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Abstract 

The production of vesicles, spherïcal shells formed from lipid bilayers, is an impor- 

tant aspect of recent application of these systems to drug delivery technologies. One 

populor production method involves pushing a Lipid suspension through the cylin- 

drical pores of polycarbonate filters. However, the actual rnechanism by which the 

polydisperse, multilamellar lipid suspension breaks up into a relatively monodisperse 

population of vesicles is not well understood. We have characterized vesicles produced 

under different extrusion parameters and from different lipids. We find that the ex- 

truded vesicles are only produced above a certain threshold extrusion pressure and 

have sizes which depend on the extrusion pressure. The Bowrate of lipid solutions of 

concentrations of 1 mgIrne through the pores, alter being corrected for the viscosity 

of water. is independent of lipid properties. The minimum pressure appears to be 

associated with the lysis tension of the lipid bilayer rather than any bending modulus 

of the system. 
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Chapter 1 

Introduction 

The method of preparing sarnples of large (> 100 nm) unilamellar vesicll es by extrusion 

through small pores [l] is widely used in research and pharmaceutical applications. In 

t his process, solut ions cont aining ext remely large (2  1 pm), mult i-lmellar vesicles 

are forced or extruded through pores with diameters on the order of 100 nm using 

either a pressurized gas [l] or a syringe-based plunger sÿstem [2]. 

While the rnethod of production is in common use, the current state of understand- 

ing of the actual mechanism by which the large, polydisperse multilamellar vesicles 

break up into smaller, unimodal distributions of vesicles is poor. Description of this 

mechanism should lead to an understanding of why various factors including extru- 

sion parameters and lipid properties affect the size and polydispersity of the extruded 

samples. Several recent theoretical studies have examined vesicles in pores or under 

s hear . A possible rnechanism for vesicle formation hypot hesized recent ly by Clerc 

and Thompson [3] is based on the breakup of the cylindrical phospholipid bilayer 

structures of radius R outside the pores into smaller cylindrical structures of length 

A, where X = ZrR which then reform into vesicles. However, this leads in general to 

vesicles which are larger than those observed and does not account for variations of 

vesicle size with extrusion pressure or lipid properties. Gompper and Kroll [4] look 

at the mobility of vesicles in pores as a function of a driving field. The mode1 vesicles 

considered are larger than the pore diameter and must deform to enter the pore. De- 

formation is assumed to be governed by bending energy only. Bruinsrna [5] focuses 
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on the flow of vesicles after they have entered the pore and shape deformations which 

might occur in the pore. Kraus et al. [6] study vesicle deformation as a result of 

applying shear, but the situation examined does not apply directly to the problem 

of extrusion. Of these studies, only that of Clerc and Thompson takes the possible 

rupture of the vesicles into account, a necessary condition for the understanding of 

extrusion. 

We have prepared vesicles composed of several types of phospholipids by extrusion 

through polycarbonate filters at a constant concentration of 1 mgIrne. The volume 

flowrate of these samples and the number of tirnes the sample was extruded to achieve 

a constant Rowrate was measured for each sample. The size and polydispersity of 

the samples were measured using dynamic and static light scattering techniques. It 

was observed that there is a minimum pressure required to force vesicles through 

the polycarbonate filters below which extrusion was not possible. The size of the 

extruded vesicles was dependent on the extrusion pressure. The Bowrate of the vesicle 

suspensions through the filters did not depend on the lipid properties. We conclude 

that the  minimum pressure is a function of the lysis tension of the vesicles rather than 

the bending modulus of the lipid bilayer. 

Summarizing the contents of this thesis, Chapter 2 discusses the theory of light 

scattering, including dynamic and stôtic light scattering techniques and the analysis of 

data from such experiments. Chapter 3 includes a basic description of phospholipids 

and vcsicles, then goes on to look at the production of vesicles by extrusion and 

current ideas of the method of vesicle formation by this technique. In Chapter 4, the 

experimentd apparatus, materials, and procedure are described. The experimental 

results are also described in Chapter 4. The discussion and analysis of the results are 

presented in Chapter 5. Chapter 6 summarises the results and suggests directions for 

future experiments. 



Chapter 2 

Laser Light Scattering Theory and 

Techniques 

This chapter assumes that the reader has a t  Ieast a passing familiarity with the funda- 

mentals of electromagnetic radiation and its interaction wit h matter. Because of t his, 

several equations a d  relations will be introduced without derivation. For readers 

needing to learn or refresh their knowledge of electromagnetism, 1 recommend "Elec- 

tromagnetic Field Theory" by Jack Vanderlinde ['il. An overview of light scattering 

can be found in Johnson and GabrieI [SI. Basic dynamic light scattering theory is 

covered by Berne and Pecora [9]. 

As a further note to  the reader, a11 the results here have been cleveloped with 

the assumption that the  scatterers are smdl  compared to the wavelength of light 

and isotropic. That is, the theory has been deveioped with scattering from spherical 

vesicles already in mind. 

2.1 Electromagnetic Field Theory 

The physical arrangement of a typical Iaser light scattering experiment is shown in 

Fig. 2.1. A beam of laser light is directed through the scattering cell, where a portion 

of this light is scattered in directions other than the forward one. A detector placed at 

position R measures the intensity of the scattered light at that position. The volume 
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defined by the overlap of the scattered beam and the incident beam is referred to as 

the scattering volume. Only the electric field of the propagating electromagnetic wave 

of light will be considered here, as the strength of its interaction with matter is much 

greater than that of the magnetic field. We will assume that the incident laser light 

is a plane wave, with an electric field 

where the magnitude of the field is E,, f i i  denotes the direction of polarization of the 

field, and wi is the angular frequency of the field. The direction of propagation is 

given by the wave vector k;. The magnitude of the wave vector (kil = 2 m l X .  where 

X is the wavelength of the incident light in vacuo and n is the index of refraction of 

the medium. 

Sample Scattering volume 

Incide Transmitted light - 
t 

Detector 

Figure 2.1: A diagram of the arrangement of a light scattering experiment. 

Light travelling through a dielectric medium is scattered because the electromag- 

netic field of the incident light accelerates the charges in the scattering volume. These 

accelerated charges form oscillating dipoles with frequency wi. The general expression 
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for the induced dipole is 

P = = E ,  

where a is the polarizability tensor.' In general, P is not necessarily in the same 

direction as E. However, for scatterers with isotropic polarizability, there is no depo- 

larization of the incident light, and P is in the same direction as E. 

Electromagnetic theory says that an oscillating dipole emits radiation. It can be 

shown that at a position R far from the dipole, where R » A, the radiated field is 

proportional to dzP/d t2 .  For gases, this results in a scattered field that is proportionai 

to the inverse square of the wavelength, A, and to the polarizability a. Since the 

intensity of light is 

I = C E ~ ~ E ~ *  , (2.3) 

where c is the speed of light in uacuo, the intensity of the scattered Light is inversely 

proportional to the fourth power of the wavelength, as first shown by Lord Rayleigh. 

The situation is not quite so simple for scattering h m  condensed phases of matter. 

In these media, the intensity of scattered light can be reduced because of destructive 

interference. For example, for every point in a uniform medium it is always possible to 

find another point whose scattered field at the detector is 180' out of phase with that 

of the  first point and equal in amplitude, resulting in complete destructive interference 

and no scattered light. Variations in the dielectric constant cari change the amplitudes 

of the scattered field so that the sum is not zero. For example, light can only be 

scattered from a crystalline solid when the Bragg condition sin(8,/2) = n X / 2 d ,  where 

d is the distance separating scattering planes, is satisfied. Wavelengths that are much 

larger than d are not scattered, but those X which are comparable to d are scattered 

at the angle specified by the Bragg relation. Thus, crystals have a dielectric constant 

which varies regularly in space. 

In liquid phases, the scattering centres are not stationary, but move about ran- 

domly as they undergo Brownian motion. The dielectric constant of the medium 

' It can be shown from electromagnetic field theory that g = c,J+g, where g is the polarizability 
tensor of a medium with dielectric constant g and E, is the permittivity of free space. Thus, the 
polarizability differs from the dielectric constant by a constant only. Furthermore, it follows from 
this that Sc = 6s. That is, the dielectric fluctuations are identical to the polarizability fluctuations. 
1 will therefore use 65 and 6g interchangably. 
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fluctuates in space and time and can be written 

where E is the average dielectric constant of the medium, &(r, t )  is the dielectric 

fluctuation tensor at position r and tirne t ,  and is the second-rank unit tensor. The 

exact form of the scattered field depends on the physical characteristics of the system 

under examination and on the arrangement of the experimentai apparatus. Only two 

relevant cases will be considered here, those regarding the time averaged intensity 

and the time-correlated intensity fluctuations. In both cases, the size of the particle 

that is being studied is smaller than the wavelength of light in the medium, but larger 

than approximately X/10. 

2.1.1 Static Light Scattering 

As shown in Appendix A, the magnitude of the component of the scattered electric 

field with polarization n i  and frequency w j  propagating in direction kf is 

The volume integral is taken over the entire scattering volume. The scattering angle 19, 

and the incident wave vector ki together define the scattering wave vector q. These 

quantities are iIlustrated in Fig. 2.2. The scattering wave vector is the difference 

between the wave vectors of the incident and scattered light, i.e., q = k; - kJ, where 

kj points from the scattering volume to the detector. In general, ki and k, are not 

necessarily of the sarne magnitude. However, most light scattering experiments are 

conducted a t  wavelengths far from resonances of the sample. The wavelength of the 

scattered light is not significantIy different £rom that of the incident light, in which 

case lkil = Ikrf. The magnitude of the scattering wave vector q is then 

The scattered wave vector q is inverseIy proportionai to the size of the object or the 

wavelength of the fluctuation which is probed using light scattering. By varying the 

wavelength or the scattering angle, the size of features probed is changed. 
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A 

Cf 

z 

Figure 2.2: Vector diagram of geometry of scattering experiment 

Equation 2.5 can be simplified by replacing the dielectric fluctuation tensor with 

its spatial Fourier transforrn 

and working out the cross products, so that 

where 

 SE;^(^? t) = iij&(q, t)& . (2.9) 

This simpIification requires the use of the vector identity a x (b x c) = (a-c)b - (a=b)c 
and the fact that the direction of polarization of light must be perpendicular to the 

direction of propagation, that is, iîj-kj = O. It should also be noted that, since there 

is no change in the direction of polarization of the light for isotropic scatterew, Bf 
and are parallel and Br *Gc(q, t ) * i i i  = 6 ~ ~ ~ ( q ,  t ) .  
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Although the electric field of the scattered Light has been derived, this is not 

what is measured experimentally. Light detectors (most commonly photomultiplier 

tubes in light scattering experiments) rneasure the intensity of light incident on the 

detector. The instantaneous intensity of the scattered light is related to  the electric 

field by Eq. 2.3. The cycle-averaged, or time-averaged, intensity is equal to 1/2 the 

instantaneous intensity, so the time-averaged scattered intensity and incident intensity 

are, respectively, 

and 

where (kii(q))' is the cycle average of the square of the dielectric fluctuations. The 

other term, the square of the average of the fluctuations, is identically equal to zero. 

