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Résumé court

Dans cette thése, on présente une nouvelle méthode numérique pour la solution
des équations de Navier-Stokes incompressibles et instationnaires dans des domaines
cylindriques non confinés. La discrétisation spatiale est constituée d’expansions vec-
torielles a divergence nulle, suivant 'approche proposée par Leonard. Des séries
de Fourier sont utilisées dans les directions longitudinale et azimutale alors que des
polynémes par morceaux de type “B-splines” sont utilisés dans la direction radi-
ale. Le caractére local des B-splines permet en plus d’inclure une variation radiale
de la troncation azimutale. Des conditions de régularité compléte au centre du do-
maine ainsi que les taux de décroissance asymptotiques a 'infini sont pris en compte.
L’intégration temporelle des sous-systemes d’équations résultant de la formulation
de Galerkine utilisée est effectuée avec un schéma mixte explicite/implicite du quasi
troisieme ordre. Les comparaisons faites avec d’autres méthodes purement globales,
dans le calcul de stabilité hydrodynamique de certains écoulements tourbillonnaires
avec symétrie axiale, ont permis de conclure que la méthode proposée ici représente
une alternative avantageuse.

Prof. Guy DumMmas ‘Lauls DUERFENE

Directeur de these Candidat



Résumé long

Dans cette theése, on présente une nouvelle méthode numérique pour la solution
des équations de Navier-Stokes incompressibles et instationnaires dans des domaines
cylindriques non confinés. Cette méthode apparait comme une nouvelle application
de la formulation des expansions vectorielles a divergence nulle proposée par Leonard
et posséde donc les caractéristiques suivantes : i) représentation exacte de I’équation
de continuité ; ii) élimination complete de la variable de pression ; iii) intégration
temporelle implicite du terme de diffusion sans coiits additionnels ; et iv) réduction
du nombre d’inconnus (vitesse) de trois a deux. Une autre caractéristique importante
de la méthode, qui de fait lui confére une bonne part de son originalité, est l'inclusion
de polynémes par morceaux de type “B-spline” dans la direction radiale semi-infinie.

Plus particulierement, la discrétisation spatiale est constituée d’une combinai-
son de séries de Fourier dans les directions longitudinale (périodicité physique des
écoulements avec évolution temporelle) et azimutale (périodicité géométrique), et
de B-splines projetés sur un domaine radial unitaire. La fonction de projection
choisie permet une représentation exacte, jusqu'a un certain ordre, des comporte-
ments asymptotiques a l'infini. En plus de ces comportements asymptotiques, des
conditions de régularité compléte sont imposées au centre du domaine (r = 0).
Grice au caractére mixte spectral/B-spline des expansions vectorielles, un compro-
mis intéressant est obtenu entre le découplage provenant de ’orthogonalité des séries
de Fourier et la flexibilité de positionnement de résolution propre aux méthodes lo-
cales. De méme, le caractére local des B-splines permet aussi d’inclure une variation
radiale de la troncation azimutale. La base vectorielle ainsi construite est ensuite
utilisée dans une méthode de résidus pondérés de type Galerkine, d’ou on obtient une
réduction du probleme complet 3-D en un ensemble de sous-problémes radiaux 1-D.
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L’intégration temporelle de ces sous-systémes d’équations est quant i elle effectuée
avec le schéma mixte explicite/implicite du quasi troisi¢me ordre proposé par Spalart
et al. (J. Comp. Phys., 96, 297, 1991). La formulation de Galerkine est aussi utilisée
pour ’obtention d’un programme de calcul de valeurs propres pour les problémes de
stabilité linéaire. Une version pour domaines confinés par une paroi cylindrique a de
plus été développée. Das ce cas, la version confinée de la présente méthode devient
équivalente a celle proposée par Loulou et al. (NASA TM-110436, 1997).

La validation des différents programmes de calcul (Navier-Stokes et valeurs pro-
pres) a été effectuée en comparant des résultats obtenus par la présente méthode
avec des valeurs de référence. Les problémes considérés pour faire ces comparaisons
sont liés a la stabilité d’un modele de tourbillon de sillage ainsi qu’a la stabilité et &
I’évolution non linéaire d’un tourbillon triangulaire. Les résultats obtenus ont permis
de conclure, d’une part, que le gain réalisé entre la méthode B-spline non confinée
et celle confinée n’est que marginal. D’autre part, les comparaisons faites avec les
autres méthodes purement globales ont permis de conclure que la méthode proposée
ici représente une alternative avantageuse aux méthodes globales comparées, partic-
ulierement pour le calcul d’écoulements avec symétrie axiale.

Prof. Guy DuMAs ” LOWSIDUFRESNE

Directeur de these Candidat



‘Abstract

In this thesis, a new numerical method to solve the incompressible, unsteady Navier-
Stokes equations in unbounded cylindrical domains is presented. The method comes
as a novel application of Leonard’s divergence-free vector expansions approach, and
therefore possesses the following characteristics: i) exact treatment of the continuity
constraint; ii) complete elimination of the pressure variable; iii) implicit time inte-
gration of the diffusive term at no extra cost; and iv) reduction of the number of
(velocity) unknowns from three to two. Another important feature of the method,
that indeed represents the originality of the present formulation, is the introduction
of mapped B-spline piecewise polynomials for the discretization of the semi-infinite
radial direction.

More specifically, the spatial discretization is constructed from a combination
of Fourier series, for both the longitudinal (physical periodicity of temporal evolv-
ing flows) and azimuthal (geometrical periodicity) directions, and of B-splines on a
mapped unitary radial domain. The particular choice of mapping function allows for
an exact representation of algebraically decaying functions, up to some finite order.
Besides the imposition of proper decaying conditions in the far field, complete (finite
order) regularity conditions are also imposed at the center point r = 0. These mixed
spectral/B-spline expansions, used to form the divergence-free vector basis functions,
yield an efficient compromise between the high uncoupling associated with the orthog-
onality of Fourier series and the resolution positioning flexibility that is characteristic
of local methods. The local character of the B-splines furthermore allows for a radial
variation of the azimuthal truncation. The resulting vector basis functions are ap-
plied to in Galerkin type weighted residual formulation that transforms the complete
3-D problem into a set of small 1-D radial ODE's that are marched in time. For



that latter task, the quasi-third order, mixed explicit/implicit scheme proposed by
Spalart et al. (J. Comp. Phys., 96, 297, 1991) is used. The Galerkin formulation
also serves for the development of an eigenvalue solver for linear stability problems.
Finally, a wall-bounded version of this method, equivalent to the one presented by
Loulou et al. (NASA TM-110436, 1997), is also produced in this work.

The validation of the different Navier-Stokes and eigenvalue solvers is achieved
by comparing linear stability results, and nonlinear dynamics predictions with other
benchmark data. The particular flow problems considered are related to the stability
of a trailing line vortex, and the stability and nonlinear dynamical evolution of a
special class of zero circulation vortex that leads to the formation of a triangular
vortex. On one hand, comparisons made between the unbounded B-spline formulation
and the wall-bounded version of the method have shown only a marginal advantage
of the former method over the latter. On the other hand, comparisons made with the
data obtained by purely global expansions approximation methods prove the present
spectral/B-spline method to be an advantageous alternative to these global methods
for the computation of unbounded flow problems having an intrinsic axial symmetry.

Prof. GUy Dumas 7 W

Thesis Advisor Candidate
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Chapter 1

Introduction

Over the last few decades, with the tremendous increase in computing capability and
the many developments to which it was the subject, computational fluid dynamics
(or CFD as it is more commonly known) has gained much acceptance as an indis-
pensable tool for studying the dynamics of fluid flows, standing somewhere between
the theoretical approach and the “lab experiments”. If we now arrive at a point
where numerical simulations of the Navier-Stokes equations—yielding the complete
and accurate time evolution of the 3-D flow field on all physically relevant scales—can
be viewed as a way of doing “numerical experiments”, it still remains of a limited
extent. In vortical flow stability and transition dynamics—the class of physical prob-
lems aimed at by the present work—one of the key phenomena is the apparition and
rapid growth, after a certain time, of small scale structures. The amount of resolu-
tion, both in space and time, necessary to generate the detailed databases required to
shed light on such complex dynamics can easily become a challenge even for today’s
supercomputers. To maintain the problem within tractable dimensions and cost, spe-
cialized tailor-made numerical methods are still necessary. Albeit the fact that these
methods are usually restrained to very simple and regular geometries, whenever they
are applicable, the richness of information at hand and the resulting absolute con-
trol over the flow parameters they provide help make of numerical simulations a very
powerful investigating tool.

This thesis is primarily concerned with the development of one such specialized
numerical method for the solution of the incompressible Navier-Stokes equations. To
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better put in perspective the objectives and scope of our work, we will briefly go over
some preliminary considerations. Then, the specific objectives aimed at by this thesis
will be stated. A general outline of the material presented will also be given.

1.1 Preliminaries

When devising an efficient numerical method for problems that involve the time
evolution of structures of many different length scales, one would principally look for
i) wide-band, rapidly converging spatial discretization; and ii) simple, cost effective
time integration. The first criterion is to be able to resolve smaller and smaller
structures as they appear in the flow field with only a minimal increase of the spatial
discretization. As for the second, it is obviously to maintain the time marching of the
solution accurate at an acceptable cost over the relevant time scales of the flow.

Global (spectral) expansion methods are certainly well suited for the first require-
ment. Amongst the main advantages they offer, let us note the exact treatment of the
derivatives and the very high convergence rate—typically exponential, i.e., faster than
any algebraic power—achieved in practice after reaching a certain level of resolution,
as well as the important spatial uncoupling resulting from the (quasi-) orthogonality
relations of the basis functions. We refer the reader to the monograph by Gottlieb &
Orszag (1977) and the books by Canuto et al. (1988) and by Boyd (1999) for a more
detailed description of the theory and techniques of such powerful methodology.

Efficient time integration is somewhat more involved since it implies an efficient
implementation of the spatial discretization for the computation of both the nonlinear
and the pressure terms; the linear diffusive term is the most simple one and does not
require any particular techniques. Typically a mixed explicit /implicit time integration
scheme is used. The explicit integration of the nonlinear term is used to avoid the
costly iterations while the implicit integration of the viscous term is used to relax
the time step size restriction. Since the pioneering works of Orszag (1969, 1970 and
1971), the use of pseudo-spectral algorithms has become the standard way of avoiding
the convolution sum associated with the nonlinear convective term. In incompressible
flows, no such “unique” approach is available for the pressure term and many different
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clever techniques have been devised (Canuto et al., 1988). They can be separated in
two main classes: the coupled and the splitting methods, according to whether the
system of equations (momentum and continuity) is solved at once or in a decoupled

manner.

A different third special class of methods—known as divergence-free expansions
methods—has been introduced by Leonard (1981). His idea is to avoid the problem of
pressure computation by using special divergence-free vector expansions that implic-
itly satisfy the continuity constraint and the boundary conditions. The construction
of such expansions is far from straightforward, though, and requires mathematical in-
sight and craftsmanship. The challenge is hence shifted from algorithmic to analytical
considerations, but the advantages are numerous:

e Exact treatment of the continuity constraint;
e Complete elimination of the pressure variable;
e Implicit time integration of the diffusive term at no extra cost; and

e Reduction of the number of unknows (velocity components) from three to two.

Divergence-free methods have successfully been used in various types of simulation
problems among which we find: pipe flows (Leonard & Wray, 1982); straight and
curved channel flows (Moser et al., 1983); spherical Couette flows (Dumas & Leonard,
1994); vortex rings (Stanaway et al., 1988); boundary layers, mixing layers, and wakes
(Spalart et al., 1991); and trailing vortex flows (Matsushima & Marcus, 1997). Note
that these last three references deal with unbounded domains in, spherical, Cartesian
and cylindrical coordinates respectively.

The question as to whether use one of these already existing specialized methods
or engage in the development of a new one greatly depends on the type of targeted
flow problems. Here, the particular class of problems we are interested in mostly con-
cerns the dynamics of simple vortical flows. Many interesting problems can indeed be
formulated in terms of a single vortex tube interacting with some other fundamental
flow structure like a straining field!, or a circular jet for example. A better under-
standing of these simple models is relevant to more complex problems ranging from

1This particular problem has been the object of a fair amount of attention lately, especially since
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the dynamics of aircraft trailing vortices (Spalart, 1998) to the dynamics of coherent
structures in turbulent flows (Vincent & Meneguzzi, 1991; Cadot et al., 1995).

Taking into account these physical considerations led us to restrain our possible
choices to methods having at least one (periodic) longitudinal axis that can be aligned
with the main flow structure. For such axisymmetric topology though, the unbounded
Cartesian formulation used by Spalart et al. (1991)—with two periodic directions—
would not seem to be more advantageous than a fully periodic box, i.e., with three
periodic directions. Although the advantages of the complete uncoupling and fast
transforms for all directions in a fully periodic box may seem very appealing, proper
resolution of very localized structures (such as a single or a pair of vortex tubes)
could rapidly become too expensive because of the uniform resolution associated
with Fourier series. Another penalizing element of using a Cartesian periodic box is
that the periodicity lengths of the transverse directions must be large enough to avoid
interactions with the neighboring structures while maintaining enough resolution for
the ones of interest. This problem can be partly avoided in passing from Cartesian
to cylindrical coordinates where the now unique “transverse” radial direction is no
longer periodic, but the azimuthal direction has now gained a geometrical periodicity.
For this reason and because some of the targeted flows for the present code have an
intrinsic axial symmetry, a cylindrical coordinates frame of reference was chosen?.
This way, not only the problem of minimizing neighbor interactions is moved into
one of properly taking into account the more complex non-homogeneity of the radial
coordinate, but the reference frame also allows for a more natural description of an
important class of vortex problems.

Matsushima & Marcus (1997) developed an efficient spectral method for un-
bounded cylindrical coordinates that could certainly be used for the type of flow
problems we have mentioned. Their method is based on Fourier series expansions for

Leweke & Williamson (1998) have shown that the short-wave instability of the counter-rotating
vortex pair could be linked to the elliptic instability problem (Bayly, 1986; Pierrehumbert, 1986;

Waleffe, 1990).
2If the link between the axial symmetry of the flow and the choice of a cylindrical coordinate

frame of reference may seem quite natural, the choice of formulating the numerical method in terms
of cylindrical coordinates instead of Cartesian did not appear to us as so obvious in the first place.
Indeed, cylindrical coordinates have intrinsic difficulties due to the singularity of the differential
operators at r = 0 that Cartesian coordinates do not have.
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both the longitudinal and the azimuthal directions, and rational Legendre function
expansions in the radial one. It is worth noting that, at the time the present work was
undertaken, their paper had not yet been published. At any rate, their approach did
not completely answer our preoccupation of the time which was the introduction of a
local discretization for the semi-infinite radial direction. Indeed, the fixed “method-
defined” resolution associated with global expansions may become expensive when
solving very localized structures, as we already mentioned for the case of the periodic
box above. The idea behind the development of a new mixed global/local method
is to take advantage of the high uncoupling that comes from orthogonal expansions
(e.g., Fourier series) while introducing some more “user-defined” flexibility in the
resolution positioning of the unbounded radial direction.

Some preliminary work (Dufresne & Dumas, 1998a; Dufresne & Dumas, 1998b)
led us to the conclusion that B-splines were better adapted than more classical finite
elements for the type of discretization considered for the radial direction (see also
the discussion in Sec. 2.3.2). It then came to our attention that the appropriateness
of B-splines was also supported by some of the work done at NASA Ames Research
Center and Stanford University. Kravchenko et al. (1996) had developed a mixed
spectral/B-spline method, in Cartesian coordinates, to simulate turbulent channel
flows. A similar method for cylindrical coordinates was later on presented by Loulou
et al. (1997) for the simulation of turbulent (circular) pipe flows. This latter work
being very close to our own, we used it as a work base for some methodological aspects,
the principal differences being in the treatment of the radial basis functions and the
boundary conditions. Also, since we shall frequently refer to their work throughout
this thesis, we will make use of the simpler notation “LMMC?”, for the four authors’
names: Loulou, Moser, Mansour and Cantwell.

Let us finally note that the method we present here, like the one of Matsushima
& Marcus, can be viewed as an alternative approach to the “vortex methods” for the
computation of free vortical flow dynamics. Indeed, the vortex methods—based on a
Lagrangian discretization of the vorticity equation—certainly offer another efficient
and attractive means for computing this kind of flow problems. Different formulations
in terms of vortex filaments (Leonard, 1985) or vortex particles, in two or three
dimensions (Winckelmans, 1989) have been devised according to the type of problem
considered. A more recent account of the various aspects of these methods can be
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found in Cottet & Koumoutsakos (2000). Some of the most recent developments, in
relation to flow simulations past bluff bodies, can also be found in Ploumhans (2001).

1.2 Objectives

Following the aforementioned considerations, we are now in a position to formulate
the principal objective of this thesis as:

e To develop a new spectral/B-spline method for the solution of the unsteady,
incompressible Navier-Stokes equations in unbounded cylindrical domains.

This original extension, made here, of Leonard’s divergence-free vector expansions
method is to be complemented by the following secondary objectives:

o To develop an eigenvalue solver for the normal mode analysis of the (temporal)
linear stability problem;

o To adapt the unbounded spectral/B-spline method for the solution of wall-
bounded flow problems; and

o To develop an eigenvalue solver for the latter wall-bounded flow problems.

1.3 Outline of presentation

The material presented in this thesis is divided in three parts: i) the numerical method
itself; ii) the implementation of the method; and iii) the numerical testing of the
method. A more specific outline, by chapter, is given in what follows.

Chap. 2 is devoted to the presentation of the numerical approach. More specifi-
cally, in Sec. 2.1 we present the mathematical problem to be solved, i.e., the Navier-
Stokes equations with the relevant boundary and initial conditions. Particular atten-
tion is paid to the definition of the regularity conditions that apply in the unbounded
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radial direction. In Sec. 2.2, we define the weak problem to be approximated by the
divergence-free vector expansions. These expansions form the core of the spatial dis-
cretization which is then presented in Sec. 2.3. Here again, special attention is paid
to the radial direction and its B-spline discretization which, indeed, represents an
original extension of the divergence-free method. A summary of the complete spatial
discretization is presented in Sec. 2.4.

Implementation of the numerical method is discussed in Chap. 3. For the time
integration, we use the mixed scheme proposed by Spalart et al. (1991), briefly pre-
sented in Sec. 3.1. Explanations on how to compute the nonlinear term are given in
Sec. 3.2. In that case, special attention is again paid to the radial direction whose
treatment differs from the standard pseudo-spectral algorithm. Treatment of the reg-
ularity and the boundary conditions is discussed in Sec. 3.3. The local discretization
in the radial direction allows for the implementation of a modal reduction algorithm;
this is covered in Sec. 3.4. At this step, we now have in hand our complete unbounded
Navier-Stokes solver which is identified by the name UNCyL. The modifications that
are required for the implementation of the wall-bounded version of the solver are dis-
cussed in Sec. 3.5. Implementation of these modifications results in the code Boun-
CvYL. Because the implementation of the eigenvalue solver is quite similar for both
the unbounded and the wall-bounded method, it is discussed in a unified manner in
Sec. 3.6. From this, we obtain the two new linear stability codes UNCYL-LS and
BounCyL-LS.

The material presented so far has been of a rather technical character. The third
part on the numerical testing, presented in Chap. 4, involves more physical consider-
ations. In the first section of the chapter (Sec. 4.1), we consider the Poiseuille flow
problem in relation with both the eigenvalue solver BOUNCYL-LS and the Navier-
Stokes solver BOUNCYL. Comparisons with Stokes flow analytical solutions serve
for a thorough validation of the B-spline discretization. Other test results are also
presented to complete the validation of the two solvers. As for the remainder of the
chapter, it is devoted to the numerical testing of both unbounded solvers UNCYL and
UNCYL-LS. A two part approach has been adopted. First, in Sec. 4.2, we consider
the stability of a trailing line vortex. For the cases studied, an excellent agreement
between our results and those of other authors is observed. Comparisons with some
results of Matsushima & Marcus also show that the present B-spline formulation is
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indeed advantageous. For the second part, in Sec. 4.3, we consider simulations of
the triangular vortex problem. Although more qualitative in this case, the agreement
between our results and those used as a reference is again more than satisfactory.
Since this crucial validation chapter turns out to be somewhat lengthy, a summary is
presented at the end in Sec. 4.4.

Finally, conclusions are drawn in Chap. 5. Note that throughout this thesis, the
more technical material has been, whenever possible, relegated to the appendices in
order to alleviate the presentation.



Chapter 2

Numerical Method

The numerical methodology presented here aims at solving efficiently the unsteady,
incompressible Navier-Stokes equations in unbounded cylindrical domains. As a nat-
ural first step, we begin this chapter with a more precise mathematical statement of
the problem, including some particular considerations on the regularity and boundary
conditions in the radial direction. The variational form, leading to a weak approxi-
mation of the problem, is then considered. The ensuing Galerkin method is obtained
after the construction of a complete set of divergence-free vector expansions. These
expansions are formulated in terms of both Fourier series and mapped B-spline inter-
polation functions. Because of its rather non-standard character, the use of B-splines
for the radial direction is the object of some particular attention. For ease of con-
sultation, a brief summary of the spatial discretization is provided at the end of the
chapter.

2.1 Navier-Stokes equations

We start by assuming that the fluid flows we are interested in are well described by
the incompressible Navier-Stokes equations (see, for example, Batchelor, 1967). The
conservation of momentum equation, expressed in terms of the velocity vector u and
static pressure p, is written in non-dimensional form (in an inertial frame of reference)
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du 1
W+u‘Vu = —Vp+—F?e—

The vector field u and the scalar field p are both functions of space and time, i.e.,

Viu . (2.1)

u=u(x,t) with xeQ,

and similarly for p. The vector x defines the spatial coordinate and ¢ the time, Q
defines the spatial domain containing the fluid and since we consider three dimensional
(unbounded) fields, 2 C R3. As for the mass conservation equation, because of the
incompressibility condition (assuming a homogeneous fluid), it simply reduces to the
divergence-free constraint

V-u=20. (2.2)

Beside the auxiliary (boundary and initial) conditions that will be discussed into
some more details below, there is only one additional parameter that completely
characterizes the problem, namely the Reynolds number Re. It represents the ratio
of the non-viscous (typically the inertia) to the viscous forces and is usually defined
as

Re = ——aefz“f ,

v

where Upr and L are respectively the (dimensional) reference velocity and length
scales of the flow, and 7 is the kinematic viscosity of the fluid. Before going any fur-
ther, let us make a note regarding the notation used in this work. All constants and
variables will be expressed in non-dimensional form unless otherwise stated; dimen-
sional terms will be identified with the “overbar” notation. Because for the targeted
flow problems all relevant scales are determined by the flow itself, at first we only
consider the dimensional scaling factors in their general.form, i.e., a reference length
L.er and velocity U, from which can be deduced the reference time Trer = Lies/Urer-
Note that the Reynolds number can also be interpreted as a ratio of the viscous to
the convective time scales. Explicit mention of the dimensional scaling factors, with
their physical relevance will be made when considering some particular flow problem.

The set of partial differential equations (PDEs) formed by the conservation of
momentum equation (2.1) and the solenoidal condition (2.2) has been the subject of
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much attention since its formulation in about the mid 19th century, and may even be
considered one of the most studied sets of PDEs (Ockendon et al., 1999). However,
only a very small number of exact steady solutions, and an even smaller number of
unsteady ones, are yet known. Some of these solutions can be found in Schlicht-
ing (1979) and Wang (1991), among others. For the great majority of problems then,
one must rely on approximate (strong or weak) solutions. The questions of existence
and uniqueness of such solutions, as well as the ones regarding the convergence of
the different type of approximations have consequently been extensively studied (La-
dyzhenskaya, 1975; Temam, 1979, for a taste of the subject). Though important steps
were made, leading to a greater insight, some fundamental issues still remain open
(Temam, 1995). This said, we will not go any deeper into these rather theoretical,
though much interesting, considerations and assume to meet here all the minimum
analytical requirements as to insure the existence of an “acceptable” solution at some
finite time.

Let us now go back to (2.1), where by using the identity

u-Vu = %V[ulz—uxw,

with w being the vorticity vector defined as

w = Vxu,
we may rewrite the equation as
du 1
— = —-VP+ —V? F .
5 + Ve + (2.3)

where now P (= p++]u|?) is the total pressure and F = ux w is a nonlinear forcing
term. This equivalent “forced Stokes equation” formulation!® of (2.1) helps relate many
important analytical results obtained from the study of the linear Stokes problem
to the more complex, nonlinear Navier-Stokes equations (Temam; 1979; Pasquarelli
et al., 1987). Some of these particular analytical considerations will be carried over
to the variational formulation of Sec. 2.2.

1Note that there are other possible forced Stokes formulations than the one used here. The most
simple example being of course for F = —u-Vu, but F = —V-(uu) is also an other acceptable form
(both of these leading to p instead of P in (2.3)). Although all analytically equivalent, the discrete
versions of these different terms may lead to different types of discretization errors (Kravchenko &
Moin, 1997).
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The set of equations (2.2)-(2.3) has to be complemented with auxiliary (initial
and boundary) conditions. The initial condition is given in a general form by

u(x,t=0) = Up(x), (2.4)

where Ug(x) is 2 known vector field, function of the space coordinate x only. As for
the boundary conditions, they are expressed, in the cylindrical coordinates

x =71é + 0& + zé, = {r, 6, z},
as: i) periodicity in the longitudinal z direction such that
u(x,t) = u(x+L.&,1), (2.5)

with L, the given periodicity length, and ii) finite and uniform velocity at infinity
such that

lim u(x,t) = Uy with U | < 0o (2.6)
r—00

If we furthermore decompose the velocity field u into a homogeneous part u, and a
non-homogeneous one u,, such that

u = uy + Upp, (2.7)

it is then always possible to choose uy,, = —Ug and solve (2.3) under fully homo-
geneous boundary conditions. For simplicity, we will drop the subscript “h” and
consider for now that the vector u is always defined in terms of homogeneous bound-
ary conditions, i.e., with

lim u(x,t) = 0, (2.8)
T—00

4

Note that all the non-homogeneous contributions can easily be accounted for by
a slight modification of the nonlinear forcing term, where for example,

1
F = uxw + —ﬁvzu,ﬂ. + other terms,

Here the vector u is understood in its complete form (2.7); the same remark obviously
applies to the vector w. A further generalization of the forcing vector F can also
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allow for the inclusion of such contributions that would arise by considering the
equations in a rotating frame of reference, say. In that particular case, the Coriolis
acceleration —28 x u (2 being here the angular velocity vector) would simply be
added in the “other terms”; the centrifugal contribution +Q?r'? (+' is the distance
from the axis of rotation) would also have to be added to the total pressure P. As a
further simplification of notation, we introduce the general extra forcing vector Fe,
which includes all of the above contributions, and write

F =uxw + F,.

Finally, the complete mathematical problem to solve is summarized by:

ou L

— 2
5 VP + RCV u + F
V-u=20
u(x,t =0) = Up(x) (2.9)

u(x,t) = u(x+L.&,t) and limu(x,t) =0

with F = uxw + F,

2.1.1 Radial regularity

In cylindrical coordinates, the differential operators involved in (2.9) are singular (in -
) at both the origin (r = 0) and at infinity. If the solution u is to remain bounded at
both these singular points—the boundedness condition at infinity is even more specific
in this case since it is in fact the decaying condition (2.8)—then some regularity or
“behavioral” conditions are needed. The particular restrictions that these conditions
impose on the different field quantities are discussed in what follows.

We first consider the center point r = 0. Let us use the vector ¥ to denote a
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general vector field. Using separation of variables and a Fourier series expansion for
the naturally periodic azimuthal (8) direction, we write

M
U(r,0) = > B(r; ke) e*of
kg=—M

where i = /-1 and where M may be infinite. The variable dependence on z and ¢
is omitted or implicitly assumed without loss of generality.

The first necessary “unicity” condition requires that

ov

=~ =0

o8
at the origin. In terms of the Fourier-transformed vector components of W, this
gives?
ikehr — W = 0,
ike'(Zo + ’q’l;,- = 0,
ike. = 0,

which simplifies to

¥ = %s = 0 for lkel # 1,
G + ikely = 0 for |ke|=1, (2.10)
12'; = 0 for Ikgl > O .

Note that any scalar component in general, such as the pressure, follows the same

type of conditions as Jz.

The radial behavior of each component can even be further specified if the vector
field is required to be analytic in the neighborhood of the origin. There are different
ways to derive the next result, one of them is presented in App. A.2. By considering
first the Cartesian vector components®, we may show that the analyticity condition

2Recall that in cylindrical coordinates: 3&,/30 = +&; and 9&7/90 = —é,.
3In this case, each vector component behaves as a scalar because the Cartesian basis vectors are

independent of the position, i.e., they all have zero derivatives.
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requires that (see (A.21))

{1’/;;-, {(,‘y, ,7;2 } = O(rlksl+py

as r — 0, and where p is a non-negative integer, i.e., p=0,1,2,.... In terms of the
polar vector components (see (A.25)), the complete set of parity or pole conditions
become

rld+idy] = OF*™)  for k>0,

rtr—ite] = O(rke+?) for ke>1,
T ['J;r +i'&;0 ] = O(T’IkaH_zP) for kg < -1, (211)

rlge—ity] = O(FH242) for k<0,
D, = O@F%+Py  for |k >0.

The unicity conditions (2.10) can obviously be directly deduced from (2.11) by simply
considering the limit point r = 0.

Two additional points are worth noting at this moment. The first is related to
the general nature of (2.11), and thus (2.10). Any analytical operations on the vector
¥ will obviously leave the radial behavior unchanged, i.e., the vectors resulting from
V x ¥ or V2W¥ will follow the exact same behavior as in (2.11). The same applies
to scalar components which, as we already mentioned, follow the z vector component
behavior. The second point regards the nature of the boundary conditions that
need to be imposed for solving (2.9). Borrowing from the finite element literature
(Strang & Fix, 1988), the conditions in {2.10) can be described as “essential” while
those in (2.11) would be referred to as “natural” boundary conditions. If the two
conditions are analytically equivalent they, on the other hand, lead to different types
of approximation functional spaces. We leave this matter pending for now as we shall
return to it in the construction of the radial basis functions, later on in this chapter.

At the other extremity of the radial coordinate, i.e., as r tends to infinity, the
decaying condition (2.8) is somewhat less stringent on the vector fields. For example,
if the initial condition (2.4) is related to a vorticity field having a compact support,
the flow in the far field could then be considered irrotational since the vorticity there
would be at most exponentially small, in the presence of diffusion. The same problem
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could also be formulated in terms of a more general class of flows that would allow
algebraically decaying (i.e., with some negative power of r) vorticity instead. This
would obviously lead to a different (decaying) radial form that would encompass the
potential flow condition as a particular case. With such level of flexibility, the final
choice of a specific decaying behavior—assuming the minimum requirements imposed
by the type of flow considered—will therefore usually end up being determined by
practical reasons related to the construction of the approximation functions.

Following this last remark, let us consider the harmonic* decaying behavior of the
vector field W . Details on the derivation on this particular condition will be found in
App. A.3. As for the practical motivations, they will become clear in the light of the
choice of the radial basis functions, particularly when considering the implementation
of the boundary conditions. Now, if a vector field is to decay harmonically as r — oo,

"we can show (see (A.26)-(A.31)) that its Cartesian components should be in the form

{{[;z: "Zya "Zz } = o('r-.lkal) , (212)
with the additional constraint (see (A.32)) that

lim %l ¢, = isgn(ke) lLim rl*el ¢, , (2.13)
r—o0 r—0o

where sgn(ky) = kg/|kg|. The coupling between 1,3, and {,!;y can be viewed as result
of the Cauchy-Riemann equations because both real functions ¥, and %, form a pair
of harmonic conjugates in the complex r—6@ plane. The complete conditions (2.12)
and (2.13) expressed in terms of the cylindrical vector components give

{ ra"l 7'{[;8, {Ez } = O(r_lkal) ’
(2.14)

lim rikel+1 {[;r = isgn(ks) lin; rlkel+1 {50-
T

r—o0

4The term “harmonic” refers here to the complex analysis meaning of the word. Each of the
Fourier-transformed vector components can be represented by a complex valued function. If such
vector components behave as (complex) analytic, or equivalently harmonic, functions they must
then follow the above described behavior. See also App. A.3 for more details.
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Before closing this section, some last observations are worth noting. First, both
(2.11) and (2.14) are the result of analyticity considerations, but were derived from
different perspectives (see App. A.2 and A.3). Around the origin, the real vector
components were assumed to be defined at the point r = 0 itself, and were then
extended analytically in some neighborhood of that point. After that, the results
were transposed into the (complex) Fourier spectral space. Analyticity at infinity
was, on the other hand, considered directly in the complex (Fourier-transformed)
plane. The vector components were assumed to be defined at some finite radius in
the complex plane, and then were extended analytically to infinity.

Second, analyticity at the origin applies to all vector fields whereas the condition
at infinity must be imposed on a specific vector field. In the present case, the harmonic
decaying behavior is imposed on what will be defined as the vector potential ¥ —
anticipating on the material related to the construction of the approximation vector
functions in Sec. 2.3—from which the velocity vector field u will be defined as u =
V x ¥. As we already mentioned this choice of decaying condition is motivated by
practical implementation considerations that will be better explained later. It can
also be shown that this condition is general enough to include far field potential flow
conditions as a particular case.

2.2 Variational formulation

Before we get into the details of the numerical method developed to solve (2.9),
let us briefly consider some of the analytical background material on which rests the
method. More precisely, in this section we present the variational formulation used to
construct the general approximation of (2.9). Since the purpose of our presentation,
here, is only to help sit the numerical method on firm mathematical ground, we
shall limit ourselves to a general overview only. A rigorous account of the complete
analytical framework would involve a fair amount of functional analysis material that
goes far beyond the scope of the present work. For a more complete treatment of the
subject we therefore refer the reader to some of the specialized works dedicated to the
approximation theory of the Navier-Stokes equations, from which we may cite Temam
(1979) and Temam (1995) amongst others. Other theoretical and practical aspects of
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approximation theory, in the more specific context of spectral methods, can also be
found in Boyd (1999), Canuto et al. (1988) and also Gottlieb & Orszag (1977).

The general variational approximation of the Navier-Stokes equations was intro-
duced in a series of papers by Leray (1933), (1934a) and (1934b) (cited from Temam,
1979). In this approach the approximation of the solution is constructed by taking
the inner product of (2.9) with some “weight” basis vector function ® such that

<<1>,%7“> = —(®,VP) + %(‘D,Vzu) + (®.F) , (2.15)

where
(v,u) = /v‘-udV. (2.16)
o)

The inner product (2.16) is defined in a general sense where both u and v may be

[

complex valued, the superscript “*” stands for the complex conjugate. Solutions of
(2.15) are sought for u € X and ® € Y where both functional spaces are given by

X = {v:veH’nH],V-v=0}; (2.17)
Y = {v:veH;, V-v=0}. (2.18)

H" defines a general Hilbert (inner product) space for which all the vector basis
functions v and their derivatives up to order n are square integrable. We furthermore
define a subspace Hj C H! such that

Hy = {v:veH,v(x)=v(x+L,8&,) and limv=0}.

This subspace defines the set of basis functions v € H! that satisfy the general
homogeneous boundary conditions of (2.9).

It can now be shown, making use of the following vector identity
/@«VPdVE/P((I)-n)dS—/P(V-@)dV, (2.19)
Q a Q
that if ® € X then
(®,VP) = 0, (2.20)

i.e., that the pressure term in (2.15) drops out. In (2.19), &2 symbolizes the surface
enclosing the volume §2; this surface must obviously be understood here in its limiting
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sense since (2 is theoretically unbounded. The actual requirements to obtain such a
result are that

V-® =0 and lim®-n =0,

r—o0

More specifically, the vanishing of the pressure surface integrals (the first integral on
the right hand side of (2.19)) requires that the integrand P(® - n) decays at least as
O(r~2) or faster. This last condition is in turn granted as long as the total pressure
P satisfies a decaying condition in the form of

P = 0™

in the far field. For P to tend to some finite value at infinity, we would then obviously
need to have that ® -n = O(r~2). It is interesting to note that in bounded domains,
there is no requirement for the pressure value on the bounding surface, as long as the
value remains with a finite amplitude of course. Only the no-through flow condition
& - n = 0 is sufficient to ensure the vanishing of the pressure term.

