irrotational velocity fields, the function f would be 

called the complex velocity and would be linked to the complex potential II = 9 + i+ 



by f = -d l I / dc  (where here u = -V@ = -V x QG,), following the notation of 

Milne-Thomson (1968). Now applying directly the definition of f in (A.27), or using 

the results of (A.28)-(A.29), we must then have that 

As for the cylindrical components u, and ue, the transformation equation (A.22) is 

equivdent to 

By applying this to the definition of f , we obtain that 

lim { ri&, rÛe, ûz } = ~ ( r - ~ ~ ~ ~ )  , 
r+OO 

and 

Note that (A.32) and (A.34) are similar to the Cauchy-Riemann equations for the 

two vector components, and can also be seen as the equivalent form of a solenoidal 

and irrotational constraint (associated with the existence of the potential II) in the 
r-8 plane. 

Note also that although these results have been obtained for ke # 0, the inclusion 

of ke = O is somewhat straightforward and can be easily taken care of by exten- 

sion of the above procedure (details are omitted). This would lead to the following 

asyrnptotic behavior: 

lim {TC,., rûe, Ûz ) = O(1) . 
r +O0 

(A.35) 

Albeit this result is independent of k,, a slight distinction should be made for the I 

different cases of kz = O and k, # O. In the former, Ûr i, O while in the latter 
Sr = O(r-') as for Ûe but independently of one another. Furthemore, since we 

assume that the flow is decaying at infinity the constant to which Ûz tends to must 
be zero. 



Appendix B 

B-spline Piecewise Polynomials 

This appendix includes the information related the B-splines used for the discretiza- 

tion of the radial direction. It may be noted that most of the materid presented here 

cornes fiom the reference book of de Boor (1978), which should be consulted for a 
more complete presentation. We have chosen to include some of this material here 
for ease of access. 

B.1 The truncated power basis 

A function f (q) , if it is analytic in the neighborhood of a point q-~, has a Taylor series 

expansion around the point written 

the last term on the right being called the rernainder and with the point being 

somewhere between the points r)o and I). Assuming for exarnple an expansion from 
the left , Le., 5 q , then 5 E 5 q . If f (q) is a polynomial of order k , i.e., 
f (7) E Pk we then have exactly 

k-1 

f (q) = C ai(q - m)i with ai = 
Z! dqa 

i=O 



Let us now introduce the "truncated" non-negative function 

(11 - ml+ = m=+? - rlo7Ol , (B-3) 

and extend its definition to the 'truncated power basis" 

(77 - 7701: = [(O - m)+lk (B-4) 

When k = O ,  this amounts to the step function (setting O0 = 1 ), and for k > O to a 

polynornial hnction, for r )  2 q 0 ,  having k - 1 continuous derivatives at qo (shown in 

figure VIII.2, p. 102 of de Boor, 1978). We can see that for q 2 qo, and f (q) E , 
that (B.2) is strictly equivalent to 

Let us now consider an increasing 

such that 
sequence of points (Ili) ,  , called breakpoints, 

A piecewise polynornial (PP) function of order k for that given set of breakpoints is 

a function defined such that 

and Pi(v) E p. The set of al1 PP functions of order k for the given sequence 

of breakpoints {si) will be noted Pt. Before discussing the value of f (7) at the 

breakpoints, let us consider f i s t  the "jump" of a function a t  a point, such that 

where q+ = 7 + c and q- = q - c. Continuity of a function at a point 

obviously requires that the jump at that point be O. To the definition (B.6), we add 
a series of continuity conditions at the intermediary breakpoints {Ili}z<13 such that 

jump,Dj-'f = O for j =  1,2 ,... ,ui , (B-7) 

with ~ j - l  f = djWL f / d v - l .  We can now restrict the PP space Pt with a set of 
continuiw conditions (B.7) syrnbolized by the set of integers { u ~ ) ~ c ' .  The set of 



Let us now define the linear functional AG and the hinction 4jj such that  

foi j = 0,1, . . . , k - 1. We also note that &, E Pt and that 

with 6, as the Kronecker delta. Consequently, the kNd functions &, are linearly 
independent and therefore form a basis for Pt. A function f E Pt has therefore a 

unique representation 

which is given in detailed form by 

By restricting the basis #ij with the continuity conditions (B .7), which can be directly 

applied in (B.8), it can be shown that the set 

d i  for j=v i  ,..., k - 1  and z = O , I ,  ..., N d ,  

form a basis for the space Pa,, i.e., for every f E Pi,, there is a unique representation 

Aithough of great theoretical interest, this result is not so easily applicable in practice 

because of the possible stiffness problems that may result from the use of the truncated 
power basis in numerical computations. 



TABLE B. 1 - The divided ciifference table corresponding to (B. 10). 

B. 2 Generalized B-splines 

The B-spline formuiation, used here in its generd sense, cornes as an efficient and 

practical way of circumventing the stiffness problems associated with the truncated 
power basis described in the previous section. 

Let us first begin by considering a new set of of non-decreasing points { ti } C 
[qo, q ~ ~ ] ,  cailed knots; the relation between the breakpoints and the knots will be 
specified only after the introduction of a few more definitions (see TABLE B.2). These 

knots are ordered so that the repeated points occur together, i.e., if t, = ti+, then 

ti = ti+l = ... = ti+,-l = ti+,. Furthemore, let us also introduce the divided 
differences of f ,  noted [t*, . . . , ti+,] f, and such that either ti = ti+, and then 

or else ti # ti+, and 

See TABLE B.l, for an example of the set of divided differences corresponding to (B.lO). 



TABLE B. 2. Knot muitipiicity according to the nunaber of continuity conditions 
imposed at each breakpoint. 

The Zth normalized (and generdized) B-spline of order k for the given h o t  se- 

quence { ti ) is denoted by @:) (q) : and is defined by 

The notation (- - rl):-l is used to express that the kth ordered divided difference 
of (t - ) is considered as a function of t alone, at a given fked value of q .  