The ratio of the scattered intensity to the incident intensity is 

Thus, the time-averaged scattered intensity is a source of information on the mean 

square polarizability fluctuations in the sarnple. The observed scattered intensity is 

inversely proportional to A\ as is expected. Note that this assumes that the scatterers 

are much smallcr than the wavelength of the laser light. II this were not the case, the 

phase of the light wave would Vary significantly over the scatterer, and the derivation 

of Appendix A would be invalid, instead requiring the use of the more involved Mie 

t heory. 

TThe criterion for the validity of the Rayleigh-Gans-Debye approximation is 

( S .  13) 

where X is the wavelength of light in uacuo, R is a characteristic dimension of the 

particle, and m is the ratio of the refractive index of the particle to that of the 

suspeading medium. As just stated above, this relation implies that the phase of 

a light wave crossing the particle is not significantly changed by the particle. This 
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approximation breaks down when the diameter of the particle is of the same order of 

magnitude as the wavelength of iight, and when the particle is very different optically 

from the surrounding medium [9]. Now, our scat terers are smaller than the wavelength 

of light, being on the order of 100 nm in diameter. However, the ratio of indices of 

refraction is 1.05. Upon evaluation we find that the left hand side of Eq. 2.13 is 0.13, 

which is less than 1 so that Rayleigh-Gass theory is appropriate. 

Due to the size of the particles, the path difference for light from two points in 

the scatterer may be large enough to cause measurable interference effects. These 

will cause a decrease in the scattered intensity. This decrease in intensity varies with 

the size and shape of the particle, revealing information about these properties of the 

particles. The dependence of the scattered intensity on these factors is contained in 

a multiplicative correction factor known as the form factor P(q),  where 

scattered intensity at Os 
P(q)  = scattered intensity at  0. = O 

This assumes that the particles are non-interacting. This condition is true in the limit 

of low number densities of scatterers. That is, there must be few enough scatterers 

that they are almost never close enough to interact with each other. This distance, 

dependent on the Debye length in the solution and the surface charge of the scatter- 

ers (arnong ot her t hings), is an experimentally-controllable parameter. (The second 

condition has been shown to be true for vesicles by Strawbridge et ai [IO].) If the 

particles do interact with each other, an additional correction S(q), called the struc- 

ture factor, is necessary. Interacting scatterers can form semi-regular arrangements 

of particles, similar to a crystal. The result is that a very broad bump will appear 

in the spectrum corresponding to the average distance of separation of the scattering 

centres. The broadness of the bump is due to the fact that the scatterers are not sta- 

tionary, so that the relative intermolecular distance is constantly changing, altering 

the position of the constructive interference peak in momentum space at  the sarne 

time. This bump in the spectrum is analagous but not identical to the Bragg peak 

seen in the scattering spectra of crystals. The information about bot h P(q) and S(q) 

is contained in the dielectric fluctuation term &(q, t ) .  

Consideration of the phase difference of light scattered from different points of a 
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single part icle averaged over al1 orientations of the particle yields the general equation 

for the form factor [SI: 

where t is the number of scattering segments in the particle, rj is the position of 

the j t  h segment, and the closed brackets denote the average over al1 orientations. 

In evaluating Eq. 2.15, some assumptions must be made about the shape of the 

scattering particle. As will be discussed in Chapter 3, it is reasonable to assume that 

the vesicles are hollow spheres with some finite thickness. As shown in Appendix B, 

the f o m  factor for a hollow sphere with outer radius Ra, inner radius R, and thickness 

t is 

The inner radius is related to the outer radius by the shell thickness, such that R- = 

R, - t .  Because the vesicle is spherically symmetric, it is not necessary to average 

over al1 the possible orientations in this case. It is important to note that it has 

been assumed that al1 of the particles in the scattering volume are identical to one 

another. If the scatterers are of differing sizes, P(q) becomes a weighted average 

over R. If the scatterers Vary in shape, it is necessary to know the relative numbers 

of the different shapes, otherwise the problem of calculating the rnean form factor 

becomes intractable. In any event, unless there is some a priori knowledge of the 

population distribution, any polydisperse sample with a mean radius R appears to be 

a population of monodisperse spheres of some srnaller radius. * 
A typical static light scattering experiment mesures the time-averaged intensity 

of the scattered light as a function of scattering angle. Changing the scattering angle 

changes the magnitude of the scattering wave vector q, as can be seen from Eq. 2.6. 

The angular spacing of the measurements varies, with smaller spacing at srnall angles. 

This is a direct result of the sine function in the form of q; small changes in 8, are 

much more important a t  small angles. It is of course desirable to have as great a 

range of angles as possible to maximize the accessible values of q. At each angle 

?This is due in part to the range of q accessible to our experiments. 
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the intensity is measured for a specified period of time determined by the photon 

count rate, the intensity-intensity correlation time to be obtained and the desired 

level of uncertainty in the measurement7s accuracy; the uncertainty in the intensity 

measurement is proportional to the square root of the nurnber of counts. 

The multiplicative P(q) factor has the f o m  of a spherical Bessel function. If at 

al1 possible it is also preferable that the ranges of scat tering angle overlap a minimum 

of the Bessel function so as to aid the fitting by providing a fixed reference point. 

That is, it is desirable to have a minimum of the function within the available range 

of q vectors. Tt also gives the researcher a good idea of the particle size with merely 

a cursory examination of the data. 

The remaining necessary corrections to the intensity spectrum data are due to 

reflections from interfaces of differing indices of refraction in the sarnple chamber, e-g., 

between the containers and the fluids contained therein. The form of these corrections 

are weIl known and can be directly incorporated in the data processing3, along with 

the Rayleigh ratio factors. The resulting fit to the data has only the parameters of 

the P(q) function, the outer radius R, and the vesicle thickness t ,  as free parameters. 

2.1.2 D ynarnic Light Scattering 

The scat tering event is almost but not quite elastic. Any given individual scattered 

phot on will have i ts frequency Doppler-shifted because the scattering vesicle is moving 

wi th some arbitrary velocity v, but the shift is so small that the change in the photon's 

energy is negligible, hence the term "quasi-elastic." There is some broadening of the 

spectral line width, but this broadening is very small compared to  the frequency of the 

light w - 1014 Hz. The shift is small because the scattering centres are moving very 

slowly compared with the time required for a wavelength of light to p a s  the scatterer. 

Static light scattering (SLS) uses the time averaged intensity to study the mean-square 

fluctuations in the polarizability. The SLS experiment simply measures the sum of 

al1 the intensity spectrum around the frequency of the incident light ignoring the 

broadening. 

3The corrections for reflections in the sample charnber are quite cornplex. They have not been 
included here as doing so would not be informative, and might obscure matters. 
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On the other hand, dynâmic light scattering (DLS) actually measures the fre- 

quency broadening of the scattered light, the broadening being proportional to the 

diffusion coefficient of the scat terer(s). While the intensity of light scattered from 

the scattering volume is the sum of the light scattered by the medium and that scat- 

tered by the suspended particles, the density fluctuations in the medium occur in 

times which are too small to be measured by light scattering techniques4. The total 

scattered field in a DLS experiment is then proportional only to the sum of the field 

scattered from each suspended particle l in the scattering volume [9], 

where N is the number of scatterers in the scattering volume, crt is the average po- 

larization of the !th particle, and rc is the position of the [th particle.5 It is not 

necessary to consider the constants of proportiondity implicit in Eq. 2.17 because, as 

we will see shortly, we will be normalking our results to the average scattered fields 

and intensities, as appropriate. 

A normal dynarnic light scattering experiment is actually a series of shorter ob- 

servations which are analysed individually. Each of these shorter observations is con- 

ducted at a single scattering angle, at each of which the intensity (actually number 

of photons counted) is measured as a function of time for a period of time sufficient 

to reach the desired uncertainty in the measurement. The minimum required length 

of time t is related to the desired uncertainty A by the expression [Il]  

where D is the translationai diffusion coefficient (to be discussed shortly) and q is the 

magnitude of the scattering wave vector q. It will be necessary to consider O, as it 

affects the wave vector q again during the analysis of the data. Note that there is no 

variation of the mean scattered intensity due to the constant scattering angle. Only 

the variation of the intensity as a function of time is of interest. 

4 S ~ c h  measurements would require the use of an interferorneter, which is sensitive to shorter time 
scales. 

'For convenience, 1 have changed from an integral notation to a summation, which is entirely 
equivalent to Eq. 2.5 within a multiplicative factor. 
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The variation of the scattered field in Eq. 2.17 on time is implicit; the position 

vectors rc are changing as the particles move about randomly in Brownian motion, 

and this means that the relative position of the scatterers is changing in time. The 

variation c m  be well characterized by the first-order time autocorrelation function of 

the scattered field G(') (T) ,  defined as 

The field autocorrelation function is the time average of the complex conjugate of the 

scat tered field at a particular q a t  time t multiplied by the  scattered field at the same 

q at some time t + r later. The time t can be replaced with zero because the scattered 

field is varying about nn unchanging central value. Hence, G(')(q, T )  depends only on 

the time T between the field observations, not the time origin. When there is no lag 

between the two field observations, i.e. r=O, G(l)(q, O)  = (I,(q)), the average value of 

the scattered intensity. When T iç very large, there is no correlation between E,(q, t )  

and E,(q7 t + r ) ,  and G(l)(q, oo) Z ( E , ( ~ ,  t ) )*  = 0. 

Substituting the form of the scattered field in Eq. 2.17 into Eq. 2.19 gives 

Now, if the motions of the particles are not correlated with each other, and there is no 

coupling of translational and rotational motions, the summation in Eq. 2.20 coilapses 

to a multiplicative factor of N = (N), the mean number of particles in the scattering 

where A is a constant containing factors such as the field strength and the inverse 4th- 

power wavelength dependence. It has been assumed that al1 of the particles have the 

same polarizability a so that the subscript C is redundant and has been dropped. Since 

dynamic Light scattering experiments are conducted a t  a single angle, the correlation 

functions will hencefort h be written as function of T only, it being understood that the 

q dependence is implicit. It c m  be seen that the field autocorrelation function depends 

on the number of scatterers, their polarizability, and their positions. Note that the 
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polarizability a given here is the same as the polarizability fluctuation sûr E 65, i.e.: 

the fluctuations in the otherwise isotropic dielectric medium are due to the suspended 

particles. 