Reduction of the requirements on the differentiability of u can be achieved by
integration by parts of the viscous term. This result can be derived in different ways,
here, it is obtained by first making use of the following identity

Viu = V(V-u) - VxVxu, (2.21)

for which the first term on the right hand side is identically zero. Then, with the
second identity

f@-(Vxqu)dV =

@ (2.22)

—/ [@x(qu)]-nd.S’+/(Vx@)-(qu)dV,
a Q

we obtain
/q>-v2udV=-/(qu>).(qu)dv, (2.23)
Q Q

under the provision that the normal component of ® x (V x u) decays fast enough,
a condition granted by the fact that both & and u belong to H}. The weak form of
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(2.9) is finally obtained by replacing (2.23) in (2.15) taking into account the complex
conjugate of the inner product definition (2.16), combined with (2.20), and is written

du 1
<@, —aT = —E (V xP V x ll) -+ (Q, F) s (224)

where now both ®,ue?Y.

In summary, the problem of finding solutions for (2.9) has now been transformed
into the variational, initial value problem

ueY and u(t=0) ="y
dul\ 1 (2.25)
<@, 8t>— Re(thb,qu)-i-((I’,F)

Vb el

A last remark can be made regarding the equivalent projection formulation of
(2.25). Based on the Helmholtz-Hodge vector decomposition (Chorin & Marsden,
1993), the strong form of the above mentioned variational problem can be formulated
in terms of a divergence-free projection operator IP, such that the new problem is
written as

Jdu 1
—ét— = P(——R—e-VXVXU+F) .

Using a similar procedure as for the above variational formulation® we obtain, for
v eY, that

Pv=v and P(VP)=0.

Theoretical considerations related to this type of projection operators can be found
in Ebin & Marsden (1970). In the path of Leonard & Wray (1982), the numerical

5Here again, the standard results are established for bounded domains with a no-through flow
condition at the boundary. For unbounded domains, special considerations on the decay rate of the
various terms must be taken into account.
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method presented here can then be viewed as a means for constructing an approx-
imation of such a projection operator. Examples of application to the numerical
approximation of Navier-Stokes equations are given in Chorin (1969) and also in
Moser & Moin (1984).

2.3 Basis vector functions

The overall idea behind the present numerical methodology, first introduced by Leon-
ard (1981), is to construct a finite dimensional approximation of the variational prob-
lem (2.25). In the mathematical formulation of the previous section, we need to
construct a finite dimensional space V7 (of dimension J) such that, V/ is dense in
Y in the limit of J — oo. Qur first objective in this section is therefore to construct
a basis V; such that VY = span{ V; }. Once the basis is determined, the velocity
vector u is then expanded in terms of this basis, viz.,

J
u(r,8,z,t) = Y _ o;(t) Vi(r,6,2) . (2.26)
i=1

The next step is to construct a weighted residual method that mimics the variational
formulation (2.25). The weight functions are chosen as the complex conjugate of
the V;; keeping in mind the definition of the inner product (2.16). This spatial
discretization process—from which is obtained the set of time evolution equations for
the a;(t) coefficients—gives rise to a Galerkin method. The Galerkin method is well
known for its many advantageous properties: energy conservation (in the absence
of dissipation), minimization of the approximation error, positive definiteness of the
discrete operators, to cite a few; more can be found in Canuto et al. (1988) for
example.

From this general outline, let us first start with the construction of the V;. It
can be shown, although it may become quite involved, that solutions of either (2.9)
or (2.25) may be constructed by separation of variables (see, for example, Morse &
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Feshbach, 1953). It is thus possible to start with a generic expression in the form of

Ri(r) ©:1(6) Zi(2) & +
Vj(’!‘, g, Z) = RQ(T) 62(9) Z2(Z) € + . (227)
Rs (7‘) 63(9) Z3(Z) éz

J
For V7 to constitute a dense subspace of Y, we must then have

V-V; =0, Vi(x)=V;(x+L&) ad LmV; =0 Vj, (228)

r—00

and also have that the set of generic functions { R;,0;,Z;} (i = 1, 2,3) be complete
for each of the vector components.

Since both the longitudinal (z) and the azimuthal (§) directions are periodic,
Fourier series (trigonometric polynomials) form a natural basis for these directions
and (2.26) may be directly simplified to

u(r,6,z,t) = > > > umn (t) Wi(r; ko, k) eefei== | (2.29)
{ m n

where

with —N, <n < N,,

and 1 < ! < N;. In terms of the basis functions V;, (2.29) implies the following
definition

V; = Wi(r; kg, k,) eFoeik== | (2.30)

in which the global index j has been split into the three indices [, m, and n associated
respectively with the r, 6, and z coordinates. According to the different ranges
covered by the new indices, the global index j may now be written

i=l+ (m+Ny) + (n+N,).

In (2.29), the Fourier periodicity lengths Lg and L, are both adjustable parameters
that can be modified according to the natural periodicities of the problem under
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consideration. In the azimuthal direction though, because the point » = 0 belongs
to the domain, Ly is constrained to entire fractions of the basic periodicity 27 and
kg to integer values, i.e.,

27
P

Ly = and ke = pm,

where here p is a positive integer. An example in which such particular periodicity
(symmetry) of the flow problem can advantageously be taken into account is given
in Sec. 4.3, with p = 3. Let us also make a note on the identification of the Fourier
“modal pairs”. According to the values of Ly and L., the Fourier summation indices
m and n and the corresponding wavenumber k; and k. will obviously only differ by
a constant value. Thus, for a particular problem in which both periodicity lengths are
given and fixed we may identify a particular modal pair by either its characteristic
wavenumbers kg, k. or by its modal indices (m,n), in parenthesis.

The use of Fourier series in (2.29) also calls for an other comment. Since the
vector field u is limited to real values, the general complex conjugate symmetry of
the Fourier basis (for the modal pair kg, k), viz.,

_: i . . . L . . .
e ;k,oe ik, z — [etkgoe:k:z] and e :keﬂetkgz — [ezkgﬁe tk,z]‘

?

can therefore be applied to the coefficients aynmyn, such that
Xem—n = Qmn and Qomn = Qp_, - (2.31)

The number of coefficients that need to be effectively accounted for can thus be
reduced by half. For practical reasons that will be considered in Sec. 3.4, we shall
only consider explicitly, for now on, the set of coefficients for which m > 0, i.e., the
Qma and oy, _n (where in this case m > 0 and n > 0). Note that the second half of
the coefficients is always accounted for implicitly according to (2.31).

.

2.3.1 Divergence-free vector functions

Following (2.29), the next step is the construction of the divergence-free basis vectors
Wi(r; kg, k). This is indeed the step at the heart of Leonard’s divergence-free
expansions method. Now, it can again be shown that if the general vector W, is
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divergence-free, then only two independent basis vectors are actually required to
completely define it (see again Morse & Feshbach, 1953). These vectors are associated
with a “+” and “~" class, as in Leonard & Wray (1982), and are written such that

Qmn Wi = a;nn Wf + a,., W, . (2.32)

There are many possibilities for the construction of the W,i, the choice of one over
another being usually determined from practical implementation reasons. In this
case, because of the similarities that bear the present method with the one developed
by LMMC, we directly make use of the same set of vector expansions given in their
report. From the vectorial identity

V- (Vx¥) =0,

result, according the modal pair kg, k., the following vector basis function families:

0 —ike Gy
W} = Ux 0 = k.{ (rG) } , (2.33)
~k.rGy 0
~iGy —ik,G,
W, = Vx{ G } = k.G . (2.34)
0 G+ (1 — ke)r—1Gy

The ¥ x stands for the Fourier-transformed curl operator and the Gi(r) are real
valued functions that form a basis for the radial direction (the variable dependence
has been omitted to simplify the notation). This construction will be seen to be par-
ticularly advantageous when considering the imposition of the regularity/boundary
conditions later on in Sec. 3.3. The details of the G; functions are also postponed,
but only until later on in this section. Because (2.33) and (2.34) are incomplete
when k., = 0 (no radial nor azimuthal components), the following expansions must
be added:
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e kg>0; k.=0

[0 —iko Gy

W} = Ux{ 0 = rG) 3, (2.35)
—-rGy 0
f —iGy 0

W, = ¥x{ G = 0 ; (2.36)
L O G+ (1 —kg)r™ Gy

Both of the above families of expansion are also incomplete when ky = 0. This maybe
less obvious observation is related to the fact that for an axisymmetric vector field
the divergence-free constraint only links the radial and the longitudinal components
together®. The azimuthal component must therefore remain independent. According
to this requirement, the “+” class family of expansion is modified to give:

o kg=0; k, #0

[ —iG; ) 0
W = ¥x{ o0 0 = kG (2.37)
0 0
[ —iG, ) —ik.G,
W, = Vx!{ G b= k.Gi : (2.38)
. 0 G, +r7G

Finally, when both wavenumbers are simultaneously zero, i.e., for a uniform, axisym-
metric field, all vector components are decoupled (the radial component becomes
identically zero) and the following set of vectors is used:

6The Fourier-transformed divergence-free constraint is given by (see (A.4) in App. A)

~

U ko~ ., o
— +1’i',+t—r Ug +1ikli: =0
-

The axisymmetric condition is simply obtained by putting kg = 0.
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L kg=0; kz=0

[ 0

W =G ¢, (2.39)
L0
[0

wr =1 o : (2.40)
L T_1G¢

Now that the set of vector expansions has been defined, let us recapitulate. First,
it may clearly be seen that the requirements in (2.28) for the V; to form an acceptable
basis are satisfied, under the provision that the G, satisfy the appropriate decaying
behavior which will be confirmed later. Second, proceeding from (2.25), the Galerkin
method is obtained through the following steps: i) both @ and u are replaced by
their respective discrete expansion, (2.30) and (2.29); ii) in each of these expansions,
we introduce the “+” and “—” vector decomposition of (2.32); and iii) the different
integrals of the inner product (2.16) are then evaluated. A simple example should
probably better illustrate these general steps. Let us consider the inertia term of
(2.25). Making use of the different definitions, we obtain

du Lo pLe poo + ikh8 iklz]"
<¢,"§'>—‘/0"/0‘ A [Wy&’&'] -

(2.41)
gt [ZZZ Xifun “lieikaaeikzz] rdrdfdz , VI, m',n
{ m n

which must be evaluated for the whole set of weight function indices I/, m' and n'.
These are the analogs of the expansion coefficients of u, i.e., they span the same
values as I, m and n. Now, because of the orthogonality of Fourier series, both
integrals in # and z can be performed, resulting in a complete decoupling of these
two directions. Making use of these orthogonality properties, we end up with the
much simpler expression

) Ou = Lo,L Z/m[W?‘~Wi] rdr —g—azi vlI.m,n (2.42)
] 6t 0Lz l 0 l l dt imn 3 ’ .
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The same procedure applies to the viscous and the nonlinear terms of (2.25). Note
that in the latter case the procedure is somewhat more involved and will be the object
of Sec. 3.2; at nay rate the details are not so important here. The final result of all this
is a set of small systems of differential-algebraic equations, one for each modal pair kg,
k., or their equivalent modal indices” (m,n). These systems of ordinary differential
equations (ODE’s)—that are the evolution equations of the of, coefficients—are
symbolically written

Ate* + AJaé~ = Biot + Bla~ + F*,

AZé™ + ATa* = Bla™ + Biat + F-.

(2.43)

The &* represents the time derivative of a®; the various indices, as well as the
summation in ! are implicitly assumed. The time marching of (2.43), including the
computation of the nonlinear vectors { F* },, will be discussed in Chap. 3. As for
the different terms of the inertia A}, and viscous B} matrices, they are respectively

given by
(A7) = /0 (Wfr)‘(W?) Tdr (2.44)
1 0 =
[BY], = “ﬁ/o (VXW;’,) -(VxW{') rdr (2.45)

b1

with  and v being equal to “+” or “—" according to the respective class coupling.
The specific form that will take (2.44) and (2.45) varies in correspondence with the
modal pair considered and the relevant set of vector functions defined in (2.33)-(2.40).

The detailed forms are given in App. C.

The present choice of vector expansions leads to a coupling of the “+” and “-"
classes in (2.43). Although it may sometimes be more advéntageous to avoid such a
coupling, in order to minimize the matrices’ bandwidth (Leonard & Wray, 1982), it
will be shown later on that the choice of radial function G| discussed next, combined
with a proper reordering of the unknowns, will have no major impact on the global
bandwidth of the system of equations.

"The reader may recall that only half of the total modal indices are effectively accounted for in
this procedure. See (2.31) and the related discussion.
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2.3.2 Radial direction: Background

The numerical solution of (2.25) requires essentially two levels of approximation. The
first and main one consists of approximating the infinite dimension functional space
Y by a finite one, i.e., passing from the continuum problem to the discrete Galerkin
method. This part is being taken care of by constructing specific vector basis functions
in terms of e*#? e*:2 and Gi(r) leading to (2.43). The second level is, in certain
manner, an indirect one. The numerical evaluation of the G(r) can only be done
for finite values of 7, so the unbounded domain has to be somehow approximated by
one of some finite size. In other words, an approximation of the boundary conditions
must be made. The problem is not new, and many different techniques have already
been developed. Excellent reviews on this subject, applied in the context of spectral
methods, are presented in Boyd (1999) and in Canuto et al. (1988). We also mention
the article of Grosch & Orszag (1977) which is entirely devoted to the latter problem of
unbounded domain approximations. Before considering the present choice of B-spline
discretization for the G, (presented next in Sec. 2.3.3), let us first begin with a brief
description of the two principal methods® for approximating unbounded domains:
“domain truncation” and “mappings”. This will be followed by some additional
considerations regarding the use of piecewise polynomials in the latter method.

One of the most direct and simple way of dealing with unbounded domains is
to impose the decaying condition (2.8) at some finite distance. This mimics what is
the common situation found in any laboratory experiments where some no-slip, or
any other type of wall bounded condition is always present. This approach is often
called domain truncation. One of the main advantages of such a choice is the direct
application of many already existing numerical methods (spectral or not). A list
of spectral methods designed for bounded cylindrical coordinates is given in Boyd
(1999). As long as the solutions sought have a “fast” (exponential or faster than
algebraic) decaying behavior, the approximation error on the boundary condition
remains (exponentially) small. In the presence of “slow” or algebraically decaying
fields—typical of many problems in fluid dynamics—special care must be taken before

8We do not discuss the Laguerre functions (Abramowitz & Stegun, 1964), that do form an
orthogonal basis for the semi-infinite interval [0, o0 [, because they are limited to exponentially
decaying behaviors and are seldom used for Navier-Stokes approximations. See Boyd (1999) and
also Gottlieb & Orszag (1977) for additional comments on this set of functions.
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applying the equivalent no-slip condition at some finite radius. Of course this does not
lead to any particular problems as long as the boundary effects (e.g., the presence of a
boundary layer) do not propagate too far inside the domain as to affect the dynamics
of the main flow structures. This may be interpreted as a time limit before which the
unbounded approximation remains valid. To minimize the effects associated with the
presence of the artificial boundary, other type of approximate conditions can be used.
A slip or shear-free condition, instead of the possibly too simple no-slip, may certainly
help prevent/retard the propagation of the spurious boundary effects. This of course
does not include the pressure “confinement effects” that are throughout supposed to
be negligible. The elliptic character of the pressure in incompressible flows obviously
results in an instantaneous (infinite speed of propagation) effect on the whole flow
field.

A different way of considering the approximation of the boundary conditions is by
working with a mapped domain. The main idea is to map the semi-infinite interval
r € [0,00] onto the finite interval € [0, 1], say, and then use a standard polyno-
mial approximation in terms of the 7 coordinate. It has been argued by Grosch &
Orszag (1977) that, for the type of problems found in fluid dynamics (i.e., smoothly
decaying fields), algebraic mappings are better suited than exponential ones®. The
authors compared both types of mapping with the truncated domain approximation
for many different problems, including those considered typical of fluid dynamics. One
of the advantages of the algebraic mapping is that algebraically decaying functions
can be exactly represented by polynomial expressions in the mapped domain. Note
that, when using such algebraic mappings, it only becomes a matter of convention to
talk about a polynomial approximation in terms of the mapped 7 coordinate instead
of a rational function approximation in r. One way or the other, this may certainly
be seen to represent a better approximation of the infinite than just a simple domain
truncation.

On the other hand, at the same time as they provide a better approximation of the
asymptotic behavior of the field equations, mappings also have the foreseeable side-
effect of steepening the already existing gradients. In that context, some flexibility

9There is the notable exception of Spalart et al. (1991) who used an exponential mapping for the
boundary layer problem. In that case, extra functions were added to take into account the specific
slower decaying behaviors.
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in the resolution positioning would seem a desirable feature since standard global
polynomial expansions only provide very regular resolution spreadings. This last
characteristic can in turn result in an important efficiency loss in the approximation
of functions having very steep gradients, i.e., the requirement of a practically too great
number of expansion functions to reach spectral convergence, or even only a certain
level of error. To gain in resolution flexibility, more sophisticated mapping functions
can be used, e.g., as in Stanaway et al. (1988), but the price to pay in that case was
the systematic loss of spectral convergence, and full matrices in (2.44) and (2.45).

Another way of gaining in resolution flexibility is by considering domain partition-
ing. Instead of using polynomial approximations over the whole mapped domain, the
latter can be partioned into sub-domains in which, then, polynomial approximations
are used. In other words, this means using a piecewise polynomial approximation
instead of a polynomial one. The use of piecewise polynomials, i.e., of a local ap-
proximation, brings us back to the definition of the functional space Y in (2.18).
The requirement that the approximation space V“ form a dense subspace of ¥ com-
bined with the set of vector expansions defined in (2.33)—(2.40) leads to the necessary
condition that G; has a continuous first order derivative, i.e., that

G € Ct (2.46)

This condition is defined in terms of the standard radial coordinate r and must be
preserved under mapping transformations.

Because of the “continuity constraint” (2.46), the choice of basis, or interpolation
functions, for the G; becomes somewhat more limited in practice. Indeed, the explicit
imposition of this C'-condition would result in cumbersome implementation techni-
calities that could be avoided by using a set of basis functions that naturally satisfy
(2.46). This of course precludes, among other things, the use of spectral elements
(Patera, 1984) which only satisfy a C®-condition. On the other hand, following the
standard formulation used in the finite element method (Strang & Fix, 1988), C!-
continuity can be implicitly taken into account by considering the function derivative
value as a degree of freedom. Hermite interpolation functions are a good example of
such built-in C!-continuity. Higher order interpolation functions can also be built by
a generalization of this approach, i.e., by increasing the number of nodal unknowns
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(function or derivative values). There are many clever ways of doing this and we
directly refer to the abundant literature for more details (see for example Zienkiewicz
& Taylor, 1989 and 1991).

It is nevertheless important to note that, in the context of the present numerical
method, imposing the continuity by nodal derivative values is limited in practice to
C!, at most C?, i.e., the first or second order derivative. A spectral/finite element
method, similar to the Petrov-Galerkin formulation of Leonard & Wray (1982), but
using a C? Birkhoff interpolation (Hamming, 1973) for the radial direction—instead
of the shifted Jacobi polynomials—was developed by Dufresne & Dumas (1998a).
Although workable, the method showed some stiffness problems that impaired its use
as an efficient Navier-Stokes solver (see also Dufresne & Dumas, 1998b, for additional
comments). Finally, there is another important type of local interpolation functions
that can satisfy an almost arbitrary level of continuity without the stiffiness drawback
just mentioned: the B-spline interpolation functions, that are discussed next.

2.3.3 Radial direction: B-spline interpolation

In the light of the previous observations, we are now in a position to completely define
the radial discretization of (2.43). In order to do so, we first introduce the mapping
function that determines the bounded domain, n € [0,1], on which the B-spline
discretization will be considered. Then, we get into the presentation of the B-spline
interpolation functions themselves.

As precedently discussed, for the type of boundary conditions considered earlier
in Sec. 2.1.1, i.e., for smooth (algebraically) decaying functions, algebraic mappings
are better suited. In that regard, one the most simple relation that allows to go from
the unbounded radial domain, r € {0, 00, into the new bounded one, n € [0,1], is
certainly

r
= 2.47
n r+L "’ (247)

with L as the adjustable scaling parameter. There are no requirements for a more
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FIGURE 2.1. The mapping function n = r/(r + L) for the different values of
L directly shown on the figure. The “e” symbols identify a sequence of 20 sub-
domains uniformly distributed along the n-axis (An = 0.05).

complex function to improve resolution positioning, as in Stanaway et al. (1988)
for example, since it can all be directly taken into account by the local B-spline
discretization. A plot of (2.47) is shown in FIG. 2.1, for some values of L. For a
uniform domain partitioning of An = 0.05, the resulting Ar discretization is also
shown by the set of points on each curve. We may observe that for a given value of
L, Ar increases with r, and also that the position of the penultimate point increases
with L. At the opposite, the smaller the value of L, the closer to the origin the points
are located. As a quick scaling rule of thumb between the two systems of coordinates,
let us mention the following simple equivalences:

1 1 1

3
n—zﬁr—g-L ; n—5¢r=L ; n——‘i—@r-3L.

Other complementary information can be found directly in the paper of Grosch &
Orszag (1977).

As a consequence of the mapping function (2.47), the algebraic decaying behavior,
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expressed by (2.14), is transformed as follows. If a function g(r) behaves as
lim g(r) = O(r™), (2.48)

then it can be shown, after only a few manipulations, that the equivalent condition
transforms to

lim f(n) = O((1—-m)"), (2.49)

in terms of the mapped coordinate 7. Here, without loss of generality &y is assumed
to be non-negative (i.e., ks > 0), and the new function f(n) is simply defined by

fm) = g(r(n)), (2.50)
where r(7) is the inverse of (2.47), viz.,
_ _nL
T = -7 " (2.51)

One may consequently note that the condition (2.49) is exactly representable by a
polynomial of degree ky;. More specifically, (2.49) is expressed as a kg-fold zero
condition at n = 1, i.e., the function f(n) and its kg — 1 first derivatives are zero
at that point. As for the regularity conditions in (2.11), they remain practically
unchanged because n ~ r/L as r tends to zero. Further considerations and details
related to the implementation of these specific conditions are presented in Sec. 3.3.

Now that we have determined the bounded coordinate domain n € [0, 1], through
the mapping function (2.47), we may complete the radial discretization process by
giving a specific definition for the basis functions G; in (2.33)—(2.40). The piecewise
polynomial approximation in the n coordinate allows us to directly define

Gi(r(n)) = Bi(n) , (2.52)

where B; is a basis spline function, or B-spline for short. This simple and direct
definition is made possible by the Curry & Schoenberg theorem that establishes B-
splines as a basis for spline functions (de Boor, 1978). This statement is explained in
the presentation of the B-spline basis functions, with some relevant definitions, that
is introduced in the remainder of this section.
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Before we begin the presentation, let us only mention that a more complete ana-
lytical and “practical” description of B-splines can be found in the reference book of
de Boor (1978). The material presented here—some of the more technical material
being put in App. B—comes, for the major part, from that reference book. It is
repeated here for both convenience and completeness purposes only.

As a first step, let us consider the partition of the mapped interval [0,1] into
N, sub-domains. The set of Ny + 1 partition points that define these sub-domains is
called the set of breakpoints and is defined such that

{m=0<m<m<---<nn,<nNNg41=1}, (2.53)

written {7; }14*! for short. To simplify the presentation, we define here the spline

function f(7), of order & (or equivalently of degree k — 1), as a piecewise polynomial
function having k& — 2 continuous derivatives!® at each inner breakpoint {7; }ns,,
which gives f(n) € C*~2. B-splines actually are normalized spline functions!! having
the smallest support in terms of sub-domains. More specifically a B-spline of order
k spans exactly k sub-domains. An example of a cubic (kK = 4) B-spline function
is shown in F1G. 2.2. We now define an additional set of points {t; }¥Y4*2*~! called
knots, such that

Th = ti=l=---=% ; I = tgq1 ;
/T ES W TS I (2.54)
v TMINg+1 = tlc+N¢ = tk+N¢+1 == tlc+N.;+k—1 .

This particular definition implies considerations related to the level of continuity
imposed at the breakpoints. A one to one correspondence between knots and break-
points implies the imposition of & — 1 conditions of continuity at the breakpoints,
while & knots for a breakpoint implies no continuity condition at the breakpoint (see

10This more restrictive definition is indeed a particular case of the general spline functions in-
troduced in the Curry & Schoenberg theorem, for which the level of continuity may vary from an
inner breakpoint to another. Such general spline functions, to which are associated “generalized”
B-splines, are presented in App. B.

11The normalization is based of the fact the B-splines are constructed to form a partition of unity.
The precise meaning of this statement will be made clearer after a few more definitions.



CHAPTER 2 NUMERICAL METHOD 35

B

FUS U S U N TN WG UV AN [ TN Y N0 W VNS VO SN A U N Y S

IIII"Illlllllll"lll

(o]
[

FIGURE 2.2. A cubic B-spline function (k¥ = 4). The 4 sub-domains spanned by
the function are delimited by the breakpoints identified by the “e™ symbols.

App. B for the details). The difference between the knots associated with the inner
breakpoints and those of the frontier breakpoints (7, and nn,+1) is a consequence of
such considerations and will be explained a little later. For a given set of knots, the
[th B-spline of order k, noted here B,(k) —this more general notation will be used for
B-splines of generic order k, the more simple notation B; being used otherwise—can
be directly evaluated by the recurrence relation

k n—t - bk — k—
BP@) = —1—L_ B¢y + T gk (2.55)
btk—1 — U bivk =t

First order B-splines are simply defined as unitary “top hat” functions, viz.,

1 a<n<ty
BN (n) = ) 2.56
) { 0 ; otherwise ( )

From the above definitions, many important B-spline properties can be deduced.
For example, the recurrence relation (2.55) combined with the first order B-spline
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definition (2.56) leads to the support rule
B n) = 0 for ¢/t tu] - (2.57)
Application of this rule to the product of B-splines gives

#0 ; '—k+1 <1< l+k-1

2.58
=0 ; otherwise ( )

B{® (n) BP () {
This latter result will prove useful in the computation of the different matrices in
(2.43) since it confines the non-zero values to a narrow bandwidth of 2k — 1 (see also
Sec. 3.3 and App. C for additional information regarding these matrices). It can also
be shown, from the above result, that the complete set of B-spline functions—for a

given order k and a given set of knots {¢; } X4~ —form a partition of unity, i.e.,
N>
K
> B¥@m) =1, (2.59)
=1

where the number of B-spline functions N, is given by

Ny = Nigk—(Ng-1)(k—-1), (2.60)
= Ng+k-1.

The value of N, is obtained, in a general manner, by taking the total number of
piecewise polynomial coefficients minus the number of continuity conditions. Note
that the number N, also represents the dimension of the B-spline space. The value
determined in (2.60) may therefore be seen to be the smallest dimension that can
bear a piecewise polynomial space!2, of a given order k, defined by the set of break-
points {7; f’;{*’ . This particular property of B-splines is indeed due to their great

smoothness, which in turn leads to their relative spreading.

On the other hand, because B-splines extend over various sub-domains, they can-
not be considered as a strictly local basis. For that reason, special considerations

121f additional continuity conditions are added between any two sub-domains, to reduce the number
of coefficients, then the two adjacent piecewise polynomials will collapse into one. Ultimately,
imposing k continuity conditions at all the inner breakpoints would result in a single polynomial,
of order k, for the whole domain.



CHAPTER 2 NUMERICAL METHOD 37

must be given to basis functions lying near the edges of the domain. Regular or
standard B-splines, i.e., spanning k£ sub-domains, would need to extend outside the
physical boundaries. One way of coping with that would be to extend the domain
with an artificial buffer region. Another more convenient and consistent way—the
interpolated function making no sense outside the physical limits—would be to re-
duce the continuity at the edges from C*~2 to zero-continuity (or C~! by extension
of notation). In other words, it means collapsing the buffer region into the frontier
points themselves. Note that this is the procedure implied by the knot definition in
(2.54). This will partly affect the £ — 1 B-splines located near the edges. A resulting
simple but complete set of basis functions is shown in Fi1G. 2.3, for both a uniform
and a non-uniform domain partitioning with Ny = 4 and & = 4. A more‘realistic
picture of what would typically be used for a radial discretization is shown in F1G. 2.4
where again k£ = 4 but with this time Ny = 50 (uniform distribution of breakpoints).

In terms of the basis function G; used in the definition of the vector expansions
(2.33)-(2.40), the radial equivalent of all of the above B-spline results can be rewritten
by simply applying the coordinate transform (2.47) to the definition (2.52). An
illustration of the function G, that corresponds to the B-spline of FI1G. 2.2 is given
in F1G. 2.5, for different values of L. Since it only becomes a matter of convention to
use Gy(r) instead of B,(n), we do not elaborate any further except maybe to stress
the point that in the vector expansions, as they were defined, all derivatives are given
in terms of the radial coordinate r. In terms of the coordinate 1 and the B-spline
By, the first order radial derivative of G;(r) is thus given by

d _ 4n d

5G1(T(n)) = "&T dn Bi(n) , (2.61)
with

dn _ L _ (1—-n)?

dar (r+L)? - L ) (2.62)

Higher order derivatives are obtained by a successive application of this operation.

We conclude this presentation by the introduction of the modal (complex valued)
spline functions that will serve for the implementation of the regularity /boundary con-
ditions, discussed in the following chapter. For each modal pair (m,n), the two “+”
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FIGURE 2.3. A uniform a) and non-uniform b) B-spline partition for the domain
[0,1]. The number of sub-domains is Ny = 4 (identified by the “e” symbols) and
the order of the B-splines is k = 4; for a total of 7 basis functions. The respective
index [ is shown on top of each function. The B-spline of FIG. 2.2 corresponds to
B4 of a). Also note the “irregularity” of the 3 adjacent B-splines at each one of
the end points 0 and 1.
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FIGURE 2.4. A uniform B-spline partition for the domain [0,1] with Ny = 50
and k = 4. The complete domain and B-spline partition is shown in a). A close-up
vue of the interval [0.4,0.6] is shown in b); the uniformly distributed breakpoints
(the “e” symbols) are also shown in that second figure.
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FIGURE 2.5. The basis functions G corresponding to the B-spline of F1G. 2.2 for
the different mapping parameters L = 1,2,5,10. The values are shown on top of
each respective function.

and “—" functions can either be written in r or in 7 to give

N, N,
Gon(r) = D af,Gir) <= fEm = of,.Bin). (2.63)
=1 =1

This completes the spatial discretization and thus completely determines the nature
of the semi-discrete (continuous in time) system of differential-algebraic equations in
(2.43).

2.4 Spatial discretization: Summary
This section provides a synoptic presentation of the spatial discretization described
in this chapter.

e The equation to be discretized

du 1
<@,787 ——E(VX@,VXH)-F(@,F)
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with

F = uxw + F,

e Definition of the inner product

L. pLlg poo
(v,u) = / f / v'-u rdrdfdz
o Jo Jo

e Velocity and weight vector expansions
u(r‘l 9, Z, t) = Z Z Z Qimn (t) W[(T ' ko, kz) eikgﬁeikgz
[ m n
B(r,0,z) = Wi(r; kpy, k) e¥olet*:

e Vector decomposition (the W;* are specified in TABLE 2.1 that follows)

— + + - -
almn WI - a{mn Wl + almﬂ. W!

e Mapping function

e Radial basis functions

Gi(r) = Bi(n)

e B-spline recurrence relation

k n—1t k—1 tivk — 7 k-1
B¥(n) = ———B* V() + =L B¥ V()
tiyk—1— U tivk — tigr

with

1 5 <<ty
B(l) — !
() 0 ; otherwise
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e Radial scalar (spline) functions

Ny N,
gE.(r) = Y. of Gir) = fEMm = Y of Bi(n)
=1 =1

@ Modal evolution equations for the aj- . coefficients
Atat + AZé™ = Bia® + Bja™ + F*

A&~ + Ata*t = B-a~ + Bfat + F-

e Inertia and viscous matrices
o0
(Al = [ (WE)- (WD) rdr

(B3l = ‘"']%:/000 (ﬂwf')‘(ﬂw?) Tdr

I
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Chapter 3

Implementation

In this chapter we cover some specific considerations related to the implementation of
the spatial discretization presented in Chap. 2. More specifically, we discuss the time
discretization and the computation of the nonlinear term. Related to these two main
topics are the implementation of the regularity/boundary conditions on the effective
matrices as well as the inclusion of an azimuthal modal reduction algorithm. Due
to their relative importance, these two latter subjects are the object of a separate
presentation. Also discussed in this chapter are the bounded domain formulation,
and the application of the spatial discretization to obtain a linear stability eigenvalue
solver.

For the presentation of the material in this chapter, we have voluntarily chosen
a simplified notation, trying to avoid the sometimes quite cumbersome implementa-
tion details. The more technically oriented reader may however be referred to the
appendices in which we have relegated most of that specific information. Frequent
references will indeed be made to both App. C and D. In the first, is included all
the material related to the construction of the different matrices (Sec. C.1) as well as
some of the material related to the treatment of the nonlinear term (Sec. C.2). The
rest of the implementation information is found in App. D, e.g., regularity and bound-
ary conditions, time integration, modal reduction, etc. Because of the similarity that
bears the present method with the one presented by LMMC, some of the material
included in these appendices may appear redundant with what can be found in their
report. We nevertheless chose to include it here too for reasons of completeness and
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ease of access.

Finally, let us simply mention that all the coding was done in standard, double
precision, FORTRAN 77. The different resulting codes were run on various types of
Unix platforms, ranging from HP workstations to a SGI Origin2000 supercomputer.
Some smaller 2-D versions of the different codes (Houde, 2001) have also been ported
on Pentium personal computers.

3.1 Time integration

At this point, the system of ODE’s in (2.43) only remains to be discretized in time.
Standard time integration for such a set of equations is usually carried out using
mixed explicit/implicit schemes (Canuto et al., 1988; Gottlieb & Orszag, 1977). The
nonlinear term is integrated explicitly to avoid the costly iterations associated with the
nonlinearities while implicit integration is used for the linear viscous term to avoid the
too stringent stability criterion that comes with the second order Laplacian operator.
Because of the time step size imposed by the stability criterion of the explicit part
of the scheme, time discretization errors generally remain significantly below spatial
errors and standard integration techniques—finite difference type discretization of the
time derivative—are sufficient. Common practice makes use of at least second order
time schemes to prevent the leading order error term to directly affect the physical
viscous dynamics of the problem.

Note that there are some lower order exceptions—Ilike in Matsushima & Mar-
cus (1997) who used a first order scheme—that could possibly be well justified by
a more proper balance between spatial and temporal errors. The presence of “nu-
merical diffusion” could also be used to filter the high wavenumber structures and
hence prevent the saturation of the spatial discretization when using marginal reso-
lution but it should be considered an unorthodox procedure that deserves caution.
Instead, the use of an additional higher order dissipation term (e.g., the biharmonic
term —v4V*u) should be considered for this particular task.

For the present implementation, we adopted the mixed low-storage, Runge-Kutta
type scheme presented by Spalart et al. (1991), and suitably called here the SMR



CHAPTER 3 IMPLEMENTATION 46

scheme (for Spalart, Moser and Rogers). The scheme is formally third order for the
convective and crossed terms, and second order for the viscous one. The marginal
stability curve of this scheme is presented in FiG. D.1. Supplementary information
regarding this scheme can be found directly in the reference paper or in the appendices
(Sec. D.1). Some comparison results with the other mixed Crank-Nicolson/Adams-
Bashforth-2 scheme are also included in Sec. D.1. The application of the 3 sub-
steps of the SMR scheme (see also (D.4)-(D.6)) to the differential-algebraic system
of equations (2.43) is shown in TABLE 3.1.

The A and B are respectively the inertia and diffusion matrices introduced earlier
in Chap. 2, but in a reorganized form that combines simultaneously the “+” and “—"
classes. The computation of these matrices is discussed in more details in Sec. 3.3.
The ?p is the “+/— combined” nonlinear term, to be detailed in Sec. 3.2. As for
the spectral/B-spline coefficients &;, they follow the same convention used for the
other terms. The modal pair (kg,k;) dependence of the various expressions has been

wom

implicitly assumed through out. Finally, the subscripts “*” and “**” identify the
two intermediary sub-time steps used when marching from time step n to n + 1.