From (B.11), and the definition of the truncated power basis, we may see that the 

B-splines & = B,!:) have a local support, viz., 

The notation Bl is used for short when the set { t, }, and the order k can be inferred 

from the context. 

An important theorem, due to Curry & Schoenberg, states that for the previously 

defined set of breakpoints {qi)z0, and for the given set of non-negative integers 
{ vi )z,, with vi 5 k-from which the sequence of knots { ti )Zk is determined with 
the relations in TABLE B.2-the B-splines functions introduced in (B.11) form a basis 

for the PP space IF':,". Consequently, the dimension N, of the resulting B-spline space 
is given by 

N, = k + x ( k  - vi) = k& - C vi = dim P:," , (B. 12) 

where N, is equal to the total number of piecewise polynomid coefficients minus the 
number of continuity conditions defined by the set of integers { vi ) . 



In a more technical description, the set of knots is equal to the set of breakpoints, 

in terms of values, with an additional possible redundancy of values according to 

the continuity level imposed at the breakpoint. The maximum number of continuity 

conditions that can be imposed at a breakpoint, without degeneracy, is k - 1, as can 

be seen from TABLE B.2. In that case we obtain that Bl E Ck-* , as it was considered 

for the development of the numerical method presented in Chap. 2. 

The definition of B-splines given in (B.ll) is also formulated in t e m s  of the 

truncated power basis. As it was mentioned in the previous section this may lead to 

some stiffness problerns. De Boor showed that the following recurrence relation (see 

the development in chapter X of his book) 

q - t i  
~ , ( ~ - ' ) ( q )  + t l t k  - 17 (B. 13) 

t i+k-l  - tl t l+k  - t l+r  

with 

(B. 14) 

does lead to the same result without the stiffness drawbacks. 

Amongst the other important results that can be derive fiom the above definitions, 

we have that the B-spline basis form a partition of unity, viz., 

Also, the derivative of a B-spline function of order k can be exactly represented by 

B-splines of order k - 1 such that 

This last result can be used to determine each one of the k piecewise polynomials 

that form a B-spline. An example is given in FIG. B.1, in which we have represented 

the 4th order spline of FIG. 2.2 with its four constituting polynomials. 

The B-spline projection of some function f (q) can be done in various ways, here we 
use an integral-type projection in which the B-spline coefficients al can be detennined 



FIGURE B. 1. The 4th order B-spiine of FIG. 2.2 and its constituting polynomials 
Pi (à = 1, . . . 4 )  The subdomains that define the support of the B-spline are 

identified with the symbols. 

according to 

Furthemore, since the B-spiines are formed from piecewise polynomials, we can use 

this property to decompose the domain integral into a sum of sub-domain integrals, 
such that 

The integrand in each sub-domain being formed from polynomial expressions, the 

integrals can thus be evaluated numencally by some Gaussian-type quadrature (see 

also App. C). At the end, results an algebraic system of equations 

from which solution the spline coefficients are determined (see also App. D.5). 



Appendix C 

Matrices and Nonlinear Term 

In this appendix, we include in the first part the detailed expressions related to  

the construction of the inertia and diffusion matrices introduced in Chap. 2, and 

also discussed in Sec. 3.3. In the second part of the appendix, we give the detailed 

form of the various expressions related to the computation of the nonlinear term, 

in complement of the discussion of Sec. 3.2. Some of the material presented here is 
redundant with what can be found in the report of Loulou et al. (1997). We have 

nevertheless chosen to include it here for ease of access, and also for self-containment 

reasons. 

C.l  Inertia and diffusion matrices 

The inertia and viscous matrices can be parametncally expressed in te= of purely 

radial matrices. Before giving their definition, let us first introduce the following 
notation: 

with GP) = di Gl /drj  . We f u t  herrnore have 
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dl Gf - -  drl d Bl - -- 
drl  dr dr) y 

and so on. Whenever the context leaves no ambiguities, we will drop the variable 

dependence of the different functions to alleviate the notation. Replacing these values 

in (C.l) , the matrix is now written in terms of the r )  coordinate only, such that 

In the next step, we use the domain partition to mi t e  

with for each q ,  

The &, (E [-1,1]) and w, are respectively the coordinates and weight factors for 
the Gauss-Legendre quadrature (for numerical values, see e.g., Abramowitz & Ste- 

gun (1964)). The nurnber of integration points PM is chosen, according to the order 

of the B-spline used, to approximate the integral as close as possible to  machine 

accuracy. 

We define k o  additional "boundary" matrices, namely 

Consequently, these matrices will be non-zero only for I f  = 1 = N, in the case of Mgl 
and l', 1 E { 1 , 2 }  for Msz.  
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C .  1.1 Inertia matrices 

According do the definition of the inertia matrix in (2.44), for each modal farniiy (see 

TABLE 2 4 ,  we have: 
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C .  1.2 Diffision matrices 

In a similar manner to what was done for the inertia matrix, the viscous rnatrix 
definition (2.45) gives us for each modal family (see TABLE 2.1): 
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C .2 Nonlinear terrn and related arrays 

The computation of the nonlinear term (F*) involves the evaluation of the integral 
(see (3.3))  

(Vj , F) = ' ~ L ~ L 2 ~ m  (yj)* F T drdOdz , 
LeLz 

which writes in long (see (3.5)) 

for both "+" and " -" classes and for every indices 1' , m' and n' . The sequential 
evaluation of al1 sums and products can be simplified by proper reordering of the 

different terms. 

Let us first consider the physical components of the vorticity and velocity vectors. 

Frorn the vector functions in TABLE 2.1, we have 

and 

where it is understood that each component al, bl, . . . is a function of 0, z and t , 
i.e., ai = al (O ,  z, t )  , etc., and that  summation over 1 is impiied, Le., 

alGi ( r )  5 aiGl (r ) . 