As has been stated previously, light detectors measure the scattered intensity, not 

the scattered fieId. More properly, a PMT converts photons to electric current pulses, 

the number of which is related to the intensity of light by a multiplicative efficiency 

factor dependent on the tube. A special instrument called a correlator caiculates the 

intensity autocorrelation function G ( 2 ) ( ~ ) ,  defined as 

G ( ~ ) ( T )  = ( I s ( 0 ) I s ( ~ ) )  . (2.22) 

In general, Gt2)(r) is not sirnply related to G ( ~ ) ( T ) .  However, if the scattered field is 

a gaussian random variable, that is, the scattered field varies about a mean field in a 

gaussian distribution, then the Siegert relation [SI States that G ( 2 ) ( ~ )  and G( ' ) (T)  are 

related by 

G ( ~ ) ( T )  = ( I ~ ) ~  + I G ( ~ ) ( T ) ~ ~  . ( 1 2 3 )  

This relation is generally true for suspensions at room temperature and concentrations 

where number fluctuations of scatterers in the scattering volume are not important. 

This will always be the case in this study. It is more usual to discuss the normalised 

correlation functions # ) ( T )  and g ( 2 ) ( ~ ) t  defined as 

2 
The actual observed correlation function will have its g(') ( T )  component multi- 

plied by a factor P,  which depends on the geometry and apparatus of the experimental 

setup. Thus, the form of g ( 2 ) ( ~ )  used experimentally is 

For most purposes of this study, the primary tool of investigation hcrs been dynamic 

light scattering, with static light scattering used to confirm the DLS results, I wilI 

correspondingIy put most of the emphasis on dynarnic light scattering from this point 

on. 



CHAPTER 2. LASER LIGHT SCATTERING THEORY AND TECHNIQ UES 15 

2.2 Methodsof Analysis 

The norrnalised intensity correlation function given in Eq. 2.26 has incorporated no 

assumptions about the form of g ( ' ) ( ~ ) .  The mean of the exponential in Eq. '> ,., 91 can 

be written as the weighted average of a distribution of exponentials, such that 

is the probability distribution giving the location of the particles in the scattering 

volume. The vesicles under cousideration are undergoing Brownian motion, executing 

random walks through the sample. For times long with respect to  the time to complete 

one of the steps of the random waIk, the probability of finding the particle a t  a distance 

r from its starting point a t  a time t later is 

where D is the diffusion coefficient of the particle. Using Eqs. 2.27 and 2.29 and 

assuming that al1 of the paxticles are the sarne size, Eq. 2.21 becomes 

It can be seen that for particles undergoing Brownian motion, the intensity auto- 

correlation function g(2) ( r )  is a function of the diffusion coefficient of the particIes. 

In particular, there is a characteristic exponential decay rate, usually denoted as 

r = Dq2. The usual form of the diffusion constant is given by the Stokes-Einstein 

relation, 

where 77 is the viscosity and Rh is the hydrodynamic radius of the particle. Thus, 

the size of the particles in the scattering volume can be extracted from the intensity 

autocorrelation funct ion. 
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2.2.1 Polydispersity 

Up to this point, it has been assumed that aii of the particles in suspension are the 

same shape and size. While it is possible to ensure that al1 of the vesicles are spherical 

by controlling the osmotic pressure across the bilayer, in general tbere will not be a 

single size of vesicle, but a distribution of sizes @(Rh) ,  to which there is a corresponding 

distribution of decay rates p(I ' ) .  The effect on the normalised field autocorrelation 

function g ( l ) ( ~ )  is given by 

It may be noted that Eq. 2.32 is the Laplace transform of p ( r ) .  Theoretically, it 

is possible to obtain the distribution of decay rates, and therefore the sizes, by per- 

forming a Laplace inversion of the correlation function. Such an inversion, however, 

requires measurement of virtually the entire range of l? from O to  CG, which is not 

experimentally possible. The resulting problem is therefore ill-conditioned, and not 

feasible unless some a pr ior i  knowledge of p ( ï )  is incorporated. 

The most common method of analysing the correlation function is the method 

of cumulants proposed by Koppel [12]. Cumulant expansion has the advantages of 

having a low number of parameters and good convergence and stability of the fitted 

parameters. Its disadvantage is that use of this expansion assumes that the distribu- 

tion of r is unimodal. The unimodality can be confirmed by using Laplace inversion 

routines such as CONTIN to check qualitatively for the possibility of multimodal 

decay rate distributions. In general, the cumulant expansion is defined as 

where p, is the nth cumulant. Having g ( l ) ( ~ )  of the form in Eq. 2.32 gives the 

cumulants in terms of the moments of the distribution < ïm >, which are defined by 

The first three cumulants of the expansion are then 
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With sufficient data, it is possible to fit al1 of the cumulants, but in general the range 

of r is too short. Luckily, the higher order cumulants are usuaily small, so that the  

expansion c m  be truncated after the first few cumulants. It is obvious that the first 

cumulant pi is the mean decay rate of the sample. The second cumulant p2 is the 

variance o2 of (ï), and 113 is the skewness of the distribution. The second cumulant 

divided by the square of the mean decay rate is dimensionless and gives an indication 

of the polydispersity of the distribution of ï. It must be noted that this does not 

necessarily imply any knowledge about the distribution of the sizes implicit in the 

decay rate. If the third cumulant is also negligible, as it usudly is, then the first two 

cumulants describe a symmetric distribution of decay rates, which is taken to be a 

gaussian. The distributions p ( ï )  and @(Rh)  are then proportional to one another. 

The cumulant expansion has used the assumptions that r is small and that p(r) 
is narrow. For practical purposes, this requires that 

The model function that was fitted to the data was obtained by substituting the 

expansion of g ( L ) ( r )  with only the first two cumulants into Eq. 2.26, which yields 

where p = p2 is the variance of the distribution. It  was found that it was not necessary 

to include higher order terms. 

2.2.2 Fitting Algorit hm 

The intensity correlation model function given in Eq. 2.37 was fit to the data using 

a C subroutine known as nllsq, which stands for Non-Linear Least SQuares, written 

by A. Kornblit. The nllsq routine takes a set of N data points and fits a given model 

function with adjustable parameters to this . The goodness-of-fit, or merit function 
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used is the sum of the square of the residuals, 

where y) ta  is the ith data point, y!'t is the fit to the i th data point, and oi is the 

weight of the i th  data point. This function is minimised with respect to al1 mode1 

parameters xj such that the matrix of derivatives vanishes: 

The non-linear nature of the mode1 function means that its dependence on its param- 

eters is difficult, if not impossible, to put into a closed form. An approximate solution 

c m  be found by iteratively improving the vector of fit parameters from an initial given 

set of parameter estimates. In each iteration of the fit program, a correction vector is 

generated from the last set of parameters and added to the fit vector. This correction 

vector points down the slope of the X2 surface in parameter space. The entire process 

is repeated until some condition for convergence is satisfied. This includes, but is 

not lirnited to, having the magnitude of the correction vector less than some (small) 

preset value. 

The nllsq routine uses the Marquardt algorithm to search for the minimum in 

the X2 surface. This algorithm varies smoothly between two other algorithms, the 

Taylor expansion method and the gradient method. The gradient method is useful 

for rapidly finding the approximate location of the minimum. The Taylor expansion 

method is suitable for use near the minimum, expanding the surface as quadratic 

about the minimum. This aIgorithm is discussed much more completely in Numerical 

Recipes, by Press et al [13]. 



Chapter 3 

Vesicles and Extrusion 

The membranes of living organisms are the sites of virtuallg al1 biologically important 

functions and reactions. Correspondingly, they are the focus of much interest and 

research from the scientific and medical communities. One of the main functions of 

membranes is to allow only selective transport of certain molecules through them. In 

part icular, ions and large molecules are almost cornpletely prevented from crossing 

a membrane without assistance of some sort. This dlows cells to maintain ionic, 

concentration and pH gradients across the membrane. One of the ways that  this 

feature of membranes is put to use in living cells is by encapsulating molecules that 

need to be moved from one point to another inside a closed shell of membrane; this 

structure is known as a vesicle. The vesicle can then be transported to its destination 

and the contents released in the proper location. 

Artificial versions of membranes and vesicles c m  be created easily in the laboratory 

for use as simple model systems. These are created from synthetic or purified natural 

amphiphiles and contain only those proteins desired. The physics of such membranes 

is considerably simpler than that of the biological membranes, which contain myriad 

di fferent amphi philic molecules, proteins, and complex casbohydrates. They t herefore 

make good model systems for experiments on the properties and behaviour of bilayer 

membranes. Furthermore, pharmaceutical researchers are attempting to use artificial 

vesicles to encapsulate and deliver drugs to specific locations in the body. Methods of 

reliably creating vesicles on demand are necessary for this purpose and for research. 
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One typical method is extrusion; this technique will be discussed in this chapter. 

Experiments by the research group of Pieter Cullis have pioneered this field, creating 

a substantial empirical body of knowledge on extruding vesicles and the biochemical 

properties of t hese vesicles. A number of theories and hypot heses have been proposed 

to explain the results of these experiments, three of which are discussed in the second 

part of this chapter. 

3.1 Vesicle Structure 

The vesicles considered in this research are composed of phospholipid molecules. Phos- 

pholipids, or simply "lipids," are amphiphilic molecules; Le., one or more regions 

of the molecule are cornposed of chernical groups that are hydrophilic (e.g., polar, 

ionic or zwitterionic) and other regions are composed of chernical groups that are hy- 

drophobic (such as hydrocarbon chains). A diagram of one of the types of phospho- 

lipid molecules used in t his st udy, 1,2-dimyristoyl-sn-gl ycero-3-p hosp hat idylcholine 

(DMPC),  is shown in Fig. 3.1. As suggested by its name, this molecule contains a 

phosphate group as part of its headgroup. To this phosphate group is attached a pos- 

itively charged choline group, CH2CH2N+(CH&. When the molecule is immersed in 

water, the hydrogen atorn on the phosphate group will dissociate, leaving an oxygen 

wi t h a negative charge. Since the nitrogen of the choline group is already positively 

charged, this molecule is therefore a zwitterion for our experimental purposes. The 

other end of the phosphate group is attached to a glycerol backbone at the glycerol 

group's 3 position. To the glycerol are attached two hydrocarbon chains at the 1 and 

2 positions, which form the tail of the lipid molecule. In t his case, both hydrocarbon 

chains are the same and consist of an saturated hydrocarbon châin 14 carbon atoms 

Long known as a myristoyl group. The molecule is synthetic; this can be inferred from 

the bct that both hydrocarbon chains are the same length, something which occurs 

infrequent ly in nature. (Nat ural phospholipids commonly have a hydrocarbon chah  

that is two carbon atoms longer at the 2-position than the chain at  the 1-position. 