The implementation of these sub-steps can be synthesized by the algorithm given
in TABLE 3.2. Since the same algorithm applies almost identically for the three sub-
steps, we make use here of a generic notation in which the index ¢ identifies the
sub-step number and the subscripts 1 and 2 identify respectively the present known
time level (viz., n, * or x*), and the next one to be computed. Note that for the first
sub-step (i = 1), the {F}o vector is zero, and so the transfer in line 3 need not be
executed at the end of the third sub-step (i = 3). Some of the operations described
in the algorithm are themselves the object of a specific section in this chapter; the
relevant section numbers are directly pointed out in TABLE 3.2.



CHAPTER 3 IMPLEMENTATION

TABLE 3.1. The SMR time integration scheme proposed by Spalart et al. (1991)
and applied to the algebraic system of equations (2.43). The “ ~ ” symbol stands
for a combination of the “+” and “—" classes. See text for further information

e Sub-step 1
[K—aIAtg]{&,}‘ = [K—ﬂlAtg]{&g }n + ’yIAt{i:'y }n
29 37 8
@ =g ﬁ1=ﬁﬁ M=z
e Sub-step 2

[K—a2At§]{a,} = [K~&At§]{&,}. +

=%

wot{Fe} + aat{f}
w=-g fzm m= G=—i
e Sub-step 3
[A-oatB]{&} = [A-maB]l{@]} +
nael ), + oo (R,
=g =z =3 G=-2
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TABLE 3.2. Generic time marching aigorithm for each one of the sub-time steps
of the time integration scheme of TABLE 3.1. The particular sub-time step is
identified with the index Z. See text for further information.

1. From {a}, evaluate {E}l = Sec. 3.2 ;

2. For each modal pair k3 > 0 and k;:

(a) Compute the effective matrices [K] and [§] = Sec. 3.3 ;
(b) Evaluate the RHS vector {f }:
i. Evaluate [K;] = [Z - ﬁ,—Atﬁ] ;
ii. Evaluate {fx} = [Ki]{@},;
iii. Sum the contributions from the nonliriear vector(s):
{f}={f}+mat{F} +Gaae{F};
(c) Evaluate [K;] = [K - antE] ;

(d) Impose the regularity/boundary conditions on the system of
equations [Ky]{a}, = {f} = Sec. 3.3;

(e) Solve [K]{a},={f};

3. Replace {E}o by {?}1;

Because of the explicit integration of the nonlinear convective terms, the scheme is
only conditionally stable. The stability condition is characterized by a ratio between
the magnitude of the local convective velocity over the “grid velocity”: the CFL
number (Ferziger, 1981). Here, we use the following hyperbolic type definition

2 |ur) el |2z |
CFL = gﬂ’At rna.x[ Ar + st Ay | (3.1)

where Ar, Af and Az are the collocation points spacing (see also Sec. 3.2), and the
“max” is taken over the whole computational domain. The 2/3 and the 7 factors
come from the spectral equivalent of the condition where, for example, the maximum
wavenumber k. may is related to the “de-aliased” grid (collocation points) spacing Az
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by k; max Az = —g— 7 . This is a matter of convention that only affects the critical limit
value of the CFL condition. The effective stability limit of a particular computation,
whatever the definition used, can obviously always be found by numerical testing.
With definition (3.1) though, the scheme has a critical stability limit, for purely
convective flows, of CFL < v/3 =~ 1.73, as shown by the marginal stability curve in
FiG. D.1. Note that this numerical value actually comes from a 1-D linear analysis of
the scheme, but its application to the conservative 3-D criterion (3.1) certainly poses
no problem. When diffusion is present, values up to 2 (and possibly higher) can be
used, as reported by Spalart et al. and confirmed by our own testing.

The evaluation of the maximum time step allowable (granting stability) is done at
regular intervals during a simulation to ensure that (3.1) is indeed satisfied throughout
the computational domain. Thus, each one of the velocity vector components has to
be computed on all the collocation points. In cylindrical coordinates, there is a
clustering of these collocation points near the center of the domain (i.e., as r = 0)
and this may lead to some very severe limitations on the time step size if no special
care is taken. This particular but important issue is one of the main topics of Sec. 3.4.
For this reason, we put that matter aside for now as we shall come back to it in a
little later. Let us note, in addition, that some specific examples of collocation grids
are also presented in that latter section.

Another point worth mentioning when evaluating the time step size is that the
CFL condition has to be considered in terms of the total velocity field (2.7)

u = U+ Wy -

The background flow velocity, if different from zero, must therefore be added to the
homogeneous (computational) velocity

uh(rl’ Om, zn, t) = Z Z Z ®imn (t) Wl(‘f‘l ; kg, kz) eik"o”‘eik""‘ s
{ m n

in (3.1). The set {r,0p, 2, } defines the set of collocation points on which the “max”
is determined. The particular evaluation of each one of the velocity components is
detailed in App. C, more specifically in (C.10)-(C.12). Since this operation is quite
similar to what is done in the computation of the nonlinear term (see more in Sec. 3.2),
the time step update procedure is inserted there. On the other hand, because the
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B-spline evaluation (the summation in [) represents an additional cost—as will also
be seen in Sec. 3.2—the time step is updated only after a certain, user-defined, time
interval (or number of time steps). In rapidly evolving flows, the update interval must
be chosen with some care, otherwise numerical instability could possibly set in.

Some care should also be taken in very diffusive flows (low Reynolds number)
when only using (3.1) to determine the time step size. The SMR scheme does tend
to unconditional stability in the limit of pure diffusion, as can be seen again from
Fi1G. D.1, and large values of A¢ may result. The computation would then remain
stable but with possibly important precision losses. Note that this type of problem is
not a concern here because the flows of interest are dominated by convection. It would
nevertheless be advisable, for low Reynolds number flows, to include a diffusive time
step criterion based on accuracy rather than stability. From the typical 1-D result

L () /(02 <o,

a 3-D generalization is proposed as

4 , 1 [ur| |ugl ‘UZi)]
- .2
g™ Atmax[ReA (Ar+'rA0+Az < 0Q1), (3.2)

where the local “grid Reynolds number” may in turn be defined as
Rean = Re [(ur Ar)% + (ugr AB)? + (u; Az)?] T

This accuracy check can easily be implemented by comparing the ratio of the CFL
number with the local Reynolds number Res when updating the time step size.

3.2 Nonlinear term

The computation of the nonlinear term (line 1. of TABLE 3.2) is certainly one of
the most complex parts of the Navier-Stokes solver. For its implementation, we
followed the procedure described by LMMC which is based on a modified version
of the classical pseudo-spectral algorithm (Canuto et al., 1988; Boyd, 1999). In the
presentation given below, emphasis is mostly put on the non-standard treatment of
the B-spline radial direction. Because the mathematical expressions that result from
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this particular treatment are quite involved, we have relegated them in the second
half of App. C, making use here of only generic formulas. In this attempt at keeping
the expressions as light as possible, we admittedly sacrificed some rigor of notation
for simplicity.

First, let us recall from Chap. 2 that the nonlinear term is given, according to the
definition of the inner product in (2.16), such that

1 1 Lg pL: poc . 5
m— (V_-,,F) = LaLz ‘/0‘ /0 L (VJ) - F rdrdfdz : (33)

where
F = uxw + F,

and V; as given in (2.30). Both vectors u and w are understood to be homogeneous,
according to the notation convention set in that chapter. All the non-homogeneous
extra forcing known terms are included in F., where for example

1 a
F. = gy Xw + —Vu,, — Unh

o 5 T other terms . (3.4)

The vorticity field follows, by definition, a similar decomposition and may also lead
to rotational non-homogeneous forcing.

Now, since the nonlinear term is treated explicitly in the time integration scheme
(see TABLE 3.1), the integrals in (3.3) are evaluated at a specific time where all
quantities are known. In a general manner, the integrals in (3.3) can be evaluated
numerically by some general quadrature rule. This requires that the integrand

[ (vj)‘ . F T ]{"hamlzu} ’

needs to be evaluated on some set of quadrature points defined by {r,8m, 2, }. The
particular choice of quadrature points obviously depends on the type of expansions
used to represent the basis vector functions V;, and the forcing vector F.

To get a better idea of the algorithm, let us go one step ahead by substituting
the vector expansions defined in (2.29) and (2.30) into (3.3). For simplicity, we only
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consider the homogeneous part of the nonlinear term, and obtain

1 s -1, ~iklz p ike
I,L. f//wfm,n, e—ikg0o~ikiz . [Xl:;;afmwlfun eikelgikez o
v x (Z SN ot W e"“'“e"""’)} rdrdfdz |

{l« M. na

(3.5)

The pseudo-spectral algorithm is a very standard, well documented (Canuto et al.,
1988; Boyd, 1999), efficient procedure for evaluating the sequence of operations il-
lustrated in (3.5). The reader is therefore directiy refered to the specialized books
just cited for a complete description, and additional considerations regarding the
particular technical details.

However, to better explain how the present B-spline treatment differs from the
standard procedure, we first give a brief qualitative description of the sequence of
operations of a standard pseudo-spectral approach applied to (3.5):

1. The physical velocity and vorticity vectors are evaluated on a collocation grid.
This means that the two triple sums (in {,m,n and l,,m,,n,) are evaluated
first. In terms of the Fourier components, for example, it amounts to the inverse
transform. The choice of collocation points is simply the zeros of the Fourier
expansions, and because of particular symmetry properties that come with this
choice of points, the operation can be done in a fast way, i.e., by a Fast Fourier
Transform (FFT). A similar procedure—that depends on the particular choice
of basis functions—is used for the radial direction.

2. Once the physical components are obtained on the collocation/quadrature grid,
the nonlinear product u x w is simply evaluated at each point. Note that since
the complete velocity field is now available at this step, the evaluation of the
CFL condition (Sec. 3.1) may be done here.

3. Then, the triple integral is evaluated. Because the choice of collocation points
corresponds to the quadrature points of the different expansions, the transfor-
mation integrals can be computed exactly. Considering again the Fourier direc-
tions for example, this step simply corresponds to a direct transform which is
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again done with a FFT. According to the type of (global) expansions used for
the radial direction, the integral can be evaluated with either a fast transform
(using Chebyshev polynomials) or with a slow one (using Jacobi polynomials
for example), as in step 1.

In brief, these three steps state that because of the fast (Fourier) transforms, it
is more efficient to start from the spectral space, go into the physical space to carry
out the nonlinear product, and then come back into the spectral space. Of course the
equivalent result could be obtained much more expensively by doing the operation in
reverse order, i.e., by evaluating first the integrals (analytically) and then compute
the summations. This implies that one stays at all times in the spectral coefficients
space. The computational cost associated with this second approach would be far
more expensive, as mentioned, because of the convolution sum that would then need
to be computed?.

Before considering in more depth the technical aspects of using B-splines in (3.5)
that led us to a different algorithm, let us first introduce a more symbolic nota-
tion in which we completely separate the spectral-Fourier functional dependency
from the radial B-splines?. Following this, the spectral velocity and vorticity vectors
components—expressed in detailed form in App. C by (C.10)~(C.12) and (C.7)-(C.9)
respectively—can be written in terms of some scalar functionals, symbolized by

U(r; ko k:) - &, = [Z s Wi (5 ko,kz)] &
!

= 3 U2 ok, ke k) GP(GLGY) ; (3.6)
[4

LThis result is a natural consequence of the convolution theorem associated with Fourier (or other)
transforms that states in simple terms that: the product of two functions in one space (physical)
amounts to the convolution of these two functions in the transformed (spectral) space, and vice

versa.
2This operation is feasible in principle because of the separation of variables approach that was

used to construct the expansions in the first place. It can be technically achieved by rewriting the
problem in terms of the scalar functions used to construct the vector expansions. Again, see Sec. C.2
for details.



CHAPTER 3 IMPLEMENTATION 54

and
@(r; ko, k) - &, = [ﬁ u(r; k"’kZ)] &

——

= z ngnn(ai-‘!r:nn! kai kz) qu(Gb ;:G;,) . (3.7)
3

The unit directional vector &, (or &;) takes either one of the three values of {&,,8&;,&.}.
To keep the notation as simple as possible, we also discard spatial variable dependen-
cies that should be made clear from the context.

The physical scalar coefficients ;" (6, 2,) and W,?(6p, z,) are simply obtained,
for the set of collocation points { 6,,, 2, }, by an inverse Fourier transform such that

U = S5 g e, o
m n
W? = YN W, efebmeitaan (3.9)
and where here
3 3 3 3
—_— < < - — < < —
2Na_m_ 2Na and 2N,_n_ 2Nz.

The additional, zero valued, Fourier coefficients (see (2.29) for reference) are included
for the complete elimination of aliasing errors that may arise from evaluating the
Fourier transform of the resulting product: the “3/2 de-aliasing rule” (Canuto et al.,
1988). As for the set of Fourier collocation/quadrature points, it is simply defined by

O =mA0+% i 2zZn = nlAz + I; , (3.10)
with
2L, 2 L,
A9“32N,, i Az = F3oN

Replacing the new symbolic expressions (3.8) and (3.9) in (3.5) we obtain, after
rearranging,

Lg pL. . _,
LalL /o fo [ZZ UIWe PR em} e™*e0e~*:2 dhds (3-11)
z [

14
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where £,,,; stands for the conventional permutation operator. With the symbolic
notation used, a formal summation rule is somewhat awkward to define, but the
result can be seen in the expressions (C.14) and (C.15) in the appendix. In passing,
we have also introduced the radially integrated trilinear product

pree = fu G GF Hi rdr . (3.12)

The integral (3.12) is a purely radial expression composed of a set of 22 expressions
in the form of (see also (C.13))

/ G,(,i) (r) G,(j)(r) G,(f)(r) P dr
0

that can be pre-computed before entering the time marching procedure. The super-
scripts ¢,j and k refer here to different orders of derivative, and p is some integer
(positive or negative).

The present method precisely differs from the standard pseudo-spectral one in
what follows, namely the evaluation of the convolution sum

DD U PE s (3.13)
L. 1
in (3.11). Because of the locality of B-splines, their inner product is non-zero for only
a limited number of indices, as one may recall from (2.58), i.e.,

/B,.B,dn #0 for —k<l—-I<k,

so, for a given value of I’, there are only 2k — 1 values of | (similarly for l.) that
give a non-zero integral. This result is a consequence of the locality of the basis
functions and is accordingly not affected by mapping considerations; it may therefore
be directly applied to (3.12). Extension of this spatial “quasi-orthogonality” result
to the trilinear product leads to a few more zeros (see FiG. C.1 and C.2 in the
appendices), but globally the scaling remains the same. At a given index value /',
the convolution sum requires only O([2k — 1]?) operations instead of @(N?). From
this result, it can be shown that the total operation count for the computation of the
nonlinear term scales like

0( Nk Ny N, [61 lOg(NgNz) + ok + C3] ) s
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without having to explicitly evaluate the physical field components (which would
require a complete B-spline evaluation). The c; represent the principal relative scaling
constants.

Note that in a classical pseudo-spectral approach the velocity and vorticity com-
ponents would be computed on a radial quadrature grid—if we put aside mapping
considerations for the moment and work with a B-spline basis of order k—with at
least £ — 1 points per sub-domain. These new quadrature points are associated with
the different higher order B-spline discretization required to represent the nonlinear
product. This is roughly the equivalent of the 3/2-rule used in the Fourier direc-
tions. For B-splines of order k, the velocity would be in £ — 1 (see TABLE 2.1), the
vorticity in k£ — 2, and therefore their product in 2k — 3, whence the minimum of
k — 1 quadrature (collocation) points. Machine precision numerical integration would
require more points, on one hand, to account for the additional weight B-spline func-
tions, and mostly, on the other hand, to account for the negative powers of r that
appear in some of the expansions (see Sec. C.2). This same last comment applies a
fortiori if mapping considerations are taken into account. The total operation count
in this case would then scale like

O(N, k Ny N [d; log(NgN.) + dok? + dsk + da] ) .

Although the two estimates scale almost equally, the clever but less obvious construc-
tion of products (3.13) developed by LMMC that we have just presented above leads
to a more efficient implementation of the modified convolution sum algorithm.

Once the convolution sum (3.13) is computed (the expressions (C.14) and (C.15)),
there remains only one final step: the evaluation of the double integral in (3.11), viz.,

1 Lo ple kio i
7T / / [...]p e"*oPe k2 dodz
oLz Jo Jo

which will be'recognized as the definition of a double Fourier transform. The integrand

being determined on a proper set of collocation/quadrature points, this operation is
again done by means of the FFT. The complete procedure is synthesized in TABLE 3.3
(see also Sec. C.2 in the appendix for a more technical description).

Our last observation relates to the evaluation of the velocity field required for the
determination of the time step size At via the CFL condition (3.1). As discussed
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TABLE 3.3. Generic description of the algorithm for the nonlinear term computation.

1. For each index /';

(a) From the aff,,, evaluate the relevant spectral scalar coeffi-
cients 4, , and VARE

(b) Compute the inverse Fourier transform (3.8) and (3.9);

(c) Compute the convolution sum (3.13);

(d) Compute the Fourier transform of (3.13).

in Sec. 3.1, each one of the velocity components, defined in (C.10})—(C.12), needs
to be evaluated on the collocation grid. Since the velocity field is never explicitly
determined in the present computation of the nonlinear term, a supplementary step
must be added. By (3.8), the scalar physical coefficients /" are obtained; the velocity
vector components can thus be determined by the B-spline evaluation

U Omaza) <& = S UPOm ) GP(GL(r), Gl (r)) . (3.14)
le

The radial collocation points r; are chosen here as the B-spline breakpoints. This
additional evaluation can naturally be inserted between lines 1.(b) and 1.(c) of TaA-
BLE 3.3. Because (3.14) represents an extra computational cost though, the evaluation
of the time step size is only done at certain predetermined time intervals, as already
mentioned in Sec. 3.1.

3.3 Effective matrices, regularity and

boundary conditions

In this section, we discuss the construction of the effective matrices of TABLE 3.1
(see also TABLE 3.2 line 2.(a)) and the imposition of the regularity and boundary
conditions (TABLE 3.2 line 2.(d)). Note that the construction of the matrices is ex-
posed in more details in Sec. C.1, while the imposition of the regularity and boundary
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conditions are detailed in Sec. D.2 and Sec. D.3 respectively.

3.3.1 Effective matrices

To better understand how the effective matrices A and B of Sec. 3.1 are constructed,
let us first start with a brief recapitulation. The inertia and viscous matrices were
initially defined in Chap. 2, and respectively given by (2.44) and (2.45). By replacing
the different vector expansions of TABLE 2.1 in these definitions, we obtain a set of
parametric relations, in terms of purely radial sub-matrices, bearing the generic form
(see also (C.1))

/ GP(r) ij) (r) rP dr ,
0

where i and j are derivative order indices, and p some integer (positive or nega-
tive). There are 14 of these generic matrices—pre-computed before entering the time
marching procedure—that completely define the general inertia and viscous matrices.
As the reader will have probably noticed, this holds a certain resemblance with what
was already described for the nonlinear term in Sec. 3.2.

Because the radial basis functions Gi(r) are locally defined, the matrices Aj (or
B ) are mostly zero except for a narrow band of 2k — 1 values (one may recall this
result from (2.58)). The general coupling between the “+” and “—” classes, on the
other hand, requires that the systems of equations (2.43) be solved in a coupled man-
ner in the time marching algorithm (TABLE 3.1), i.e., with matrices in the form shown
in F1G. 3.1. To these matrices correspond the following sequences of coefficients, for
each modal pair kg, k-,

- - -1\T

{af,of,... ,a} ,07,05,... ;0. }

where 7 stands for the transpose.’By a simple reordering of the coefficients into the
sequences

T

+ - + - + -
{alral 102 ,02,... :aN,.raN,.}mﬂ 3

accompanied by consequent reordering of the equations (i.e., of the corresponding
weight functions), the block banded matrix of FI1G. 3.1 can easily be transformed
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FIGURE 3.1. Topology of the coupled inertia matrix A of TABLE 3.1 before re-
ordering and imposition of regularity/boundary conditions. The shaded areas
identify the non-zero values. The total bandwidth of each one of the sub-matrices
A} is 2k — 1. A similar figure could be sketched for the viscous matrix B.

 4(c+1)+1 N

2N,

r

FIGURE 3.2. Topology of the coupled effective inertia matrix A of TABLE 3.1
after reordering and imposition of the regularity /boundary conditions; matrix B
is identical. As in FIG. 3.1, the shaded area identify the non-zero values of the
matrix. The total bandwidth is now of 4k — 1. The top left rectangle identifies
the modified zone affected by the imposition of the regularity conditions, and ¢ is

for the B-spline continuity (see text for more information).
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into a single band (new dimension of 4k — 1) “effective” matrix as the one shown
in FI1G. 3.2. Note that a specific index by index value example, for £ = 3, is shown
in F1G. D.4. Since the sketch in FIG. 3.2 represents the global effective matrices
that result from both data reordering and imposition of the regularity/boundary
conditions, some further explications need to be given. The reordering procedure
does indeed confine the non-zero values of the different A] (the light shade areas)
of FI1G. 3.1 to the single band area (also in light shade) of A in FI1G. 3.2. The top
left rectangle is the result of the imposition of the regularity condition which is now
discussed.

3.3.2 Regularity conditions

The local B-spline discretization does not naturally satisfy any specific type of bound-
ary (including regularity) conditions. These must therefore be imposed explicitly
(line 2.(d) of TABLE 3.2) before solving the algebraic system of equations (line 2.(e)).
The whole process of imposing these conditions can become quite tedious if pre-
sented at the algorithmic level, and so we will again limit ourseives here to the main
ideas, relegating the technical details to Sec. D.2 (regularity conditions) and Sec. D.3
(boundary conditions).

The set of vector expansions defined in Chap. 2 is not unique. One of its main
advantages though relates to the imposition of the regularity conditions. Indeed, one
needs to recall that the vector expansions were constructed in Sec. 2.3.1 by taking
the curl of some vector potential such that

WE = Ux ¥t

Obviously, if one of these two vectors satisfies the regul'arity conditions then so must
the other. Without much trouble, one can argue (see again TABLE 2.1) that it is
easier to impose the regularity on the ¥F rather than on the Wi. This is where
the cleverness of LMMC’s construction comes to light. For each one of the “4” and
“—” class, the different components of ¥i naturally satisfy the relative behaviors
expressed in (2.10) and (2.11). The imposition of the vector regularity conditions is
thus reduced to the imposition of a single parity condition simultaneously on both
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(%) spline functions g%, defined in (2.63),
Gan(r) = D G Gi(r) -
1

As will be seen further down, this result will also significantly ease the imposition of
the regularity condition on the weight vectors.

The imposition of an even (odd) behavior near r =0 on g, is done by constrain-
ing all odd (even) derivatives to zero at the point itself, with the appropriate number
of zeros according to the value of ky. Let us illustrate this with an example. For
kg > 0, we have from the combination of (2.11) with the expansions of TABLE 2.1,

. + _ ks—1+2p
11.1_{% gmn. (T) - O(T ) ?
with p =0,1,2.... So, if we consider the particular case kg = 2, it reduces to the
odd behavior
. 4+ — 1+2p
ll_I’I[l) g2n(r) - 0(1‘ ) L

and all even derivatives (including Oth order, i.e., the function value itself) must
therefore be zero. More specifically, this writes:

q
95.(0) =0 ; ;Z,izgi(O) =0 ; - 3 :792’;(0) =0, (3.15)
where ¢ is an even integer such that ¢ < ¢, and c being the continuity level of the
spline function, viz., g£, € C¢. Here, because we use maximum continuity spline
functions, ¢ = k — 2. Our choice of using c instead of £ — 2 in this example is
motivated by the fact that regularity is more closely related to continuity than order,
and that, most importantly, all the implementation has actually been done in terms

of generalized B-splines, i.e., with ¢ < k — 2.

According to the particular spline construction used near the edges (see Sec. 2.3.3),
constraining the value of the gth derivative at a frontier point can affect at most
q + 1 coefficients, instead of the standard &k coefficients for regular splines. By a
combination of the B-spline relations (D.16) and (D.17) with the conditions expressed
in (3.15), we finally obtain for our example

G5(0
Ofin = 0 i ofn = —afin GhgE 5 - (3.16)
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Other sets of algebraic relations for the i, coefficients can be similarly derived for
the other values of ky.

Because we use a Galerkin method—the weight functions belong to the same
functional space as the basis functions—regularity must also be imposed on the weight
vectors. This is done in a similar manner by considering the equivalent of a weight
spline function

hiﬁlnl(r) = Z ,Bz:lhmlnl G['(T) -
IG

The parity conditions are also applied on h.,ﬁ,n, (r), thus giving a series of coupling
relations between the Gif ... coefficients. Note that in the spline weight functions,
the coefficients Sj.,., are arbitrary except for the linear relations that result from
the parity conditions.

Another advantages of the present choice of vector expansions is that since the
weight function regularity conditions are identical for both the “+” and “—" classes,
they do not need to be applied separately for each sub-system of equations but can
be applied at once on the effective coupled system (line 2.(d) of TABLE 3.2). More
specifically, the linear combinations are applied on the 2(c+1) first lines of the global
K, matrix and the vector f of TABLE 3.2. In the matrix, these coupling relations
will partially alter the band structure; the region affected by these modifications is
represented by the dashed-line rectangle in Fi1G. 3.2. The dark shade triangle covers
the area where non-zero values from the lower lines are brought up by the coupling
relations. An example of a modified global matrix (with index by index values) is
given in F1G. D.4, in the appendix.

3.3.3 Boundary conditions

Again from the construction of the vector expansions, imposition of the harmonic
decaying behavior (2.14) to the stream vector ¥, is also done in a straightforward
manner; the implementation details are presented in Sec. D.3. Written in terms of
the spline functions, the conditions require for kg > 0 that (see (2.48))

3 + — —kg—1
lim g, (r) = O™ .
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In the mapped coordinate n (=r/(r + L)), this becomes (see also (2.49))
lim gk, (r(m) = O — M)

This (kg + 1)-fold zero is imposed by simply setting the ky + 1 last spline coefficients
ait,, to zero. For example, using again our value of kg = 2, this would require that

aEkNr—2)2n =0 ; a(izv,-nzn =0 ; af., = 0. (3.17)

When ky > c, only the ¢ + 1 first coefficients are imposed to zero. The reason for
this is based on similar considerations than those discussed in relation with regularity
conditions at r = 0.

Let us look more specifically at the basis functions in terms of the mapped co-
ordinate 77, rather than the physical coordinate 7, i.e., in the true B-spline space.
Imposing, say, the last ¢ + 1 spline coefficients—as in (3.17) with ¢ = 2—is equiva-
lent to imposing the function value up to the gth derivative at the end point n = 1.
The highest order derivative that can be imposed at that frontier point is ¢, all other
derivatives being zero by construction there, whence the limit value of ¢ + 1 coef-
ficients®. The decaying condition is equally applied to the spline weight functions
hi..(r), leading to the same restrictions for the S, coefficients. Note that the
complete set of boundary conditions is given in TABLE D.1, in the appendix.

There are still two points, regarding the impiementation of both the regularity and
the boundary conditions, that deserve some attention. The first one is algorithmic.
The very particular topologies of the matrices that result from the radial discretiza-
tion require the use of an specialized Gaussian elimination solver. In this case, we
have implemented a Gaussian elimination (without pivoting) especially designed for
matrices with a structure as shown in F1G. 3.2. The operation count of this solver
scales as (O(N,k?), the same as for narrow bandwidth solvers. For this very special-
ized solver, we chose to maintain the topology of the matrices fixed for all k4, and
have therefore also chosen to impose all the conditions explicitly.

3A possible ambiguity may arise if working with generalized B-splines of less that maximal con-
tinuity, i.e., ¢ < k — 2, as to whether impose the boundary conditions in terms of £ — 1 (for which
indeed all other higher order derivatives would be identically zero) or ¢+ 1 (for which some higher
order derivatives could then remain non-zero). At any rate, the question is eluded in the present
case since we have restricted the B-spline discretization to regular splines (c = £ — 2) even though
the implementation allows for any type of generalized splines.
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The second point regards the effectiveness of such regularity /boundary conditions.
At both frontiers, the conditions imposed represent some asymptotic behaviors, valid
in the respective limits 7 — 0 and oco. In our discrete B-spline world however, these
behaviors extend over some finite distance inward, and therefore represent an approxi-
mation of the formal conditions. The spatial extent of the finite order approximation
of these boundary/regularity conditions may be limited in effect by some B-spline
clustering near the edges; a procedure which we may recommend in most cases, to
stay consistent with the asymptotic nature of the conditions. On the other hand,
applying the full regularity conditions directly to high order B-splines, on a tightly
clustered grid, may lead to some degradation in the conditioning of the matrices
because

d? . -q
Fgmn(r) = O(AT )

This drawback, in practice, contributes to limit the order of splines to values not
much higher than about & = 5, as was also recommended by LMMC.

The practical advantages of imposing elaborate behavioral conditions at the fron-
tiers should not only be of theoretical interest. A more formally restrained approxi-
mation space, with proper boundary conditions, allows for a reduction in the number
of degrees of freedom without affecting completeness. In addition, imposing the reg-
ularity condition at the center of the domain (i.e., at r = 0) has the effect of making
that particular point a regular one like any others in the domain, i.e., with the same
approximation order. In terms of the error, this should also prove advantageous, but
no formal investigations were conducted on this particular topic in the present study.

3.4 Modal reduction

The modal reduction algorithm—or zonal mesh embedding as its is sometimes referred
to—allows in a general manner for the radial variation of the Fourier truncations Np
or N;, or both. It was first presented by Kravchenko et al. (1996) for a spectral/B-
spline discretization in Cartesian coordinates, and by LMMC for a similar method
in cylindrical coordinates. The purpose of the procedure is not only to reduce the
number of (non-essential) degrees of freedom, as will be seen below, but also and
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mostly in this case to alleviate the severe time step size restriction that may result
from the compliance with the CFL condition near r = 0, with a uniform truncation
in the azimuthal direction. In the present implementation of the procedure, because
of its critical importance, we have given priority to the azimuthal truncation Nj.
However, the general and flexible set up of the algorithm used here—which can be seen
as a generalization of the algorithm presented by LMMC in their report—could be
extended to include the modal truncation in the longitudinal direction in a relatively
straightforward manner. Finally, as previously, we limit ourselves in this section to
the essential considerations and relegate the technical detail to, this time, Sec. D .4.

Let us begin our presentation of the procedure by considering the CFL constraint.
In Sec. 3.1, we mentioned that the CFL condition (3.1) was evaluated on the collo-
cation grid. The definition of the set of collocation points {r,6m,, 2, } was in turn
given in Sec. 3.2, by (3.10) for the Fourier directions, and by the B-spline breakpoints
for the radial coordinate.

A simple but important point to note regards the uniform Fourier discretization
in @, i.e., the evenly spaced “collocation angles”. This does not actually lead to a
uniform resolution for that direction, as opposed to the longitudinal (z) direction.
Indeed, as it appears in (3.1), the azimuthal resolution is in fact associated with rA#,
and since Af has a constant value,

A8 —- 0 as 7 — 0.

The module of the velocity component uy need not be very large near the center
of the domain for the ratio jus|/rAf to become dominant there. This narrowing of
rAf is pictured in F1G. 3.3.a by the convergence of the radial lines, where each line
corresponds to a collocation angle 6,,. In the same figure, each circle (constant r;)
is associated with a B-spline breakpoint. The discretization parameters used for the
illustration are N; = 25 and Ny = 16. For the present discussion, the longitudinal
direction, with its uniform discretization, does not lead to any particular restrictions
on the time step, and therefore needs not be explicitly considered here.

As shown in Sec. 2.1.1, the analytical regularity of the fields (as r — Q) requires
the “fast dying” of the high azimuthal wavenumber modal components. This result
forces many of the modal spline coefficients a;f,,, to be practically zero near the center
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(low index values of [ and high values of m). The small wavenumber flow structures
that effectively remain in that region are then convected through an over-resolved
grid, leading to an artificially severe restrictions on At because of the CFL condition
(3.1). One way to better reflect the analytic behavior (2.11) and alleviate the CFL
constraint is by letting the truncation level N, (or equivalently the Af) be a function
of r. More specificly, this means letting Ny = Ny(l). In terms of the spline functions,
this becomes equivalent to introducing an “azimuthal filter”.

A new filtered function §Z,(r) can thus be written such that

Nf
05, = ) smai, G, (3.18)

=1

where the filtering coefficients s;,, are simply defined by

_ 1 ; fle{l,ly... 10, }9

Stm = { 0 ; otherwise ’ (3-19)
and where the set of d, index values {/;}{9 forms a modal group (identified by
the index ¢q), i.e., the set of spline indices that share the same cut-off truncation
level Ng‘g, see Sec. D.4 for further details. These modal groups are a generalized
form of the modal zones presented by LMMC. Seen at the algorithmic level, this
filtering procedure amounts to the removal of some of the a;j-,, coefficients, for some
pre-assigned values of the azimuthal index m, whence the name “modal reduction”.
Similar procedures were implicitly applied by Orszag (1974) in spherical coordinates,
by Leonard & Wray (1982) in cylindrical coordinates, and by Shen (1997) (cited from
Lopez & Shen, 1998) aslo in cylindrical coordinates, by directly incorporating the
analytical behavior to their global expansions.

For the collocation grid and the CFL condition, the repercussions of letting N
vary as a function of ! are also probably best illustrated by an example. In FiG. 3.3,
we show both a standard collocation grid and a modally reduced version. The num-
ber and distribution of radial sub-domains (breakpoints) are identical for both cases
(Ng = 25). The standard grid has a unique truncation level of Ny = 16 while the re-
duced version was obtained with the set of trucation levels Nyz = {4, 8,16,8}, from
the center out. The frontiers between the modal zones are marked by the “bold”
lines. The different truncation levels Ng(l) have now been defined as functions of
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the spline index {. The modal zone grid must therefore be obtained with some spe-
cific radial spline discretization. The grid shown in Fi1G. 3.3.b was produced with
quadratic (k = 3) splines for which 1 <! < 27. The precise functional link between
the ¢th truncation levels N,g"z) and the index ! is not so important here, but the
reader will find all the relevant details again in the Sec. D.4. Let us only note that in
this particular case, there are 8 B-splines with Ng) = 16, 22 with Né? = Ng;) =8,
and obviously 27 with N[} = 4.

When comparing the two grids, one easily perceives the relaxation of the rA#8
factor near the center of FIG. 3.3.b. One may also recall that the modal reduction
not only serves to alleviate the CFL constraint, as we already mentioned, but may
additionally serve to remove some of the negligibly small B-spline coefficients. This
possible adjustment can equally be applied in the far field where the decaying con-
ditions require the fast dying of the high azimuthal wavenumber field components,
thus allowing for a possible modal reduction in the outer region too (Né"z) = 8 in
the last zone of the example). This globally leads to a reduction in the total number
of B-spline coefficients that need to be computed. For example, with the quadratic
splines used, the 1 zone truncation (standard collocation grid in F1G. 3.3.a) contains
432 B-spline coefficients (per longitudinal k£, mode) whereas the 4 zones truncation
of FI1G. 3.3.b contains only 260 coefficients: a 40% reduction.

Because of the B-spline overlapping, the efficient implementation of the variable
truncation Ny(l) requires some special care near the zonal frontiers. Recall from the
computation of the nonlinear term (Sec. 3.2) that the convolution sum (3.13),

P q pgs
§ :§ : UW," Puli €pgs

l. {

is done in the physical B-spline space. The physical coefficients I, and W, are
obtained via the inverse Fourier transforms (3.8) and (3.9), viz.,

3 N (l.)
U =Y X oy e,
m=—%Ng(l.) n
3 Ne(l) .
We = 3 S W, cemgitien

m=—3Ng(l) ©
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FIGURE 3.3. De-aliased collocation grid with Ny = 25, uniformly distributed in
the mapped 7-domain, for both cases: a) Uniform modal truncation Ny = 16; b)
Modal reduction with 4 zones, from inside out Npz = {4,8,16,8}. See text for
additional information.