These are the detailed forms of the syrnbolic expressions introduced in (3.6) and (3.7). 
The Fourier transformed scalar cornponents are given by 

h k 4 L n  
3 = + - k, = O and ke > O Qimn 9 

O ; k o = O  

for which we have impiicitly assurned the variable dependence on t ,  ke and k,, viz. 
h h 

aGn = a;,, (t) and di = di (t; ka, k,) . 

Because the radial integration introduced in (3.12) involves only B-splines func- 

tions, it can be precomputed at once befvre entering into the time maching procedure. 

Recall that the related radial integrals involve triple products of B-splines having a 
generic definition in the form of 

cm 

G!? (r)@) ( r ) ~ ; : )  ( r )  rk dr . (C. 13) 

The global topology of one such typical three-dimensional array is shown in FIG. C.1 
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FIGURE C -1. Topology of a generic three-dimensional array F&,, . The global cube 
is of dimension N . .  The non-zero entries are identified by the shaded volume. For 
a given value 1' , the two-dimensional array of non-zero entries associated with 1, 
and Z is sketched in FIG. C.2. 

FIGURE C.2. A two-dimensional %ut", for a constant value of 1' away fiom the 
edges, fiom the three-dimensional array shown in FIG. C.1. The non-zero entries, 
for the values of 1, and 1 ,  are represented by the shaded area. 



and C.2. The numerical evaluation of the 22 resulting particular arrays is carried 
out according to the same procedure as for the M ! ~  matrices, but this time with a 
higher number PF of integration points. The number PF is chosen, according to the 

B-@ne order, to bring the integration result to machine precision accuracy. 

Now, the equivalent radial convolution sum, symbolized by (3.13), is detailed in 

the following expressions: 

evaluated in the physical space. Note that in these last terms, the double surnmation 



over the indices 1 and 1, is assumed, i.e., 

Findy, the nonlinear term is obtained, after the Fourier transforms, by the last 
following expressions: 

with 

kz .={ 1 ; kz = O and ko > O 
O ; k e = 0  



Appendix D 

Complement ary Notes on Implement at ion 

Thi appendix includes a series of miscellaneous topics rdated to the implementation 

considerations discussed in Chap. 3. 

D. 1 Time integration 

The time integration scheme used was first presented by Spalart et al. (1991). We 
identie it here as the SMR (for Spalart, Moser and Rogers) scheme. Following the 

presentation done by Spalart et al., the scheme can be derived by considering the 

mode1 equation 

The operator L(u) stands for a general linear operator and N(u) for a nonlinear 

one. The nonlinear operator can in turn be lineazized by the following Taylor-type 

expansion 

1 
N ( u  + bu) = N(u)  + Dbu + -£6u2 + O (6u3) , 

2 

where 



and are respectively linear and bilinear in bu. For example, the linear operator 2) 

also appears in the generalized Newton-Raphson method, and the discrete version of 

V is associated with the so calied "tangent" matrix (Zienkiewicz & Taylor, 1991). 

Let us now consider the Taylor expansion in time of (DA) around the point t such 
that 

au at2 a2 u at3 a3 u + - 
u(t+at) = u + at- + -- at 2 dt2 6 dt3 

+ -- (Da 

After a few manipulations 

trouble that 

of the above definitions, it can be shown without much 

and that 

Replacing in (D.2) we obtain 

A fuIly third order scheme in time should match this Taylor expansion exactly. Spalart 

et al. proposed a general scheme in the form of 

where the first substep amounts to a CN/BE1 scheme but with modified coefficients. 

The other two substeps are in turn equivalent to modified CN/AB22 schemes. There 

are 11 coefficients but exact matching between (D.3) and (D.2) would require 17 

equations. These equations can be obtained in a very straightforward but also very 

The "CNn stands for the Crank-Nicolson scheme while "BEn is for Backward Euler. 
2Here, "AB2" is for the second order Adams-Bashforth scheme. 



tedious manner by properly expanding (D.4)-(D.5) and equating with the correspon- 

dent terms in (D.3); a task welI suited for a symbolic mathematics software such as 
MATHEMATICA. We do not mite the full system of equations but rather a reduced 
one which is obtained after imposing the same time interval length for L and N such 
that 

hence leading to 8 equations for 8 unknowns. More Specifically, for 1st order: 

for 2nd order 

and finally, for 3rd order 

1 
r:(r2 +- ~ 2 )  +%("YI + +72)2 = - 3 (D. 12) 



This system of nonlinear equations (D.8)-(D.15) does not seem to have a unique 

'korkable" sohtion. The aut hors stili proposed the- foIlowing set of coefficients: 

which satisfy all but the last equation. In (D.15) the RHS term actually equals 

119/640 which gives a mismatch of 3711920 (= 0.0193). The resulting scheme is 
therefore of 3rd order on the convective and the rnixed terms while being formally of 

2nd order on the diffusive tenn. 

The curve of the marginal stability of this scheme is shown next in FIG. D.13. 
The curve is given in terms of the simple mode1 equation 

in which X is cornplex. The imaginary part of the coefficient X can be associated 

to some transport/convective term while the real part can be associated with some 

diffusive term. Note that in the asymptotic limit of very viscous problems, the scheme 

tends to unconditional stability (implicit integration of the diffusive term) so it will 
not close on the left. Furthemore, it crosses the imaginary axis at 6 and very 

slightly overboard in the positive region as for RK3 schernes (Canuto et al., 1988). 

Inviscid flow computations are theoretically stable but in the absence of any dissi- 

pation term, energy cascade to smaller structures can rapidly saturate the spatial 
resolution. Nonetheless, this allows for maintaining relatively large tirne steps even 

at moderate values of Re and therefore proves more advantageous than the CN/AB2 
as will be seen in the comparison below. In practice, CFL numbers of 2 and possibly 

higher according to the value of the Reynolds number can be used. 