This gives the molecule a "flat" bottom, which may be helpful for reduction of inter- 

actions between individual layers of the bilayers .) 
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Figure 3.1: (alChemica1 structure of a DMPC molecule. (b) For simplicity, phospho- 
lipids n~aking up larger structures will be represented by the small schematic diagram. 

Vesicles form because of the hydrophobic effect. In pure water, each water rnoIecule 

is hydrogen-bonded to its four closest neighbours, forrning a tetrahedral network. 

When molecules or ions are placed in solution in water, they disrupt the molecu- 

lar network of the water, reducing the possible number of arrangements of hydrogen 

bonds and forcing a more ordered structure on the water molecules. This decreases 

the entropy of the water substantially [14]. Unless there is also a gain in energy due 

to water-molecule/ion interactions sufficiently large to counteract the decrease in en- 

tropy, the molecuIes/ions wiIl separate from the water to minimise the decrease in 

entropy. tons and most polar molecules have attractive interactions with water that 

are stronger than the entropic cost to accomodate the ion/molecule. Such species 

are called hydrophilic, and are commonly also hygroscopic.' On the other hand, the 

interactions of most non-polar molecules with water are not strong enough to over- 

corne the entropy barrier, and hence they have very low solubilities in water. These 

molecules are said to be hydrophobic, and their behaviour of spontaneously separating 

'There is no hydrophilic effect, per se; it is simply an c~tension of the attractive interaction of 
ions and poIar molecules with water. 
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themselves €rom water ( and other polar solvents) is known as the hydrophobie egect. 

It is these two effects that cause the hydrocarbon tails of the phospholipids to spon- 

taneously phase separate from the water, with the headgroups remaining exposed. 

There is an extensive literature on the subject of the hydrophobic effect; several good 

references are books by Israelachvili [14], Tanford [15] and Safran [16], 

Once the phospholipid molecules have separated from the water, t hey form struc- 

tures as governed by the physical shape of the moIecuies. P hospholipids are long and 

roughly cylindrical in fom.  Thus, they prefer to arrange themselves side-by-side in 

layers. Figure 3.2 shows several possible mo1ecuIa.r shapes. The shape of the surface 

created depends on the form of the hydrocarbon tails and the size of the head group. 

A phospholipid with straight chain tails and a headgroup with area similar to the 

tails, shown schematically in Fig. 3.2(a), will be cylindrical in shape, and will tend to 

form flat layers. If the headgroup is very different in area €rom that oE the tails, or if 

one or both of the tails has a kink in it due to one or more unsaturated bonds, the 

molecule will be roughly the shape of a cone, as seen in Figs. 3.2(b) aad (c), and the 

layer created will be strongly curved. The layer created will be either one molecular 

layer thick (monolayers) or two layers thick (bilayers). Monolayers c m  isolate the 

tails by forming micelles, shown in Fig. 3.3(a), or by forming a t  an interface between 

water and air or some other material, as in Fig 3.3(b). Bilayers can form either ex- 

tended planar layers, as in Fig. 3.3(c), or closed structures, called uesicles, shown in 

Fig. 3.3(d). It is possible to combine more than one type of phospholipid/amphiphile 

so as to change the preferred curvature or other properties of the membrane. 

Membrane Properties 

The topic of membrane properties is, of course, a vast one. Our discussion will be 

limited to the three properties of membranes that are relevant in this study: the area 

compression modulus IL, the bending rigidity kc, and the lysis tension -r,. A fourth 

property, the surface shear modulus, is negligible for lipid bilayers in a fluid state. 

There is an excellent review article on the subject of lipid properties by Bloom, Evans 

and Mouritsen [20]. 
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Figure 3.2: Various shapes of phospholipid molecules: (a) a cylinder, (b)  a truncated 
cone, and (c) an inverted truncated cone. Shaded areas represent the polar head 
groups. 

In the case of both monolayers and bilayers, the molecules are constrained to 

remain in the layer by the same effects that created the layer. They are, however, 

relatively free to move about within the layer by diffusion, and by flipping between 

layers in the case of bilayer structures. It may be noted that the layered structures 

of phospholipids are liquid crystalline in nature. Monolayers and bilayers are smectic 

liquid crystals, as they possess orientational order with respect to one another and are 

also ordered in the direction perpendicular to the bilayer surface. As liquid crystals, 

monolayers and bilayers exhibit the same phase transitions from states where the 

rnolecules are frozen in position in the layer to states where they are free to move 

about. (For more information on liquid crystals, see the text by de Gennes and 

Prost [17].) 

The area compression modulus I(, gives the relationship of the fractional change 

in surface area, a, to the applied surface tension, 7, at constant temperature. Fig- 

ure 3 4 a )  illustrates the area expansion with an applied surface tension. For a vesicle 

in equilibrium the surface tension is zero [18, 191, but this is not the case when an 

external force is applied to the vesicle, such as stretching. For small changes in area, 

the fractional area change is 
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Air 

Water 

water 

Figure 3.3: Possible stmctures of phospholipid rnolecular assemblies: (a )  A micelle, 
(b) a monolayer at an interface between two media, in this case air and water, ( c )  a 
planar bilayer, or (d) a vesicle. Al1 of the structures are shown in cross-section. The 
circular portions of the phospholipid molecules represent the headgroups. The tails 
are shown as curved lines. 
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The area compression modulus IL, thus, hâs units of force per unit length. Typicd 

values of Ka are of the order of 150 mN/m, decreasing with increasing degrees of 

unsaturation and increasing with the addition of cholesterol [21]. Considerable work 

has been done on the subjects of area compressibility moduli by Evans e t  al. [21, 22, 

23, 24, 25, 26, 271 and Needham and Nunn [28]. 

Figure 3.4: Mechanical forces on membranes. (a) Membrarie expanding surface area 
due to surface tension 7. (b) Curvature change due to bending moment M. 

In order to change the curvature of a membrane, a stress must be applied to it. 

The stresses associated with curvature are torques per unit length [29]. The bending 

rigidity (or elasticity or stiffness) kc of a bilayer is the constant of proportionality 

between the bending moment M (torque per unit length) and the change in the mean 
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membrane curvature Ac (6. Fig. 3.4(b) ) 

where Ri and R2 are the principal radii of curvature at a given point on the mem- 

brane surface. The bending rigidity of a bilayer is a function of the type(s) of phos- 

pholipid/arnphiphile of wtiich it is composed. Among other things, it is related to 

the shape of the individual molecules (cf. Fig. 3.2). Typicaliy, the bending rigidity is 

on the order of IO-'' J. The topic of bending rigidity has been studied by Evans et 

al. [21] and Duwe et al. 1301. 

The bending rigidity may be used to find the equilibrium shape of the membrane 

surface given a set of fixed parameters, which may include surface area and volume. 

The form of the surface is determined by rninimizing the free energy of the surface. 

Depending upon the model, the free energy may depend on the curvature of the 

surface, the difference in area between the inside and outside Layers, the osmotic 

pressure difference, or some combination of these factors [31]. The free energy function 

proposed by Relfrich in 2973 [29] is 

Here Co is theuspontaneous curvature," the intrinsic curvature of the bilayer. This is 

a function of the composition and the environment of the two monolayers [22]. 

The lysis tension is the surface tension which must be applied to the bilayer to 

cause the surface to rupture. It is a measure of the cohesive energy of the bilayer. The 

lysis tension for a variety of lipids and lipid/cholesterol mixtures has been measured 

by Evans and Needham (25land Evans and Rawicz [32]. These are shown in Table 5.3. 

(Note that these measurements have been made in the short time limit. In the long 

run (on the order of days), vesicles under tension will always break, no matter how 

low the pressure applied [33]. However, this is not of concern in these experiments as 

extrusion is a sufficiently quick process.) The effects of an applied osmotic pressure 

gradient have been studied by Mui et al. [34] and Ertel et al. [35]. It is found by 

the latter that the average areal expansion at  rupture (which is related to the lysis 

tension of the membrane) is on the order of 2-3%. Both studies find values for the 
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lysis tension of the membrane which are consistent with studies using other methods 

(Needham and Nunn [28], for example). 

3.3 Vesicle Production by Extrusion 

A sample of vesicles can be prepared sirnply by mixing phospholipid(s) in powder 

form into water. The lipid molecules will spontaneously form large, multilamellar 

vesicles. The utility of the vesicles created this way is limited. It is difficult to control 

the concentrations, pH and ot her relevant parameters across t hese internai bilayers, 

since there is no direct access to them, and the nurnber of layers contained within 

the multilamellar vesicles is generally unknown. The distribution of sizes of these 

vesicles is also extremely broad with the mean radius normally being severd microns. 

In order for the vesicles to be useful for research and phaxmaceutical applications, 

it is necessary to make them unilamellu. There are several methods of doing this 

including dialysis [36, 37, 381, dilution from organic solvents [39, 401, sonication [41], 

and extrusion under pressure [l, 42, 431. The last of these methods is the focus 

of this thesis. Extrusion has an advantage over the other methods in that it is a 

purely physical process, whereas the methods of dialysis and organic solvent dilution 

involve contaminating the sample with detergents or orgonic solvents. While these 

contaminants, especially the detergents, are supposedly completely rernoved by the 

dialysis process, statistical mechanics tells us that there will always be a certain 

amount of detergent left in the sample unless we are willing to wait for an infinite 

period of time. Sonication does not use any contaminants, but it is difficult to control 

the size of sonicated vesicles, and the resulting vesicles are highly stressed and unstable 

t O coalescing wi t h ot her vesicles. 