If Ny(l.) > Ny(l) for a given I’ in (3.13), then the larger of the two values must be
used in the Fourier transforms of both ", and WJ,.. This particularity is taken
into account a priori when constructing the modal groups {/; }9 mentioned earlier®.
When a zonal frontier index [ is detected such that Ny(l) < Ny(l + 1), then the
effective modal group associated with the larger truncation is extended over the next
k — 1 spline indices (the overlapping extent) into the smaller truncation zone; in this
case, the effective frontier would be set at I + 1 — (¥ — 1). The procedure would be
similar if Ng(l) > Ny(l + 1) except that the extension would have been on the other
side, i.e., from [ up to [ + (k —1).

One of the drawbacks that comes with the azimuthal truncation jumps is that
they require an extra Fourier transform—for all the overlapping B-spline coefficients
that are in contact with the point at which the jump occurs—every time one of these
jumps is reached. According to the level of specialization with which the algorithm is
implemented, this extra work has the effect of limiting the number of allowable modal

4The two superscripts g should not be confused. In V’\},‘,’nn, the value of ¢ identifies the vector
component whereas in {I; }(9), it identifies the modal group.
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zones in practice. A limit of 6 zones was suggested by LMMC for their near uniform
azimuthal resolution applied to the simulation of turbulent pipe flows. Kravchenko et
al., on the other hand, presented turbulent channel flow simulation results that were
obtained with 9 zones.

In our present implementation of the algorithm in the nonlinear term, the very
general formulation used for setting up the procedure does not lead to any specific
overhead limitations for the number of zones. This is because the variable truncation
Fourier transforms are applied in a rather systematic way for every !’ index in the al-
gorithm shown in TABLE 3.3. This approach obviously requires some additional work
that couid be saved in a more specialized (optimized) version of the implementation.
In terms of global code performance for a typical flow simulation problem, the time
spent in the computation of the nonlinear term (with the modal reduction algorithm)
accounts for about 85% of the total computational time in the cases reported by
LMMC while this figure is of about 92% in our tested cases.

We conclude this section, on the modal reduction algorithm, by briefly considering
some of the practical points involving the possible choices of value and positioning for
the different truncation levels N2 . The effects associated with the passage of some
vortical flow structures through a change of modal resolution has been checked by
Kravchenko et al.. For their test case—the rebound of a counter-rotating vortex pair
on a “no-slip” wall—they showed that if the resolution jump was of approximately
less than or equal to a factor 2, then there were no noticeable impacts of the zonal
boundary on the dynamical evolution of the vortex-wall interaction; a minimum res-
olution level must obviously be assumed on either side of the jump. This leads us
to suggest that, in general, the choice of modal truncation jumps in our case should
satisfy a similar criterion such that

= S Nel)/Noli+1) 2,

in regions where significant flow structures are present.

Another, maybe more important, point regarding the determination of a particular
modal zoning is the position of the zonal boundaries. In Houde et al. (2000), a
criterion based on the radial distribution of the modal (azimuthal) kinetic energy
of the flow was proposed. A predetermined cut-off energy ratio is first determined.
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That ratio depends on the smallest flow structure that must be resolved, and the level
of precision sought for the solution. Then, the radial distribution of the minimum
truncation level, required to meet the energy ratio criterion, is evaluated. From
that distribution, the zonal frontiers and truncation levels can in turn be determined
in a straightforward manner. Although not always easily applicable in problems
involving stability and transition flow dynamics—because the cut-off criterion must
be applied on a known solution field whereas the required outcome solution is not
necessarily known or available a priori in these cases—the procedure, when applicable,
does provide an almost optimal determination of the zonal truncation levels and
positioning. Otherwise, one has to rely on more empirical distributions that should
mimic a relatively uniform resolution, where the main flow structures are located,
while maintaining an affordable time step size. At any rate, some particular care
should always be taken to make sure that the modal truncation imposes no dynamical
restrictions on the solution.

Our last point is only to mention that near the center of the domain (7 = 0) the
lowest truncation permitted to alleviate the CFL constraint, without requiring par-
ticular symmetry properties of the flow field, is Ng‘g = 4. Indeed, the first two modes
ks = 0,1 are sufficient to completely determine all (even and odd) field quantities at
the point r = 0, but as we depart from the point, they only provide the equivalent of
a Oth order approximation in (2.11). The additional 1st order terms (even and odd),
required for r > 0, are obtained by including the next two modes ks = 2, 3.

3.5 Bounded domain solver

The flexibility provided by the radial B-spline discretization in the present numerical
method allows us consider the transformation of the unbounded formulation described
in Chap. 2 into a bounded one, similar to LMMC’s method. Indeed, if we replace the
mapped B-spline coordinate 7, in (2.47), by the simple equivalence

n=r,

then the physical coordinate r and the mapped coordinate 1 coincide, and we have

Gi(r) = Buir) = Bi(n) .
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In other words, we directly use the B-spline functions of FiG. 2.2 with the radial
coordinate, in the vector expansions (2.33)-(2.40), instead of the rational piecewise
basis functions of F1G. 2.5. This change affects the evaluation of the inertia and
viscous matrix integrals in (2.44) and (2.45) respectively, as well as the trilinear
product integral in (3.12). Note that the new bounded radial domain is now defined
in terms of the finite interval r € [0, R, ].

If the regularity conditions discussed in Sec. 3.3 remain unaffected by this change,
the outer boundary conditions, on the other hand, must be adapted. Let us for now
consider the simple no-slip condition u = 0, at the outer radius R,. In terms of the
spline functions g%, , the following conditions, given according to the family of vector
expansions of TABLE 2.1, need then to be imposed:

o kg>0; k. #0

Ghn(R) = 0 and g (R) =0 (3.20)

e kg>0; k.=0
GEo(R) = 0 and - gE(R) = 0 (3.21)

o kg=0; k; #0
G(R) =0 5 gn(R) =0 ad Sgn(R) =0  (32)

e kg=0; k.:=0
ga(R,) = 0 (3.23)

A recapitulative index, in terms of the spline coefficients off .,

BLE D.2, in the appendix. Note that in (3.21), a double zero condition must be
imposed on the “—" class spline function in order to avoid the indeterminateness

is supplied in TA-

associated with purely Neumann boundary conditions on g;; when kg = 1.

A bounded domain Navier-Stokes solver is obtained by applying the above modifi-
cations to the rest of the implementation discussed in the precedent sections. Besides
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an additional mass flow conservation algorithm—which may be equivalently treated
here in term of some non-homogeneous background flow u,, —this closely reproduces
the spectral/B-spline method for cylindrical coordinates introduced by LMMC.

3.6 Linear stability and eigenvalue problems

The spatial discretization method presented in Chap. 2 may not only be used for the
implementation of a complete unsteady Navier-Stokes solver, but can also very well
serve for the numerical approximation of linear stability eigenvalue problems. In order
to show how can this be done, we first briefly review the normal mode formulation of
the linear stability problem. A more complete presentation can be found in Drazin &
Reid (1981), for example. From there, we can show how to advantageously make use
of our spectral/B-spline discretization to obtain the targeted eigenvalue solver. We
describe here only the principal steps, some detailed information is however provided
in App. E.2.

Let us begin by considering the following velocity field decomposition
u(x,t) = U) + u'(x,t), (3.24)

where U is a known equilibrium solution and u’ some perturbation field. Both
of these vector fields satisfy the divergence-free constraint, and u’ the boundary
conditions discussed in Sec. 2.1. A similar decomposition is also used for the pressure
variable. After replacing (3.24) in the Navier-Stokes equation (2.1), and elimination
of the quadratic terms in u’, we obtain the following linear perturbation equation

1
aa—t: +u'-VU4+U-Vu = —Vp + %Vzu’ . (3.25)

One may note that because exact equilibrium solutions of the Navier-Stokes equations
are in fact scarce (see Wang, 1991, for a list), in many practical instances, equilibrium
solutions of the Euler equations are used instead. An example of such a situation will
be found in Chap. 4, when considering the linear stability results of a trailing line
vortex (Sec. 4.2).

The perturbation vector u’ is in turn decomposed into normal modes (similarly
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with p’) such that
w'(x,t) = G(r; kg, k) eFod+k=a) 420 4 (0 (3.26)

where “c.c.” stands for the complex conjugate. By simply replacing (3.26) in (3.25),
we now obtain

A +u-VU+U-Vd = -Vp' + —h}?vzu’ , (3.27)
which can in turn be formulated in terms of the variational principle of Sec. 2.2 to
ultimately give

MA@, u) = —%(Vx@,qu’)—(@,u’-VU)—(¢I>,U-Vu’) . (3.28)

We open here a short parenthesis to mention that in temporal stability analysis—
which is what is actually being considered in the present formulation—we are con-
cerned with the determination of the complex eigenvalues A, and corresponding eigen-
vectors 1, that depend on the real-valued wavenumbers ks and k., and also on the
Reynolds number Re, for a given base flow field U. Furthermore, since the eigenval-
ues A are complex, i.e., A = A, +1);, we have

Art

i x e

elz\.‘ t’

and the eigenmode solution U will be said to be either unstable (exponential growth)
for A\, > 0 or stable (exponential decay) for A\, < 0. We speak of neutral stability
in the particular case of A, = 0. We close the parenthesis by noting that, in general,
the eigenvalues will be ordered here according to the decreasing amplitude of their
real part, viz.,

Re(/\l) > R_E(/\z) > RE(/\;:,) > ...

The vector expansions introduced in Chap. 2 (see TABLE 2.1) allow for a natural
base to approximate the eigenmode 1 in (3.26), and application of the same Galerkin
approximation to (3.28) yields the following generalized eigenvalue problem (for a
given pair of modes kg, k),

AAG = [E - 6] a. (3.29)
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The effective matrices A and B will be recognized as identical to those appearing
in the Navier-Stokes solver (see Sec. 3.3). On the other hand, following the same
notation used for both the inertia and viscous matrices in (2.44) and (2.45), the new
linearized transport matrix 0is given by,

(0F)e = [ (WE)-(W7-90 + ©-9W) rar,  (330)

according to the combination of the “+"” and “—" classes of the vector expansions; the
details are included in App. E.2. To solve (3.29), we use the LAPACK implementation
of the QZ-method (Golub & Van Loan, 1996), and compute all the corresponding
discrete eigenvalues. Finally, a bounded domain version of the eigenvalue solver can
simply be obtained by applying the modifications considered in Sec. 3.5



Chapter 4

Numerical Tests

From the numerical method, presented in Chap. 2, and the implementation consid-
erations, discussed in Chap. 3, result a set of four numerical codes: for unbounded
domains, there is a Navier-Stokes solver named UNCYL and an eigenvalue solver
named UNCYL-LS; and there are the other two equivalent codes for bounded do-
mains, named respectively BOUNCYL and BOUNCYL-LS. The validation of all four
codes is the task we undertake in this important chapter.

At first, we shall consider the validity of the code BOUNCYL and its eigenvalue
solver BOUNCYL-LS in the context of Poiseuille flow. Complete validation of the
viscous and inertia matrices as well as the B-spline interpolation can be carried out
by comparison with the analytical solution of the “Stokes flow stability problem”. The
testing of the time marching procedure as well as the nonlinear term evaluation comes
next. Note that since both Navier-Stokes solvers UNCYL and BOUNCYL share the
same nonlinear term and time marching algorithms, the validation of these procedures
is carried out here, at once, for both codes. Indeed, the radial discretization (with the
mapping function) and the boundary ‘conditions are the two principal elements that
distinguish the bounded formulation code from the unbounded one (see Sec. 3.5).

Let us also note that because there are no closed-form analytical solutions avail-
able for the fully nonlinear problem, quantitative validation can only be done by
comparisons with other benchmark numerical or experimental data. High precision
results are usually very limited in parametric extent and, outside of it, validation
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relies more on qualitative than truly quantitative comparisons. Consistency checks
between the eigenvalue and the Navier-Stokes solvers may partly serve to compen-
sate this. Indeed, even if these two different solvers make use of the same inertia and
viscous matrices, their convective transport term follows a very different formulation
and implementation. Once the validity of the eigenvalue solver, say, has been estab-
lished by comparison with (highly) precise external data, then systematic quantitative
consistency checks between both the eigenvalue and the Navier-Stokes solvers can be
used to increase the level of confidence in the implementation of either one of the two
solvers. Such a procedure will not only be used in the first section, but throughout
the whole validation process.

The validation of the codes UNCYL and UNCYL-LS is discussed next, and is
carried out in two steps. The first one is presented in Sec. 4.2 and considers the
stability of trailing line vortices. At this point, the general algorithms of the code
have been verified, and emphasis is put more specifically on the radial direction, i.e.,
the mapped B-splines and the boundary conditions. Our main objective for that
particular section is the validation of the two families of expansions for which k£, # 0
(see TABLE 2.1). At the end of the section, we open a parenthesis to briefly consider
the use of the code BOUNCYL for unbounded flow problems, following the domain
truncation approach mentioned in Chap. 2.

The other two families of expansions, with k, = 0, are examined in the second
part of the validation, presented in Sec. 4.3. For that purpose, the simulation of
the instabilities of a special class of zero circulation vortex flows is considered. In
that case, available quantitative data are more scarce, and we will thus have to rely
to a greater extent on qualitative comparisons of the fully nonlinear evolution and
saturation of the instability. Here again, consistency checks between the eigenvalue
and the Navier-Stokes solvers will come as an additional support. The chapter’s
fourth and final section will serve as summary of the various test results presented.
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4.1 Preliminary validation and Poiseuille flow

The preliminary validation is concerned with the verification of sub-parts of the code
such as matrix computations, time marching and nonlinear term computation, etc.
In each case, the verification starts with implementation consistency checks. These
typically consist in the corroboration of some relatively “low-level” algorithmic pro-
cedure (e.g., numerical integration) with an analytically known counterpart. These
consistency verifications form an essential requirement and were systematically used
during the implementation process, but because of their rather tedious nature they
are not formally presented here.

We directly pass to the next level of validation which will be divided in two main
parts. In the first part, we consider the validation of the B-spline interpolation in
relation with both the inertia and viscous matrices. The general time marching al-
gorithm, including the evaluation of the nonlinear term, is the object of the second
part. For all cases in this section, these verifications are made for the bounded codes
BouNCyL and BouNCYL-LS. The main reason for this rests on the availability of ex-
act, non-trivial Stokes flow solutions (in cylindrical coordinates) for bounded domains
only. As will be shown below, these solutions provide a complete reference for the
systematic verification of the matrices, and indirectly for the B-spline interpolation.

4.1.1 Matrices and B-spline interpolation

For the Stokes flow problem (the limit Re — 0), the nonlinear convective terms of the
Navier-Stokes equations are completely neglected. By applying our divergence-free
method to such cases, only the inertia (temporal acceleration) and the viscous terms
remain present. If, in addition, we limit ourselves to the linear stability of such flows,
then the time integration is even further simplified (see Sec. 3.6) and the generalized
eigenvalue problem (3.29) reduces itself to

MA& = Ba, (4.1)

for a given pair of wavenumbers kg, k;. Note that the Re~! factor of the viscous
matrix in (2.45) can be omitted here, i.e., set to 1, without loss of generality since it
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only comes as a scaling factor for the eigenvalue A. Because (4.1) only involves the
radial discretization, it provides a good framework to assess the B-spline interpolation.
Now, from the Rayleigh-Ritz approximation theory! of elliptic eigenvalue problems
(of order 2d), the following eigenvalue error bounds can be derived (Strang & Fix,
1988),

0 < M-, < C h¥E-D)k/A (4.2)

Here, A" is the approximation of the sth eigenvalue A, k is the order of approxima-
tion, h is a measure of the local discretization (h o< N;7! in our case) and C is some
constant, independent of A. The error estimate for the corresponding eigenfunction u,
is

|uh —us|| < Co[h* +p2E-D] k2 (4.3)

The norm || - || is given by

R,
lugl? = / lu, ? dr | (4.9)

following the standard L2-space definition; R, being the outer limit of the bounded
domain. Note that, unless otherwise stated, all norms will be understood in this
sense. For our particular case, d = 1, these estimates give

0 < [AF—X < CINJHED )R, (4.5)

I8 -8, < CoN7FIA2. (4.6)

The absolute value of the eigenvalues is used to account for the fact that in the
Stokes problem all eigenvalues are (real) negative while the estimates are derived for
positive values. This is only a matter of convention because, as suggested by Strang
& Fix, a large but finite value could be added to every A; in order to shift the whole

1This is related to the problem of finding the extremum of a quadratic functional (usually the
minimum energy) and bears very close kinship with the Galerkin approximation theory. The former
is a particular case of the latter because in the Galerkin approximation only a stationary point is
sought, not necessarily an extremum. At any rate, this distinction poses no problem here since the
Stokes flow problem, by the self-adjointness of the operators, can also be formulated as the minimum
of some quadratic functional.



CHAPTER 4 NUMERICAL TESTS 79

(discrete) spectrum into the positive domain. Some validation of our matrices and the
assessment of the B-spline discretization will be carried out by the numerical testing
of these estimates.

For this task, complete analytical solutions of Stokes flow stability problem (in a
circular pipe) are however required. They were derived by Salwen & Grosch (1972)
for k. # 0—by means of vector potential expansions—and extended to include the
case k; = 0 by LMMC. The complete set of solutions can be found in the latter
reference but, for ease of access, it is also included here in App. E.

Let us first consider the verification of the matrices for the general family of
expansions kg > 0, k., # 0 (see TABLE 2.1 for reference). In FIG. 4.1, we show the
convergence rates for the 10th eigenvalue of kg = 2, k, = 3; results obtained with the
code BOUNCYL-LS. This particular choice of wavenumbers is justified by the fact
that they are the smallest values different from 1 (to account for the different powers
of kg and k, in the construction of the matrices), and different from each other. As
for the eigenvalue number, it was so chosen for its more demanding character (recall
that higher eigenvalues are more difficult to approximate) without being too difficult.
The effective convergence rates, obtained by a best fit of the data, are shown in
TABLE 4.1 in which the theoretical estimates are given for comparison. Note that
since the vector expansions include B-spline derivatives, the estimates (4.5) and (4.6)
must be evaluated with the value of £ — 1 instead of £. This is because the gth
order derivative of a B-spline of order % is exactly representable by B-splines of order
k — q. One observes that the tested convergence rates are all below the theoretical
estimates; higher order B-splines having a faster convergence rate. In all cases, both
the eigenvalue and the eigenfunction rates are consistent between themselves, viz.,

if [J@*—G.]] « N7 then |\ —),] «« N7
where « is either the observed or the theoretical value.

The present B-spline approximation not only allows for error reduction by in-
creasing the number of splines N, for a given order k (h-convergence), but also by
increasing the order k£ for a given number of splines (p-convergence). The (quasi-)
spectral convergence that results from this second approach is shown in F1G. 4.2.
Theory also predicts that the eigenvalues should be approximated from above (i.e.,
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As < A!). Although this is not apparent from the data shown, it has indeed been
confirmed by our tests. Furthermore, the higher the eigenvalue, the more difficult it
becomes to approximate it. This can be seen from the eigenvalue dependence of the
right hand side term of estimate (4.5). In FIG. 4.3, we show the relative error as
a function of the eigenvalue index s. In this case, the number of B-splines was set
to N, = 30 for the same order values used in F1G. 4.1. Again the observed values
are in accordance with the theoretical behavior. It can be shown that in this case,
the eigenvalue spectrum gives A, = O(s?). The relative error is then expected to be
of O(s**-1)). From a best fit of the data, we obtained exponent values of approxi-
mately 4, 7, 9 and 12 in comparison with the theoretical values of 4, 6, 8 and 10 (for
respectively k£ = 4, 5, 6 and 7). This is again consistent with our other results.

The above results—the accurate prediction of the eigensolutions and convergence
rates—strongly contribute to validate the matrices A and B for the general family of
expansions kg > 0, k; # 0. Validation of the particular cases, for which either one or
both ks = 0, k; = 0 apply (again see TABLE 2.1), is carried out in a more focussed
manner.

In Fi1G. 4.4, we show the relative eigenvalue error (5th eigenvalue) for these par-
ticular cases. The results are shown only for quartic B-splines (k = 5); the respective
convergence rates are presented in TABLE 4.2. When the “+” and “—” classes are de-
coupled, the verification is made independently for each class, yielding the two curves
in F1G. 44.a and 4.4.c. The difference of convergence rates between the ks > 0,
k. = 0 and the kg = 0, k, = 0 cases (FIG. 4.4.a and 4.4.c respectively) is consis-
tent with the fact that in the former, velocity expansions include B-spline derivatives
(first order) while in the latter, the expansions are formed without derivatives. In
the general axisymmetric case k9 = 0, k. 7 0, both classes are coupled through
the azimuthal swirl component but, according to the structure of the eigenmode, the
convergence rate may exhibit or not (as it is the case here) the “first order derivative
rate”.
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FIGURE 4.1. Relative error for a) the 10th eigenvalue, and b) its corresponding
velocity eigenmode, as a function of N and k, for kg = 2, k. = 3. The lines
are drawn from a best fit of the data; the corresponding convergence rates hence
obtained are given in TABLE 4.1.

TABLE 4.1. Observed convergence rates in FIG. 4.1 vs. the theoretical esti-
mates (4.5) and (4.6).

Mo — Mol/IAwol (G — Taoll/llToll
k Observed (4.5) Observed (4.6)
4 —4.67 -4 -3.40 -3
5 -7.79 -6 -5.03 -4
6 —-12.1 -8 —7.55 -5
7 -17.8 -10 -10.2 -6
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FIGURE 4.2. Relative eigenvalue error as a function of the B-spline order k (N, =
20), for kg = 2, k: = 3. A straight line alignment of the data points on this
“log-lin” graphics amounts to an exponential (spectral) convergence rate.
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FIGURE 4.3. Relative eigenvalue error as a function of the index number s, for
ko = 2, k. = 3. Results are obtained with N, = 30 and different values of k,
shown in the figure.
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FIGURE 4.4. Relative error for the 5th eigenvalue of a) kg =2, k; =0;b) kg =0,
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TABLE 4.2. Observed convergence rates in FIG. 4.4 vs. the theoretical estimate (4.5).

[AR — As|/|)s]
kg k. Observed (4.5)
2 0 —7.78(+) —6
~7.76 (=) —6

0 2 -10.3 —6
0 0 -103(+) -8
-10.1 (-) -8

In terms of the accuracy of the radial approximation, the evidence so far certainly
speaks in favor of the higher order B-splines. However, it is not so clear that this
observation carries over directly to the general time marching procedure. One way to
get a better idea on this question is by a rescaling of some of the above results. When
discussing the computation of the nonlinear term (Sec. 3.2), the “radial” operation
count of that procedure was shown to scale as O(N-k?). Let us use this value as an
estimated cost for the nonlinear term, and rescale FIG. 4.1 accordingly, to see what
happens.

The results are shown in FIG. 4.5 where we also present the error for the 20th
eigenvalue. The behavior between the two eigenvalues is similar except for the level
of the error itself (higher eigenvalues are more difficult to approximate). From this
figure, the most efficient B-spline order is obtained by mentally drawing a horizontal
line, from a given level of accuracy, and see which one of the different order curves is
intercepted first, giving thus the lowest computing cost. Unless very high precision
is sought, the error to cost ratio rather favors medium order splines with k£ = 4 or
5. These order values are consistent with the one used by LMMC for their turbulent
pipe flow simulation (¥ = 5 in that case).

These observations clearly support the use of B-splines of orders of about £ =5
(or less) in practice for the Navier-Stokes solver. The possible stiffness problems,
mentioned at the end of Sec. 3.3 in relation to the regularity condition at the center
of the domain, are also much less likely to occur at these orders. Note however
that values up to £ = 7 were used with the eigenvalue solver without noticing such
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FIGURE 4.5. Relative error for the a) 10th eigenvalue and b) 20th eigenvalue as
a function of the cost parameter N.k?, for kg = 2, k. = 3. The lines are drawn
from a best fit of the data.

specific stiffness problems (see FIG. 4.1 and 4.4). Finally, recall from Chap. 2 that
the minimum analytical requirements imposed by the present numerical method (see
(2.46)) are satisfied provided k& > 3.

4.1.2 Nonlinear term and time integration

The matrices of both codes, BOUNCYL and BOUNCYL-LS, have been convincingly
validated in Sec. 4.1.1, using comparisons with analytical results for each family of
vector expansions. For the validation of the nonlinear term, a different strategy must
be devised for lack of general analytical solutions. Also, because of the explicit time
integration of the latter term, the validation must be done while marching the solution
in time. Note that the time marching algorithm could be validated independently of
the nonlinear term via the Stokes flow problem but we choose here to do both at
once. Besides comparing our numerical results with other benchmark (numerical or
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experimental) data, a simple test can be devised from the time propagation of Orr-
Sommerfeld waves, i.e., linear stability perturbations that are solutions of (3.27). This
is the approach we use here and the procedure is explained in what follows.

Let us first introduce the Fourier-transformed perturbation vector u(r,t); the
parametric dependence on the modal pair kg, k. is implicitly assumed. If this per-
turbation is defined from the sth eigenmode U,(r), then we have, from (3.26), that

ti(r,t) = U,(r)e**. (4.7)

Let us use here the notation G”*(r,t) for the time approximation of @(r,t). Further-
more, let us 2lso assume a given, sufficiently high level, radial resolution so that the
spatial error in the approximate B-spline solution of (3.29) may be considered negli-
gible. Without loss of generality, the radial discretization may thus also be implicitly
assumed and we then write @*(¢) for short. It is known from standard temporal
discretization error analysis that, for a scheme of order «,

” ﬁh(tn) — ﬁ(tn) ”
[l ata) |t
with t, = nAt and C is some constant independent of At. For small At¢, the error
should grow linearly in time.

= Ct, At" + O(At™+1) (4.8)

From (4.8), the validation of both the nonlinear term and the time marching
algorithm can be verified by testing the time propagation error of the initial condition

f(r,t=0) = ei,(r), (4.9)

where € is a small amplitude parameter, i.e., £ < 1. Indeed, since the Orr-Sommerfeld
wave (4.7) is a solution of the linearized Navier-Stokes equations, this linearity of the
solution should also be preserved by the fully nonlinear term. The implications of
this statement are that: i) the evolution of the initial perturbation (4.9) is completely
determined by the nonlinear interaction of the perturbation with the base flow field;
and thus ii) all other nonlinear interactions, e.g., from the perturbation with itself,
are negligibly small. For example,

if ||G(t; ke, ko) || = O(e), then [[uxw]| = | G(t2ke,2k.)] = O(?),

and so on. As one would recall, the nonlinear interactions of two modal pairs, one in
kg, k: and the other in kp, k. are four-fold: there is the “first harmonic” i) ks + kg,
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k:+k;; the two “cross-interaction harmonics” ii) ke +kp, k. — k. ; iii) ke—kj, k. +k.;
and finally the “retrograde harmonic” iv) k¢ — kj, k. — k..

That this test represents a necessary condition for the validation should not pose
any problems. The fact that it also constitutes a sufficient condition may on the
other side appear somewhat less obvious. We nevertheless believe that the following
two part argument should help to remove any doubts about the sufficiency issue. In
the first part, we want to establish that, by covering all the vector expansion families
of TABLE 2.1, we do cover all the nonlinear interactions. The second part serves
to establish that complying with the temporal error behavior (4.8) may be used to
confirm the validity of the “spatial calculations”.

For the eigenmode to grow or decay exponentially (the linear dynamics behavior),
all modal nonlinear interactions should be negligible in comparison with the interac-
tion of the base flow with the eigenmode. From this, we can see that there remain
indeed some significant nonlinear interactions that need to be accounted for. The
small parameter € is only there to ensure the “exclusivity” of the interactions when
evaluating the back and forth Fourier transforms, and the convolution sum discussed
in Sec. 3.2. The fact that the convolution sum is evaluated in the physical space
ensures in turn that indeed all the nonlinear interaction terms are covered, although
the tests are made for one vector expansion family at a time; the whole four families
of expansions obviously need to be checked for the verification to be complete.

To affirm that the “spatial evaluation” of the nonlinear term is done properly by
monitoring the temporal error requires not only that (4.8) be satisfied, but also that
the magnitude of this latter error remains very low. Indeed, complying with (4.8) only
means that the total error is dominated by the temporal discretization error. A small
magnitude requirement must therefore be added, and it is this combination of both
conditions that guarantees in return the validity of the nonlinear term computation,
i.e., an even much lower spatial computation error. Now, it is by putting together
these two lines of reasoning that we may confidently arrive at considering the test,
taken as a whole, as sufficient. Let us finally note that a similar validation procedure
was also used by LMMC.

The reference eigenmode solution for each one of our tests is obtained via our
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eigenvalue solver BOUNCYL-LS with the parabolic base flow profile
U(r) = 0&, + 08& + (1—r?)é, (4.10)

at Re = 9600 (based on the centerline velocity and the pipe radius). In this case, the
linear transport matrix O of (3.29) is non-zero and the eigenvalue solver therefore
requires an independent validation. Such a validation was previously carried out by
comparing our results with other available benchmark data for the pipe flow case.
Additional information on this extra validation procedure can be found in App. E.2.

For these tests, the (uniform) B-spline discretization was chosen to maintain the
spatial discretization error very much under the temporal discretization one; N, = 35
with & = 7 proved sufficient (more than six significant figures on the eigenvalue).
This solution was given as an input to the code BOUNCYL (with € = 107%) and ad-
vanced for 50 time steps. The error was then determined by comparing the computed
eigenmode G"(t,) to the reference solution ii(t,), which was determined by

i(t,) = et et .

In FI1G. 4.6, we show the wave propagation error of the first eigenmode (s = 1)
as a function of time, for the modal pair ks = 2, k; = 3. As expected, the error
amplitude remains small and behaves linearly in time. Furthermore, the behavior
of the first harmonic—the result of the nonlinear interaction of the eigenmode with
itself—was verified to give

| Gtn; 2k, 2k2) | = || G(tn; Koy k2) |1
also as expected.

In F1G. 4.7-4.9, similar results are shown for the other families of expansions
’ (see again TABLE 2.1); all in agreement with the predicted behaviors. The following
observations are worth adding. First, in F1G. 4.8, the time step size was set to a much
larger value than for the other cases in order to keep the temporal error significantly
higher than the spatial error. Note also that for this case, the error amplitude still
remains much smaller than for the first two cases. Second, for the purely uniform
axisymmetric case, kg = 0, k. = 0, the test was to measure how well the base flow
profile maintained itself.
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This indirectly brings us to the imposition of the forcing term required to preserve
the mass flow. As we already mentioned in Sec. 3.2, any (linear) non-homogeneous
forcing—such as the equivalent pressure gradient that maintains the mass flow here—
can be taken into account by the addition of some background component (e.g.,
Unn, Re 'V?uy,, etc.) in the nonlinear term. An illustration of a background flow
application has been included in App. F. Here, we exceptionally use a slightly different
procedure based directly on the conservation of the mass flow instead; the details of
this latter approach can be found in LMMC’s report. This choice was made for a
matter of convenience and can be shown to have no effect on the solution.

Indeed, the use of a non-homogeneous parabolic background flow would be strictly
equivalent to the imposition of an external pressure gradient in this case. By thus
fixing the external forcing, the mass flow must be left free to adjust itself to some
possible non-laminar dynamical equilibrium. The mass flow conservation algorithm of
LMMC is based on a reversed approach for which the mass flow is the fixed parameter
and the external forcing is the free one. For the linear stability dynamics considered
here, this obviously makes no difference since the global base flow field always remains
laminar. The point is additionally supported by the fact that the error between the
computed 6"(¢;0,0) and the base flow U(r), defined above in (4.10), remains close
to the machine round-off error as indicated by the 10'* factor in FiG. 4.9.

The third and final point regards the order of the time integration scheme, &
in (4.8). Although the precise value is not necessary to conduct these tests, it is
nevertheless worth noting that it can be determined “experimentally” by checking
the variation of error curve slope as a function of the time step size. Recall that the
time integration scheme is of third order (except for the diffusive terms, see App. D.1).
This particular test was conducted on the benchmark case shown in App. E.2, and
a value of k &~ 3 was determined in accordance with the small diffusion Reynolds
number chosen for the tests( Re = 9600).
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FIGURE 4.6. Relative eigenmode error as a function of time, for kg = 2, k, = 3.
The discretization parameters are k =7, N, =35 and At = 9.4 x 10~3 (CFL =
0.05).

3.0 R R T v T T T T T T T T ]
2.5 F 3
=) s ]
S 20F .
(= N ]
I 1.5 -~ »
g r ]
x 1.0F .
f ol
[ s I 4
0.5 -
O.o‘: 4 1 1 1 -2 —_—t— 1 I 1 4 ]
0.2 0.4 0.6
t

FIGURE 4.7. Relative eigenmode error as a function of time, for kg = 0, k, =2.
Discretization parameters as in F1G. 4.6.
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FIGURE 4.8. Relative eigenmode error as a function of time, for kg =0, k. = 2.
Discretization parameters as in FIG. 4.6, except for At = 9.4 x 10~! (CFL = 5.0).
See text for additional comments on the time step size value for this case.
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FIGURE 4.9. Relative eigenmode error as a function of time, for kg =0, k; = 0.
Discretization parameters as in FIG. 4.6. Notice that the error here is at about
the machine round-off level.
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4.2 Trailing line vortex

The preliminary validation presented in the last section was focussed on the bounded
domain codes BOUNCYL and BOUNCYL-LS. This allowed comparisons of the nu-
merical results of B-spline discretization with some closed form analytical solutions
for the Stokes flow in a pipe. Additional results from the linear stability of Poiseuille
flow served for the validation of the nonlinear term computation and the global time
marching algorithm of the Navier-Stokes solver.

In this section, we proceed with the verification of the unbounded flow codes
UNCYL and UNCYL-LS. Both Navier-Stokes solvers (bounded and unbounded) share
the same algorithms for the time integration and the computation of the nonlinear
term—validated in the preceding section—but clearly differ in the radial discretization
and the outer boundary conditions. These differences have repercussions on both the
inertia and viscous matrices as well as on the nonlinear term radial integrals (see
Chap. 3). The objectives of this section are therefore focussed on the verification of
these new radial terms.

More specifically, in this section emphasis is put on the expansion families for
which k; # 0 (see TABLE 2.1); the 2-D polar cases, i.e., with k, = 0, being the
object of next section. In the first part of the present section, we will be primarily
concerned with the validation of the eigenvalue solver UNCYL-LS. The validation
of the complete Navier-Stokes solver UNCYL will then be considered in the second
part of the section, not only in relation with external reference data but also with
its consistency with the eigenvalue solver. Finally, at the end of this section, a brief
digression is made to comment on the use of the bounded B-spline formulation for
the solution of unbounded flow problems.

4.2.1 Linear stability: Eigenvalue solver

To carry on with our task of validating the radial terms (and the code itself), we
propose to consider the stability of trailing line vortices, more precisely of the Batch-
elor g-vortex. The problem is described in more detaiis just below. Since there are
again no closed form solution for this problem, validation will be done by comparing
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our results with the predictions of Lessen et al. (1974), Mayer & Powell (1992) and
Matsushima & Marcus (1997).

In order to better standardize our results with those found in the references, let
us introduce the new variable N?, that represents the number of “free” B-splines
or equivalently the number of “radial modes”. The terminology of radial mode
comes from the global expansion approach. One may also recall that because of
the divergence-free formulation used here, there are only two unknowns (complex
valued) per computational nodes, namely o = and a;,,. In that sense, N repre-
sents half the number of degrees of freedom per Fourier modal pair. The number of
free B-splines N differs from the total number of B-splines N, by the number of
regularity/boundary conditions imposed, which in turn depends on the value of kg
(see again Chap. 3).

The g-vortex flow was initially presented by Batchelor (1964) as a self-similar
solution for an aircraft trailing line vortex. It is composed of a standard Gaussian
(Lamb-Oseen) vortex to which is superposed an axial jet-like flow. As argued by
Batchelor, this axial flow (relative to the free stream flow) comes as a dynamical
necessity from the pressure differences within the vortex ccre (see also Saffman, 1992,
for additional comments). This “basic flow” combination is not only a model problem
of interest for aircraft vortices, but also for swirling jets. The difference between these
two flow problems being only a matter of relative proportions. To describe the base
flow field, we use the following normalization

U(r) = 06 + L (1-e)& + he™™ s, (4.11)

where ¢ scales the swirl intensity, & the centerline axial velocity, and § the relative
radial dimension of the axial flow to the vortex core size. The dimensional reference
length and velocity scales that have been used for this normalization are respectively
the vortex core size radius @ and the fraction 1/A of the centerline axial velocity
U.(r = 0). The corresponding Reynolds number is thus written

U,a

ho ~

Note that the vortex core size radius @ has been defined as 0.8937y, ... The maxi-
mum swirl velocity Uy max therefore occurs at a non-dimensional radius of 1.12. These
choices have been made in accordance with the convention used in the references.