Cornparisons have been made between the SMR and the CN/AB2 schemes and 
are illustrated in the following figures. The results were obtained by considering the 

solution of a linear transport/diffusion equation (i.e., a linear version of the Burgers 

3The data used to plot the curve were kindly provided by R Brochu. 



stable 

FIGURE D -1. Marginal stability cuve for the SMR scheme. The scheme is stable 

in the region at the left of the curve. 

FIGURE D -2. Cornparison or error between the CN/AB2 ('O" symbols) and the 
SMR ("O " symbols) schemes. The total solution error is computed in the physical 

space. See text for additional comments. 



FIGURE D.3. Cornparison or error between the CN/AB2 and the SMR schemes. 
The total solution e m r  of FIG. D.2 has been decomposed in a) its amplitude com- 

ponent, and b) its phase cornponent. These results are computed in the spectral 
space. The symbois are the same as in FIG. D.2. 



equation). In terms of a non-dimensional wavenumber k and a Reynolds number Re, 
we show in FIG. D.2 the total solution error. In FIG. D.3 we show the decornposition 

of the solution error of FIG. D.2 in terms of its amplitude and its phase component. 

Regularity condit ions 

In this section, we give the different expressions related to the imposition of the 

regularity conditions a t  r = O. Again some of this material is redundant with what 

is presented in Loulou et al. (1997); the sarne considerations about ease of access and 

self-cont ainment applies here t 00. 

Note that the clever construction of vector functions of Loulou et al. aliows form 
an identical implementation of conditions for both the + and - classes. This is one 

of the main factor for which we opted for these expansions rather than the ones of 
Leonard & Wray, for example. 

Before discussing the direct implementation, recall some properties of the B-spline 

functions (results derived from App. B). More specifically, the partition of unity 

Summation over any order of derivatives will obviously gives O, Le., 

(D. 16) 

for O < n < k ;  for n 2 k ,  the result is trivial since dk Bl/dvk = O for all 1. 
. 

The regularity conditions (2.11) are formulated in tenns of the tme radial coor- 
dinate r but can be considered in terms of q without Ioss of generality since the two 
coordinates coincide a t  T = O (the Jacobian is equal to 1). The regularity conditions 
can therefore be written 



as q + O and with P(q2) being a polynomial of the appropriate order (without the 
constant factor when ke = O).  This parity condition is imposed by constraining the 

odd (even) derivatives to zero, at 7 = 0, for odd (even) values of kg. 

The regularity conditions are imposed on a linear combination of weight vectors 

formed by 

such that E F  must be regular. This vectonal condition can again be directly brought 
down to the spline function level so that we now have 

Following the same principle as for the basis vecton, the proper linear combinations of 

weight vectors, satisfyïng the required conditions, can be determined by the following 

sets of equations: 

ko odd 

0 k even 
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0 k odd 

..- 
S . .  

. . . 

- . *  

ko even 

O k even 

0 k odd 



Let us bnefiy consider an exarnple on the system of equations 

If we consider the particular case of ke = 1, the for cubic B-splines ( k  = 4) the set 

of linear relations is determined by 

In tenns of the weight vectors, this gives 

and results in a coupling relation for the first two iines of matrix A. More specificaily, 

if the matrix is initially given by 

applying the regularity conditions of the weight vectors gives the following modified 

mat rix 

where Glj = a~ + and bl = b1 + P l l b  Now, because the second equation 
(line) is linearly dependent, jt needs to be suppressed. In this case, we rather choose 

to replace it with the regularity condition of the B-spline coefficients al. Thus, we 

finally obtain 



nr 

FIGURE D.4. Effective rnatrix liead with proper reordering of the different coefficients according to the P 
"+" and '-" classes. The example is for quadratic (k = 3)  B-splines. The initially zero values tliat would 

be modified by the imposition of the rcgularity conditions are identified by an "x". 
B 4 



D .3 Boundary conditions 

In this section we give a brief synthesis of the boundary conditions that need to be 
imposed in both the unbounded and the bounded cases. As it was already discussed 
in Chap. 3, the boundary conditions amount in all cases to the imposition of a series 
of zeros. 

TABLE D -1. B-spline coefficients for the harmonic decaying boundary conditions 
of \k 1 at 77 = 1. The conditions apply equaily to kz = O and kz # O. 

TABLE D. 2. B-spline coefficients for the no-slip boundary conditions at r = R, 



Modal groups and FFT's 

The modal groups discussed in this section come as a generalization of the modal zones 

presented in LMMCYs report, and allow for an arbitraxy variation of the azimuthal 

truncation in the radial direction. Because of the general character of this approach, 

an extension to include the variation of the longitudinal truncation Nz could relatively 

easily be made, but this would come with an extra price to pay in the computation 

of the nonlinear term. 

In the first part of this section, a set formulation is used to present the modal 

groups, briefly introduced in Chap. 3. In the second part, we give some brief infor- 

mations related to the FFT used for the computation of the nonlinear term. 

D .4.1 Modal groups 

We begin by the introduction of some definitions. First, a modal zone is defined 

as a (mapped) radial sub-interval [qiy vi+l [, with qi < qi+l to which is assigned a 

given truncation NB. The B-spline breakpoints are a convenient choice for the q. 