The process of extruding vesicles is quite simple: a volume of fluid containing 

multilameliar vesicles as described above is placed in a sealed chamber. This sealed 

chamber has attached to it either a high pressure gas inlet and release valve or a 

syringe-driven piston [2], and an exit path which is blocked by a porous filter mem- 

brane consisting of long and narrow cylindrical pores. A schematic diagram of the 
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extruder used in this study is shown in Fig. 3.5, A volume of solution containing sus- 

pended multilamellar vesicles is placed in the extruder using a syringe. The chamber 

and sarnple are then aIlowed to equilibrate at the desired temperature. (This c m  be 

significant for lipids with a crystal/liquid crystalline transition temperature near the 

temperature at which the extrusion is performed [43].) When the gas inlet is opened 

or the piston is depressed, the pressure applied to the top of the Buid forces the sus- 

pension through. The procedure is repeated until the vesicles reach the desired size 

and number of lamellae or until there ceases to be any improvement in the vesicles' 

characteristics. 

Early characterization by electron microscopy (EM) (11 of vesicles made by extru- 

sion showed that vesicles extruded through 100 nrn pores had average vesicle radii 

of 70 nm with standard deviations of - 20 nm. Multiple passes through the extru- 

sion device were shown to reduce the multilamellarity of the vesicles and decrease 

the average size; after approximately five passes through the extrusion apparatus, 

the vesicles appeared to reach their final state. The population was unirnodally dis- 

tributed about the mean in a roughly gaussian manner. If the pores used were small 

enough (< 200 nm in diameter), the vesicles were alrnost exclusively unilamellar [II. 

Furt her st udies investigated vesicles result ing from extmsion through different 

pore sizes [42] and from extrusion of different lipids at vanous temperatures [43]. 

Characterization by EM and DLS showed that, while extrusion through 100 nm pores 

resulted in approxiniately 100 nrn vesicles, extrusion through laxger pores generally 

yielded vesicles smaller than the pore size and extrusion through smaller pores yielded 

vesicles larger than the pore size. Results for different lipids indicated that there 

might be some lipid dependence to the final vesicle size. Extrusion was found to 

be unsuccessful below the gel-fluid transition temperature; this was attributed to 

decreased fluidity of the membrane below the transition temperature. Later studies 

[44] investigated the effect of extrusion pressure and lipid concentration on vesicle 

size over limited ranges of pressure and concentration. While no effect on size due 

to concentration was observed, the size of the vesicles was found to decrease slightly 

wit h increasing extrusion pressures. 

Al1 of this data is purely empirical. Shere is no real understanding of how the 
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vesicles are created by this procedure. The problem is a chdenging one, as the size of 

the object in question, -100 nm, is a difficult range to probe. By its very nature, the 

system is a dynamic one and not steady-state. Most of the theoretical descriptions 

of vesicles assume that the system is at or close to equilibrium or that the system is 

exhibiting steady-state behaviour and neglect possible membrane rupture. The fact 

that the vesicles are suspended in water that is itself Eiowing makes this a problem 

of fluid mechanics. Essentially, the problem is this: how and in what order does a 

giant, multilarnellar vesicle enter the pore, break up, and reform itself into a number 

of small, unilamellar vesicles of the same approximate size as the pore? 

3.4 Theories of Extrusion Mechanisrns 

There are three different theoretka1 pictures of the behaviour of vesicles in pores. The 

first, proposed by Clerc and Thompson [3] in 1994, treats the formation of vesicles as 

a variation of the Rayleigh instability. The second, £rom Gompper and Kroll [4], uses 

a Monte Carlo algorithm to simulate a vesicle being deflated and pushed through a 

pore by a driving force. Bruinsma [5] looks at the problem as one of capillary flow, 

with the vesicles decreasing the pemeability of the filter membrane. 

3.4.1 Capillary Flow 

Before dealing with the problem of suspended vesicles in a viscous fluid undergoing 

flow, let us consider a homogeneous viscous fluid flowing in a pipe of circular cross- 

section. This is of course a particularly relevant question, since the suspensions that 

are being extruded are still rnostly water. The behaviour of pure water flowing through 

the filters will taken as baseline by which to judge the vesicle extrusion experiments. 

Assuming that the flow through the pore is laminar, it can be shown the rate of 

volume flow of fluid q through a cylindrical channel or pore is given by [45] 

where R, is the radius of the channel, 7 is the viscosity of the fluid, L is the length of 

the channel, and A P  is the pressure difference between the ends of the channel. The 



CHAPTER3. VESICLESAND EXTRUSION 31 

factor of 7rq /8  is due to the assumption that the channel is circular in cross-section, 

and will Vary for differing geometries. To relate q to the observed flowrate Q, we 

assume that the pores al1 have the same radius2 and multiply q by the number of 

pores per unit area N and the available area A, such that Q = NAq. Equation 3.4, 

expressed differently, is known as Darcy's law: 

where K is the permeability of the filter. It is interesting to note that the product of 

the viscosity and the flowrate qQ (hereafter referred to as the viscosity-corrected 

Elowrate) is independent of temperature. Measurement of the viscosity-corrected 

Bowrate as a function of pressure or pore length will then give the value of the filter 

permeability K.  

The Reynolds' number R for this system is 0.045 at most, very far from the onset of 

turbulence (R - 2000). This absence of turbulence is due primarily to the narrowness 

of the pores.3 

3.4.2 Vesicle Flow Through Pores 

To explain the formation of vesicles by extrusion, Clerc and Thompson [3] have pro- 

posed the following picture. The flow of water through the pores sucks multilamellar 

vesicles into the pores. The shear field due to the wlocity profile creates concentric 

cylindrical lamellae of lipid bilayers. Because the shear field is pulling on them, the 

lamellae are under tension. When the cylinders reach the end of the pores, they break 

up into smaller structures. Using a result from emulsion theory [46] that cylindrical 

structures which are not somehow constrained to this shape are unstable to perturba- 

tions with wavelength X > ZrR, where R is the radius of the cylinder, they estimate 

the area of the bilayer that will be broken off by the instabili ty. By equating this area 

' ~ h i s  is not actually true, as will be discussed later. 
3This assurnption is certainly valid in our experiments. As will be described more fully in Ch. 4, 

the highest observed flowrate Q was 3.55 rn&, which corresponds to a mean flow velocity v of 
0.29 m/s for a cylindrical pore 50 nm in radius. The maximum velocity in the centre of the channel 
is twice the mean velocity. The Reynolds' nurnber for flow in a pipe is defined as 72 = v,,,Rpp/q [45], 
p being the density of the fluid, in this case water. 
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wi t h the area of a sp herical vesicle, t hey predict t hat the final sphericd vesicle should 

have a radius 1.77 times the radius of the cylindrical lamella from which it originated. 

The mode1 does not include a way of determining the radius of the cylindrical Iamellae 

directly, but it may be possible to estimate this from the size of observed vesicles. 

The ongins of the ernulsion theory result Lie in the "Rayleigh instability" [47] 

which predicts the breakup of a cylinder of Buid into droplets. The most common 

example of this c m  be seen in a stream of water from a faucet, which, while initially 

cylindrical, invariably breaks up into droplets. This is illustrated in Fig. 3.6. Rayleigh 

treats t his system as a cylinder with a small cylindrically symmetrical perturbation 

on its surface. The only force acting on the system is the surface tension, which acts 

to minimise the surface area. This is constrained by the requirernent that the total 

volume of fluid in the cylinder must be conserved. From this, it can be readily shown 

that perturbation modes with wavelengths greater than 27rR are unstable. He then 

goes on to show that the fast-growing mode is that with A = 4.508 - -II. 

Figure 3.6: The Rayleigh instability. A column of fluid of mean radius R undergoing 
a perturbation of wavelength A is unstable, and will break up into droplets of radius r. 
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There are a couple of possible problems with the application of Rayleigh's results 

to the problem of extruded vesicles. The first is the fact that vesicles have the require- 

ment that area be conserved instead of volume. Secondly, the function that should 

be minimised is the bending free energy, such as the Helfrich hee energy in Eq. 3.3. 

The question of whether or not this leads to the same instability has been exarnined 

for a similar problem by Bar-Ziv and Moses [48]. Their analytical technique follows 

that of Rayleigh, and leads to a stability phase diagram with the reduced initial tube 

radius x and the reduced ratio of the surface tension to the bending modulus S. For 

small values of s, Say s < 2 for s < 0.75, the cylindrical tube is stable. The cÿlinder 

is stable at  increasing values of s for 0.75 < x < 1. For s between 2 and 6, the 

cylinder is unstable to an undulating peristaltic mode. Above s - 6, the peristaltic 

mode is unstable to "pearling." In this mode, the cylinder collapses to a c h a h  of 

isolated spheres connected by thin (- 200 nm) tubes. This instability is essentially 

the Rayleigh instability, as Iarge s implies that the surface tension is dominating the 

bending modulus. A rough estimate of s with our experimental parameters gives a 

value of 175, so that the Rayleigh instability dominates. It is conceiveable that these 

sphereç might be pulled apart by external shearing during extrusion, although this 

did not occur in Ref. [4S]. Questions about the applicability of these results to ex- 

trusion are due to the length scales of the experiments in Ref. [48]. Typically, the 

initial radius of the cylindrical vesicles was 1.5 pm and the "thin" tubes were 200 nm 

in radius, tvhich are 30 and 4 times respectively the approximate initial radius of our 

hypothetical cylinders. At such small scales, the effects of bending the membrane are 

much more pronounced, so that we are not sure where we are in the phase diagram, 

or even if the phase diagram is still applicable. 

There is also the question of the location of the breakup of the cylindrical lamellae. 

Clerc and Thompson suggest that the breakup should occur just after the lamellae 

have exited the pore, and the shear-induced tension has dropped to zero. However, 

recent results [5, 311 suggest that the cylindrical form may be unstable inside the pore 

given a great enough shearing force. 
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In contrast to Clerc and Thompson, Gompper and Kroll [4] have taken the ap- 

proach of simulating the passage of vesicles through pores using a Monte Carlo algo- 

rithm. A linear driving potential is applied to force the vesicles through the pore. This 

is equivalent to a constant electric field, but not necessarily to a pressure gradient [49]. 

An applied pressure can result in the two following situations: 1) If the  pore is not 

blocked, the suspending fluid will be flowing, with a spatially varying velocity field. 

This results in a cornplex, non-uniform pressure field, which is definitely not linear. 

2) A pore blocked by a stationary vesicle will prevent fluid flow. In the absence of 

Bow, the pressure is the same everywhere in the Buid. AU of the pressure drop occurs 

over the vesicle in a discontinuous way. 