Re =
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FIGURE 4.10. Perspective view of a ¢-vortex having parameter values of ¢ =
0.5 and A = B = 1. The vortex tube is represented by the two iso-surfaces of
longitudinal vorticity, w; = 0.8 (inner surface) and w, = 0.2 (outer surface). The
spiral lines represent the fluid particle trajectories at the surface radius. Both
azimuthal and longitudinal velocity profiles are also shown on the figure. [Figure
by courtesy of R. Brochu]

To better illustrate the base flow field, we show in FI1G. 4.10 a perspective view
of a g-vortex with ¢ = 0.5 and h = 8 = 1. The vortex tube is represented by two
iso-surfaces of longitudinal vorticity: for the long inner surface, w, = 0.8, while for
the short outer one, w, = 0.2. On each surface, the typical spiral path of the fluid
particles is also shown. From inside out, the flow passes from purely axial, on the
centerline z axis, to purely azimuthal at a sufficiently large radius. The variation
of the pitch angle between these two extremes is determined by the value of the
parameter g. The two velocity profiles Uy and U, are also included in the figure. A
more formal graph of these specific velocity profiles is presented in FiG. 4.11 in terms
of both the mapped coordinate n and the physical coordinate r.
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FIGURE 4.11. Axisymmetric base flow field for a g-vortex defined with ¢ = 0.5
and h = 8 = 1. The profiles are plotted in relation to a) the mapped coordinate
n with L = 11, and b) the radial coordinate r. See also FiG. 4.10.
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Let us first consider the linear stability problem (3.27) for the g-vortex just defined
above, i.e., with ¢ = 0.5 and h = 8 = 1. We remind the reader that this test not
only serves for the validation of the inertia and viscous matrices of the code UNCYL
(via the eigenvalue solver UNCYL-LS), but it also serves for the validation of the
linearized transport matrix. The importance of this point lies on the fact that later
verifications of the complete Navier-Stokes solver will rest, in part, on these validation
results.

Now, for the given set of parameters and a Reynolds number of Re = 25, it is
known that the flow is unstable (Re(A,) > 0) for perturbations in the modal pair
kg =1, k., = 0.05 (Mayer & Powell, 1992). Note that this stability problem is well
suited for testing the radial discretization because it involves the slowest decaying

! in the far field region), i.e., a wide spreading of

rate of swirl velocity (Us < 1~
the base flow, easily representable by the built-in decaying behavior, together with a
smooth but relatively localized eigenmode. The computed most unstable eigenvalue
A1 is given in TABLE 4.3 for different values of N?!. All values shown in the table
were obtained with quintic B-splines (k = 6), uniformly distributed in the mapped
domain n with L = 11. The corresponding values computed by Mayer & Powell and
Matsushima & Marcus are given for comparison. Note that both of these reference
values were obtained by global expansion approximations. In the first case, Chebyshev
polynomials were used in combination with a no-slip condition imposed at a large but
finite outer radius R,. In the second case, radial discretization was done with rational
Legendre functions on an unbounded domain, with similar boundary conditions as

the ones used here.

The most unstable corresponding eigenmode (%g) is shown in FiG. 4.12. The data
used to make the figure are the ones of the N = 70 solution. Note that at n = 0.5
{or r = 11)2, the eigenmode is practically zero. This means that there are in fact
about only half the B-splines that are effectively used for resolving the eigenmode.
A more efficient use of the local node positioning flexibility would rightly suggest to
reduce some of the superfluous B-splines in the outer region.

2The reader may recall the quick rule of thumb, given in Chap. 2, for passing from the mapped
coordinate 7 to the true radial coordinate r: n =025 & r = L/3, n = 0.5 & r = L, and
1=075r=3L.
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TABLE 4.3. The most unstable eigenvalue of kg = 1, k. = 0.05, for ¢ = 0.5
and h = 8 =1 at Re = 25. The results are obtained with uniformly distributed
B-splines (in n) with £ =6 and L =11.

N: A; x 104

10 9.936040736 1 22.40210147

+

20 9.885122155 + % 22.38851112
30 9.885158802 + 1 22.38705093
40 9.885164246 + i 22.38703955
50 9.885164396 + 1 22.38703911
60 9.885164411 + 17 22.38703907
70 9.885164411 + 1 22.38703907
MMt 9.8851644 + 7 22.387039

MP*? 9.8851643 + i 22.387039

T Matsushima & Marcus (1997): N7 =60 and L = 12
t Mayer & Powell (1992): N: = 300 and R, = 200

The present choice of using a uniform node distribution (in 7) was made to allow
for a standard point of comparison with the global expansion approximations, and also
with the different B-spline results between themselves. In mapped global expansion
approximations, e.g., as in Matsushima & Marcus, the radial resolution positioning
(i.e., putting the degrees of freedom where they are needed) is determined only by
the mapping parameter(s). In a mapped local method, such as this one, a great deal
of flexibility is added by allowing for the independent adjustment of the mapping
parameter and the node positioning. This certainly constitutes one of the original
characteristics of the numerical method presented in this thesis. The resulting extra
flexibility may lead to many possible combinations of mapping and domain partioning
for practically similar effective resolution. This last point will be the object of further
considerations in Sec. 4.2.4.

Assessment of the convergence rates for the mapped B-splines in this case is more
difficult to carry out for lack of known analytical solutions. Instead, we make use
of our new benchmark data of TABLE 4.3 (with N = 70) as a reference solution
and compare lower resolution results with it. This, of course, constitutes more of a
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FIGURE 4.12. Most unstable computed eigenmode (%Ug) corresponding to the
problem of TABLE 4.3. The real part of the eigenmode is represented by the solid
line, the imaginary part by the broken (“dash-dot-dot”) line. The light dashed
lines represent the base flow field, given as a reference.

consistency check than a true validation test for the radial interpolation.

The h- and p-convergence of the “approximated” solution hence obtained are
shown in F1G. 4.13, again with a uniform node distribution in 7. The h-convergence
results shown in 4.13.a were obtained with £k =35 and L = 11. The convergence rate
evaluated by a best-fit of the data is —7.19, which is in very good agreement with the
results obtained in the Stokes pipe flow problem of TABLE 4.1. The p-convergence is
shown in 4.13.b; the results were obtained with N} =20 and L = 7. These parame-
ters were chosen to produce a significant and reliable difference between the approxi-
mated and the reference eigenvalues. In this case, the quasi-spectral convergence—a
straight line alignment of the data points in a “log-lin” plot—is not as much apparent
as it was in FIG. 4.2, but can nevertheless be considered relatively satisfactory. One
should note that it is indeed not clear that if, by fixing the node distribution and the
mapping parameter L in this error analysis, the resolution varies consistently with the
B-spline order. We must also remember that these expected convergence behaviors
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FIGURE 4.13. Relative error of the most unstable eigenvalue for the stability
problem of TABLE 4.3. 2) Results obtained with £ = 5 and L = 11. The line
represents a best-fit of the data for which |A? — A\;[/|\1] < N?~7-19, showing the
h-type convergence. b) Results obtained with N} = 20 and L = 7. The data
show the p-type (quasi-spectral) convergence of the mapped B-splines.

may be observed only after a certain minimum level of resolution is achieved. Both
of these considerations could help in explaining some of the observed fluctuations in

the data points.

As another validation test for the eigenvalue solver UNCYL-LS, we computed the
neutrally stable (A, = 0) asymmetric oscillations (kg = 1) of an inviscid columnar
vortex for different values of the defining parameters ¢, h and 8. The results were ob-
tained with N} = 20 (uniformly distributed) and k = 5, and are shown in TABLE 4.4.
All four digits shown are significant; computations with N} = 40 were also carried
out to check the accuracy. The mapping parameter L was chosen in order to minimize
the difference between the two separate resolution sets of results, a procedure some-
what equivalent to the choice of optimal mapping parameter used by Matsushima &
Marcus. For comparison, we include the values computed by Matsushima & Marcus
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TABLE 4.4. The positive imaginary part of the eigenvalue (ky = 1) of the neutrally
stable (A, = 0) inviscid columnar vortex (4.11). The UNCYL-LS values were
obtained with N} = 20 and k£ = 5. As references, we include the equivalent resuits
of Matsushima & Marcus and the theoretical predictions of Moore & Saffman given

in (4.12).
Ai/g x 10%
No k&, h/q B L UNCyL-LS MM!I (4.12)%
1 04 00 - 4 897.0 897.0 779.4
2 02 00 - 5 344.1 344.1 333.5
3 01 00 - 7 118.9 118.9 118.0
4 0.05 0.0 - 10 38.24 38.24 38.17
5 002 00 - 15 11.71 11.71 11.71
6 0025 2.0 10 11 5.127 5.127 5.125
7 0.025 1.0 1.0 11 9.865 9.865 9.861
8 0.025 -10 1.0 11 10.45 10.45 10.45
9 0025 -20 10 11 5.832 5.832 5.828
10 0.025 20 0.5 — * * —.9086
11 0.025 1.0 05 11 8.081 8.081 8.076
12 0025 -1.0 0.5 11 9.150 9.150 9.145
13 0.025 —-20 05 — * * —.6475
14 0025 20 20 8 8.353 8.353 8.349
15 0.025 1.0 20 10 10.78 10.78 10.78
16 0025 -1.0 20 10 11.08 11.08 11.08
17 0025 -20 20 9 8.835 8.835 8.831

¥ Matsushima & Marcus (1997): N7 = 59, see also TABLE V in the ref.
 Moore & Saffman (1972)

=: No positive eigenvalues were found

with 59 radial modes. Also, as a reference, we include the asymptotic solution results
of Moore & Saffman (1972, cited from Matsushima & Marcus). Their long wavelength

asymptotic solution gives the imaginary part of the eigenvalue as

Ai
q

k2
2

[lnk:z + %('y—ln2) +

2

hk,

1

where A; = Im()A) and v = 0.57721566... (Euler’s constant).

58 2B+ ﬂ)] 1+ hk, /a8

(4.12)



CHAPTER 4 NUMERICAL TESTS 101

As reported by Matsushima & Marcus, this problem also constitutes a good test
for the radial discretization since as k, becomes smaller, the eigenfunctions have a
slower radial decay, i.e., a wider extent. Technically the problem therefore becomes
increasingly difficult as k. decreases because of the scale difference between the base
flow and the eigenfunction. This scale difference can also be accentuated as 8 in-
creases, for example, because of the narrowing of the axial jet flow. At any rate,
for the range of parameters shown, systematic agreement (all four significant digits)
between the two numerical methods is observed. The agreement with the asymptotic
predictions improves as expected when k. diminishes, i.e., as k, approaches the long
wavelength limit of (4.12). It is worth noting how the B-spline discretization com-
pares advantageously to the rational Legendre functions of Matsushima & Marcus in
this particular case (our N; = 20 vs. their N = 59). We must note however that
is not entirely clear if the N = 59 results of Matsushima & Marcus do have more
significant digits than the four shown in their table.

The stability of the inviscid g-vortex was also investigated numerically by Lessen
et al. (1974). The method they used is based on a different approach than the one used
by both Mayer & Powell and Matsushima & Marcus which are somewhat closer to
ours. These last two methods, like ours, are based on some weighted residual formula-
tion in combination with an eigenvalue solver of the QZ-type, as discussed in Sec. 3.6.
Note that the precise details for the eigenvalue solver were not given by Matsushima
& Marcus, but are presumed to follow this line of approach. As for Lessen et al., they
first integrated the ordinary differential equation for the dispersion relation using a
Runge-Kutta scheme and Frobenius power series. Then the eigenvalues were found
as the zeros of this integrated equation using a Newton-Raphson method. With this
approach, they identified a series of unstable “inviscid” modes from which, according
to the azimuthal wavenumber k4, the maximum growth rates and the corresponding
flow parameters are given in TABLE 4.5. Also shown in the table are the results from
our code UNCYL-LS for the same parameters. The agreement between the two sets
of results is again very satisfactory. Note that in this case, we used different radial
discretizations (different values of N,, k& and L), according to the different sets of
parameters, in order to obtain the four significant digits shown in the table.
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TABLE 4.5. Maximum growth rates along with the corresponding longitudinal
wavenumber k. and swirl parameter g for different values of kg (h =8 =1). Our
UNCYL-LS results are compared with the inviscid analysis values of Lessen et al.

Ar
ke Kk, g UNCyrL-LS LSPt
1 -03 032 0.1494  0.1470
2 —-1.2 0.70 0.3137 0.3138
3 —-17 079 03544 0.3544
4 -215 082 03774 03777
5
6
L

—-2.6 0.83 0.3906 0.3912
-3.2 0.83 0.4017 0.4008

essen et al. {1974): see also TABLE 1 in the ref.

t

4.2.2 Linear stability: Navier-Stokes solver

Up to now, our g-vortex results served to verify the eigenvalue solver, for the general
expansion family of ks > 0, k; # 0. At this point, we begin the second part of this
section and make use of the validated eigenvalue solver—in conjunction with other
external linear stability results—to verify the unsteady Navier-Stokes code UNCYL.
The validation of the axisymmetric family of expansions, ks = 0, k, # 0 is also
considered in the process. The verification procedure used in this part is separated
in two. On one side, it involves the direct finding of the most unstable mode and its
growth rate using the Navier-Stokes solver. An unsteady Navier-Stokes solution does
indeed only provide information about the most unstable, or the least stable radial
eigenmode solution (i.e., s =1 in our ordering convention) for the given modal pair
ko, k.. On the other side, it involves the use of consistency verifications between
both the Navier-Stokes and the validated eigenvalue solvers.

Longitudinal asymmetric modes: kg >0, k., #0.

In the linear stability problem (3.27), the base flow field was defined as an equilib-
rium solution of the Navier-Stokes equations, such as the parabolic profile (4.10) used
in the pipe flow problem of Sec. 4.1.2. Because such solutions are seldom available for
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unbounded domains, it is usually more convenient to work with equilibrium solutions
of the less stringent (no diffusion) Euler equations. The present g-vortex problem
is certainly a good example for this type of situation. Now, in order to formally re-
cover the eigenvalue results associated with an Euler equilibrium solution, through a
simulation of the complete Navier-Stokes equations, special care must be taken. The
procedure used here to reproduce, and maintain, the Euler equilibrium state is simply
to “freeze” the diffusion of the base flow. This simply amounts in skipping the time
marching of the modal pair ks = 0, k: = 0. By doing so, the initial condition for
that modal pair (the base flow) remains thus constant for the whole computation.

As a first test case, we study the stability of the g-vortex for the following set of
base flow parameters:

g =05337 ; h=p=1 ; and Re = 40.

Note that unless otherwise stated, the axial flow parameters will, for now on, remain
fixed to h = 8 = 1. For the modal pair ks = 1, k, = 0.436, noted in its index form3
(1,1) for short, Mayer & Powell give a perturbation growth rate of A, = 1.06 x 10~2.
As an initial condition for the Navier-Stokes solver, in addition to the base flow, we
add a small amplitude white noise perturbation, with a modal energy of Ey, . = 107¢,
on all the computational modes; the modal energy is given by

00
Eko,kz = %/‘ ﬁ‘(‘l‘; kﬂykz) "ﬁ(T; kaakz) rdr. (413)
0

The radial scalar fields are constructed from random B-spline coefficients values for
77 < 0.5, and zero afterward. An example of equivalent energy spectra is shown in
Fia. 4.20 of Sec. 4.2.3.

Because we are here interested in the behavior of the specific modal pair (1,1),
low order spectral truncation is sufficient since that for linear stability dynamics, all
nonlinear interactions besides those relating the perturbations with the base flow are
of negligible order. Accordingly, the computation of the nonlinear term need not be
done on a de-aliased collocation grid (see Chap. 3). Indeed, for this type of problems,

3Recall from Chap. 2 that the modal index pair (m,n), written in parenthesis, corresponds to the
modal pair kg, k. via m = kgLg¢/27 and n = k.L./27. By choosing Lg = 27 /ks and L. = 2n/k;,
the modal pair kg, k. has the index values (1,1).
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TABLE 4.6. Comparison of modal growth rate results for the asymmetric mode
kg =1, k; = 0.436 with ¢ = 0.537 (h = f = 1) and Re = 40. Navier-Stokes
results are identified with the equation used to determine the values shown in the
table.

Ar x 102
MPt 1.06
UNCYL () 1.06
UNCyL (D) | 1.055
UNCYL-LS | 1.05565

t Mayer & Powell (1992)

the resolution effort mostly concerns the radial direction. The spatial discretization
parameters used for the code UNCYL are:

N.=54 ; k=5 ; Ny=4 ; N.=6.

The B-spline breakpoints are uniformly distributed in # with L = 10. For the time
discretization, we used CFL = 2 (At = 0.4). Once the perturbation growth rate
becomes relatively stable, the value is reduced to CFL = 0.2 for 25 time steps from
which we determine the results appearing in TABLE 4.6. The number of digits shown
in the table corresponds to the number of digits that remained constant over these last
25 time steps. The “(I)” and “(D)” labels associated with the UNCYL results, in the
table, refer to method used to estimate the growth rate; the methodological details
are supplied in Sec. D.6, in the appendices. For now, let us simply mention that
method (I) is based on an instantaneous variation of modal energy (see (D.37)) while
method (D) is based on a discrete estimate of this variation (see (D.38)). We make
use of method (I) here because it is readily available from the Galerkin approximation
(again see Sec. D.6). On the other hand, according to the level of energy at which the
value is determined, method (D) may sometimes appear to be more precise, provided
that the time step size At used in the evaluation of the estimate is small enough. To
compare with the Navier-Stokes solver values, we give the result obtained with the
eigenvalue solver for the same radial discretization. In that latter case the number of
significant digits is, as previously, determined by comparison with other eigenvalue
results obtained at higher resolution.
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To illustrate how much of the B-spline resolution is effectively put to contribution,
the corresponding eigenmode 4y obtained from the Navier-Stokes solution is shown
in F1G. 4.14. Eigenfunction values were amplified by a 3 x 10* factor to allow a
comparison with the base flow velocity components shown in dashed lines. Also
included in the figure are the uniformly distributed radial breakpoints. Since the
eigenmode is non-zero for only approximately r < 4.5 ( < 0.33), a uniform radial
resolution is clearly not the best choice in this case.

Owing to the very good agreement, in TABLE 4.6, of our Navier-Stokes results with
those of the validated eigenvalue solver and of Mayer & Powell, we may directly infer
the validity of the code UNCYL in regard to the general family of vector expansions
having ks > 0, k., #0.

This point is additionally supported by the monitoring of the modal energy FEj, «-
that was done during the simulation. The time variation of some of these modal
energies is shown in F1G. 4.15. One may recall that a straight line on this “log-
lin” figure represents an exponential growth/decay. The modal growth rate values
(obtained with method (I) at ¢ = 125) corresponding to the different curves are
presented in TABLE 4.7; the UNCYL values of TABLE 4.6 are taken from the (1,1)
curve. For the selected modal pairs shown, the unstable predictions (A, > 0) from the
eigenvalue solver are well reproduced by the Navier-Stokes results, confirming thus
the consistency between both solvers. As for the discrepancies between the eigenvalue
solver stable mode predictions (A, < 0) and the Navier-Stokes values, they can be
shown to be the result of some significant nonlinear interactions. At ¢ = 125, the
energy level of the (1, —1) and (2, —2) modes has certainly become way too important
for their nonlinear interactions to be considered negligible.
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FIGURE 4.14. Asymmetric eigenmode (g ) associated with the eigenvalue of TA-
BLE 4.6. The eigenmode is shown as a function of a) the mapped coordinate 7
(L = 10), and b) the physical coordinate r. The eigenfunctions are amplified by
a factor of 3 x 10* and the dashed lines represent the base flow field given as a
reference. The points on the radial axis identify the B-spline breakpoints.



CHAPTER 4 NUMERICAL TESTS 107

L] ] L L] L] R ] 1 L] L4 l,l L

(1,1

. -": .
s S ©,2) s 0.-2)
. ~eat 1 F’?m i u"f IV S T
50 75 100 . 125

FIGURE 4.15. Modal energy as a function of time for ¢ =0.537 (h =8 =1) and
Re = 40. The values in parenthesis identify the modal pair indices associated with
the curves. The corresponding growth/decay rates are given in TABLE 4.7.

TABLE 4.7. Observed growth rates from Navier-Stokes simulations for the modal
index pairs (m,n) shown in F1G. 4.15. The given values were taken at t = 125,
when some of the modal pairs have left the linear regime. The corresponding eigen-
value solver results are given as a reference. See text for additional information.

Ar x 102
(m,n) UNCyYL UNCyL-LS
. (1, 1) 1.06 1.05565
(2,-2) 5.75 5.7388
(1,-1) 560  5.7351
(0,—2) 113  —1.90096
(0, 2) -1.41 —1.90096
(2, 2) —266 —1.9010




CHAPTER 4 NUMERICAL TESTS 108

Longitudinal axisymmetric modes: kg =0, k; # 0.

Let us now consider the verification of the axisymmetric family of expansions
ko =0, k. # 0 (see TABLE 2.1). The validation of both codes UNCYL and UNCYL-
LS will be carried out simultaneously by considering this time the unstable growth
rate values A, as a function of the swirl parameter ¢, again with h = 8 = 1. More
specifically, the validation test will be realized for an axisymmetric perturbation with
k., = 0.444 at Re = 1000. The computed results are compared with those of Mayer
& Powell (1992), and are presented in F1G. 4.16. In the reference, the ¢ instability
range for this specific set of parameters is given by

083 < g < 1.26,

with a maximum growth rate of A, = 9.03 x 10~ occurring at ¢ = 1.05; these three
characteristic points are shown on the figure.

In this case, because the growth rates are quite small and the evolution from a
random perturbation to a well structured eigenmode may be quite long, we directly
use the eigenmode (from the eigenvalue solver) as the initial condition for the Navier-
Stokes simulation (a 10~ amplitude factor is used to maintain “secondary” nonlinear
interactions negligible). Note that this test amounts, in a certain way, to the one done
for the Orr-Sommerfeld wave propagation for the pipe flow problem of Sec. 4.1.2.

The growth rates evaluated with the Navier-Stokes solver agree to almost all
significant digits with the values found by the eigenvalue solver, for the same radial
discretization: N, = 54, k = 5, with a uniform domain partition in n (L = 35).
This certainly confirms that both solvers are consistent between themselves. Again,
the number of significant digits of the UNCYL-LS growth rates is determined by
comparison with higher order approximations (N, = 55, k = 6). The maximum
growth rate values )\, hence obtained are shown in TABLE 4.8. The UNCyL value
was computed with CFL = 1.7 (At = 0.2). All values are seen to be in very good
agreement with each other. Furthermore, a linear interpolation between the two first
and the two last data points gives the loci of the neutral stability (A, = 0) limit
points, which yields an instability range of

0.83476 < q < 1.25448 (4.14)

also in very good agreement with the reference values given above.
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FIGURE 4.16. Growth rate value A, as a function of the swirl parameter g for
the axisymmetric “viscous mode” kg = 0, k, = 0.444 at Re = 1000. The symbols
identify the following results: “e” UNCYL-LS values; “O0” UNCYL values; and
“o” Mayer & Powell reference values. The lines are drawn from the eigenvalue
solver data points. Note that the maximum growth rate value at ¢ = 1.05 coincides
for all three sets of data points (see also TABLE 4.8).

TABLE 4.8. Comparison of modal growth rate results for the axisymmetric mode
kg = 0, k; = 0.444 with ¢ = 1.05 and Re = 1000 (see text for additional
information).

A x 104
MPt 9.03

UNnCyL (D) 9.0281
UNCYL-LS 9.028086

T Mayer & Powell (1992)
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FIGURE 4.17. Growth rate A as a function of the swirl parameter g for the
asymmetric viscous mode kg = 1, k; = 0.436 at Re = 40. The symbol definition
is the same as in F1G. 4.16. The maximum growth rate value at ¢ = 0.537 coincides
for the three sets of data points. See text for additional comments on the stability
bounds.

Revisiting the longitudinal asymmetric case kg = 1, k, = 0.436.

The test just described above for the longitudinal axisymmetric modes was also
carried out for the asymmetric case kg = 1, k., = 0.436 at Re = 40. Recall that
for these parameters, the most unstable viscous mode computed with our method
was in good agreement with the predictions of Mayer & Powell, as we showed in
TABLE 4.6. In terms of the swirl parameter q, Mayer & Powell give the following
instability bounds ’

002 < g < 0.96.

Using a similar procedure as described precedently, we obtained the results shown in
F1G. 4.17, with this time a much narrower instability range of

0.319 < g < 0.864. (4.15)
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Owing to the excellent standing of our results in all the different validation tests
presented so far—including agreement with other results of Mayer & Powell—we are
quite confident that our computed values provide a more accurate and reliable set
of instability bounds for this specific case. A formal explanation for the discrepancy
observed between both sets of values is however left to some further study.

4.2.3 Nonlinear dynamics

Having now established a good deal of confidence in the code UNCYL, let us leave
the linear stability regime and make a brief “qualitative excursion” into some early
stages of the nonlinear dynamics. For this purpose, we consider the low swirl case
g = 0.05 at Re = 1000; the axial flow parameters are still h = 8 = 1 so that the
flow of interest here is basically a swirling jet. The initial condition, besides the base
flow, consisted of a white noise perturbation with an energy level of Ej, x, = 107°.
The spatial and temporal discretization parameters used were:

e N, =54, k =5, uniform distribution of breakpoints in (L = 11);

e 4 modal zones ( Ly = 27) with
Ny =6 (0 <1n<0.075), Ny =10 (0.075 < n < 0.1),
Ny =18 (0.1 £ <0.5), Ng=10 (0.5 £ n<1.0);

e N, =20 (L,=230); and

e CFL = 1.7 for which At~ 0.5.

The time evolution of the solution is shown in F1G. 4.18. To illustrate the development
of the instability, we show iso-surfaces of enstrophy +|w[?> = 0.1; the “vortex tube” is
shown for two longitudinal periodicity lengths. The energy variation (in time) of the
most unstable modal pairs corresponding to FIG. 4.18 are also shown in FIG. 4.19.

Although we do not aim at making an in-depth study of this g-vortex dynam-
ics, many interesting observations can be made from the simulation results. First,
the most unstable modes have an azimuthal index number m = 1, combined with
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FIGURE 4.19. Time evolution of the perturbation energy for the five most unstable
modal pairs (n,n) of the simulation shown in FI1G. 4.18. Note that all curves are
for m = 1, the index n is shown on the figure.

negative longitudinal index numbers n (see Fi1G. 4.19). This “asymmetric” character
of the instability can also be partly observed from the azimuthal energy spectra (r and
z integrated) in F'IG. 4.20.a. The white noise perturbation is seen from the constant
energy level in the spectrum at ¢ = 0; the peak at m = 0 is associated with the base
flow field. Continuing with FI1G. 4.20.a, at ¢ = 50, the unstable modes have started
to grow (see F1G. 4.19) but still with a net decrease of the perturbation energy. At
t = 100, the dominance of the m = 1 mode becomes apparent since an increase of .
the perturbation energy above the initial level is only seen for this azimuthal mode.

Also from F1G. 4.20.a, we can see some of the effects of the modal zoning. The
sudden energy fall-off observed for m > 10 is one such effect, and is explained by what
follows. When defining the white noise perturbation, a uniform amount of energy is as-
signed to each modal pair to obtain a uniform initial (¢ = 0) spectrum. Because of the
(uniform) random character of the initial perturbation energy, there is no radial region
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FIGURE 4.20. a) Azimuthal energy spectrum at different times for the g-vortex
shown in FI1G. 4.18. b) The corresponding longitudinal energy spectrum. Note
that the time intervals are the same for a) and b) but different from those in
FIG. 4.18. The step fall-off at m = 10 in a) is associated to a change of modal
zone (see text for additional comments).
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in which the modal truncation could be applied with only negligible losses of energy,
as discussed by Houde et al. (2000). In other words, if the perturbation energy has a
uniform random distribution in the radial direction, then applying directly the modal
reduction would result in “step decreases”, or energy losses in the initial spectrum.
In the present case, we opted for a different strategy in which the perturbation energy
density is augmented in the truncated zones, yielding the uniform radially integrated
energy distribution at ¢ = 0. No modal energy is therefore lost by the modal trunca-
tion. Note that for practical reasons, the perturbation energy was radially confined
to n < 0.5, for all modes.

The important point of all this remains that, although different initial perturba-
tions will obviously lead to different transient behaviors, the natural ensuing dynamics
of the problem should not be affected (in most cases at least) as long as the initial
perturbation does not exhibit any preferential structure. The spatial discretization,
including the modal zoning, should be adequately devised to allow for the proper rep-
resentation of all relevant eigenmodes. As can be seen by the shape of the different
spectra and the energy level at which the step cut-off accurs, we may certainly feel
confident that it has indeed no significant impact on the solution.

Let us now consider the longitudinal spectra (r and @ integrated) in F1G. 4.20.b,
keeping in mind that the energy dominant modes have an azimuthal index of m = 1.
There are many interesting points that can also be observed from that figure. First,
one may note the k.-asymmetry of the spéctra. Even if the base flow is dominated
by its “jet character”, the slight presence of a swirl component results in a symmetry
break-off, as discussed by Lessen et al.. Only in the case of a purely axisymmetric
jet (g = 0), both the k, and —k, modes have the same instability characteristics
and, as Batchelor & Gill (1962) showed, the corresponding unstable modes are only
possible for ks = 1. Although this latter demonstration was made for a different
velocity profile than the one in (4.11), it is also supposed to apply in this case.

For very low swirl values such as ¢ = 0.03, Lessen et al. showed that there remain
some positive (k; > 0) unstable inviscid modes but with much smaller growth rates
than those of the negative modes (k. < 0). At finite Reynolds numbers, Mayer &
Powell also showed that there is a possibility for some asymmetric (m = 1) positive
viscous modes but again with significantly lower growth rates than those associated
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with the inviscid-like modes observed here. None of these positive modes were how-
ever seen to emerge from the white noise perturbation we used, due precisely to the
smallness of their growth rate. Another point worth noting is that, according to our
results, the most unstable longitudinal mode (with m = 1) has a value k, ~ ~0.6,
which is in good agreement with our linear stability predictions, as well as in good
qualitative agreement with the inviscid analysis predictions of Lessen et al..

Finally, from the shape of the spectra and the relative amplitude of the modal
energies, we are able to confirm that a truncation level N, = 20 was sufficient to
properly resolve the problem up to the considered time ¢t = 150. With this, we
conclude our brief illustrative excursion and at the same time, the verification of
the k, # 0 families of vector expansions. The reader may note that more complete
nonlinear dynamics, with instability saturation, will be presented for the triangular
vortex problem in the next section.

4.2.4 Radial direction: Domain fruncation vs. mapping

As the reader will have noticed, most of the radial discretizations used so far were
with a uniform distribution of breakpoints in the 7-domain. The reason for this,
as we already mentioned, was in part to allow for more standard comparisons with
the global expansion results. Even if the local flexibility was not used to its full
potential, the present method compared advantageously well with the other ones
used as reference. The question that could naturally come to one’s mind at this point
is: how much could be gained by taking advantage of the additional flexibility offered
by the variable node positioning?

Trying to give a relatively complete answer to this question is, in our view, a task
that goes beyond the scope of the present work*, and so we shall limit ourselves to
some particular considerations only. More specifically, the use of a local method in
unbounded domains may certainly call for a reconsideration of the truncated domain
approach, briefly introduced in Sec. 2.3.2. As one may recall from that section,
there are two main sources of error in the approximation of unbounded problems:

4As far as we are aware, mesh refinement and optimal node positioning—which is indeed the
point of interest here—is still an active field of research of the “finite element community”.
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i) the approximation of the boundary conditions, and ii) the approximation of the
continuum solution by a discrete set of values.

In the truncated domain approach, the outer radius R, can always be chosen large
enough as to bring the boundary condition error® to a negligibly small value compared
to the other source(s) of spatial error. By doing so, the “double” approximation
problem has now become one of spatial resolution only. This point is particularly well
illustrated by the “bounded” results shown in TABLE 4.9. The significant differences
observed between the error of our two B-spline values and the Chebyshev result of
Mayer & Powell must indeed be attributable to differences in the spatial resolution
since the boundary conditions are the same for all three cases.

Based on a similar argumentation, we may also conclude that the important differ-
ence, in the number of radial modes, between the solution of Matsushima & Marcus
and that of Mayer & Powell (see TABLE 4.3) is again attributable to a difference in the
spatial resolution. Following this, we can certainly see that the fixed and very regular
resolution of global expansions, applied directly to the domain truncation approach
does not seem so much appropriate, at least for the type of problems considered
here. The mapped Legendre polynomials, or equivalently the rational Legendre func-
tions, of Matsushima & Marcus come as marked improvement in terms of a more
appropriate resolution positioning.

As opposed to global expansions methods, local methods with their intrinsic node
or resolution positioning flexibility—which may vary according to the particular type
local of interpolation chosen—thus appear to be naturally better fitted for the do-
main truncation approach. Regarding that point, let us mention that Houde (2001)
has undertaken a more systematic validation and parametric study of some 2-D po-
lar and axisymmetric versions of the code BouNCyL. Many of the reference flows
he successfully compared with were in fact unbounded flows. In this context, if
unbounded problems can then seem to be efficiently approximated by a local interpo-
lation bounded formulation, the question is then: how well does the mapped B-spline
formulation of the code UNCYL compares to the standard B-spline one of the code
BounCyL?

5As also mentioned in Sec. 2.3.2, the approximation can even be improved by considering other
types of boundary conditions than the no-slip one, e.g., shear free, etc. By extension, mappings could
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TABLE 4.9. Relative error for the most unstable eigenvalue A\; of kg = 1, k, =
0.05, for g = 0.5 (h = 8 =1) at Re = 25 (see also TABLE 4.3 and text). In all
cases, quartic (kK = 5) B-splines are used.

Unbounded N L D=/

MMt 20 6 4.56 x10°5
UNCYL-LS 20 6 2.51x10°6

Bounded N R, D2 =Xl/In]

MP? 50 100 1.32 x 10°
BounNCvyL-LS (I) 20 100 1.85x 1073
BouNCYL-LS (II) 20 100 8.42 x 10~

¥ Matsushima & Marcus (1997)
t Mayer & Powell (1992)

Note that because the new question only involves the radial discretization, it can
as well be considered in terms of the eigenvalue solvers. Furthermore, since both
general Navier-Stokes solvers share the same time marching procedure (including
the computation of the nonlinear term), the linear stability comparison results are
expected to carry over without restriction. Parts of these considerations are also
included in Dufresne & Dumas (2000). Let us now revisit the benchmark case of
TABLE 4.3 which will again serve as a reference. The procedure used here is similar
to the one used for determining the convergence rates of F1G. 4.13.

In TABLE 4.9, we first compare the results obtained with UNCyYL-LS, with those
of Matsushima & Marcus for N7 = 20. Also shown in the table are the results of
Mayer & Powell against those obtained with the code BOUNCYL-LS (both with a no-
slip condition at R, = 100). For that comparison, case-I corresponds to a simple but
reasonable node distribution (4 regions of different but uniform node density) while
case-II intends to mimic the (algebraically mapped) node distribution used for the
unbounded calculation, with the mapping parameter set to L = 12.5. All B-splines
results are obtained with £ = 5. Looking at the error of the bounded cases, one can

even be seen as a different form of such “modified” boundary conditions.
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easily see the advantages of local approximations. Indeed, for the large value of R,
used here, the imprecision of the Mayer & Powell and, to a lesser degree, of the case-I
solutions can be attributed to a lack of resolution. As for the unbounded solutions, we
see that the mapped B-spline method compares advantageously well with the method
of Matsushima & Marcus, as it was already noted earlier in the section.