More specifically, let us define a modal zone p as the interval [ Q ~ - ~ , B [  "th the 

corresponding zonal truncation N ,  . Let us now introduce an m c i a t e d  set of zonai 
B-spline indices 1 .  = { li ), such that 

An illustrative example of such a set will be given a little later on; as for the q ,  

they are the collocation points associated with the B-splines Bli.  There is some 
arbitrariness in the choice of definition of the q ,  as long as ri E [ ti, tl+* 1, here we use 

The set of al1 zonal sub-intervals [ rlt>-i, qp [ form a partition of the radial domain, 
viz., 



where 0 is the empty set. Consequently the 12 form a partition of the set of Bsplines 

indices 1, = { 1,2, . . . , N, ) , i.e., 

For computation purposes, instead of working with the modal zones we rather form 

modal gmups. The q th modal group I$ is defined such that 

where NE is the qth value of the set Nec of "distinct" truncation levels N ~ Z  E Nez, 
0') in ascending order. More specifically, this gives NBO = Nez for sorne j, but N ~ Z  < 

(equal values of NZ for different zones are considered as being the same for 
a group), and also with ~ $ 2  = 0. 

Let us use an example to better illustrate the matter. Suppose that we have a ra- 

dial discretkation formed of 12 B-splines divided into 4 zones, with Nez = { 4,6,8,6 ) . 
Suppose furthermore that the application of the collocation point critenon exposed 

above gives the following correspondence between the truncation levels ~ ' 2  and the 

B-spline indices Z, 

Rom this, we start by constructing the set of ordered truncation levels such that 

NeG = { 0,4,6, 8 ). The 4 zona1 sets I$! will hence give 3 modal groups I ,  (the 4th 
one being obviously an empty set), such that 

rj$ = (j I(" qz with N'" > 
i=1 

whence 



Now, because of the B-spline overlapping, when computing the FFT's related to the 

convolution surn in the nonlinear terni (see Chap. 3), the "effective" modal groups 

must be extended with k - 1 indices frorn higher to lower azimuthal resolution. As- 
surning that in the example above we have quadratic B-splines, this meami extending 

the modal groups by two index values, such as to finally obtain 

These modal groups are pre-organized in look-up tables for the code so that for each 

value of Z', in TABLE 3.3, the dimension of the FFT's (line l.(b) and l.(d) in the 

table) are directly available. 

D.4.2 FFT's and the collocation grid 

The two-dimensional FFT introduced in Chap. 3 (Sec. 3.2) is carned out by two suc- 
cessive one-dimensional complex FFT's, from the FFTPACK library. The dimension 

N of each transform must be such that N = 2q3'4"St, or otherwise a "slow" DFT 
is used. Note also that since the transforms are executed on a collocation grid, the 

dimension IV is therefore associated with the "de-aliased" truncation; the effective 

number of computational modes (No  or Nz) is thus determined by $V. In the im- 
plementation, the nurnber of collocation modes is set independently of the nurnber of 

computational modes so that partially, or even fully, aliased calculations may aiso be 
done. 

D.5 Projection of the initial condition 

The projection of the initial condition onto the spectrd/B-spline space coefficients 

may be done from various types of field. In the following subsections, we give the 

different matrices required for projections from vorticity and velocity fields; the cor- 

responding boundary conditions are also given. The Stream function fields mention 



in the last subsection apply for either axisymmetnc or 2-D polar Aows. In these latter 

cases, the projection is simply a standard B-spline integral projection (see Sec. B), 
and no boundary condition need be specified. In al1 cases, the initial field quantities 

are assumed to satidy the regularity conditions near the point r = O; no regularity 

conditions (Sec. D.2) are therefore imposed on the projection matrices. 

D . 5.1 Vort icity field 

This initial condition projection is defined in terms of the vorticity W .  Because this 

vector field is divergence-free, only two components are required to completely defined 
it and consequently to define its projection onto the scalar spectral/B-splines space 

coefficients. Because of their appearance in the definition of most basic flows, we use 
the 8 and z components. We then end up with an algebraic system of equations 
given by 

The definition of the matrices and the RHS term depends on the type of projection 
used. We use here an integrai projection such that 

with the foilowing set of matrices (see (Cl) for the definitions of the MG matrices), 

defined according to the different families of modes (see Sec. (2.2): 

1) (0,  O) mode 



TABLE D.3. Outer boundary conditions for the vorticity projection: nuniber of 
zeros imposed. 

2) (ke, O) modes 

3) (0, k, ) modes 

The integrals (D.32)-(D.33) are computed through a Gauss-Legendre quadrature. 
This requires that the Fourier-transformed components Ge, W, have to be stored for 
every quadrature points. The set of boundary conditions required to close the system 
of equations is outlined in TABLE D.3, above. 



D.5.2 Velocity field 

The initial conditions can be given in terms of the velocity vector components in a 
sirnilar manner as for the vorticity. In this case the projection matrices are given by: 

1) (0, O) mode 

2) ( k~ , O) modes 

3) (0, k, ) modes 

4) ( ke , k, ) modes 

The boundary conditions corresponding to the velocity projection are given in TA- 
BLE D.4. 



TABLE D.4. Outer boundary conditions for the velocity projection: n u b e r  of 
zeros irnposed. 

D .5.3 Stream functions 

The vector potentials i ~ f  used to constnict the velocity vector expansions W: 
cannot be directly linked, in general, to stream functions since # O. Stream 

function fields c m  nevertheless be used to define the initial condition, in the polar 

and axisymmetric cases, by making use of the following considerations. 

For 2-D polar flows, there is a stream function Qp(r, O )  such that 

For axisymmetric flows, there is a stream function $a (r, z) such that 

If we consider, for the axisymmetric case, a velocity vector u such that u = V x qeêe, 
we then obtain @a = For the 2-D polar case, with u = V x Sr,&, we directly 

have 11, = A. Both &I and & can be used to define the the initial spline function 

coefficients. Note also that for the particular case where ke = k, = O ,  we have 

and 

or equivalently 



Without loss of generalim we may assume here that &(O) = $e(O) = O, to overcome 

the indeterminateness mentioned in TABLE 2.1. 