In spite of the fact that the situation examined is not the same as that under 

consideration here, the model does give some insights. The most significant conclusion 

is the prediction of the existence of a minimum applied field f below which it is not 

possible to push the vesicles through the pores. Above this threshold, the vesicles 

are sucked into the pore. According to this model, the threshold field is proportional 

to the bending rigidity of the bilayer, i.e., J' cc kc. The rnobility of the vesicles, the 

velocity of the vesicle's centre of mass divided by the applied force, scales with k, 

as a power law with an exponent of 1.3 f 0.2. By analogy, it is not unreasonable to 

think that there would be a minimum pressure Pmin associated with kc required to 

cause the vesicles to go through the pores. It is important to bear in mind that this 

minimum pressure exists in the short-time lirnit only, since the vesicle will always break 

eventually, as previously stated. No provision was made in the model for the possibility 

of rupturing the vesicle, which we believe is a critical factor in any theory concerning 

vesicle extrusion. Unfortunately, the model used for the simulations does not lend 

itself easily to breaking up the surface into several smaller surfaces. Instead, the 

volume of the vesicle was allowed to  Vary fieely, permitting easy changes in topology. 

An alternate viewpoint is provided in a recent paper by Bruinsrna [5].  This study 

assumes that insertion of the vesicle into the pore has already been accomplished and 

proceeds to investigate the fluid mechanics surrounding the flow of the vesicle through 

the pore. In doing this, it has drawn heavily on research on the flow of bubbles in 

tubes and red blood cells in capillaries (50, 51, 521. The paper looks at steady-state 
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flow of a vesicle in a capillary or cylindrical pore, taking as its starting point the 

capillary flow described above. The vesicle begins with the shape of a spherocylinder. 

The shape of the vesicle can change as volume is forced out of it. Bruinsrna then 

proceeds to derive the Navier-Stokes equations for the systern. The main prediction 

is that above a certain pressure, set by the osmotic pressure in the vesicle, the flow 

velocity through the pore is independent of the bending energy of the bilayer, and 

that the only effect of the vesicles is to cause a decrease in the permeability. This is 

a significantiy different result from that of Ref. [4]. Darcy's Iâw is then 

where n is the number of vesicles per unit length in the pore and L* is the length 

of the spherocylindrical vesicle in the pore (cf. Eq. 3.5). A schematic diagram of a 

vesicle in a pore is shown in Fig. 3.7. 

The permeability K ,  hereafter referred to as IcetI/, iç obviously now 

The only characteristics of the lipid mixture that the effective permeability de- 

pends on is the number of vesicles in the pore and the size of those vesicles. This 

contrasts sharply with the model of Gompper and Kroll, in which the parameters 

of the model were dependent on the bending modulus of the bilayer. Derivation of 

Eq. 3.7 involves consideration of the thickness of the lubrication layer h* between the 

vesicle and the wall of the pore and the assumptions that h' < R, and that the 

interaction potentid of the bilayer with the pore wall is negligible at this distance. 

The thickness of the lubrication layer is a function of the flow velocity V in the pore 

and is given by 

where y is the surface tension in the lipid bilayer. As V increases, and h* increases, the 

radius of the vesicle in the pore will decrease. Physically, the radius cannot decrease 
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indefinitely so some lirnit on the thickness of the lubncation layer should be imposed. 

This has not been included in the model. The surface tension quoted here is that of 

Figure 3.7: Schernatic diagram of a vesicle in a pore of radius 4. The vesicle is a 
spherocylinder of length L* and endcap radius R. The vesicle moves through the pore 
at velocity V and is separated from the pore wdl by a lubrication layer of thickness 
h' . 

the front endcap of the vesicle, the hemispherical region of the bilayer on the front of 

the vesicle. This portion of the membrane has the highest surface tension, decreasing 

along the length of the cylindrical section of the vesicle until it reaches zero tension 

at the rear endcap. (As it has the highest tension, the front endcap is expected to 

be the place where any vesicle rupture will take place.) The tension is predicted to 
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increase linearly with flow velocity V and therefore with volume flowrate4 

The surface tension cannot increase indefinitely, of course. It is reasonable to think 

that the vesicle will rupture when the velocity V is great enough to cause the surface 

tension to exceed the lysis tension for the vesicle. 

Below an osmoticaily determined threshold pressure, the pemeability is no longer 

independent of flow velocity. Darcy's law ceases to be obeyed, and the flowrate is not 

linear in the pressure. The flowrate is predicted to reach zero at  zero applied pressure 

head, i.e. no minimum pressure is expected. 

In addition to the assumption of steady-state flow, which is dubious at best, Bni- 

insma has assumed that the boundary layer thickness h' is much less than the radius 

of the pore R. Note that h' is a function of the flow velocity through the pore and of 

the surface tension on the vesicle. While this may be true for red blood celIs flowing 

in blood vessels, it is not at  al1 clear that this is so for vesicles being extruded through 

100 nm diameter pores. It remains to be determined from experiment whether or not 

this assumption is valid. 

It is important to note that the situations and results described in the models 

of Bruinsma and of Gompper and Kroll are not the same as extrusion of vesicles 

through small pores. That is, they are not so much wrong as they are inapplicable 

to the problem. Nevertheless, both studieç capture parts of the problem and present 

some interesting ideas. 

Equation 3.9 may seem to be inconsistent with Eq. 3.8. This is not the case because Eq. 3.9 was 
derived using Eq. 3.8. 



Chapter 4 

Experiment and Results 

4.1 Materials and Methods 

The p hospholipids used were 1 ,--dimyris toyl-sn-glycero-3-phosphatidylcholine (or DM- 

PC ), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphat dylchone (SOPC) , and 1 ,?-di-oieoyl- 

sn-gl ycero-3-p hosp hat idylcholine (DO PC ) in powder form. These were purchased 

from Avanti Polar Lipids, Inc. of Alabaster, Alabama. These lipids were chosen be- 

cause of the ready availabiiity of data on their physical properties. The headgroup 

type, phosphatidylcholine, was kept the sarne so that the only variation in vesicle 

properties would be due to the effects of the lipid tails. The degree of saturation and 

lipid c h a h  length varied over a11 of the lipid types. The myristoyl chains of DMPC 

are 14 carbon atoms in length and are saturated, that is, there are no double bonds. 

SOPC h a  a saturated stearoyl chah of 18 carbons and an unsaturated oleoyl chah  

of 18 carbons with one double bond. The double bond is a cis bond [53], making 

the molecule somewhat unstable at room temperature. DOPC has two 01eoq.L chains. 

The effects of increasing degree of unsaturation are to lower the crystal-liquid crys- 

talline phase transition temperature and to decrease the bending rigidity and area 

compressi bili ty moduli. 
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4.1.1 Preparat ion of phospholipid vesicles 

For each sample, a single variety of phospholipid was hydrated using purifie( 1 water 

€rom a Milli-Q Plus water purification system (Millipore, Bedford, MA), in ratios of 

1-2.5 mg of phospholipid per mt' of water. The MiU-Q Plus filtration system ensured 

that the concentration of contaminants in the vesicle solution was negligible. The 

presence of unknown chemical contaminants may lead to undesirable and uncontrolled 

chemical and osmotic effects in the vesicles, while large particdate contamination will 

interfere with the light scattering experiments. The mixtures of water and phospho- 

lipid were taken through a freeze-thaw procedure five times. This involved freezing 

the solution by immersing the flask containing the sample in liquid nitrogen, thawing 

the flask in 50' C water and vortexing thoroughly. This has been found to help break 

up the multilamellar vesicles a d  promote the mixing of the enclosed contents with 

the exterior solution [54]. Normally, a 25 me Pyrex volumetric Bask, containing less 

than 20 me of solution is used for the freeze-thaw process. This is the largest g las  

container that can withstand the severe stresses due to the freeze-thaw process and 

(more importantly) to the expansion of the water upon freezing. 

After the  freeze-t haw-vortex process, the vesicle suspension was cleaned and regu- 

larized by extruding it once through two polycarbonate membrane filters (Osrnonics- 

Poretics Inc., Livermore, CA) with pore diameter 400 nm. This process, which we 

cal1 pre-extrusion, wu found to improve the repeatability of the light scattering ex- 

periments and measurements of the extrusion flowrate. This is the primary variation 

of our procedure from the one described by Hope et  al. [l]. 

Prior to extrusion through the final filter size, the pre-extruded vesicle suspension 

was diluted with purified water to a concentration of 1 mg of phospholipid per me of 

water. Note that this procedure of diluting the vesicles to the desired concentration 

just prior to extrusion should only be used if there is no harm in mixing the contents of 

the vesicles with the exterior solution. The pre-extruded vesicle suspension was then 

extruded a minimum of 10 times through two polycarbonate membranes with a nom- 

inal pore diarneter of 100 nm, using an Extruder (Lipex Biomernbranes, Vancouver, 

BC) by applying a pressure gradient. The pressure gradient across the membranes 
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was created using pre-purified, compressed N2 gas. For each phospholipid, a series 

of extrusions was made a t  a range of pressures at  a single temperature. The DMPC 

suspensions were extruded a t  pressures ranging from 30 psi to 300 psi for 35OC, 30°C 

and 40°C. The SOPC and DOPC suspensions were extruded a t  30° C, with pressures 

ranging from 300 psi down to 65 psi for DOPC and 50 psi for SOPC. 

The vesicIe suspension was re-extruded a minimum of ten times or until the macro- 

scopic bulk flowrate became constant. The macroscopic bulk flowrate of the extruded 

suspension was measured either with a stopwatch and a graduated cylinder, or by 

observing a video recording of the flow into a graduated cylinder. The purpose of this 

was to measure the final flowrate and to determine whether or not the 0owrate was 

correlated with the final size of the vesicles. 

The polycarbonate membranes (Osmonics batch no. AE84AHI IC00'7) used in 

these experirnents nominally consist of cylindrical pores with a diameter of 100 am. 

However, this is not the average pore size; discussions with the manufacturer reveal 

that the membranes should have no pore larger than 100 nm. However, the manu- 

facturer's electron microscope (EM) measurements of charac t eris tic membranes from 

this batch show that there are pores distributed between 108 and 88 nm, with a mean 

diameter of 93 nrn and a standard deviation of 6 nm. This batch has a fairly nar- 

row distribution. Typically the distribution is somewhat broader. Independent EM 

observations [55] do not seem to corroborate these results, with some pores being 

twice the manufacturer's s tated maximum diameter. Furthermore, the pores are not 

perfectly cylindrical but are slightly barrel-shaped, being on the order of 10% greater 

in diameter in the center of the membrane than at  the edges. This is due to the 

etching process used in the manufacture of the membrane, and is intentional on the 

part of the manufacturer, as it supposedly increases the rate of flow througli the filters 

without increasing the size of the entry to the pore. 