The main point of interest though, remains how the two B-spline codes compare
between themselves. In order to assess that issue, a point of comparison needs to be
established. The best comparison would obviously be at the lowest possible error for
each method. Due to the inherent difficulties that are associated with the determina-
tion of such optimal results, we opted for a more accessible comparison point. Trying
to approximately mimic the lowest error result on a comparable discretization, we
used a similar but slightly different domain partitioning for each code. The break-
points of the bounded code were uniformly distributed in a pseudo-mapped truncated
domain n € [0,7,] (with 7, = R;/(R, + L) and consequently 7, < 1). These nodes
were then projected back into the radial domain, and used as breakpoints. This is the
case-II method used in TABLE 4.9. The unbounded solution was determined using a
standard uniform distribution in the mapped 7-domain. The mapping parameter L
was chosen, in each case, to minimize the error. This choice was privileged over, say,
an exact radial (minus the last point) domain partitioning because such breakpoints
distribution do not lead to 2 minimum error simultaneously for both methods (recall
that the effective radial interpolation functions are not the same).

Following this procedure, many comparison tests were done. The results of one
such typical test are illustrated in F1G. 4.21, and are well representative of the whole
series. Both eigenvalue and eigenmode (the scalar spline functions g%, , instead of the
the velocity U, are used here) relative errors are shown as a function of the number of
free B-splines N;. Also for comparison purposes, the radial L?-norm was evaluated
over a finite radius (r < 50). The number of B-splines was limited to 20, to keep the
relative error at a meaningful level; the reference data being the N} = 70 solution
of TABLE 4.3. Note that the leveling of the eigenvalue error, for the unbounded
solution, is only associated with the fact that only a small number of B-splines were
used, and that the discretization parameters are not identical for each point. At
constant discretization parameters, the error value is not as small but does not level
off. The proper behavior of the solution is nevertheless confirmed, even at varying
discretization parameters, by the decay of the corresponding eigenmode error.
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FIGURE 4.21. a) Relative eigenvalue error and b) scalar spline function eigenmode
error, both as a function of N;. The “0O” symbols are for BOUNCYL-LS solutions
while the “o” are for the UNCYL-LS ones. In b), the solid lines refer to the “+”
class and the broken (“dash-dot”) lines refer to the “—" class solutions error.

Globally, the unbounded solutions prove more precise for the tested cases, but
this observation calls for additional comments. The tests were all with the slowest
decaying base flow field (Uy o r~!), which requires some resolution in the far field.
For faster decaying fields the difference between the two solutions would probably
not be so apparent. The bounded solution was also obtained with a no-slip condition
at the outer radius. This is not the only possible choice, as we already mentioned,
and other types of less stringent boundary condition approximations could have been
used. These lasts points are certainly quite familiar to numericist who already very
successfully used local interpolations on bounded domains approximating the infin-
ity. It is nevertheless believed that—because of its built-in decaying behavior, and
because whatever the distribution of standard B-spline breakpoints used, a similar
distribution can always be obtained for the mapped B-splines—the present mapped
B-spline formulation should always maintain itself a step ahead of the standard B-
spline one. This difference may become marginal though, depending on the type of
problems considered.
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4.3 Triangular vortex

In this section, we now undertake the validation of the 2-D polar (£, = 0) families
of vector expansions of TABLE 2.1. To do so, we follow the same validation strategy
used precedently an apply it to the stability and nonlinear dynamics of a circular
vortex patch whose vorticity profile was given and studied by Kloosterziel & Car-
navale (1999) and Carnavale & Kloosterziel (1994). In addition to the quantitative
comparisons made with the linear stability results, the present validation tests also
include qualitative comparisons with the nonlinear evolution of the flow structures.
In view of our present verification objectives, this combination of quantitative and
qualitative type of comparisons will prove sufficient.

Let us begin by a brief description of the problem. From the cited references, the
non-dimensional vorticity and corresponding velocity profiles are respectively given
by

wy = (—;—ar“ —1)e™, (4.16)
and
1 _sa
up = —re ™, (4.17)

with a > 0. These profiles define a basic axisymmetric flow which can be described
as a negative vorticity core inscribed in a positive vorticity annulus of equal but
opposite sign circulation; the resulting vortex patch having a zero net circulation.
These profiles are shown in FI1G. 4.22; for different values of the parameter «. The
reference time and length scales used for normalization are defined by the inverse
of the core center vorticity Qg' (with @y = @.(F = 0)) and the velocity profiles
“crossing point” R.. The velocity scale directly follows as {oR. which in turn gives
the Reynolds number

Qo2

v

Re =

It is worth noting that these “theoretical” profiles have an experimental counterpart
(close to the a = 2 profile) as mentioned by Kloosterziel & van Heijst (1991); they also
are part of a group of model problems of interest in geophysical flows, and possibly
in coherent structure dynamics of 2-D turbulence.
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FIGURE 4.22. a) Vorticity and b) velocity profiles corresponding to (4.16) and
(4.17) respectively. The curves are plotted for every unitary value of o between 3
(the smoothest) and 8 (the steepest).
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For our validation purposes, we will limit ourselves to the study of the a = 7
profile. At this parameter value, Carnavale & Kloosterziel have shown that the vortex
is unstable to 2-D perturbations with azimuthal wavenumbers of ks = 2, 3 and 4;
the maximum growth rate being for ks = 3. The velocity profile does indeed satisfy
Rayleigh’s inflexion point theorem that establishes the necessity of an inflexion point
in the velocity profile for the existence of instabilities (Drazin & Reid, 1981). Note
that the vortex may also be centrifugally unstable. Indeed, since the net circulation
is zero, there must be a region in which the circulation (absolute value) decreases,
violating thus Rayleigh’s circulation criterion (Drazin & Reid, 1981). This second
type of instability will however not be considered here since, as we already mentioned,
we limit ourselves to perturbations with k; = 0. We refer the reader directly to
Kloosterziel & van Heijst (1991) for additional comments on these specific stability
issues.

4.3.1 Linear stability

As a first test, we compare, in TABLE 4.10, the growth rate results given in Car-
navale & Kloosterziel (1994) with the ones predicted by both our eigenvalue and
Navier-Stokes solvers. Eigenvalue solutions were obtained with about 100 B-splines,
uniformly distributed in the 77-domain. The number of significant digits of the solu-
tion was determined by comparing the results obtained with £ = 5 and 6, at different
values of L ranging from 1 to 5 according to the specific case. The UNCYL re-
sults were obtained with the same radial discretization as the one used to obtain the
UNCYL-LS results. Note that our “inviscid” values (Re — oo) were in fact computed
with Re = 108 for both the eigenvalue and the Navier-Stokes solvers. For the eigen-
value solver, the choice of a finite value for Re instead of directly using the inviscid
limit (setting tlie matrix B to zero in (3.29)) was made because of some difficulties
associated with the structure of the matrices in relation with the QZ algorithm. Small
but non-zero values for the viscous term were necessary for the convergence of the
solution. At any rate, this does not affect the ensuing results as can be seen by the
good agreement between the different sets of values shown in TABLE 4.10. Let us
additionally note that the results of Carnavale & Kloosterziel were obtained by nu-
merical simulations, using a Cartesian Fourier spectral code (with a periodic array of
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TABLE 4.10. Most unstable inviscid perturbation growth rate values for kg = 2,
3, and 4, with a = 7. The Re = 10% values are included for comparison.

Re -+ Re = 10
CK! UNCYL-LS UNCYL | UNCYL-LS UNCYL
kg=2 }{0.220 0.220 0.21 0.21605 0.22
3 10.242 0.240 0.24 0.23461 0.234
4 |0.197 0.194 0.19 0.18724 0.187

t Carnavale & Kloosterziel (1994): Data graphically interpolated

vortices), of the inviscid, linearized vorticity equation. These reference values were in
turn found to be in agreement with those of Carton & McWilliams (1989, cited from
Carnavale & Kloosterziel) who also worked on this problem.

Also included in TABLE 4.10 are the results for Re = 10%, from both the eigen-
value and the Navier-Stokes solvers. These last two sets of values are found to be
in good agreement between themselves and also with the inviscid results. This ob-
servation will allow us to use with confidence our Re = 10* flow fields to compare
with the “inviscid” simulations of Kloosterziel & Carnavale (1999) in the following
part (nonlinear dynamics) of the validation process. It is worth noting that in this
latter work of Kloosterziel & Carnavale, a hyperviscosity dissipation term was used
to prevent the built-up of small scale structures at high wavenumbers while in our
case, we solely relied on standard physical dissipation (the Laplacian viscous term) to
carry the same task. This is why we had to limit ourselves to only moderately high
Reynolds numbers.

4.3.2 Nonlinear dynamics

The next validation test thus consists in comparing the ensuing nonlinear evolution
of the specific perturbation mode ks = 3 with the simulations of Kloosterziel & Car-
navale. Their results show that the perturbation will maintain its linear growth regime
for a certain time, but nonlinear interactions will eventually lead to a saturation of
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Min = -1.005 Min = -1.000

Max = +0.965 Max = +0.800
t=0 t=230

Min = -1.000 Min = -1.000

Max = +0.784 Max = +0.780
t =40 t=45

Min = -1.040 Min = -1.016

Max = +0.785 Max = +0.805
t =50 t =255

FIGURE 4.23. Formation of a triangular vortex with @ = 7 at Re = 10%. Dark
grey represents negative vorticity while light grey stands for positive values. The
white region encompasses the near zero vorticity —0.05 < w, < 0.05. See next

page for continuation.
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t =65
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Min = -0.999
Max = +0.734

t =100

-0.997
+0.687
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t =150

t =200

-0.992
+0.635

Min
Max

FIGURE 4.23. [Continued.] Minimum and maximum values of w, are shown on
each frame, as well as the solution time t. The discretization parameters and the
initial condition are described in the text.
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this instability. A new state of time periodic equilibrium (for the Euler equations) is
then reached in the form of a triangular vortex rotating as a whole about its central
core. More specifically, the new vortex is constituted of a triangular central core of
negative vorticity surrounded by three peripheral positive valued vortices®. This new
system may in turn be subject to other types of instability (Kloosterziel & Carnavale,
1999) that are not considered here.

This dynamical behavior was well captured by our simulations, from which we
show some general evolution illustrations in FIG. 4.23. Note that to save on compu-
tational time, these simulations were obtained with a specialized 2-D polar version
of the code. Also, taking advantage of the natural periodic symmetry of the prob-
lem, we set Lg = 2 /3 so that in this case kg = 3m (with m = 0,1,..., Np). The
complete vorticity fields of F1G. 4.23 are thus simply produced by periodic extension
of the basic “piece of pie” domain solution (see F1G. 4.24). As for the initial condi-
tion, we used a single mode ks = 3 perturbation with a random radial structure (see
F1G. 4.26). The discretization parameters are summarized in what follows:

e N, = 74, k = 5, partially uniform distribution of breakpoints in 7 (45 points
for 0 < 7 < 0.5 and 25 points for 0.5 <7 < 1) with L = 2;

e 6 modal zones (Ly = 27/3) with
Ng=6(0<1n7<01), Ng=12 (01 <7<0.2),
Ny =24 (0.2 <1n<0.25), Ny =32 (0.25 < n < 0.55),
Ny =24 (055 <1 <0.75), Ny =12 (0.7 <n < 1.0 );

e CFL = 1.7 for which At =~ 3.5 x 10~2.

An illustration of the pseudo-computational grid is shown in FI1G. 4.24.

Note that the modal reduction used here mainly allows for an economy on the
number of degrees of freedom (about 40% less for the present choice). The maximum
CFL number that determines the critical time step only changes position—7cF1, max =~
0.5 for the present multi-zone while TcpL max = 0.01 in the single zone case—without

81t is interesting to note that this triangular and other multipolar vortices can be linked to
some exact solutions of the Euler equations; see Crowdy (1999) for more details on such multipolar
analytical solutions.
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FIGURE 4.24. The pseudo-computational grid used to obtain the results shown
in F1G. 4.23. For the radial discretization, we show the breakpoints (in r); for
the azimuthal discretization, we use twice the number of computational modes to
represent the pseudo-grid. Bold lines are used to show the frontiers of the modal
zones (the fifth zone appears only partially and the sixth zone is not seen at all)
and also of the periodic (27/3) domain. The discretization parameters are detailed
in the text. The ¢ = 50 solution of F1G. 4.23 is added for a scaling comparison.

practically changing the value of At. For a uniform azimuthal resolution in this type
of problem (purely axisymmetric base flow field) we would expect the critical time
step to be located at the point of maximum azimuthal velocity, which is indeed almost
the case since for oo = 7, ug max is located at r = 0.757. The agreement between the
single (not shown here) and the multi-zone computations is better than five digits
accuracy on the total energy, and no visual differences can be detected between the
two flow fields.
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4.3.3 Other results

Besides the global macroscopic agreement with the reference solution, other more
specific verifications with the reference results of Kloosterziel & Carnavale were also
undertaken. In FI1G. 4.25, we show the time evolution of the modal components of
kinetic energy Ej, and enstrophy &,. Following the definition of the modal kinetic
energy in (4.13), we write for the modal enstrophy

1 {e o]
b = 5 /0 S (r: ko) - D(r; ko) rar . (4.18)

Since the velocity field is entirely rotational (no potential flow region) both Ey, and
&x, behave similarly, and so observations from either one of two the quantities are
almost directly transposable to the other. Because of the natural formulation of the
problem in terms of vorticity, let us consider the modal enstrophy evolution.

From the initial condition to about ¢ = 5, the mode-3 random perturbation—since
we only speak of azimuthal modes here, let us use the simplified “mode-3" notation
to designate the azimuthal wavenumber ky = 3—is restructuring itself giving rise
to the most unstable eigenmode. In FiG. 4.26, we show the w, contours of the
initial perturbation, i.e., the total vorticity field minus the axisymmetric component
9. Here, we use the notation &5 to designate the specific modal component
of the Fourier-transformed vorticity &,. The radially unstructured character of the
perturbation is still visible at ¢ = 5 (just before the start of linear growth) as can be
seen from the &% profile shown in FiG. 4.28.a. In F1G. 4.27.a, we show the vorticity
contours at ¢ = 20; the corresponding &> profile is shown in FIG. 4.28.b. Note that
from F1G. 4.25, we see that the perturbation field is entirely dominated by mode-3 at
that time. The contours of the corresponding eigenmode determined by Kloosterziel
& Carnavale are shown in F1G. 4.27.b, for comparison purposes. Going back to
F1G. 4.25.b, we observe that the linear growth regime extends to about ¢ = 40, the
time at which nonlinear interactions are seen to come into play by a rapid modification
of the growth rates of the initially perturbed mode and its harmonics. At t = 50, a
complete saturation of the instability is reached. After that, follows a readjustment
of the modal vorticity components leading to the new (quasi-) equilibrium state.
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FIGURE 4.25. Time evolution of a) the modal kinetic energy Ei, and b) the
enstrophy &, corresponding to the vorticity fields shown in Fi1G. 4.23. Note that
since Lg was set to 2m/3 for the simulations, the modal values of kg shown here
correspond in fact to numerical indices m = 0, 1, 2, 3 and 4, i.e., the base flow
field, the initially perturbed mode and its first three harmonics.
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FIGURE 4.26. Initial mode-3 perturbation vorticity iso-contours with a random
radial structure. The contours are given as follows: w; min = =5 X 1073, w, pax =
+5 x 1073 with increments of 5 x 10~4. Solid lines are for positive values, dashed
lines negative values. Note that for visibility reasons, the box dimensions are
smaller than those of FiG. 4.23.

@

a) b)

FIGURE 4.27. a) Computed perturbation vorticity field at ¢ = 20. The contours
are defined as follows: w; min = —1.3 x 1072, w, max = +1.3 x 1072, with incre-
ments of 1.3 x 1073, See also FiG. 4.26 for definitions, and F1G. 4.28.b for the
corresponding Gﬁa) profile. b) The eigenmode obtained by Kloosterziel & Car-
navale (FIGURE 6.b in the reference paper), shown for comparison. In this case
negative values are identified with thin lines while thick lines are for positive values.

Not in scale with a).
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FIGURE 4.28. Radial profiles of the modal vorticity o). a) Computed solution at
t = 5; the values are amplified by a factor of 103. Note that the initially random
perturbation still retains a rather unorganized character. b) Computed solution
at t = 20; the amplitude is now about 10 times that of a). The most unstable
eigenmode has clearly emerged from the initially random perturbation. See also
F1G. 4.27.a for corresponding w, contours. Finally, the “o” symbols identify the

B-spline breakpoints used to compute the results shown.
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FIGURE 4.29. Time evolution of the modal enstrophy £, at Re = 10°. Even
if the general behavior is quite similar to what was obtained for Re = 10% (see
F1G. 4.25.b), the levels and ratios of modal enstrophy, e.g., £9/&; , have significantly
changed.

Additional observations and comparisons with the results of Kloosterziel & Car-
navale are worth mentioning. Indeed, if the good agreement observed so far between
our results and those of the reference—quantitative for the linear and qualitative for
the nonlinear dynamics—allows for a good level of confidence in the validity of the
code UNCYL, the difference of equilibrium ratio values £,/&; raised an interroga-
tion. Kloosterziel & Carnavale obtained a value of £ /€3 = 1.2 while in our case this
value is £3/€3 ~ 6! Without engaging in a thorough investigation of finite Reynolds
number effects on such specific quantities, we nevertheless wanted to confirm that
the modal enstrophy ratio was indeed “Reynolds dependent”. We therefore ran other
simulations, but this time at Re = 10°, on a higher resolution “grid”, from which
we obtained &,/€3 =~ 2.6. The time evolution of the moda! enstrophy for this case is
shown in F1G. 4.29. Besides the £y/&; ratio, the overall agreement with the equivalent
reference results is better in this case than it was for Re = 10%.

This last observation, combined with similar observations made by Kloosterziel &
Carnavale for the inviscid vs the viscous vortex tripole (mode-2 instability) tends to
confirm the dependence of some such specific quantities on the Reynolds number.
If the global dynamics can be considered as inviscid, i.e., the convective time scales
remain much smaller than all the relevant diffusive ones, the particular equilibrium
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FIGURE 4.30. Radial profiles of o corresponding to the results of Fi1G. 4.23.
The full line represents the initial profile (¢ = 0); the dashed line, the solution
at t = 100; the dotted line represents the profile for the case of pure diffusion,
also at t = 100. Nonlinear interactions are seen to play a significant role in the
modification of the base flow profile.

state that will be reached, on the other hand, depends on the complex interactions
that occur during the saturation process which will in turn depend at some level on
the viscous scales. Although this is a very interesting subject, which is also the object
of the reference paper of Kloosterziel & Carnavale, we must put it aside for now since
it brings us beyond the scope of our present objectives.

Let us continue with the comparison of our Re = 10% results with those of the
reference. In F1G. 4.30, we show the axisymmetric base flow profile o2 of F1G. 4.23 at
t = 0 and 100. The profile that would have resulted if only diffusion would have come
to play is also shown for comparison. From this, we see that nonlinear interactions
have a noticeable effect in the modification of the base flow profile. This is again
in agreement with the results of Kloosterziel & Carnavale. As a final verification
step, we compare our ¢ = 200 (equilibrium) results of F1G. 4.23 with the reference
equilibrium solution. In Fi1G. 4.31, both global vorticity contours are shown, and in
FI1G. 4.32, we shown the mode-3 contours. The particular modal vorticity profiles
corresponding to the mode-0 and the mode-3 components of our ¢ = 200 solution are
given in FI1G. 4.33.
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FIGURE 4.31. a) Global vorticity contours of the ¢ = 200 solution of FIG. 4.23;
the contours are shown for w, min = —1, W; max = +0.3, with increments of 0.05.
b) The equivalent vorticity contours of the inviscid equilibrium solution of Kloost-
erziel & Carnavale (FIGURE 7.b of the reference paper), shown for comparison; the
contours have an increment of Aw; = |w;|max/10. Again not in scale with a); the
other usual definitions also apply.

FIGURE 4.32. a) Mode-3 vorticity contours of the t = 200 solution of F1G. 4.23;
the contours are shown for w, min = —0.3, W; max = +0.3, with increments of 0.03.
b) The equivalent mode-3 vorticity contours of the inviscid equilibrium solution
of Kloosterziel & Carnavale (FIGURE 7.e of the reference paper), shown for com-
parison; the contours have an increment of Aw; = |w;|max/10. Again not in scale
with a); the other usual definitions also apply.
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FIGURE 4.33. Radial profiles of the modal vorticity components Gﬁk") at t = 200;
in a) mode-0, and in b) mode-3. Note that the mode-3 values are amplified by a
factor 10 in comparison with the mode-0 component. The usual definitions apply.
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4.3.4 Complementary tests

In addition to the comparisons made with the reference results of Kloosterziel & Car-
navale, we present here supplementary results that confirm the overall good behavior
of the numerical method. More specifically, these extra verifications involve symmetry
and symmetry brake off in the nonlinear evolution of the vortex problem discussed
in Sec. 4.3.2. Since the points to be made here are very specific, we choose to use for
this part a more direct “item by item” presentation.

In a first step, we verify how well the mode-3 “physical” symmetry is preserved
when not explicitly imposed. Recall that the results presented in FI1G. 4.23 were
obtained on a computational domain where Ly = 27/3, i.e., with a mode-3 forced
periodicity. We show in FIG. 4.34 three different computations for the same physical
problem: a =7, Re = 10%, with a mode-3 initial perturbation. The following points
provide a general description of the figure content:

e On the left, we show iso-contours of vorticity from w, = —1 to +1, with steps
of 0.1 (the zero contour is not shown); the solid lines refer to positive values
while the broken (“dash”) lines are for negative values.

e On the right, the corresponding modal entrophy spectrum is provided.

e The different solutions are given at comparable, though not identical, times
that correspond approximately to the saturation of the instability, i.e., at about
t = 50 in F1G. 4.25. This is the most demanding phase of the computation in
terms of spatial resolution requirements due to the important “filamentation”
of the three arms of negative vorticity.

The particular context of each simulation case is described below:

Case a) Solution obtained with the imposed symmetry Lg = 27/3, as in F1G. 4.23.
Thus, all the computational modes m =0,1,2,... , Ng —1 (with kg = 3m) are
involved and “active” all along the simulation.

Case b) Solution obtained on a “full size” domain Ly = 27, with the same initial per-
turbation in mode kg = 3. In this case k4 = m, and only one third of the total
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FIGURE 4.34. Comparison of different symmetry conditions for the triangular
vortex (¢ = 7) evolution at Re = 10*. On the left, we show iso-contours of
vorticity and on the right, the corresponding enstrophy spectrum. A more detailed
description is provided directly in the text.
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number of computational modes are effectively involved. Many more modes
are therefore required to achieve the resolution of case a). Although present in
the computation, the other “inactive” modes do not appear in the enstrophy
spectrum because they remain at values of 1028, well below the limits of the
figure.

Case ¢) Solution again obtained with Ly = 27, but this time with the initial vortex
having an offset of Az = Ay = 0.1 relative to the center of the domain. The
initial perturbation for this case is applied on the physical mode kg = 3 based
of the vortex center. Since there are no azimuthal symmetries left, the proper
representation of the vorticity field requires all the computational modes.

All three solutions were obtained using the following radial discretization:

e N, =99, k = 5, partially uniform distribution of breakpoints in n (75 points
for 0 < n < 0.5 and 20 points for 0.3 <7 < 1) with L = 2;

while, according to the particular case, the following azimuthal truncations were used:

e Case a)
6 modal zones (Ly = 27/3) with
Ne=6 (0<n<0.1), Ng=12 (0.1 <75 <0.2),
Ny =24 (0.2 <1n<0.25), N; =32 (0.25 < 1 < 0.55),
Np =24 (0.55 < <0.75), Ng=12 (0.75<n < 1.0 );

e Cases b) and c)
6 modal zones (Lg = 27) with
Ng=6(0<1n<0.1),Ny=20(01<1n<0.2),
Ny = 42 (0.2 < 7 < 0.25), Ny =84 (0.25 < 5 < 0.55),
Ny =42 (055 < <0.75), Ny=12 (0.75 < < 1.0 ).

One may note that case a) has a slightly higher azimuthal resolution (kg max = 95 in
comparison with kg max = 83 for cases b) and ¢)), but this does not affect the results
shown. As for the time discretization, the CFL criterion was again set to 1.7. This
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led to a general time step size of At & 3.5 x 10~ (similar to the case of FIG. 4.23),
except for case c)—because of the offset of the vortex and the presence of velocity at
r = 0—for which the CFL limit imposes a lower At ~ 6.5 x 10~3.

From the above description and the results shown in FI1G. 4.34, the following
observations can be made:

* All three results agree quite well confirming thus, once again, the overall good
behavior of the method (including the modal reduction procedure).

* Case a) was done with approximately one third of the number of degrees of
freedom of cases b) and c¢). Taking advantage of the natural physical period-
icity of the solution, when possible, therefore allows for an important gain in
computational efficiency.

* In a similar point of view, any departure from axial symmetry in the azimuthal
direction leads to an increase in the resolution requirements (and computational
costs) for that direction, as can be seen from the enstrophy spectrum of the off-
centered vortex in case c).

To verify the level of spatial resolution used, besides looking at the modal enstro-
phy (or energy) spectrum, we may use the more “global” diagnosis

dE

—— = =2Re’l'E& 4.19
— el e, (419)

the total energy E and enstrophy £ being given by
E = i/ udV and € = -l-f w[2dV .
2 n 2 Q

It has been confirmed that (4.19) was satisfied to almost seven digit accuracy when

applied to test case b) in F1G. 4.34. The time variation of the energy was evaluated

for that check with the backward difference scheme
dE _  E(t+At)— E(t)
dt At

and time step size of the order of 10~° were used to maintain enough precision on this

+ O(AY)

first order estimate. The “less accurate” results were observed during the saturation
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phase of the instability, i.e., at about the time solution shown in F1G. 4.34.b; equation
(4.19) was then satisfied with an accuracy of approximately six digits. These accuracy
levels confirm the proper capturing of the small viscous scales for the discretization
parameters used.

The triangular vortex solution represents only one of the possible outcomes of
the initially unstable configuration with a@ = 7. The mode-3 intability has indeed
the highest growth rate, but mode-2 and mode-4 instabilities have similar, though
slightly smaller, values (see TABLE 4.10). As another test, the case b) of FIG. 4.34
can be reconsidered, but this time with an initial white noise perturbation instead
of a single mode-3. The partial evolution of the resulting vorticity field is shown in
F1G. 4.35; the time evolution of the corresponding modal enstrophy (the first five
modes) is in turn shown in FIG. 4.36. Although the mode-3 instability dominates
the early stages of the evolution, the important nonlinear interactions with the other
unstables modes do not lead to any equilibrium structures in this case. The results
presented here—including the vortex merging observed in the sequence ¢t = 60, 65,
and 70 in FIG. 4.35—are once again in good agreement with the experimental and
numerical results of Carnavale & Kloosterziel, as well as with the simulation results
of Winckelmans (private communication) obtained with a 2-D vortex method.

This concludes our present section on the triangular vortex, and based on the
quantitative agreement of our linear stability results, including the consistency of
both codes UNCYL-LS and UNCYL, and the qualitative agreement of the overall
nonlinear evolution, we feel confident in the complete verification of the k, = 0 fam-
ily of vector expansions. Also indirectly verified in this test case was the global modal
reduction algorithm and the regularity conditions. Note that these were also indi-
rectly verified in the g-vortex problem, with a restriction to the ky = 0 and 1 cases.
Because of the very confined nature of this flow field though—the velocity is effec-
tively zero at some finite radius—the nature of the outer boundary conditions could
not have been directly checked. We had to rely on a more specific, independent proce-
dural verification to ensure that they were indeed correctly implemented for all cases
of kg. An additional point regarding the very limited radial extent of this type of zero
circulation vortex is the relevance of an unbounded method for computing such prob-
lems. In his parametric study of a 2-D version of the BOUNCYL code, Houde (2001)
also very successfully computed the flow dynamics of this test case, showing that it is
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t =55

Min = ~-1.003 Min = -1.002

Max = +0.831 Max = +0.823
t=45 t =250

Min = -1.001 Min = -1.001

Max = +0.820 Max = +0.815

t =60

-1.001
+0.808

Min = -1.003
Max = +0.802

FIGURE 4.35. Partial evolution of the vortex of FIG. 4.23 (a = 7 and Re = 10%),
but from this time an initial white noise perturbation. We show here the iso-
contours of vorticity, from w, = —1 to +1, with steps of 0.1 (the zero contour is
not shown); solid lines are for positive values while broken (“dash”) lines are for
negative values. See FIG. 4.36 for the corresponding modal enstrophy evolution.
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FIGURE 4.36. Time evolution of the modal enstrophy &, associated with the
vorticity fields shown in F1G. 4.35. The most unstable mode-3 perturbation is
closely followed by mode-2 and the other low order modes.

almost insensitive to confinement effects, i.e., the distance R, at which the no-slip
boundary conditions are imposed. These particular considerations do obviously not
affect, at any rate, our validation conclusions.
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4.4 Summary

Before we bring this chapter to an end, let us summarize. In Sec. 4.1, we used
the circular pipe Stokes flow analytical solution to verify the B-spline interpolation
and the matrices of the bounded B-spline formulation (the codes BOUNCYL-LS and
BouUNCYL). Linear stability results of the Poiseuille flow served in the verification
of the nonlinear term computation and the time integration schemes of the Navier-
Stokes solver BOUNCYL. Consistency between the eigenvalue and the Navier-Stokes
solvers was used as a global validation test to verify the code as a whole.

Because both codes UNCYL and BOUNCYL make use of many common subrou-
tines, some of the verifications presented in the first section, for the code BouNCyL,
were implicitly carried over to the code UNCYL. This led us, in Sec. 4.2, to focus
on the unbounded radial discretization for the family of vector expansions for which
k. # 0. The radial interpolation and boundary conditions indeed represent the main
difference between the present unbounded and bounded numerical methods. Lin-
ear stability results of the Batchelor g-vortex problem were used to first verify the
eigenvalue solver UNCYL-LS. Then, using a slightly different procedure than the one
used in Sec. 4.1, verification of the Navier-Stokes solver UNCYL was undertaken by
direct computation of some of these linear stability results. Consistency between the
Navier-Stokes and the eigenvalue solvers was also used as a complementary check.

The k, = 0 family of vector expansions of the code UNCYL was in turn verified in
Sec. 4.3, computing the complete nonlinear dynamics that leads to the formation of a
triangular vortex. In that case, quantitative verifications through the corroboration
of numerical linear stability results were of a more limited extent, but consistency
between the eigenvalue and the Navier-Stokes solvers was again established. Qualita-
tive verification of the complete nonlinear evolution of the mode-3 instability up to its
saturation and the resulting triangular vortex formation also served as an additional
confirmation.

Although not directly accounted for in the different tests, the regularity condition
and the general modal reduction algorithm were implicitly verified in the series of
flow problems considered. The verification of the harmonic decaying condition, on
the other hand, was not directly nor indirectly involved, except for the base flow of
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the g-vortex, i.e., only for Up o< r~1. For the other cases examined, the solutions were
found to decay much more rapidly than the minimal rates imposed by the condition.
As it was the case for numerous algorithm tests that were carried out but not explicitly
presented here, verification of the outer decaying boundary condition was nevertheless
systematically performed.

As a final remark, anticipating the general discussion of the concluding chapter,
let us note that in terms of radial interpolation, our B-spline results certainly com-
pared very well and, in most cases, advantageously to the reference data found in
the literature and obtained by global interpolation (spectral expansions) methods.
On the other hand, our brief comparisons between the regular B-spline discretization
of the code BOUNCYL-LS and the mapped B-splines of the code UNCYL-LS seem
to show only a marginal advantage of the latter mapping approach over the former
standard B-splines in the approximation of problems in unbounded domains.
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Conclusion

In this thesis, a novel extension of Leonard’s divergence-free vector expansions method
(Leonard, 1981) for the solution of the incompressible, unsteady Navier-Stokes equa-
tions in unbounded (cylindrical) domains has been proposed. The spatial discretiza-
tion, presented in Chap. 2, is based on a series of vector expansions that intrinsically
satisfy the divergence-free constraint. These vectors are constructed by a combination
of Fourier series for both the longitudinal and azimuthal directions, and algebraically
mapped B-splines for the semi-infinite radial direction. Special care has been taken
to account for the particular analytical behaviors at the center of the domain (r = 0),
and for the asymptotic behaviors as r tends to infinity. The implementation of this
numerical method was discussed in Chap. 3, and its validation in Chap. 4.

The present, unbounded domain, B-spline formulation has also been modified to
allow for the solution of the Navier-Stokes equations in radially bounded cylindri-
cal domains (Sec. 3.5). For that particular instance, the resulting numerical method
is similar to the one proposed by Loulou et al. (1997), except maybe for some few
technical points. Also, as by-products of the two Navier-Stokes solvers, the general
divergence-free Galerkin approximation was in turn used to develop two corresponding
linear stability eigenvalue solvers; one for unbounded domains and one for bounded
domains. Implementation and validation of these additional solvers were likewise con-
sidered in Chap. 3 and 4 respectively. Accordingly, all the thesis’ main and secondary
objectives presented in Chap. 1 have been successfully fulfilled.
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We now conclude our work by first briefly discussing some of the issues that
concern the use of local B-spline functions for the approximation of the unbounded
radial direction, in light of the numerical tests presented in Chap. 4. Following this,
we give some recommendations for future work related, on one hand, to the numerical
methodology, and on the other hand, to some physical investigation that could be
carried out following the results obtained in the various numerical tests.

5.1 Discussion

While testing our numerical method in Chap. 4, the comparisons made with the
other numerical results obtained by global expansions methods proved the mapped
B-splines to be an advantageous alternative for use as basis functions in the radial
direction. Indeed, even without making use of any particularly refined distribution
of radial breakpoints, the B-spline results were shown to be either more precise for a
similar number of radial coefficients, or for a given error, usually required less degrees
of freedom.

On the other hand, comparisons made between the unbounded B-spline code
UNCYL-LS and its wall-bounded version BOuUNCYL-LS did not prove as much advan-
tageous, as may be recalled from TABLE 4.9 in Sec. 4.2.4. Despite this less favorable
occurrence, we were nevertheless able to conclude—on the basis of our tested cases
with a slow decaying base flow field (see FIG. 4.21)—that whatever the bounded B-
spline discretization used, a similar unbounded mapped B-spline discretization could
always be used to obtain better results. The gain of the latter approximation over
the former may however be only marginal, particularly if the field solutions exhibit a
fast decaying behavior. From this, we are led to admit that the present unbounded
mapped B-spline method does not seem to provide a significant improvement over
the more standard (wall-bounded) B-spline approach.

This last observation certainly comes in a marked contrast with the similar com-
parison made between the bounded domain Chebyshev polynomials of Mayer & Pow-
ell (1992), for example, and the unbounded rational Legendre functions of Matsushima
& Marcus (1997). Since one of our motivations to include a mapping into the B-spline
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formulation originated from the perspective of global expansions methods, we may
clearly see that global expansions considerations do not necessarily carry over to local
approximation formulations. Following this line of reasoning, one could legitimately
raise doubts about the practical advantages—the theoretical advantages making no
doubts—of imposing more complex regularity conditions at the center of the domain
r =0, i.e., from Chap. 2, imposing (2.11) instead of the more simple conditions given
in (2.10). As we already mentioned, no special investigation was made in this work
to supply a specific answer to this question. Such a task must therefore be considered
as a recommendation for future work.

Although our comparison tests between both the bounded and the unbounded
B-spline methods only led to partially satisfying conclusions in terms of the rele-
vance of developing a special unbounded version, we are nevertheless convinced that
the unbounded spectral/B-spline method presented in this thesis remains of great
interest and usefulness. The successful and efficient stability results obtained, while
testing both codes UNCYL-LS and UNCYL, do certainly allow us to conclude very
positively on the efficiency of the mapped B-splines in comparison with the other
global expansion approaches. The present method is indeed particularly well suited
for low problems having an intrinsic axial symmetry, as in the the g-vortex problem
of Sec. 4.2, or the triangular vortex of Sec. 4.3.

5.2 Recommendations for future work

In the continuation of what has been initiated in this work, we suggest that the
following elements be considered. Relating more specifically to the numerical method:

e The study of the effects of the regularity conditions (at r = 0) on the error of
the solution, to see how effective are these conditions in practice;

e The development and implementation of a higher order dissipation term (e.g.,
like the biharmonic term —v,V*u) to allow for simulations at higher Reynolds
number with only moderately high spatial resolution;

e The specialization and optimization of the modal truncation and nonlinear term
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algorithms.

Other optimization considerations such as the development of a parallel version of
the code should also be considered.