D.6 Modal energy and growth rate value 

Let us briefly look, in this section, at how we evaluate the instability growth rate 

values A,, used in Chap. 4, from the Navier-Stokes solutions. Taking advantage of 

the Galerkin formulation, we certahly may use of the following relation. For the 
radially integrated modal kinetic energy, defined by 

the integral can directly be expressed in terms of the a& by 

Furthermore, since 

d û  -*.- = d 1 ,, 
U 

dt --lu1 7 dt 2 

we can also expressed the tirne derivative of the kinetic energy as (see (2.25)) 

d + + = (aC)* [B+a  +B;a-+F+] + (a-)' [B:cu-+B+a++~-] . (D.36) dt 

The instantaneous growth rate A, can then be obtained by combining (D.35) and 

(D.36) to give 

This is the procedure identified with the label "(1)" in Chap. 4. 

When the modal energy Ekeai, is small (Le., small values of CE:,,), (D.36) may 
suffer from accuracy losses and the following first order estimate 



may prove more reliable, provided that the time step At is small enough. This is 
method "(D)" . 

For sufficiently well resolved problems, both resdts should obviously tend to  the 

sarne value. According to the particular case tested and the resolution used, an agree- 

ment to about five significant digits can be reasonably obtained. Such an agreement 

between the two values gives an indication of consistent resolution between the inertia, 

the viscous and nonlinear terms. 

Let us simply end by noting the following relations for the "modally integrated" 

energies 



Appendix E 

Linear Stability of Poiseuille/Stokes Flow 

In the first part of this appendix, we briefly review the andytical closed form solution 

of the stability of Stokes flow in a circular pipe. In the second part, we discuss the 

construction and partial validation of the lineaxized transport matrix 6,  introduced 

in Sec. 3.6, in the context of a uniform, axisymmetric base fiow. 

E.l  Eigensolutions for Stokes flow in a circular 

pipe 

We provide here the analytical closed form solution of the Stokes eigenproblem for 

circular pipe flow, defined as the solution of 

with 

and u = O at r = R, = 1. The vector field u is always understood to be divergence- 

f'ee. 

The solution of (E.l), for k, # 0, was given by Salwen & Grosch (1972) (see also 



Loulou et al., 1997), as 

with ,& being the sth root of 

Jke and Ik@ are respectively the Bessel and the modified Bessel functions of the first 
kind of order ks (Abramowitz & Stegun, 1964). Note that here the Reynolds number 
in (E.2) is only present as a scaling factor for the eigenvalue A,. The corresponding 
eigensolu tions are: 

and 

The constants al and 0 2  are respectively given by 

and 

In the particular case of ko = O, we have 



with j?) being the sth zero of J,, i.e., ~.(j?)) = O. 

Extension of these solutions to the particular case of k, = 0, can be found in 

Loulou et al. (1997). Because of the uncoupling between the "+" and the "-" 
classes, two different sets of solutions are obtained, namely, 

with 

E.2 Eigenvalue solver 

We present here some cornplementary informations related to the construction of the 

linearized transport mat& 6 used in the eigenvalue solver introduced in Sec. 3.6. 

More specifically, we give the details of the different arrays that arise when considering 

an axisymmetric, uniforrn base flow field, i.e., for 

Let us first decompose the general integral (3.30) in two parts such that 

0: = 15 + Il:, (E. 13) 

and where 

and 

[lq],,, = ~ " ( w E ) * *  (Û -ev )  r d r  . 

(E. 14) 

(E. 15) 



Here again 6 and 7 take the the values "+" and " - " according to the combination 
of vector expansions (see TABLE 2.1). Following the above notation, the Merent 
matrices 0: can be formulated, after replacing the various appropnate terms, by 
some parametric combinations of purely radial arrays, having the generic form 

(E.16) 

with 

A total of 20 arrays is required for the complete definition of dl th e terrn s in 1: and 

I 1:. For each farnily of modal pairs ke , k, , we obtaui (using MATHEMATICA) the 
following specific expressions: 





TABLE E.1. Validation of the iinearized transport matrix for a Poiseuille flow 

in a pipe at Re = 9600. The first eigenvaiue for the (l,l) mode. Top results 
h-convergence with k = 7; bottom p-convergence with = 35. 

t Leonard & Wray (1982): N,' = 37 
2 Salwen et al. (1980) 

For the particular modal pair k6 = O and k, = O, a l l  expressions are naturally 

zero. One may finally note that the radially bounded version of these expressions 
can be easily obtained by making use of the appropriate modifications discussed in 

Sec. 3.5. 

The validation of the differint expressions given above has been carried out for 

bath the bounded and the unbounded formulations; the general results were presented 

in the different sections of Chap. 4. A more systematic algorithmic validation of 

the assembly of the effective matrices and other relevant technical procedures had 
nevertheless been previously undertaken by, among other things, cornparisons with 

the benchmark data of Leonard & Wray (1982). These latter validations results are 
shown in TABLE E.1. The test was made for the fist eigenvalue XI with ke = 1 and 



k, = 1 of a Poiseuille flow (i-e., with the bounded formulation of the code B o u ~ C n -  
LS), where 

The Reynolds nurnber considered-based on the centerline velocity and the pipe 

radius-was Re = 9600. The uniform B-spiine discretization used is seen to compare 
quite well with the Jacobi method of Leonard & Wray. 



Appendix F 

Use of a Background Flow 

The superposition of a background flow unh to the homogeneous field u (the subscript 

"h" is implicitly assumed here) has been tested with the counter-rotating vortex pair 

problem. The initial basic flow is defined in terms of two counter-rotating Lamb- 
Oseen vortices, such that 

where 

The parameter a is the characteristic length associated with the vortex core size; 

at a radius T = a,  around the vortex center, the ratio of the partial to the total 

circulation of the vortex "tube" hence defined is 0.632. The dimensional length and 

velocity scales are respectively chosen as the vortices inner spacing b and the vortex 

pair self-induced velocity (in the filament limit a + O ) ,  i.e., 

- L Ed = 6 and Lrd = - . 
' 2 d  

The nondimensional circulation r of a single vortex is accordingly given by 
- 
r 

In FIG. F.1, we show iso-contours of vorticity for a vortex pair defined by (F.l), with 

a = 0.1; in FIG. F.2, we show the corresponding initial energy (Eh) spectmm. Note 

that for simplicity, we limit here our considerations to 2-D polar flow fields. 