4.2 Light Scat tering Apparatus 

The apparatus used for the DLS and SLS experiments was an ALV DLS/SLS-5000 

spectrometer/goniometer manufactured by ALV-Laser GmbH of Langen, Germany. A 
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schematic view of the physical arrangement is shown in Fig. 4.2. The ALV apparatus 

consists of laser alignment optics, a temperature-controiled scattering chamber, a 

set of detection optics c o ~ e c t e d  to a photomultiplier tube (PMT) and a correlator. 

The motorised goniorneter is computer controiled and mounts the photomultiplier 

tube and accompanying optics to permit measurements to be made at  a vaxiety of 

scattering angles. Al1 of the optics are enclosed to  keep out stray light. A Spectra- 

Physics Mode1 127 35 mW helium-neon laser of wavelength A= 632.8 nm is used as 

the light source. The apparatus and laser are mounted ou a Melles-Griot optical table 

to isolate them from external vibration and noise. A more cornplete description of 

this apparatus is given by Lau [56]. 

Laser 

plate 

Figure 4.2: Light scattering apparatus. 

The scattering charnber itself is a cylindrical quartz vat which is filled with auid. 

For these experiments that fluid was toluene. Samples were contained in cylindrical 

glass ampuIes which were suspended in the toluene from above. Toluene was chosen 

to minimise the difference in refractive index between it, the ampule, and the quartz 

vat. The sarnple temperature was regulated by controlling the toIuene temperature. 

The toluene bath temperature was controlled by means of thermally coupling it to a 

Neslab RTE100 Refrigeration Bath/Circulator, which bas a temperature range from 

-15OC to +130°C with a stability of &0.0l0C. The sarnple temperature is taken to be 

the same as that of the toluene. 



4.3 Vesicle Characterisation by DLS and SLS 

Prior to size and size-distribution analysis of the sarnple by DLS and SLS, the vesicle 

suspension was diluted in Milli-Q water to approximately 0.1 mg of phospholipid per 

mi? of fluid and placed in a glass vial. This was to ensure that the number density of 

vesicles is low enough so that the inter-vesicle interactions are rninimised and so that 

we are in the single-scattering regime. The sample, contained in a 10 m l  cylindncal 

glass vial, was placed in the toluene bath and allowed to equilibrate thermally for one 

hour so that any convection currents subside. The toluene bath was maintained at 

the temperature at  which the vesicles were extruded, in order to minimise thermal 

expansion andlor contraction of the vesicles. Light from the He-Ne laser passed 

through the sample and light scattered by the sample was detected at angles of 60°, 

90°, and 130' from the transmitted beam for DLS measurements and at 23 angles 

from 16' to 150' for SLS measurements by the photomultiplier tube (mode1 9130, 

EMI Hayes, England). 

Using the techniques described in Chapter 2, the nodineor least square fitting 

routine nllsq was used to fit the field-field correlation function g( l ) ( r ) ,  and hence 

g ( 2 ) ( ~ ) ,  to the DLS data to obtain fi and p .  The weights for the data points were 

calculated internally by the ALV-5000 correlator by a complex algorithm related to 

the nurnber of observed counts for a given correlation time T .  The mean and variance 

of the hydrodynarnic radius Rh were calculated from the fitted quantities T and p 

using the S tokes-Eins tein relation. 

The DLS measurements reported here were taken at  90°, where the effects of 

reflection are minimised, since light that reflects off the interior of the vat and then 

scatters off a vesicle or vice versa always ha a scattering angle of 90°. At any other 

scattering angle 8 ,  the reflected scattered light will have a scattering angle of 180' - O ,  

with the result that two differing decay rates may be present in the signal. This has 

the effect of broadening the apparent decay rate distribution width. Conveniently, 

the effects of polydispersity are also small at this angle, due to a coincidence of vesicle 

size and scattering vector [56]. The hydrodynamic radius was measured five times at 

90" for al1 samples. These five radii were averaged to find a mean radius Rh. The 
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standard deviation of this average was used to get an estirnate of the repeatabihty 

of the measurement and was taken as an estimate of the uncertainty in Rh. The 

variances of the five measurements were also averaged to  find a mean variance F .  The 

standard deviation of the distribution o was calculated from 1. 
The radius of the vesicles was also measured by analysis of the static light scat- 

tering data. The mode1 function using the form factors for hollow spheres with a 

finite thickness of 4.2 nrn described in Chapter 2 and Appendix B was fit ta the data 

using the nnlsq routine. This t hickness was chosen to agree with measurements of 

typical lipid bilayers. Typical SLS data and a fit to this data are shown in Fig. 4.3. 

This fit had two parameters, the outer radius R, and a constant arbitrary intensity 

factor. The sizes of vesicles obtained by fitting the SLS data were consistent with 

those obtained by DLS experiments, hence static light scattering was used primarily 

to confirm the results obtained by the DLS experiments. Zero polydispersity was 

assumed in these fits, as non-zero polydispersities resulted in worse fits, for reasons 

which are not yet understood. 

Results 

Figures 4.4 through 4.6 show the radius, the relative standard deviation of the vesicle 

size distribution, and the flowrate for a typical extrusion experiment, respectively. In 

this case, the DMPC solution was extruded through 100 nrn polycarbonate membrane 

filters at  200 psi and 30" C. As seen in Fig. 4.4, the radius decreases rapidly to about 

120% of the pore radius in four extrusions. The radius relative to the pore radius is 

shown on the right hand axis. After four extrusions, the size continues to decrease, 

but more slowly, so that by the tenth extrusion the vesicie radius is 12% larger than 

the pore radius. Similady, the relative standard deviation u/Rh (Fig. 4.5) decreases 

quickly with the first three extrusions, and then levels off to a roughly constant level. 

As apparent from Fig. 4.6, there is no discernible trend in the 0owrate over the series 

of extrusions. This is typical of extrusions made at  pressures 2 100 psi. At lower 

applied pressures, a larger number of extrusions are required to reach a constant 

flowrate. 
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Similar extrusions were made of different lipid solutions at different temperatures 

and over a range of pressures. Final measurements of Rh and oRh/Rh for DMPC 

extruded at 35' C, 30' C and 40" C are shown in Fig. 4.7 and Fig. 4.8. For a given 

extrusion pressure, there is little difference in the mean radius Rh and the relative 

standard deviation / R h  between different temperatures. Ln general, the size of 

the vesicles decreases as the extrusion pressure increases. Surprisingly, there is no 

corresponding decrease in the relative standard deviation. It is not possible to extrude 

significant numbers of DMPC vesicles at or behw approximately 30 psi. At pressures 

at or below 30 psi, some fluid does pass through the polycarbonate filter membranes, 

but at an exceedingly low flowrate; however, the fluid t hat is extruded does not contain 

sufficient vesicles upon which to perform light scattering experirnents. Thus, there 

is a minimum pressure to extrude vesicles through narrow pores, hereafter referred 

to as Pmi,. This definition assumes that a significant, i.e., measurable volume of 

fluid is extruded in a period of time less than six hours. This seems reasonable since 

producing vesicles requires a t  least ten extrusions would require over two days at this 

rate! Furthemore, a t  this sort of time length we rnay be entering a quasi-equilibrium 

regime where other factors such as vesicle deflation may become important. 

The number of extrusions required to reach a constant flowrate at  a given extrusion 

pressure is shown in Fig. 4.9. The uncertainties in the number of extrusions required 

are due to imprecisions in the method of flowrate determination. We have associated a 

constant fiowrate from one extrusion to the next with reaching a final size distribution. 

Beyond this point, the flowrate does not increase further, implying that the sizes of the 

vesicles are not changing. The number of extrusions to reach a constant flowrate was 

generally greater at higher temperature, especidly at low pressures. At high pressures, 

the number of extrusions required eventually reached one at al1 temperatures. 

The DOPC and SOPC solutions behaved simiIarly to the DMPC solution. The 

results for extrusions done at  a range of pressures are shown in Fig. 4.10 through 

Fig. 4.12. As seen in Fig. 4.10, at high pressure, the DOPC and SOPC vesicles are 

slightly larger than the DMPC vesicles extruded at the same pressure, but al1 samples 

show a decrease in radius with extrusion pressure. The minimum pressure required 

for extrusion varied significantly between lipids. The minimum pressures for which 
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DOPC and SOPC were extnided were approximately 65 psi and 55 psi, respectively. 

Figure 4.11 shows that there is no change in the relative standard deviation as a 

function of pressure for any of the phospholipids. The number of extrusions required 

to  reach a constant flowrate was greater for DOPC and SOPC than for DMPC in the 

intermediate pressure range, as shown in Figure 4.12. At 300 psi, the number of ex- 

trusions required was the same for al1 of the lipids. The number of extrusions required 

became more disparate as the vesicles of each type of phospholipid approached their 

minimum pressures. 

The macroscopic bulk flowrate as a function of extrusion pressure is shown for 

various lipids and temperatures in Fig. 4.13. The flowrate of water at 30' C is plotted 

for comparison. Except in the region near the minimum pressure, the flowrate of the 

vesicle suspension depends more strongly on the temperature, shown in Fig. 4.13(a), 

than on the type of phospholipid, as shown in Fig. 4.13(b). Above 100 psi, the flowrate 

is independent of the lipid involved. 
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Figure 4.3: Static light scattering data and fits to the data for a typicd sample of 
vesicles. The sample in this case is composed of SOPC vesicles extruded at  100 psi 
and 30°C. The lipid concentration is 1 mgIrne. The fit to the data yields a radius of 
65.1 nm k 0.265 nm. 
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Figure 4.4: The mean hydrodynamic radius Rh as a function of the number of ex- 
trusions for a typical sample of DMPC vesicles, extruded at  200 psi and 30°C. For 
cornparison, the right-hand axis plots the data as the ratio of to the pore radius 
&=50 nm. 
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Extrusion Pass 

Figure 4.5: The relative standard deviation a/r of the vesicle radius distribution as a 
function of the number of extrusions for a typical sample of DMPC vesicles, extruded 
at  200 psi and 30°C. 
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O 2 4 6 8 10 
Extrusion Pass 

Figure 4.6: The volume 0owrate Q as a function of the number of extrusions for a 
typical DMPC vesicle suspension, extmded at 200 psi and 30°C. 
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O 100 200 300 
Pressure (psi) 

Figure 4.7: Ratio of the mean hydrodynamic radius Rh of vesicles to the pore radius 
&=50 nm as a function of extmsion pressure for DMPC vesicles extruded at 25OC, 
30°C and 40°C. 
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O 100 200 300 
Pressure (psi) 

Figure 4.8: The relative standard deviation a/r of the vesicle radius distribution as a 
function of extrusion pressure for DMPC vesicles extruded at 25OC, 30°C and 40°C. 
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O 1 O0 200 300 
Pressure (psi) 