On a more physical point of view, the following lines of investigation could offer
some interesting propects:

e Regarding the g-vortex problem presented in Sec. 4.2, the discrepancy observed
between the results of Mayer & Powell (1992) and ours (see FIG. 4.17) was left
unexplained. Further investigations on that matter could probably help solve
this question.

e In the simulations of the triangular vortex of Sec. 4.3, finite Reynolds number
effects were seen to have an influence on the final state of equilibrium. Up
to what extent these effects come into play in the formation of the triangular
vortex could also be studied using the codes presented in this thesis.

e Another problem of interest that could well be studied using the mapped B-
splines codes, but that is not mentioned in this thesis, is related to the dynamics
of a vortex tube in a straining field.

Note that since the present numerical method is particularly well suited for unbounded
flow problems having an intrinsic axial symmetry, any problems falling into this cat-
egory could also be considered.
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Appendix A

Principal Differential Operators and
Vector Field Representation
in Cylindrical Coordinates

A.1 Principal differential operators

First, let us assume that the velocity vector u may be written as

u = t(r) etkeleir== (A.1)

then let “ ~ ” be the double Fourier transform operator in (8, z) such that

~ 1 —ikeO —ik.z
a=F//ae e % dfdz, (A.2)

where a period of 27 is assumed for both directions. The divergence, curl and Lapla-
cian operators in cylindrical coordinates for both physical and spectral spaces are
given as follows:

Divergence The divergence of the vector u is given by

1 8ru, 10u Ju,
Vius =+ 2% Y5

(A.3)
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In the spectral space this becomes
— U, kg . o
V-u=u7+t7',.+i7ouo+zkzuz. (A.4)
Curl The curl operator applied to u gives
ér Téﬂ éz
1
w=Vxu= - d/8r 0/86 0J/0z (A.5)
Uy rug Uz
The vorticity components are therefore written
1 du, duy
, = ~— - ; A.
“ r 06 Oz (A-6)
du, du,
= —-—; A7
“we oz o (A7)
Ug Jug 1 Ju,
——4 —— — . re— A..
Wa r or r 06 (A-8)
In the spectral space, we obtain
Wy 1 &ﬂz —ik,Ug;
T
Wp = ik.U —u; (A.9)
B, = Lyg-iy,
which may be written in a more compact way by
&=Vxi. (A.10)
Laplacian Finally, the Laplacian of u is defined by
2 2
V2uzi—a-( au) 1 8%2u 6%*u (A.11)

=~

r Or

2002 T oz’
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with 9&,/00 = & and 8&,/30 = —&,. In the spectral space, the vector components
thus become

=5 a 1 k2 ~ 4 ko .

Vvia-é, = Tﬁ:.+ﬁ',’——(;§_—+k§)u,—r—;—z2 g'u.g,

S5 1 kj ~ ko .

Viu-g = ?%-i-’\g—(r—g-‘l'kg) 86— — +12 gu,., (A.12)
= __ 1 - k2 .

Via-e, = —T-ﬂ;+u'_.'—(r—§+k§) :

Note the coupling between the radial and azimuthal components.

A.2 Analyticity at the origin
The equivalent of the following analyticity results, derived in a somewhat different
manner, can also be found in Boyd (1999), or in Loulou et al. (1997).

The Taylor expansion theorem gives for an analytic vector function u in some
neighborhood of the point x =0

o o0 xaybzc .
ux) = S > > o Dru(x=0) (A.13)

a=0 b=0 c=0

with the following definitions: x = {z,y,2}; u = {uz,uy,u;}; n =a+b+c; and
D™ = 8" /8z%0y*0z°. Note that the series (A.13) is convergent within a “bounded
sphere” R = [z2 +y2 + 2%]Y/2 < oo, that defined the region of analyticity. Because in
Cartesian coordinates, the basis vectors are independent of position, we only need to
consider one vector component at a time, namely u. in the derivation shown below.

In (A.13), the terms D™u(x = 0) act as constants so that if we rewrite for u. in
cylindrical coordinates (x = {r,6,z }), we then get
o0

u (x) = Z 728 cos® 0 sin® @ 2° €, (A.14)

n=0
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where the triple sum of (A.13) has been symbolically reduced to 3>, and

1 n
fa.b,c = _'b' D uz(x = 0) .

Let us rewrite the “cos” and “sin” terms such that

1.. .
cos®l = 2_a[eza+e-10]a
1 = a! i
= — (a1—a2)8
2 aZ—O a;las! €
a;;O
a1-+az2=a
. 1 . .
sin’f = (2i)b[e’9 —e )P
b
1 b!
- 1 be _i(b2—b,)0
(20)® "Zo by lbg! (=1)*e
b=
by +ba=b

o0
u(x) = D " xape(2) €60, (A.15)
n=0
with d=0.1 —a2+b2—b1 and
3 = b
4 = — 1 2 Z
altﬁa_;:a b1+b20—b

We now apply the double Fourier transform (in # and 2)

n 1 e —ikg8 _—iksz
U,(r; ko, k.) = (_2“'—)2/0./(; u.(x) e %% dhdz

to (A.15), to obtain .
az('r; kﬂ:kz) = z roth fa,b,c ia,b,c(kz) 6d,k9 . (AIG)
n=0
Here 644, is the Kronecker delta, viz.,

s _Jo i d#k
e T Y1 i d=ky
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Note that carring out explicitly the z Fourier transform on 2°¢ gives, for k, # 0
and ¢ > 0,

1 2n 2€ e=iksz gy — o § (—1)7*+1 (27r)e—3-1
2w Jo ik = (c=7) (Gk)

and when k. = 0, it equals to (27)¢/(c+ 1). This is implicitly taken into account in
Xebc(kz). If we now take the sum of only the non-zero values in (A.16), for a given
kg, we finally obtain

o0 o0
'Tiz("'; kg, kz) = Z Z T[k°|+2p Ea,b,c ’X\a.b,c(kz) , (A,l?)

p=0 c=0
where p is a function of a and b or more specifically of a;, and b, 5. The functional
relation between p and the set of all admissible values of a,2, b1, is not so easily
expressed but can be determined by the set of non-negative integer values satisfying

a; —as + bg - b1 = kg ’ (A.].S)
a+a; = a, (A.19)
bi+by = b. (A.20)

Similar reasoning applied to %, and %, hence leads to the general form of the radial
behavior:

rl-i—l?cly {u:,4,8.} = O(leai”p) : (A.21)
with p=0,1,2,....

In order to get the behavior of the cylindrical coordinates vector components
{4,, U, U, }, we only need to apply, to the former result (A.21), the transformation

rules

ur = uzcosf + uysinf, (A.22)

ug uycos@ — wu:sinf .

Using the symbolic notation

Uuy(r,0,z) = ZZ iiz(z; ko, P) rlkol+2p giked
kg p
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we obtain after dropping the parametric dependence of the variables as well as the
summation notation, for simplicity reasons, and after the #-Fourier transform,

u = -;-[ iy — idty | T l+2P 4 %[ Ty + ity | riketUF2P

Lo pim Trkett2e o Lo o ketieop (A-23)
Ug = §[uy+mx]r +§[uy—mx]r .

Now, after combining the same powers of r, we finally get
Uy £y = [y £ dit, ] rikeEl2P (A.24)
which can also be equivalently written in the more detailed form

T8 +iug] = O(r**2P*2)  for k¢ 20,
r [ Uy + il | O(rlkel+2p) for ks < -1,
r [ @ — il ] O(rke+2p) for kg>1,
O(r'*el+2p+2)  for k3 <0,

(A.25)

I

r [ @ — it |

again with p=0,1,2,....

A.3 The harmonic decaying behavior

We know from complex function analysis that if an analytic (or equivalently harmonic)
complex valued function f(¢) (of a complex variable ¢ = re'?) is to tend to zero as
r — oo, then f(¢) can be written in terms of the principal part of a Laurent series
such that (Shilov, 1973)

-1

fQ) = > em¢™ (A.26)

m=-M

where M may be infinite. There is a modulus ry = |{p| > 0 defining the domain of
analyticity of f(¢) to be for all || > r; and accordingly

1 f¢
_-fc Cm+)1 dC )

2w
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where C is some contour in the domain of analyticity. It is then a simple matter of
changing variables to rewrite (A.26) as

f(r.,6) = i: Cmr ™ M8 (A.27)
m=—M

There are two real valued functions g(r,8) and h(r,8) such that

g = f+f" = 2Re(f)
ih = f—f° = i2Im(f)

f* being the complex conjugate of f. When applied to (A.27), this gives

9(r,0) = D curime™ (A.28)

th(r,0) = Z —sgn(m) cupriml ™o (A.29)

m=—M
m#0

where we have defined c.,, = ¢, (m > 0) and sgn(m) = m/|m|. From (A.28), it is
then possible to write
M

u(r,0,2) = D iiy(z;kg) ol ghe? (A.30)

kog=—-M
kg #0

valid for 7 > 75 > 0. Now, from (A.30) we may conclude that if the complex valued
function u,(r; kg, k;) is to decay “harmonically” as » — oo, then we must have

l_i_’m Ua(ri ko, k) = O(r~lkely
A similar argument applied to %, and %, leads to

im {%,4,, 8.} = O@ k), (A.31)

T—00

Because u, and u, form an orthogonal pair in the plane r—-8, it is possible to write a
complex valued function f = u;—tu,, in the same form as in (A.27). In the particular
case of 2-D incompressible and irrotational velocity fields, the function f would be
called the complex velocity and would be linked to the complex potential IT = ¢+ i3
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by f = —dII/d{ (where here u = —V¢ = ~V x 9&,), following the notation of
Milne-Thomson (1968). Now applying directly the definition of f in (A.27), or using
the results of (A.28)—(A.29), we must then have that

lim [ %l @(r; ko k) = isgn(ks) T Ty(r; kook)] . (A.32)

r—o0

As for the cylindrical components u, and wug, the transformation equation (A.22) is

equivalent to
ur Fiug = [us Fiu, | e .

By applying this to the definition of f, we obtain that

i T T T = —lkel
rllglo {r8,, 1y, 0. } = O(r~1Fel) | (A.33)
and
Uim [ r*eRt g (r; ke, k.) = isgn(ke) T g(r; ke,ks) ] . (A.34)

r—co

Note that (A.32) and (A.34) are similar to the Cauchy-Riemann equations for the
two vector components, and can also be seen as the equivalent form of a solenoidal
and irrotational constraint (associated with the existence of the potential IT) in the
r—6 plane.

Note also that although these results have been obtained for ky # 0, the inclusion
of kg = 0 is somewhat straightforward and can be easily taken care of by exten-
sion of the above procedure (details are omitted). This would lead to the following
asymptotic behavior:

1380 {ra,,rus,8. } = OQ). (A.35)

Albeit this result is independent of k., a slight distinction should be made for the
different cases of k; = 0 and k, # 0. In the former, 4, = 0 while in the latter
4, = O(r~!) as for 4 but independently of one another. Furthermore, since we
assume that the flow is decaying at infinity the constant to which %, tends to must
be zero.



Appendix B

B-spline Piecewise Polynomials

This appendix includes the information related the B-splines used for the discretiza-
tion of the radial direction. It may be noted that most of the material presented here
comes from the reference book of de Boor (1978), which should be consulted for a
more complete presentation. We have chosen to include some of this material here
for ease of access.

B.1 The truncated power basis

A function f(n), if it is analytic in the neighborhood of a point 7, has a Taylor series
expansion around the point written
df (n—m)® &f

£ = Sl (=) G|+ = g

(n—mo)* d" f
- | (B-1)

+...+

the last term on the right being called the remainder and with the point £ being
somewhere between the points 7y and 5. Assuming for example an expansion from
the left, i.e., 70 < 7, then g < &€ < 5. If f(n) is a polynomial of order k, i.e.,
f(n) € P* we then have exactly

= : 1 &
) = Tatn-m) with a =32 (B2)

=0 b/



APPENDIX B B-SPLINE PIECEWISE POLYNOMIALS 166

Let us now introduce the “truncated” non-negative function

(7) - T)O)-i- = max[ﬂ — 7o; 0] ’ (B3)

and extend its definition to the “truncated power basis”

(m—m)§ = [(n—m0)+]* - (B.4)

When k& = 0, this amounts to the step function (setting 0° = 1), and for £ > 0 to a
polynomial function, for 77 > 79, having k£ — 1 continuous derivatives at 7y (shown in
figure VIIL.2, p. 102 of de Boor, 1978). We can see that for n > 7, and f(n) € P*,
that (B.2) is strictly equivalent to

k-1
fm) = > ain—mo) - (B.5)

=0

Let us now consider an increasing sequence of points {ni}ﬁv__:’o, called breakpoints,
such that

770<171<T’2<.'.<UN¢—1<1)N4'

A piecewise polynomial (PP) function of order k£ for that given set of breakpoints is
a function defined such that

fm) = P(n) i n€Em1,m, (B.6)

and P;(n) € Pk. The set of all PP functions of order k for the given sequence
of breakpoints {7;} will be noted ]Pf,. Before discussing the value of f(n) at the
breakpoints, let us consider first the “jump” of a function at a point, such that

jump, f(n) = f(ng) — f(ng) ,

where t = lim.,0n + € and 7~ = lim._,q77 — €. Continuity of a function at a point
obviously requires that the jump at that point be 0. To the definition (B.6), we add

a series of continuity conditions at the intermediary breakpoints {17,-};1‘1‘ !, such that

jump, D’7'f =0 for j=1,2,...,4, (B.7)

with Di='f = ¢/~! f/dp’=!. We can now restrict the PP space Pf with a set of
continuity conditions (B.7) symbolized by the set of integers {;}N2~!. The set of
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all PP functions of order £ on {7).},_0, under the continuity constraints given by
{v:}i4 ", will be noted P¥ . Clearly PX, C Pt.

Let us now define the linear functional A; and the function ¢;; such that
D f(m:) ; 1=0
Aif = ¢ . ; :
jump, Dif ; i=1,...,Ng—1
b = (m—m) /5t 5 i=0
N (77—171'1{-/]! ) i=1s---)Nd*1

for § =0,1,...,k— 1. We also note that ¢; € P¥ and that
Aij®pg = Oiplig ,

with &;; as the Kronecker delta. Consequently, the kNy functions ¢;; are linearly
independent and therefore form a basis for P;. A function f € P* has therefore a
unique representation

= ZZ (A f)i5

which is given in detailed form by

Ny—1 k-1

fa) = Z(” 2F b + 3 Y AomE % fump, D] - (B.8)

j=0 i=1 7=0

By restricting the basis ¢;; with the continuity conditions (B.7), which can be directly
applied in (B.8), it can be shown that the set

¢,‘j for j=Vi,...,k—1 andi:O,l,...,Nd,

form a basis for the space Pf,',,, i.e., forevery f € IP:',, there is a unique representation

Ng—1 k-1

Z Z a,-,-¢,-j . (BQ)

=0 j=0

Although of great theoretical interest, this result is not so easily applicable in practice
because of the possible stiffness problems that may result from the use of the truncated
power basis in numerical computations.
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TABLE B.1. The divided difference table corresponding to (B.10).

t1 | f(t)
[t1, t2]f
t2 | f(m) [t1, 22, ta}f
[ta, t3]f [t1--- s tn=i]f
ts | f(ts) : [t1s--- ,talf
: [tg,...,tn]f
tn-1 | f(tn-1) (tn—2.tn_1,talf
[tn-h tn]f
tn | f(ta)

B.2 Generalized B-splines

The B-spline formulation, used here in its general sense, comes as an efficient and
practical way of circumventing the stiffness problems associated with the truncated
power basis described in the previous section.

Let us first begin by considering a new set of of non-decreasing points {¢;} C
[m0, N, |, called knots; the relation between the breakpoints and the knots will be
specified only after the introduction of a few more definitions (see TABLE B.2). These
knots are ordered so that the repeated points occur together, i.e., if ¢; = t;;.,, then
t; = tiy1 = +-+ = tipr—1 = liyr. Furthermore, let us also introduce the divided
differences of f, noted [t;,... ,%;+r]f, and such that either ¢; = ¢;,, and then

1df
[tu--- 1tr.+r]f - ﬁ dn,. . ’
or else t; # t;,, and

[ti+1: ceey ti+r]f — [tt': see ti+r—1]f
tigr — b

[t'h ey ti+r]f = (B]'O)

See TABLE B.1, for an example of the set of divided differences corresponding to (B.10).
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TABLE B.2. Knot multiplicity according to the number of continuity conditions
imposed at each breakpoint.

o m T cee N1 N
n =0 Vo v3 UNy—1 vy, =0
k—uv=k k—1rn k-3 oo k—vN,1 k—vN, =k
t; te+1  f2k—1p+1  --- . N, +1
t tok—un t3k—vz-ua .o in, tN,--{-k

The [th normalized (and generalized) B-spline of order k£ for the given knot se-
quence {t; } is denoted by B,(:) (n), and is defined by

BI(,I:)(T]) = (tH-k - t[)[t[, ey t[+k](‘ - T])I_‘;__1 s V‘I] eR . (B.ll)

The notation (- — 7)5~! is used to express that the kth ordered divided difference
of (t — n)%~! is considered as a function of t alone, at a given fixed value of 7.
From (B.11), and the definition of the truncated power basis, we may see that the
B-splines B; = B,(:) have a local support, viz.,

Bi(n) = 0 for né&{tnti].

The notation B is used for short when the set {¢; }, and the order k can be inferred
from the context.

An important theorem, due to Curry & Schoenberg, states that for the previously
defined set of breakpoints {7; }¥¢, and for the given set of non-negative integers
{ v; }¥4, with v; < k—from which the sequence of knots {¢; } 7% is determined with
the relations in TABLE B.2—the B-splines functions introduced in (B.11) form a basis
for the PP space IPfM, . Consequently, the dimension N, of the resulting B-spline space
is given by

Ny Ny
N, = k+ Z(k —u) = kNg—Y v = dimP%,, (B.12)
=2 =2

where N, is equal to the total number of piecewise polynomial coefficients minus the
number of continuity conditions defined by the set of integers {»; }.
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In a more technical description, the set of knots is equal to the set of breakpoints,
in terms of values, with an additional possible redundancy of values according to
the continuity level imposed at the breakpoint. The maximum number of continuity
conditions that can be imposed at a breakpoint, without degeneracy, is k — 1, as can
be seen from TABLE B.2. In that case we obtain that B; € C*~2, as it was considered
for the development of the numerical method presented in Chap. 2.

The definition of B-splines given in (B.11) is also formulated in terms of the
truncated power basis. As it was mentioned in the previous section this may lead to
some stiffness problems. De Boor showed that the following recurrence relation (see
the development in chapter X of his book)

- ¢
BP(m) = —1=%_pBEV(p + e B m), (B.13)
tyk—1— U tivke — iy
with
. <
BO(p) = { 17 BST<hn (B.14)
0 ; otherwise

does lead to the same result without the stiffness drawbacks.

Amongst the other important results that can be derive from the above definitions,
we have that the B-spline basis form a partition of unity, viz.,

ZB(") =1 and (Z B("’) =0.
{

Also, the derivative of a B-spline function of order k£ can be exactly represented by
B-splines of order k£ — 1 such that

(Za B"") Z(k—l) — %1 gl

tiye—1 — U

This last result can be used to determine each one of the k£ piecewise polynomials
that form a B-spline. An example is given in F1G. B.1, in which we have represented
the 4th order spline of F1G. 2.2 with its four constituting polynomials.

The B-spline projection of some function f(n) can be done in various ways, here we
use an integral-type projection in which the B-spline coefficients a; can be determined
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FIGURE B.1. The 4th order B-spline of F1G. 2.2 and its constituting polynomials
P; (i =1,...,4). The sub-domains that define the support of the B-spline are
identified with the “e” symbols.

according to

d NNy
By B, dn = / By f(n) dn .
10

Z o /-mv

{ o
Furthermore, since the B-splines are formed from piecewise polynomials, we can use

this property to decompose the domain integral into a sum of sub-domain integrals,
such that

/ﬂ:’"“[...]dn = ﬁ:[tl dn |

The integrand in each sub-domain being formed from polynomial expressions, the
integrals can thus be evaluated numerically by some Gaussian-type quadrature (see
also App. C). At the end, results an algebraic system of equations

[Pur] {au} = {fe},

from which solution the spline coefficients are determined (see also App. D.5).



Appendix C

Matrices and Nonlinear Term

In this appendix, we include in the first part the detailed expressions related to
the construction of the inertia and diffusion matrices introduced in Chap. 2, and
also discussed in Sec. 3.3. In the second part of the appendix, we give the detailed
form of the various expressions related to the computation of the nonlinear term,
in complement of the discussion of Sec. 3.2. Some of the material presented here is
redundant with what can be found in the report of Loulou et al. (1997). We have
nevertheless chosen to include it here for ease of access, and also for self-containment
reasons.

C.1 Inertia and diffusion matrices

The inertia and viscous matrices can be parametrically expressed in terms of purely
radial matrices. Before giving their definition, let us first introduce the following
notation:

[Mik,j]y,l = _/; fo)(‘r)ij)(r) r* dr | (C.1)
with ij) = d? Gy/dr?. We furthermore have

LE _ G = B
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d' G, dnd B,

dr! dr dn ’
£6. _ dndb , (dn)' B
dr?  ~ dr? dp dr dn?

and so on. Whenever the context leaves no ambiguities, we will drop the variable
dependence of the different functions to alleviate the notation. Replacing these values
in (C.1), the matrix is now written in terms of the 7 coordinate only, such that

1 i : dT
(M5, = [ GG r* Tan. (C2)
0

In the next step, we use the domain partition to write

Tg+1 i dr
[ME),, = / cHGY L
e
- z‘[z oo e ] (2 w)] .
q=1 Lp=1 dn n=1p df
with for each ¢,
| Mg+ — Tg Tlg+1 + Tg
T = —2——' fp + —2_ . (C3)

The & (€ [—1,1]) and w, are respectively the coordinates and weight factors for
the Gauss-Legendre quadrature (for numerical values, see e.g., Abramowitz & Ste-
gun (1964)). The number of integration points Py is chosen, according to the order
of the B-spline used, to approximate the integral as close as possible to machine
accuracy.

We define two additional “boundary” matrices, namely

Mg = Gr(n=1)Gi(n=1), (C.4)
Mgp: = Gi(n=0)Gi(n=0). (C.5)

Consequently, these matrices will be non-zero only for I' =! = N, in the case of Mp;
and U, [ € {1,2} for Mp,.
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C.1.1 Imnertia matrices

According do the definition of the inertia matrix in (2.44), for each modal family (see
TABLE 2.1), we have:

e k. #0, kg >0

AT = K2[(k3 - 1)Mio+ M}, + Mp]
k2 [(ke + 1)Mygqo + M)
2k2 Mo + (ko — 1)* Mgy + MY,
AT = kZ[(ke+1)Myq+ ME,]

> >
i
[

[ ] kz=0, k9>0

AT = (K~ DM+ M}, + May

A; =0
AZ = (ks —1)°Mgy + M,
At = 0

L4 kz-',éo, k9=0

AI = kzMol.o
kz Moo
2kZM3 o + Mgg + M},
AT = KM},

> >
ey
(.
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® kz=0, ko=0

AL = Mg
A =0
AZ = Mg
At =0

C.1.2 Diffusion matrices

In a similar manner to what was done for the inertia matrix, the viscous matrix
definition (2.45) gives us for each modal family (see TABLE 2.1):

® k,#O, kg >0

Bf = _;_ze [k2 [(k3 — 1)Mgo + My, + Mp1) + (k3 — 1)>Mgg+
(2k3 + 1) M}, + M3,]
B: = _I’;_i [K2 [(ks + 1) Mo + M2o] + (ko — 1) [(ke + 1) Mg + M%) +
(ko +2)M}, + M2 ]
B- = _% [2kSMEq + (kE —4K3 + 2K + dkp — 3)(Mgd — M)+
3k2 [(ke — 1) Mgy + M1 ] + (2k3 — 4k + 3)M [} + M ]
k2

(K2 [(ke + 1) Mo + M3 ,] + (ks — 1)? [(ks + 1)}Mgg + M, ] +

- Re
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e k;=0, kg>0

® k. 7#0, kg=0

o k.

k?
" Re

k2

p—

Re

1 _ - -
= o [2KMY — 3(M5S — Mo — Mi}) + 3K2(Mgd + ML) + M)

k3

Re

0, kg =0

1
=~ (ke — 1)°Mgg + (2k3 + )M}, + M3,
=0
1
= —p= (k5 — 4K + 2K + 4ko — 3)(Mg§ — Mpz)+
(2k3 — 4ke + 3)M} + M},
= 0

- [K22M, + Mg + M)

[E2E2MG, + MGg + M)

[k2k2Moo + Mg + My,

1 -
B ~Re [Mo,é + M11,1]
B = 0
- 1 - -
B- = ~ %2 [M[} — M} + Mpg,)]

Bf =0
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C.2 Nonlinear term and related arrays

The computation of the nonlinear term {F*} involves the evaluation of the integral

(see (3.3)) |
(V;,F) = LgL /LO/LS/ - F rdrdfdz ,

which writes in long (see (3.5))

Lale / / [ me':n: e~ ka0, [Z Z Z o nwfn L€ eikol gikez o
v (ZZ Za[ mene Wiom.n. eik°°oeik":)] rdrdfdz .

l. M. nNe.

(C.6)

for both “+” and “—" classes and for every indices ', m’' and n’. The sequential
evaluation of all sums and products can be simplified by proper reordering of the
different terms.

Let us first consider the physical components of the vorticity and velocity vectors.
From the vector functions in TABLE 2.1, we have

wr(r,8,2,t) = aGi(r) + birGy(r) + cr 2Gi(r) + dir'Gu(r) (C.7)
UJG(T, 9, Z,t) = G[G[(T) + fl(r 1G;(7’) i 2Gl(r)) +glG;'(r) ) (C’S)
w.(r,8,2,t) = hr7'Gi(r) + (my + 25)Gy(r) + 3irG{ () , (C.9)
and
'u,-(T', 61 zZ, t) = lel(r) 3 . (C]‘O)
ug(r,0,2,t) = FrGir) +mGi(r) , (C.11)
u(r,0,z,t) = —qGi(r) — fir 'Gu(r) , (C.12)
where it is understood that each component a;,b;,... is a function of #, z and ¢,

i.e, a; = a6, 2,t), etc., and that summation over ! is implied, i.e.,

N,
aGi(r) =Y aGi(r) .

=1



APPENDIX C MATRICES AND NONLINEAR TERM 178

These are the detailed forms of the symbolic expressions introduced in (3.6) and (3.7).
The Fourier transformed scalar components are given by

a‘ = _ikz(az-m,n + al?m.,n)
~ —ik2a)}
b =
0 ) ko =0
a = —iko(ke - 1)a;nn
d[ = —ikga,‘mn

o
[

kg (kealtnn + al:rm)

fi = (ke — 1)y,

=~ ~Qmy
* { 0 ; ko=k.=0

" { k(1 — ko) [(1 + ko)t + Cipns]

(1 - kg)altnn ; ke=0

( k.af

o= 9 a[fnn ; k:=0 and kg >0
L 0 : k=0
[ —ik. (ke + Qfnn)

k= —ikgaj, ; k;=0 and kg >0
{ 0 ; k:=kg=0

7?), _ kz (al-*r-nn + a;nn)

LT aj c k.=0
imn ’ =

for which we have impilicitly assumed the variable dependence on ¢, kg and k., viz.
U = U (t) and d; = dy(t; ko, k) -

Because the radial integration introduced in (3.12) involves only B-splines func-
tions, it can be precomputed at once befcre entering into the time marching procedure.
Recall that the related radial integrals involve triple products of B-splines having a
generic definition in the form of

i.7,8

Fhdue, = [ GPOIGPOGIE) *ar. (©13)

The global topology of one such typical three-dimensional array is shown in F1G. C.1
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N,
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*
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-t

FIGURE C.1. Topology of a generic three-dimensional array F¥; ,. The global cube
is of dimension N,. The non-zero entries are identified by the shaded volume. For
a given value !’, the two-dimensional array of non-zero entries associated with I,

and [ is sketched in Fi1G. C.2.

2k—-1

2k -1 ’

Y

FIGURE C.2. A two-dimensional “cut”, for a constant value of !’ away from the
edges, from the three-dimensional array shown in Fi1G. C.1. The non-zero entries,
for the values of I, and [, are represented by the shaded area.
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and C.2. The numerical evaluation of the 22 resulting particular arrays is carried
out according to the same procedure as for the Mf; matrices, but this time with a

higher number P of integration points. The number Pr is chosen, according to the

B-spline order, to bring the integration result to machine precision accuracy.

Now, the equivalent radial convolution sum, symbolized by (3.13), is detailed in

the following expressions:

Iy

1

T;

o

(e fr + hu.my) Fo o + (€191 + hu i) Fy o +
(. + 240 ) (muFg g, + JtFaa) +

fi. [fl( 0_,01,1 - Fo—,oz,o) + gl(F(?,I.l - FOTII,O)] +
gt (f:Fg'o,z + giFg1.2) + Ju (mlFoz,o,z + 51Fg12)

(a;,m; — ey kl)F(?,o,o + (c;.m[ + fz,kl)F(foz_o + a;,j,Fol'l,o +
c.jiFgio+ dritFo11 — uLkiFoos +bu(muFgo, + iFey 1) +
(dimu — frki)Fgoa

(a.mi — e ki)Flog + (comu + fk)Figo +aniiFiy o +
Cl.le{),L,O + dt.jtF11,1,1 — 9. lell.D,2 + by, (mlF12,0.1 '*'le13,1,1) +
(dr.mu ~ fiki)FLo,

(au, fi + ha, kl)Fr?,o,o + al.ngc},l.o + e (fiFgde + glFo—,11,o) +
b gtF gy + (b fr + mu ki + 25, ki Fyg ;) +
d;, (leoTol,l + @iFg 1) + i kiFgoa

(ar. fi + hu k) Floo + al-glFﬁx,o + . (iFo0 + glFf,Lo) +
bigiFY ) + (b fi + mu ke + 25 ki FEg ) +
di. (fiF o1+ aFty1) + dikiFlg

evaluated in the physical space. Note that in these last terms, the double summation
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over the indices [ and [, is assumed, i.e.,

Nr N,

Bz.leuo,n,o = EZ e fi [F l?.O,O]r,z,z. :

la=1 I=1

Finally, the nonlinear term is obtained, after the Fourier transforms, by the last
following expressions:

{F*}, = va(Gkelly — &) — 635, (C.14)
{F}, = 7-Gle - &) +x.TF — x-T7 , (C.15)
with
k.
=4k §={ 1 ; k, =0 and ks >0
T+ 1 ; k=0 p R = o
0 3 ka =0



Appendix D

Complementary Notes on Implementation

Thi appendix includes a series of miscellaneous topics related to the implementation
considerations discussed ir Chap. 3.

D.1 Time integration

The time integration scheme used was first presented by Spalart et al. (1991). We
identify it here as the SMR (for Spalart, Moser and Rogers) scheme. Following the
presentation done by Spalart et al., the scheme can be derived by considering the
model equation

66_1: = L(u)+ N(u) = R(u). (D.1)

The operator L(u) stands for a general linear operator and N(u) for a nonlinear
one. The nonlinear operator can in turn be linearized by the following Taylor-type

expansion
1 2 3
N(u+d6u) = N(u) + Déu + §£6u + O (6u®) ,
where
oN _ N
D = E [} g = auz b]

u u
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and are respectively linear and bilinear in du. For example, the linear operator D
also appears in the generalized Newton-Raphson method, and the discrete version of
D is associated with the so called “tangent” matrix (Zienkiewicz & Taylor, 1991).

Let us now consider the Taylor expansion in time of (D.1) around the point ¢ such
that

du  At28%u  At?8u 4
u(t+At) = u + Atﬁ + <53zt et O(At*) . (D.2)

After a few manipulations of the above definitions, it can be shown without much
trouble that

aaT;l = [L +DIR(u)
and that
Pu 2 2
>z = L+DPR(u) + E[RW] .

Replacing in (D.2) we obtain

At?
u(t+At) = u+ AtR(u) + T[L + D](R(u)) +

ar
6

(D.3)
[[L+D](R(u)) + E[R()]*] + O(At?).

A fully third order scheme in time should match this Taylor expansion exactly. Spalart
et al. proposed a general scheme in the form of

u, = u,+At[{L{xqu, + fu.) + 1 N(us)] , N (D.4)
U.. = u.+ At[L(azu, + fou,.) + v2N(u.) + ClN(un)] ; (D.5)
Uptl = U + At [L(al‘l u,. + ﬁau‘n+l) + 73N(u") + C2N(u‘)] ’ (D'6)

where the first substep amounts to a CN/BE! scheme but with modified coefficients.
The other two substeps are in turn equivalent to modified CN/AB22 schemes. There
are 11 coefficients but exact matching between (D.3) and (D.2) would require 17
equations. These equations can be obtained in a very straightforward but also very

1The “CN” stands for the Crank-Nicolson scheme while “BE” is for Backward Euler.
2Here, “AB2” is for the second order Adams-Bashforth scheme.
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tedious manner by properly expanding (D.4)-(D.5) and equating with the correspon-
dent terms in (D.3); a task well suited for a symbolic mathematics software such as
MATHEMATICA. We do not write the full system of equations but rather a reduced
one which is obtained after imposing the same time interval length for L and N such
that

a+p0 =m ; aa+B = +G 7 aatfs = 13+G (D.7)

hence leading to 8 equations for 8 unknowns. More Specifically, for 1st order:

Nn+rvr+mn+a+e =1 (D.8)

for 2nd order

TBn+r+0)+n(G+7) = % (D.9)

Nno+mn(r2+6)+(r2+6)6+

. (D.10)
B+ m+712+4)+Br+E) = 3
and finally, for 3rd order
Y1723 = Eli. (D.11)
Y+ @) +rnn+a+m)? = ';‘ (D.12)
1
Balvs(m +v2 + G1) + MGl +nr(n+ &)+l = 3 (D.13)
Hnb + (e +G)m + B +nbilr+ &) = % (D.14)
(n+B8+B) (G +72)+ B+ B)n + BG +
(71 + B3 + B2)vs + (Bs + Bu)m + B2l + (D.15)

(72 + Bz + B2)v2 + (B3 + Bu)m + Blvs +

(B + B + B+ B = %
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This system of nonlinear equations (D.8)-(D.15) does not seem to have a unique
“workable” solution. The authors still proposed the following set of coefficients:

w® 38
T 1% "7
3 53 5 17
ar =—75 ‘62:54' =15 C1="@
1 1 3 ]
wm=z b=z m=j G2=-135

which satisfy all but the last equation. In (D.15) the RHS term actually equals
119/640 which gives a mismatch of 37/1920 (= 0.0193). The resulting scheme is
therefore of 3rd order on the convective and the mixed terms while being formally of
2nd order on the diffusive term.

The curve of the marginal stability of this scheme is shown next in Fic. D.13.
The curve is given in terms of the simple model equation

du

dt

in which A is complex. The imaginary part of the coefficient A can be associated

= \u,

to some transport/convective term while the real part can be associated with some
diffusive term. Note that in the asymptotic limit of very viscous problems, the scheme
tends to unconditional stability (implicit integration of the diffusive term) so it will
not close on the left. Furthermore, it crosses the imaginary axis at v/3 and very
slightly overboard in the positive region as for RK3 schemes (Canuto et al., 1988).
Inviscid flow computations are theoretically stable but in the absence of any dissi-
pation term, energy cascade to smaller structures can rapidly saturate the spatial
resolution. Nonetheless, this allows for maintaining relatively large time steps even
at moderate values of Re and therefore proves more advantageous than the CN/AB2
as will be seen in the comparison below. In practice, CFL numbers of 2 and possibly
higher according to the value of the Reynolds number can be used.

Comparisons have been made between the SMR and the CN/AB2 schemes and
are illustrated in the following figures. The results were obtained by considering the
solution of a linear transport/diffusion equation (i.e., a linear version of the Burgers

3The data used to plot the curve were kindly provided by R. Brochu.
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FI1GURE D.1. Marginal stability curve for the SMR scheme. The scheme is stable
in the region at the left of the curve.
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FIGURE D.2. Comparison or error between the CN/AB2 (“0O” symbols) and the
SMR (“o” symbols) schemes. The total solution error is computed in the physical
space. See text for additional comments.
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FIGURE D.3. Comparison or error between the CN/AB2 and the SMR schemes.
The total solution error of F1G. D.2 has been decomposed in a) its amplitude com-
ponent, and b) its phase component. These results are computed in the spectral
space. The symbols are the same as in Fi1c. D.2.
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equation). In terms of a non-dimensional wavenumber k£ and a Reynolds number Re,
we show in FI1G. D.2 the total solution error. In Fi1G. D.3 we show the decomposition
of the solution error of F1G. D.2 in terms of its amplitude and its phase component.