FIGURE F. 1. ISO-vorticity contours for the initial counter-mtating vortex pair 

defined in (FA), with a = 0.1. The contours are shown for Iw,J, = 150 with 

increments of Auz = 15 (the zero contour is skipped); the left and right vortices 

have respectively negative and positive vorticity, as indicated by the arrows. The 
cross indicates the center of the computational domain- 

FIGURE F. 2. Azimuthal energy spectrum correspondhg to the flow field shown in 

FIG. F.1. One may note the "odd syrnmetry" in the distribution of modal energy; 

only odd value wavenumbers have a non-zero energy content. 



The vortex pair shown in FIG. F.1 wiU naturdy convect itself downward with 

with a veLociQr close to 

since we can consider that a = 0.1 « 1. As a first step, we show the self-induced 

translation of the counter-rotating vortex pair, computed with the code UNCYL and 

using the following discretization: 

N, = 77, k = 4, partially uniform distribution of breakpoints in 77 with 

4 points for O 5 77 < 0.02, 6 points for 0.02 5 q < 0.08, 

54 points for 0.08 5 77 < 0.55, 6 points for 0.55 5 q < 0.7, and 

4 points for 0.7 5 7 < 1.0, 

with L = 1.5; 

6 modal zones (Le = 27r) with 

Ne = 4 (O 5 0 < 0.01 ), Ne = 8 (0.01 < 1) < 0.03 ), 
NB = 16 (0.03 5 71 < 0.05), Ne = 30 (0.05 $7 < 0.3), 
Ne = 16 (0.5 5 r ]  < 0.7), Ne = 8 (0.7 5 8 < 1.0 ); 

CFL = 2.0 for which At varies according to the particular case considered (see 

details below) . 

The Reynolds number, based on an individual vortex circulation, was set to Re = 

r / ü  = 6280; the diffusive time scale is Tu = 10, based on the vortex core radius, 

while the convective time scale is Tu = 1, based on the reference length and the 
velocity scale. 

In FIG. F.3, we show the vortex pair at  t = 0.5; the corresponding energy spec- 

trum is @en in FIG. F.4. As the vortex pair moves away from the c~n te r  of the 
computational domain (indicated by the "lighty' cross in FIG. F.3), the energy con- 

tent shifts from lower to higher wavenumbers. For obvious practical reasons, one 

would wish to maintain the principal flow structures "stationary" in the computa- 

tional domain. This can be achieved, in this case, by superposing an upward, uniform 

background flow u,h ,  such that 

u.h = q, sin 9 & + U, COS eêe . 



The only additional "extra forcing" that results from this procedure is Fe = u,h x w 

(see (3.4)). 

The stationary vortex pair is illustrated in FIG. F.5 where a background flow (F.3) 
has been added with u, = 1. The solution is shown at t = 1.0, and the pair has 
remained very dose to its initial position. R o m  the spectrum in FIG. F.6, we see that 

the initial "odd syrnmetry" is preserved, and the higher wavenumber structures have 

difhsed. The appearance of energy in the lower even wavenumbers is associated with 

the deformation of the vortex cores. Each vortex induced velocity field, combined with 

the uniform flow translation, results in the generation of a straining field, centered 
at the adjacent vortex location. Vortices of finite core size will therefore defom 
under the action of this straining field. Kote that the tirne scale associated with 

the straining field is TE = 2xb2/r = 1, i.e., of the same order as the time at which 

the solution is shown. Supporting the observation that the even wavenumbers are 

directly associated with the vortex core deformation, is the Stokes flow solution shown 
in FIG. F.7 and F.8. In that latter case, each vortex tube diffuses independently of 

the other and remain circula. The cornparison of both spectra (FIG. F.6 and F.8), 
in which the energy content of the odd wavenumbers is practically identical, thus 

confirms the observation. 

Al1 the computations shown here were carried out with a time step size criterion of 

CFL = 2.0. According to the particular case treated, this resulted in different values 

of At ,  that we consider in what follows. First, since the velocities are important 

near the center of the domain, the use of modal reduction to alleviate the time 

step size (see Sec. 3.4) is of critical importance here. Far exarnple, a single zone 
(with NB = 30) for the computation shown in FIG. F.5 wouid have required that 

At - 2. x 10-4 whereas the present multi-zone discretization gives At 1.1 x 10-~, 

a factor 5 difference. For the free vortex pair in FIG. F.3, the initial time step size 

(with the same multi-zone discretization) was At = 8. x IO-'. This is because the use 
of an upward background flow reduces the effective velocity near the center, where 

the CFL constraint is highest, and higher velocities are therefore encountered in the 

absence of the background flow. On the other hand, as the free vortices move away 

from the center, so do the important velocities. The tirne step size is thus relaxed to 
A t  = 1.4 x for the displaced vortex pair shown in FIG. F.3, at t = 0.5. 



This brings us to our second point, which is seeking a compromise between the 
spatial and the temporal resolutions, leading to a globaily more efficient computa- 
tion for this test case, A cornparison between the two spectra in FIG. F.3 and F.5 
show that for a given cut-off energy level, Ek# = 10" Say, the displaced pair requires 

about 3/2 more computational modes than the centered pair. Adding the upward 
background flow u, = 1 to the displaced pair of FIG. F.3 however relaxes the time 

step size to a value of At c 3.3 x 10-~; a factor 3 compared to the centered pair 

cornputation that also includes the background 0ow. If one recalls that the computa- 

tion of the nonlinear term-the most demandimg part of the calculation-scales with 

6 (Ne  log Ne), then the 3/2 factor jud mentioned above can be transformed into an 
increment of approximately 1.7 in the computational effort (keeping the sanie radial 

and temporal discretizations). On the other hand, the factor 3 on the time step size 
directly translates ùito a saving of a factor 3. Thus, in this case it is more advanta- 
geous to compute the vortex pair (with the background flow) in its displaced position 

rather than its centered one: a reduction factor of about 311.7 = 1.8 in the CPU cost. 

The evolution of the displaced vortex pair of FIG. F.3, fiom t = 0.5 to  t = 1.0, 
with this time the addition of the background flow u, = 1,  is shown in FIG. F.9 
and F.10. It may be noted that this new t = 1.0 solution could have also been 
obtained by directly offsetting the vortex pair in the initial condition (F.1). As a 

la& comment, let us only Say that the most "efficient" combination of spatial and 
temporal resolution, for a given problem, depends on many factors, and it is in this 

author's opinion that some "heuristic" approach remains inevitable, at one point or 
another, to find t his best compromise. 

We conchde this appendix by showing the results of a displaced and a stationary 
vortex pair with a = 0.2; al1 the other parameters remain equd. The results are 

respectively given in FIG. F.ll and F.12; and in FIG. F.13 and F.14. In this case, 
the viscous time scale becomes TV = 40. Also, because the vortices are bigger, the 
deformation effects are more apparent, and the departure h m  the asymptotic self- 
induced velocity u, = 1 can be felt, although only slightly for the solution time 
shown. 



FIGURE F.3. The vortex pair of FIG. F.1 s h o w  at t = 0.5, with the same 
iso-vorticity contours. After that short time, the vortex mres have o n l ~  ~ m i d ~  

diffused, but the pair has moved downward, as a whole, with a distance of t 7% = 
0.5. See the corresponding energy spectrum in FIG. F.4. 

FIGURE F.4. The energy spectrum corresponding to the t = 0.5 solution shown 
in FIG. F.3 (the "0" symbols). The initial spectnrm of FIG. F.2 is shown 

as a reference (the ' 0" symbols). The initial "odd symmetry" is lest, and as 
the vortices move away from the center of the cornputational domain, the 
energy shifts towards higher wavenumbers. 



FIGW F.5. The vortex pair of FIG. F.1 shown at t = 1.0, with the same iso- 

vorticity contours. The addition of a uniforrn, upward background flow uy = 1.0 

maintains the vortex pair close to its initial position. The slight a i o n  acting 

on the vortex cores has the eEect, here, to relax the resolution requirement, as can 

be seen from the corresponding spectrum shown below. 

FIGURE F.6. The energy spectrum corresponding to the t = 1.0 solution shown 

in FIG. F.5 (the "0" symbols); the "0" symbols are for the initial spectrum. The 

d i h i o n  reduces the energy content at higher odd wavenurnbers, but the deforma- 

tion of the vortex cores gives rise to the energy content of the even wavenurnbers. 

Compare with the purely diffusive case shown in FIG. F.8. 



FIGURE F.7. The vortex pair of FIG. F.l shown at t = 1.0, but with pure diffusion 

only, i.e., the Stokes flow solution. The visual Herence with the Navier-Stokes 

solution (the slight deformation of the vortex cores) of FIG. F.5 is not so much 

apparent here, but is better illustrated by the energy spectrum below. 

FIGURE F.8. The energy spectrum corresponding to the t = 1.0 solution shown 

in FIG. F.7 (the "0" symbols); the U ~ n  symbols are for the initial spectrum. Both 
vortices diffuse independently of one another; they remain circular and the "odd 

symmetry" is preserved. There is thus no energy on the even modes, as  opposd 

to FIG. F.6. 



FIGURE F.9. The vortex pair of FIG. F.3 shown at t = 1.0, with the same iso- 
vorticity contours. The evolution from t = 0.5 to 1-0 has been done with the 

addition of an upward background flow (u, = 1 ). See the corresponding energy 
spectnim in FIG. F.10. 

FIGURE F.10. The energy spectnim corresponding to the t = 1.0 solution shown 
in FIG. F.9 (the "an symbols). The t = 0.5 spectrum of FIG. F.4 is also shown 
as a reference (the " 0 " symbols) . 



FIGURE F. 11. Same as in FIG. F.3, but this time with a = 0.2 - The iso-vorticity 

contours are shown for Iw, 1 ,, = 50 with increments of Auz = 5 (the zero contour 

is skipped) . The corresponding energy spectnun is shown in FIG. F.12. 

FIGURE F. 12. The energy spectrum corresponding to the t = 0.5 solution shown 

in FIG. F.ll (the "on symbols); the "0" symbols are for the initial spectrum. 

Compare with the equivalent a = 0.1 spectrum shown in FXG. F.4. The energy 

content of the initial spectrurn falls off more rapidly in this case, but again the 

energy content shifts towards the higher wavenumbers as the vortices move away 
fiom the center. 



FIGURE F.13. The quivalent of the vortex pair of FIG. F.11 shown at t = 1.0, 

with the same iso-vorticity contours, and the addition of. the upward background 

flow u, = 1.0. Because the self-induced velocity is slightly smder  than 1 in t his 
case, the vortex pair has moved up, but not of a significant amount for this short 

tirne. See also the corresponding energy spectrum in FIG. F. 14. 

FIGURE F. 14. The energy spectrum corresponding to the t = 1.0 solution shown 

in FIG. F.13 (the "mn symbols); the "O" symbols are for the initial spectrum. Dif- 
nision is seen in the decay of the intermediate odd modes, vortex core deformation 

is seen in the appearance of energy on the low even modes, and the slight transla- 

tion of the vortex pair is seen in the ''tail" of the spectrum at higher wavenumbers 

(ke > 12). 