D.2 Regularity conditions

In this section, we give the different expressions related to the imposition of the
regularity conditions at r = 0. Again some of this material is redundant with what
is presented in Loulou et al. (1997); the same considerations about ease of access and
self-containment applies here too.

Note that the clever construction of vector functions of Loulou et al. allows form
an identical implementation of conditions for both the + and — classes. This is one
of the main factor for which we opted for these expansions rather than the ones of
Leonard & Wray, for example.

Before discussing the direct implementation, recall some properties of the B-spline
functions (results derived from App. B). More specifically, the partition of unity

N,
> B =1. (D.16)
=1

Summation over any order of derivatives will obviously gives 0, i.e.,
N,
SN i
; ﬁ Bi(n) =0, (D.17)

for 0 < n < k; for n > k, the result is trivial since d* B;/dn* = 0 for all [.

The regularity conditions (2.11) are formulated in terms of the true radial coor-
dinate r but can be considered in terms of 7 without loss of generality since the two
coordinates coincide at r = 0 (the Jacobian is equal to 1). The regularity conditions
can therefore be written

N,
> at.Bin) ~ 17 P(?) (D.18)

=1



APPENDIX D COMPLEMENTARY NOTES ON IMPLEMENTATION 189

as 7 — 0 and with P(n?) being a polynomial of the appropriate order (without the
constant factor when kg = 0). This parity condition is imposed by constraining the
odd (even) derivatives to zero, at 7 = 0, for odd (even) values of kg.

The regularity conditions are imposed on a linear combination of weight vectors
formed by

N,
Wi = ) bu Wi, (D-19)
n=1
such that W? must be regular. This vectorial condition can again be directly brought
down to the spline function level so that we now have

Nr
D BarBa(n) ~ n*7'P(n?) . (D.20)

n=1
Following the same principle as for the basis vectors, the proper linear combinations of

weight vectors, satisfying the required conditions, can be determined by the following
sets of equations:

® kg odd
o k even
[ 1 0 0 ]
_ | Bu 0 0
B, B, 0 ©0 6 --- 0 0]]|] 0o 1 0
B" BY BY BY 0 -~ 0 0 Bz Bor o _ o
S O o o0 0 ’
BY) p¥ B pP p@ ... B¥ ¢ : : :
" | Bua B2(d—1) 0
0 0 1 |

(D.21)
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o k odd
1 0 0
- - 0 0
B, B, 0 0 0 - 0 fu
B{” Bgl BIII BIII 0 .. O 0 1 0
SR T . Bz B 0 | =[0];
5P B B Bp s B || P
| Bia Boa-1y - Bar
(D.22)
® kg even
o k even
[ 1 0 0
- 0 0
B, 0 o0 0 o0 --- 0 Béll o
B” B B B" 0 . 0
! oy i Bz Ba 0 = [0] ;
® B® pE BE) aE . p@) : : oo
L Bia B2qa—1) - Bar |
(D.23)
o k odd
[ 1 0 0]
B 0 0
BL 0 0 O O --- 0 0 0 1 0
BfY Bf BY Bf 0 --- 0 0|]| pa Ba 0 - [0];
S S SR S B o
B® By p» p®» g ... ¥ g : : :
Bra  Bara-1)
0 0 - 1]

(D.24)
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Let us briefly consider an example on the system of equations
Aa = b. (D.25)

If we consider the particular case of ks = 1, the for cubic B-splines (k = 4) the set
of linear relations is determined by

1 0
[B{ By 0] Bu 0| = [0]. (D.26)
0 1

In terms of the weight vectors, this gives

W, = W: + BuW,,

w (D.27)
W3 = W37

and results in a coupling relation for the first two lines of matrix A. More specifically,
if the matrix is initially given by

an a2 a3 a4 0 0 --- (071 b
Q21 G2 Q3 Q24 G5 0 --- s by
= , (D.28)

Q31 Q32 a3z Q34 Qa35 Q3 - o3 b3

applying the regularity conditions of the weight vectors gives the following modified
matrix

dn @12 Qi3 G4 Gs 0 --- o, by

Q21 Q22 Q3 Q4 QA5 0O --- (473 ba (D.29)
- - - - - - = - , .
@31 Q32 Qzz Qzq4 Q35 A3z *°* a3 b3

where a@,; = a;; + Buaz; and I;l = b; + Buib,. Now, because the second equation
(line) is linearly dependent, it needs to be suppressed. In this case, we rather choose
to replace it with the regularity condition of the B-spline coefficients «;. Thus, we
finally obtain

Gy G2 Gi3 Gy a5 0 --- a; b

B B, 0 0 0 0 --- s 0

@31 Q432 Q33 G3q4 Q3 Gze - as bs

i

(D.30)
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D.3 Boundary conditions

In this section we give a brief synthesis of the boundary conditions that need to be
imposed in both the unbounded and the bounded cases. As it was already discussed
in Chap. 3, the boundary conditions amount in all cases to the imposition of a series
of zeros.

TABLE D.1. B-spline coefficients for the harmonic decaying boundary conditions
of ¥, at 7 = 1. The conditions apply equally to k, =0 and k, # 0.

k‘g=0 k9>0

+ - + — =t =

ay, =0 Ay, gy, =" =ay, =0
k:

ay, =0 Uy, kg =" =@y =

TABLE D.2. B-spline coefficients for the no-slip boundary conditions at r = R,

kg =0 ke >0
k:=0

ay, =0 ay,_; =ay, =0

af =0 oy = af =0
k, #£0

ay, ] =0y = 0




APPENDIX D COMPLEMENTARY NOTES ON IMPLEMENTATION 194

D.4 Modal groups and FFT’s

The modal groups discussed in this section come as a generalization of the modal zones
presented in LMMC’s report, and allow for an arbitrary variation of the azimuthal
truncation in the radial direction. Because of the general character of this approach,
an extension to include the variation of the longitudinal truncation N, could relatively
easily be made, but this would come with an extra price to pay in the computation
of the nonlinear term.

In the first part of this section, a set formulation is used to present the modal
groups, briefly introduced in Chap. 3. In the second part, we give some brief infor-
mations related to the FFT used for the computation of the nonlinear term.

D.4.1 Modal groups

We begin by the introduction of some definitions. First, a modal zone is defined
as a (mapped) radial sub-interval [n;, 741 [, with 7; < 7;41 to which is assigned a
given truncation Ny. The B-spline breakpoints are a convenient choice for the 7;.
More specifically, let us define a modal zone p as the interval [n,_;,7m,[ with the
corresponding zonal truncation Né?. Let us now introduce an associated set of zonal
B-spline indices I,(,’;.) = {[; }, such that

l; € I,(";) if 7 €[Mp-1,mp[-

An illustrative example of such a set will be given a little later on; as for the 7,
they are the collocation points associated with the B-splines B;,. There is some
arbitrariness in the choice of definition of the 7, as long as 7; € [#, ti+«x ], here we use

1«
T = z‘_—f;twj.

The set of all zonal sub-intervals [7,—;,7, [ form a partition of the radial domain,
viz., '

U["li~la77i[= [0,1] and (Mo-1,p [N [Mg-1,me{= 0 if p#gq,
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where () is the empty set. Consequently the I form a partition of the set of B-splines
indices I, = {1,2,... ,N; }, i.e,

U 1,52 = I, and 9n1Y =0 if p#q.
i

For computation purposes, instead of working with the modal zones we rather form
modal groups. The qth modal group I is defined such that

I(Q) = U [(1) with Na(l) N(Q)

where Nég is the gth value of the set Njc of “distinct” truncation levels Nég € Nyz,
in ascending order. More specifically, this gives Nfgg = N,S‘Q for some j, but Ny; @ <
("H) (equal values of Ngz U) for different zones are considered as being the same for

a group), and also with Néc =0.

Let us use an example to better illustrate the matter. Suppose that we have a ra-
dial discretization formed of 12 B-splines divided into 4 zones, with Npz = {4,6,8,6 }.
Suppose furthermore that the application of the collocation point criterion exposed
above gives the following correspondence between the truncation levels N, (') and the
B-spline indices [,

Zone 1: N{J =4, I(l)—{1234}'
Zone 2: N2 =6, I f,"z>={456}
Zone 3: N =8, IY ={7,8};

Zone 4: Niy =6, I(“’_{g 10,11,12} .

From this, we start by constructing the set of ordered truncation levels such that
Noc ={0,4,6,8}. The 4 zonal sets I,s'z) will hence give 3 modal groups /, (") & (the 4th
one being obviously an empty set), such that

(‘1) U (‘) with N(‘) N(Q)

=1
whence
1§ = {1,2,3,4,5,6,7,8,9,10,11,12} ,
2 = {4,56,7,89,10,11,12},
2 = {7,8}.
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Now, because of the B-spline overlapping, when computing the FFT’s related to the
convolution sum in the nonlinear term (see Chap. 3), the “effective” modal groups
must be extended with k£ — 1 indices from higher to lower azimuthal resolution. As-
suming that in the example above we have quadratic B-splines, this means extending
the modal groups by two index values, such as to finally obtain

Il

I§% {1,2,3,4,5,6,7,8,9,10,11,12} ,
I2 = {2,3,4,5,6,7,8,9,10,11,12}
12 = {5,6,7,8,9,10} .

These modal groups are pre-organized in look-up tables for the code so that for each
value of !, in TABLE 3.3, the dimension of the FFT's (line 1.(b) and 1.(d) in the
table) are directly available.

D.4.2 FFT’s and the collocation grid

The two-dimensional FFT introduced in Chap. 3 (Sec. 3.2) is carried out by two suc-
cessive one-dimensional complex FFT’s, from the FFTPACK library. The dimension
N of each transform must be such that N = 29374°5%, or otherwise a “slow” DFT
is used. Note also that since the transforms are executed on a collocation grid, the
dimension N is therefore associated with the “de-aliased” truncation; the effective
number of computational modes ( /Ny or V,) is thus determined by %N . In the im-
plementation, the number of collocation modes is set independently of the number of
computational modes so that partially, or even fully, aliased calculations may also be
done.

D.5 Projection of the initial condition

The projection of the initial condition onto the spectral/B-spline space coefficients
may be done from various types of field. In the following subsections, we give the
different matrices required for projections from vorticity and velocity fields; the cor-
responding boundary conditions are also given. The stream function fields mention
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in the last subsection apply for either axisymmetric or 2-D polar flows. In these latter
cases, the projection is simply a standard B-spline integral projection (see Sec. B),
and no boundary condition need be specified. In all cases, the initial field quantities
are assumed to satisfy the regularity conditions near the point r = 0; no regularity
conditions (Sec. D.2) are therefore imposed on the projection matrices.

D.5.1 Vorticity field

This initial condition projection is defined in terms of the vorticity w . Because this
vector field is divergence-free, only two components are required to completely defined
it and consequently to define its projection onto the scalar spectral/B-splines space
coefficients. Because of their appearance in the definition of most basic flows, we use
the € and z components. We then end up with an algebraic system of equations
given by

Voo~ +Viat = p; (D.31)

V;o~ +Viat = w,.

The definition of the matrices and the RHS term depends on the type of projection
used. We use here an integral projection such that

Do(l' ko, ka) = / Gu(r)Bo(r: ke, k.) dr (D.32)
Q

Bl ko k) = / Gu(F)@.(r; ko, k) dr (D.33)
4]

with the following set of matrices (see (C.1) for the definitions of the Mf; matrices),
defined according to the different families of modes (see Sec. C.2):

1) (0, 0) mode
Vy = M- M,
Vi =0
Vo 0
Vi = Mgs+ Mg,
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TABLE D.3. Outer boundary conditions for the vorticity projection: number of

zeros imposed.
Ve Vg vp V!
(0,0) 1 n/a nj/a 1

(kg,0) 2 n/a nj/a 2
(0, k) 2 n/a 1 1
(ke, k2) 2 0 1 2
2) (kg, 0) modes
Vi = (ke —1)[Mgg — Mgg] — Mg,
Vi =0
V; =0

Vi = (1-k)Mys +3Mg, + My,

3) (0, k) modes
Vi = kIMg,— Mg} + Mg — Mg,
Vi = 0

Vy = k[Mgy + Mg,)

VI = k[Mgg + Mg,]

4) (kg, k:) modes

Vy = EEMGE+ (ks — 1)[M, — MGE] — MS,
Vi = KlkaMg,
V; = kz[Mo_,c}'*'Mg,l]

Vi = k(- MG+ 3MY, + M|

The integrals (D.32)-(D.33) are computed through a Gauss-Legendre quadrature.
This requires that the Fourier-transformed components @y, &, have to be stored for
every quadrature points. The set of boundary conditions required to close the system
of equations is outlined in TABLE D.3, above.
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D.5.2 Velocity field

The initial conditions can be given in terms of the velocity vector components in a
similar manner as for the vorticity. In this case the projection matrices are given by:

1) (0, 0) mode

U; =0
Ug = Mg,o
U; = Mg,
ut =0
2) (kp, 0) modes
U, = 0
U = Mg, + Mg,
U: = Mg, +(1—ke)Mgs
ub> =0
3) (0, k.) modes
U; = kM,
Ui = kMg,
U7 = Mg, + Mg,
Uur = o0
4) (kg, k;) modes
Upg = kzMg,o
Us = kMg, +Mp]
U7 = My, +(1—ke)Mg,
uf =0

The boundary conditions corresponding to the velocity projection are given in TA-
BLE D.4.
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TABLE D.4. Outer boundary conditions for the velocity projection: number of
zeros imposed.

u; U uy uf

z

(0,0) n/a 0 0 n/a

(ks,0) | n/a 1 1 n/a
(0, k:) 0 0 1 n/a
(ka, kz) 0 1 1 n/a

D.5.3 Stream functions

The vector potentials ¥ used to construct the velocity vector expansions Wi
cannot be directly linked, in general, to stream functions since 6\1’,* # 0. Stream
function fields can nevertheless be used to define the initial condition, in the polar
and axisymmetric cases, by making use of the following considerations.

For 2-D polar flows, there is a stream function ,(r, ) such that

_ 1 8y, ) v = — v,
r 06 ’ o = or
For axisymmetric flows, there is a stream function ,(r, z) such that
_ 1 0, ) 0. = 1904,
r Oz ' =7 or

If we consider, for the axisymmetric case, a velocity vector u such that u = V x &y,
we then obtain 1, = riy. For the 2-D polar case, with u = V x 1/,&,, we directly
have v, = .. Both 14 and . can be used to define the the initial spline function
coefficients. Note also that for the particular case where kg = k. = 0, we have

Yp = W = —/0 uo(e) de
and
a = z d )
¥ /OU(Q)Q 0

or equivalently

Yo = -717/0 u.(0)edo .
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Without loss of generality, we may assume here that 1,(0) = 14(0) = 0, to overcome
the indeterminateness mentioned in TABLE 2.1.

D.6 Modal energy and growth rate value

Let us briefly look, in this section, at how we evaluate the instability growth rate
values A,, used in Chap. 4, from the Navier-Stokes solutions. Taking advantage of
the Galerkin formulation, we certainly may use of the following relation. For the
radially integrated modal kinetic energy, defined by

1 > -~
Bur = 5 [ 05 hok) 80 koku)rdr, (D.34)
0
the integral can directly be expressed in terms of the aj by
o0
/ U -lirdr = (%) [Afa* +Aa"] + (a7) [AZa” +A%at] . (D.35)
0

Furthermore, since

. di _ d 1

=12
dt —~  dt 2Iul ’

we can also expressed the time derivative of the kinetic energy as (see (2.25))

dit Eir. = (%) [Bia®+Bja” +F*] + (a7)* [BZa™ +Bfa*+F~] . (D.36)

The instantaneous growth rate A, can then be obtained by combining (D.35) and
(D.36) to give

1 d

A = g g B - (D.37)

This is the procedure identified with the label “(I)” in Chap. 4.

When the modal energy FEy,x, is small (i.e., small values of af ), (D.36) may
suffer from accuracy losses and the following first order estimate

M) = 2Punla) — BB l) | oy (D.38)
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may prove more reliable, provided that the time step At is small enough. This is
method “(D)”.

For sufficiently well resolved problems, both results should obviously tend to the
same value. According to the particular case tested and the resolution used, an agree-
ment to about five significant digits can be reasonably obtained. Such an agreement
between the two values gives an indication of consistent resolution between the inertia,
the viscous and nonlinear terms.

Let us simply end by noting the following relations for the “modally integrated”

energies

N:-1 Ng—1

By = Z By k. and E;, = Z Eiy k. - (D.39)
m=0

n=-N: +1



Appendix E

Linear Stability of Poiseuille /Stokes Flow

In the first part of this appendix, we briefly review the analytical closed form solution
of the stability of Stokes flow in a circular pipe. In the second part, we discuss the
construction and partial validation of the linearized transport matrix 6, introduced
in Sec. 3.6, in the context of a uniform, axisymmetric base flow.

E.1 Eigensolutions for Stokes flow in a circular

pipe

We provide here the analytical closed form solution of the Stokes eigenproblem for
circular pipe flow, defined as the solution of

2

e Vu, (E.1)

Au = -Vp +
with

u(x,t) = u(r)eilkl+kz)gdt o cc |

and u =0 at r = R, = 1. The vector field u is always understood to be divergence-
free.

The solution of (E.1), for k. # 0, was given by Salwen & Grosch (1972) (see also
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Loulou et al., 1997), as
1
As = “TRe (k2 + pB2) . (E.2)

with B, being the sth root of

o L,(ﬂ)] EALRNEACR . G2 (3
Jio (B)] LBJke(B) k:Iiy (k) k232

Jko and I, are respectively the Bessel and the modified Bessel functions of the first

kind of order kg (Abramowitz & Stegun, 1964). Note that here the Reynolds number

in (E.2) is only present as a scaling factor for the eigenvalue )\,. The corresponding

eigensolutions are:

@) (r; ke, k) = k:Ii, (kor) + c1Jkg41(BsT) — aadig—1(BsT) , (E.4)
k.
agS) (1‘; ka, kz) = ‘?Ika (kzr) - alea-H.(ﬁsT) - a2Jkg—1(ﬁsr) ) (E.S)

and

TENr; ke, k2) = k.dy, (ko) +

a; [kg + 1Jk,+1(ﬁsr) + Bs iy (BsT)| + (E.6)
k. T
% l:kor— 1Jk,_1(,537‘) - B I’c,—l(.Bsr)] .

The constants a; and a; are respectively given by

o = Folu(k:) — kT, (k)
' 2Jke+1(Bs)

and
o Kol (k) + eDy, (k2)
2 2Jka-1(ﬂs) )

In the particular case of kg = 0, we have

@ 0, k) = LGP, (E.7)
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with ;& being the sth zero of J,, ie., J, (J(’)) =0.

Extension of these solutions to the particular case of k, = 0, can be found in
Loulou et al. (1997). Because of the uncoupling between the “+” and the “—”
classes, two different sets of solutions are obtained, namely,

.(s) 12 -(s)12
Ay = U""“] and  A; = URC] ; (E.8)
with
J ~(s)
@ (r; ke 0) = kor**™' — ko ———k’(J“‘(;‘T) , (E-9)
TJkG(Jkg-f—l)
J (5
G5 (r; ke, 0) = krFot — J,Ejll—""u"{’%), (E.10)
Jk@( k0+1)
E?)(r; kaa 0) = Jka(J(S)) - (E.ll)

E.2 Eigenvalue solver

We present here some complementary informations related to the construction of the
linearized transport matrix O used in the eigenvalue solver introduced in Sec. 3.6.
More specifically, we give the details of the different arrays that arise when considering
an axisymmetric, uniform base flow field, i.e., for

Ux) = 0& + Up(r)és + U,(r)e,. (E.12)
Let us first decompose the general integral (3.30) in two parts such that
of = 17 + 117, (E.13)
and where
(7], = / (wi)" - (w7 -90) rar, (E.14)
and

(0], = /0 T (Wi)” (0-9W7) rar. (E-15)
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Here again 6 and v take the the values “+"” and “—” according to the combination
of vector expansions (see TABLE 2.1). Following the above notation, the different
matrices O] can be formulated, after replacing the various appropriate terms, by
some parametric combinations of purely radial arrays, having the generic form

NP, f GO (r)GO(r) UD(r) r* ar , (E.16)
with
de
(@) —
U® = —Ul)-&

A total of 20 arrays is required for the complete definition of all the terms in I] and
II3. For each family of modal pairs kg, k;, we obtain (using MATHEMATICA) the
following specific expressions:

e k. #£0, kg >0

Ii = —zkzkg [( 00+N001+N011+N102]
I7 = —ik? [ka- ooo+N 01+N102]
I¥ = —ik, [k,,((1—k9)Ngb.,+Nf(}1)+k(Ngoo+koNgol+Nou)]

IZ = —ik, [(l—ka) ooo+kz(No,h,o 001)'*' 101]

L = k2 [ko((kF — NG00 + NILo)+

k=((K§ + 1)Ngo1 + N5 + Nig, + Nita)]

ik? (ka"‘l)(me‘*'(k9+1)Nggo)+k((ka'*‘l) Ngo. +N1202)]
ik? [ (ko — 1)((ko + L)NGR0 + m>+kz((ko+1) Nioy+ Ngta)]

It

I

n

I

U5 = i [ka((1 = ka)((1 — ke)NEE,+ NS, + NIS_,) + N%Sp)+
k(1 — ko) ((1 — ka)Ngig -1 + N3Do + Nfoo)+
N111+2kz((k8 1) ooo'*‘kN:gx )]
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e k,=0, kg >0

+
It

I
Hnx

® kz-',léo, k9=0

|+

l-{—
|+

-+
14

Iz

nt

|+

l+
l+

ikg

tkg

= —ikg [N 600 + Nooy + Nf.'ol.z]
0

ike [(ke — 1)Ngp0 — Nip,.]
= 0

[(k2 l)Nﬂoo‘*‘ 112]

[(1 - ko)Ng,'(?,—z + Na 1,—1 Nla,'g.—l + Nﬁ’?,o]

0

—ik2Ngs,

—zk2N0 0,0

—ik2 [Nooo Noo 1+ Nipo + le,'ol,l]

K3k, NEQ,

ik? [k.Neiy — N&2o]

ik2 [k NGB, — NoSo]

ik: [NG5—1 + Ng 10+N1300+N1211+
2(kZN61,,(?1 NgOO)}
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TABLE E.1. Validation of the linearized transport matrix for a Poiseuille flow
in a pipe at Re = 9600. The first eigenvalue for the (1,1) mode. Top results
h-convergence with £ = 7; bottom p-convergence with N} = 35.

/\1 x 101
Ny
15 —0.27416712598 — i 9.62134530607
20 —0.23148573319 — i 9.50489579729
25 —0.23170798840 — i 9.50481392765
30 —0.23170795895 — % 9.50481396363
35 —0.23170795764 — i 9.50481396669
k
3  —0.22978913980 — i 9.50260578466
4  —0.23168978039 — i 9.50481730271
5  —0.23170786642 — i 9.50481424618
6  —0.23170796329 — i 9.50481396951
7  —0.23170795764 — i 9.50481396669
LW'  —0.23170795764 — i 9.50481396668
SCGY -0.2317 i 9.5048

t Leonard & Wray (1982): N =37
! Salwen et al. (1980)

For the particular modal pair ks = 0 and k. = 0, all expressions are naturally
zero. One may finally note that the radially bounded version of these expressions
can be easily obtained by making use of the appropriate modifications discussed in
Sec. 3.5.

The validation of the different expressions given above has been carried out for
both the bounded and the unbounded formulations; the general results were presented
in the different sections of Chap. 4. A more systematic algorithmic validation of
the assembly of the effective matrices and other relevant technical procedures had
nevertheless been previously undertaken by, among other things, comparisons with
the benchmark data of Leonard & Wray (1982). These latter validations results are
shown in TABLE E.1. The test was made for the first eigenvalue A, with k¢ =1 and
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k. = 1 of a Poiseuille flow (i.e., with the bounded formulation of the code BouNCYL-
LS), where

U(x) = 0& + 08 + (1—-r?)e,.

The Reynolds number considered—based on the centerline velocity and the pipe
radius—was Re = 9600. The uniform B-spline discretization used is seen to compare
quite well with the Jacobi method of Leonard & Wray.



Appendix F

Use of a Background Flow

The superposition of a background flow u,;, to the homogeneous field u (the subscript
“h” is implicitly assumed here) has been tested with the counter-rotating vortex pair
problem. The initial basic flow is defined in terms of two counter-rotating Lamb-
Oseen vortices, such that

we = G~ 5.,v;0) - Gla+5.v:a), (F.1)
where
2 z2 + 42
G(z,y;a) = r exp(———az—y) . (F.2)

The parameter a is the characteristic length associated with the vortex core size;
at a radius r = a, around the vortex center, the ratio of the partial to the total
circulation of the vortex “tube” hence defined is 0.632. The dimensional length and
velocity scales are respectively chosen as the vortices inner spacing b and the vortex
pair self-induced velocity (in the filament limit a — 0), i.e.,

- - - r
Leg = b d Upes =.— .
vef an ref 27h
The nondimensional circulation I" of a single vortex is accordingly given by
r
F = e— T 27[' .
Uref Lref

In F1G. F.1, we show iso-contours of vorticity for a vortex pair defined by (F.1), with
a = 0.1; in F1G. F.2, we show the corresponding initial energy ( Ey, ) spectrum. Note
that for simplicity, we limit here our considerations to 2-D polar flow fields.
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FIGURE F.l. Iso-vorticity contours for the initial counter-rotating vortex pair
defined in (F.1), with @ = 0.1. The contours are shown for |w;|max = 150 with
increments of Aw, = 15 (the zero contour is skipped); the left and right vortices
have respectively negative and positive vorticity, as indicated by the arrows. The
cross indicates the center of the computational domain.
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FIGURE F.2. Azimuthal energy spectrum corresponding to the flow field shown in
F1G. F.1. One may note the “odd symmetry” in the distribution of modal energy;
only odd value wavenumbers have a non-zero energy content.
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The vortex pair shown in FiG. F.1 will naturally convect itself downward with
with a velocity close to
r
Uy = 53 =1,
since we can consider that @ = 0.1 € 1. As a first step, we show the self-induced
translation of the counter-rotating vortex pair, computed with the code UNCYL and
using the following discretization:

e N, =177, k =4, partially uniform distribution of breakpoints in n with
4 points for 0 < 7 < 0.02, 6 points for 0.02 < 7 < 0.08,
54 points for 0.08 < n < 0.55, 6 points for 0.55 < n < 0.7, and
4 points for 0.7 < n < 1.0,
with L = 1.5;

e 6 modal zones (Lg = 27) with
Ny=4 (0<1n<0.01), Ng=8 (0.01 <7<0.03),
Ny =16 (0.03 <7 <0.05), Np=30 (0.05 <7 <0.3),
Ng=16 (0.5<1n<0.7), Ng=8 (0.7<7< 10 );

e CFL = 2.0 for which At varies according to the particular case considered (see
details below).

The Reynolds number, based on an individual vortex circulation, was set to Re =
/o = 6280; the diffusive time scale is 7, = 10, based on the vortex core radius,
while the convective time scale is 7y = 1, based on the reference length and the
velocity scale.

In Fi1G. F.3, we show the vortex pair at ¢ = 0.5; the corresponding energy spec-
trum is given in F1G. F.4. As the vortex pair moves away from the center of the
computational domain (indicated by the “light” cross in Fi1G. F.3), the energy con-
tent shifts from lower to higher wavenumbers. For obvious practical reasons, one
would wish to maintain the principal flow structures “stationary” in the computa-
tional domain. This can be achieved, in this case, by superposing an upward, uniform
background flow u,,, such that

Uph = Uy Sinfé& + u, cosféy . (F.3)
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The only additional “extra forcing” that results from this procedure is Fe = ugy X w
(see (3.4)).

The stationary vortex pair is illustrated in F1G. F.5 where a background flow (F.3)
has been added with u, = 1. The solution is shown at ¢ = 1.0, and the pair has
remained very close to its initial position. From the spectrum in FIG. F.6, we see that
the initial “odd symmetry” is preserved, and the higher wavenumber structures have
diffused. The appearance of energy in the lower even wavenumbers is associated with
the deformation of the vortex cores. Each vortex induced velocity field, combined with
the uniform flow translation, results in the generation of a straining field, centered
at the adjacent vortex location. Vortices of finite core size will therefore deform
under the action of this straining fieild. Note that the time scale associated with
the straining field is T, = 2xb?/T = 1, i.e., of the same order as the time at which
the solution is shown. Supporting the observation that the even wavenumbers are
directly associated with the vortex core deformation, is the Stokes flow solution shown
in F1G. F.7 and F.8. In that latter case, each vortex tube diffuses independently of
the other and remain circular. The comparison of both spectra (Fi1G. F.6 and F.8),
in which the energy content of the odd wavenumbers is practically identical, thus
confirms the observation.

All the computations shown here were carried out with a time step size criterion of
CFL = 2.0. According to the particular case treated, this resulted in different values
of At, that we consider in what follows. First, since the velocities are important
near the center of the domain, the use of modal reduction to alleviate the time
step size (see Sec. 3.4) is of critical importance here. For example, a single zone
(with Ny = 30) for the computation shown in F1G. F.5 would have required that
At = 2. x 10~* whereas the present multi-zone discretization gives At =~ 1.1 x 1073,
a factor 5 difference. For the free vortex pair in FiGg. F.3, the initial time step size
(with the same multi-zone discretization) was At = 8. x 10~%. This is because the use
of an upward background flow reduces the effective velocity near the center, where
the CFL constraint is highest, and higher velocities are therefore encountered in the
absence of the background flow. On the other hand, as the free vortices move away
from the center, so do the important velocities. The time step size is thus relaxed to
At == 1.4 x 1073 for the displaced vortex pair shown in Fi1G. F.3, at £ = 0.5.
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This brings us to our second point, which is seeking a compromise between the
spatial and the temporal resolutions, leading to a globally more efficient computa-
tion for this test case. A comparison between the two spectra in Fi1G. F.3 and F.5
show that for a given cut-off energy level, E;, = 10~° say, the displaced pair requires
about 3/2 more computational modes than the centered pair. Adding the upward
background flow u, = 1 to the displaced pair of F1G. F.3 however relaxes the time
step size to a value of At =~ 3.3 x 1073; a factor 3 compared to the centered pair
computation that also includes the background flow. If one recalls that the computa-
tion of the nonlinear terrn—the most demanding part of the calculation—scales with
O(Nglog Ng), then the 3/2 factor just mentioned above can be transformed into an
increment of approximately 1.7 in the computational effort (keeping the same radial
and temporal discretizations). On the other hand, the factor 3 on the time step size
directly translates into a saving of a factor 3. Thus, in this case it is more advanta-
geous to compute the vortex pair (with the background flow) in its displaced position
rather than its centered one: a reduction factor of about 3/1.7 = 1.8 in the CPU cost.

The evolution of the displaced vortex pair of FiG. F.3, from ¢t = 0.5 to t = 1.0,
with this time the addition of the background flow u, = 1, is shown in Fic. F.9
and F.10. It may be noted that this new ¢ = 1.0 solution could have also been
obtained by directly offsetting the vortex pair in the initial condition (F.1). As a
last comment, let us only say that the most “efficient” combination of spatial and
temporal resolution, for a given problem, depends on many factors, and it is in this
author’s opinion that some “heuristic” approach remains inevitable, at one point or
another, to find this best compromise.

We conclude this appendix by showing the results of a displaced and a stationary
vortex pair with a = 0.2; all the other parameters remain equal. The results are
respectively given in FiG. F.11 and F.12; and in FiG. F.13 and F.14. In this case,
the viscous time scale becomes T,, = 40. Also, because the vortices are bigger, the
deformation effects are more apparent, and the departure from the asymptotic self-
induced velocity u, = 1 can be felt, although only slightly for the solution time
shown.
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FIGURE F.3. The vortex pair of FiG. F.1 shown at ¢ = 0.5, with the same
iso-vorticity contours. After that short time, the vortex cores have only partially
diffused, but the pair has moved downward, as a whole, with a distance of ¢t Xuy =
0.5. See the corresponding energy spectrum in FIG. F.4.
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FIGURE F.4. The energy spectrum corresponding to the ¢t = 0.5 solution shown
in F1G. F.3 (the “e” symbols). The initial spectrum of Fig. F.2 is also shown
as a reference (the “0O” symbols). The initial “odd symmetry” is lost, and as
the vortices move away from the center of the computational domain, the modal
energy shifts towards higher wavenumbers.
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FiGURE F.5. The vortex pair of FIG. F.1 shown at ¢ = 1.0, with the same iso-
vorticity contours. The addition of a uniform, upward background flow u, = 1.0
maintains the vortex pair close to its initial position. The slight diffusion acting
on the vortex cores has the effect, here, to relax the resolution requirement, as can
be seen from the corresponding spectrum shown below.
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FIGURE F.6. The energy spectrum corresponding to the ¢ = 1.0 solution shown
in F1G. F.5 (the “e” symbols); the “O” symbols are for the initial spectrum. The
diffusion reduces the energy content at higher odd wavenumbers, but the deforma-
tion of the vortex cores gives rise to the energy content of the even wavenumbers.
Compare with the purely diffusive case shown in F1G. F.8.
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FIGURE F.7. The vortex pair of FIG. F.1 shown at ¢ = 1.0, but with pure diffusion
only, i.e., the Stokes flow solution. The visual difference with the Navier-Stokes
solution (the slight deformation of the vortex cores) of FI1G. F.5 is not so much
apparent here, but is better illustrated by the energy spectrum below.
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" FIGURE F.8. The energy spectrum corresponding to the ¢t = 1.0 solution shown
in F16. F.7 (the “o” symbols); the “00” symbols are for the initial spectrum. Both
vortices diffuse independently of one another; they remain circular and the “odd
symmetry” is preserved. There is thus no energy on the even modes, as opposed
to F1G. F.6.
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_+,

FIGURE F.9. The vortex pair of FIG. F.3 shown at t = 1.0, with the same iso-
vorticity contours. The evolution from ¢ = 0.5 to 1.0 has been done with the
addition of an upward background flow (uy; = 1). See the corresponding energy
spectrum in F1G. F.10.
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FIGURE F.10. The energy spectrum corresponding to the ¢ = 1.0 solution shown
in F1G. F.9 (the “e” symbols). The t = 0.5 spectrum of FIG. F.4 is also shown
as a reference (the “O” symbols).
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FIGURE F.11. Same as in F1G. F.3, but this time with e = 0.2. The iso-vorticity
contours are shown for |w;|max = 50 with increments of Aw. = 5 (the zero contour
is skipped). The corresponding energy spectrum is shown in Fi1G. F.12.
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FIGURE F.12. The energy spectrum corresponding to the ¢ = 0.5 solution shown
in F1G. F.11 (the “e” symbols); the “0O0” symbols are for the initial spectrum.
Compare with the equivalent a = 0.1 spectrum shown in Fi1G. F.4. The energy
content of the initial spectrum falls off more rapidly in this case, but again the
energy content shifts towards the higher wavenumbers as the vortices move away
from the center.
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FIGURE F.13. The equivalent of the vortex pair of Fi1G. F.11 shown at ¢t = 1.0,
with the same iso-vorticity contours, and the addition of. the upward background
flow u, = 1.0. Because the self-induced velocity is slightly smaller than 1 in this
case, the vortex pair has moved up, but not of a significant amount for this short
time. See also the corresponding energy spectrum in FIG. F.14.
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FI1GURE F.14. The energy spectrum corresponding to the ¢ = 1.0 solution shown
in F1G. F.13 (the “e” symbols); the “O” symbols are for the initial spectrum. Dif-
fusion is seen in the decay of the intermediate odd modes, vortex core deformation
is seen in the appearance of energy on the low even modes, and the slight transla-
tion of the vortex pair is seen in the “tail” of the spectrum at higher wavenumbers

(kg > 12).