Figure 4.9: The number of extrusions required to reach a steady flowrate as a function 
of extrusion pressure for DMPC vesicles extruded at 25OC, 30°C and 40°C. 
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Pressure (psi) 

Figure 4.10: Mean hydrodynarnic radius of vesicles as a function of extrusion pressure 
for vesicles composed of either DMPC, SOPC or DOPC. Al1 data shown was taken 
at a temperature of 30°C. 
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Figure 4.11: Polydispersity of vesicles o/r as a function of extrusion pressure for 
vesicles composed of either DMPC, SOPC or DOPC. Al1 data shown was taken at  a 
temperature of 30°C. 
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Figure4.12: The nurnber of extrusions required to reach a steady Bowrate as a function 
of extrusion pressure for vesicles composed of either DMPC, SOf C or DOPC. Al1 data 
shown was taken at a temperature of 30°C. 
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O DMPC 40'C 
A DMPC 30'C 
O DMPC 25'C 
O H,O 30'C 

Figure 4.13: The flowrates of vesicle suspensions as a function of extrusion pressure. 
In both plots the flowrate of pure water has been shown for cornparison. (a) The 
final flowrates of DMPC vesicle suspensions for samples extruded at 25OC, 30°C and 
40°C. (b) The final flowrates of DMPC, SOPC and DOPC vesicle suspensions. These 
samples were al1 extruded at 30°C. 
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Discussion 

5.1 Flowrate 

As seen in Fig. 4.13, the flowrate of water is proportional to the applied pressure 

over the entire range of applied pressures as predicted by Darcy's law. The measured 

flowrate for water is less than that predicted by Eq. 3.4, most likely due to an un- 

known density of pores. Interestingly, the flowrate of water decreased with increasing 

nurnber of extrusions at constant pressure, reaching the point of zero flowrate after 

4-6 passes. No corresponding decrease of flowrate with number of extrusion passes 

occurred for vesicle suspensions. On the contrary, the flowrate of the vesicle suspen- 

sions increased as the vesicles were cycled through the extruder a number of times 

eventuallly equilibrating at  a constant flowrate. The vesicles in suspension appear to 

be facilitating the flow of water through the pores. The reasons for this behaviour axe 

unclear at this time. 

At high pressures, the measured flowrates for the different vesicle suspensions are 

also proportional to the applied pressure. Rom the slopes of the flowrate at  high 

pressures (> 100 psi), the effective permeability for each vesicle suspension was cal- 

culated. The permeability of water was calculated using data over the entire range 

of pressures. The results are shown in Table 5.1. Within experimental uncertainties, 

the measured permeabilities of the vesicle suspensions are consistent with that rnea- 

sured for water. This is not very surprising, considering the fact that al1 of the vesicle 
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suspensions were made at a very small concentrations of lipid (- 1 mg/m!). If the 

boundary Iayer thickness is known, it is possible to estimate the expected permeabil- 

ity decrease. These calculations are made in section 5.3, where it is found that the 

permeability decrease is on the order of 0.5%. 

Table 5.1: Effective permeability of polycarbonate membranes to vesicle solutions 

Sarnple 
Water (O bserved) 

DMPC 
DMPC 

The temperature dependence of the flowrates measured for different vesicle so- 

lutions appears to be due solely to differences in the viscosity of water a t  different 

temperatures. This is can be seen in Fig. 5.1 which shows the viscosity-corrected 

flowrate (the product of the flowrate of the suspension with the viscosity of water at  

the temperature of extrusion) as a function of extrusion pressure for al1 vesicle sus- 

pensions and temperatures studied. The vesicle suspension data are indistinguishable 

at high extrusion pressures where the viscosity-corrected Aowrates of constant lipid 

concentration vesicle suspensions are independent of temperature or lipid properties. 

This is consistent with Bruinsma's picture, but not with Gompper and Kroll's. 

Temperat ure (OC) 
25 

SOPC 
DOPC 

5.2 Minimum Pressure 

Permeabili ty Keff (10-15m4) 
1.53 f 0.08 

30 
25 

The graph inset to Fig. 5.1 shows that variations in the flowrate occur between samples 

of different lipids at low pressures. There does not seem to be any significant difference 

in low pressure data for DMPC samples extruded at different temperatures. The 

pressure at which a suspension's flowrate reaches zero is defined as its minimum 

extrusion pressure Pmi,. 

1.37 k 0.15 
1.47 * 0.25 

30 
30 

1.57 f 0.11 
1.52 f 0.20 
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O DMPC 40% 1 
A DMPC 3032 -1 
O DMPC 25'C 4 
vSOPC 30'C 

DOPC 30'C 

Figure 5.1: The viscosity-corrected final fiowrate 7Q as a function of extrusion pres- 
sure for al1 samples studied. The concentration of lipid in sdution was 1 rng/mL 
The inset is a magaified view of the low pressure region which shows the different 
minimum pressures observed in different lipid solutions. 
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The minimum extrusion pressures Pmin for the various sarnples are determined 

by fitting the viscosity-corrected flowrate 7Q at low pressures ( 5  100 psi) with an 

empirical function of the form 

where C and cr are constants deterrnined by the fitting algorithm. Only points cor- 

responding to pressures at or below 100 psi were used in the fits. Results for P,,,i,, 

C and ar are sbown in Table 5.2. The exponent ai is different for each data set and 

the data cannot be fit to a single value for cr. The results for the minimum pressure 

for DMPC data sets were obtained by combining the viscosity-corrected flowrate data 

sets for each temperature and fitting this combined data set. 

Table 5.2: Values of fit parameters C7 a, and Pmin resulting from fit of Eq. 5.1 to 
flowrate as a function of extrusion pressure. 

Lipid 
DMPC 

IntuitiveIy, it is easy to understand why there should be a minimum pressure to 

extrude vesicIes; however, this observation is addressed only by Gompper and Kr011 [4]. 

The multilamellar vesicle which is being extruded is initially two orders of magnitude 

larger than the size of the pore, as shown schematically in Fig. 5.2. This vesicle must 

be deformed at some energy cost to fit into the smaller pore and it rnust suffer a 

decrease in volume either by diffusion of water through the membrane or through 

rupture in order to enter the pore. 

The minimum pressure was extrapolated from the final flowrate data instead of 

the initial flowrate. It might be thought that this would cause some problems for 

the surface tension calculations which used the initial vesicle size instead of the final 

size. There are two other considerations which support the validity of the usage of 

the final flowrate. The first of these is the experimental confirmation of the minimum 

SOPC 
DOPC 

Pmin (ps i )  
23.1 f 7.5 

C ( ~ 1 0 ' )  
0.12 

0.52 
0.71 

1 .O2 
0.36 

cr 
0.92 

49.7 k 8.6 
63.9 f 1.4 
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Polycarbonate 1 1 Polycarbonate 
fdter membrane filter membrane 

Figure 5.2: A vesicle at  the entrance to a pore of radius 4. The pressure below the 
vesicle inside the pore is Po, the pressure above the vesicle is Pl and the pressure inside 
the vesicle is PZ. By definition, Pz is greater than either Po and Pl. The diagram is 
not to scaie. 

pressures. For each sample, attempts were made to extrude the vesicles at a pressure 

10 psi below the lowest reported pressure on the graphs. In each case, the resulting 

fluid was effectively free of vesicles, thus experimentally confirming the existence of a 

minimum pressure. The fitted minimum pressures al1 fall within this observed 10 psi 

range. The second consideration is that as the pressure of extmsion decreases the 

size of the final vesicle increases. Hence, as Pm, is approached, the size of the final 

vesicles gets larger and larger, decreasing the effect of the vesicle radius R on the 

surface tension calculations. 

The pressure Pb required to bend a vesicle to a given mean radius of curvature R 

is approxirnately Pb - 4rkC/R3 where kc is the elastic bending modulus. The pressure 

required to deform a large DMPC vesicle with a bending modulus of 1.1 x 10-lg J [30] 
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to fit a pore of radius 50 nm (cf. Fig. 5.2) is roughly 0.13 psi. This is much smaller than 

any pressure used in the extrusion process so that it appears that energies associated 

with bending do not limit the extrusion of vesicles. 

After it is deformed, the vesicle can decrease in volume by flow of water through 

the vesicle wail. Bowever, this is a slow process as most, if not d l ,  of the outward 

water flow occurs across the smaller area inside the pore S T . . ~ .  AS shown in Appendix 

C, the time required to decrease the volume of the vesicle sufficiently t o  fit it into the 

pore is on the order of 42 minutes, with a resulting required tirne of 37 hours to 

extrude a typical 5 me sample. This is much longer than any observed time scale in 

the extrusion process. On the other hand, the pressure differences across both the 

large area outside the pore and the small area inside the pore will increase, resulting in 

the buiidup of an effective surface tension in the lipid bilayer as given by the Laplace 

relation between the pressure difference across a curved interface and the surface 

tension [G] 

where H is the mean curvature of the interface, 7 is the surface tension a d  Co is 

the intrinsic surface curvature. Bilayers which have an identical chernical composition 

for both monolayers have an intrinsic curvature of zero. It will also turn out that 

the third term is about 10' orders of magnitude smaller than the first, so that it c m  

safely be neglected, leaving only the first terrn. The pressure is greater on the side of 

interface where the curvature is positive. For exarnple, a sphericd interface will have 

a greater pressure inside the sphere than outside, as the curvature, in this case the 

inverse of the radius, is positive inside the sphere. 

Now consider again the vesicle shown in Fig. 5.2. Let us assume that the surface 

tension is constant throughout the bilayer. The pressure "above" the vesicle is given 

by Pl, the pressure ubelown the vesicle, on the exit side of the pore, is Po and the 

pressure inside the vesicle is Pz. In this case, the exit side of the pore is open to the 

air, so Po is equal to the atmospheric pressure. The difference Pl -Po is then simply 

the applied pressure, which is one of our measureable experimental parameters. In 

the described situation, there is no flow thïough the pore, as the vesicle is cornpletely 
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blocking it. Al1 of the pressure drop Pl - Po therefore occurs over the vesicle. Now, 

for the portion of the vesicle exterior to ("above") the pore, the Laplace pressure is 

given by 

Similarly, the Laplace pressure across the membrane inside the pore is 

Subtracting Eq. 5.3 from Eq. 5.4 yields an expression for the pressure difFerence PI -Po 
in terms of the pore radius R, and the radius of the outer portion of the vesicle R 

If the tension grows larger than the lysis tension of the bilayer, the bilayer wiIl 

rupture, the contents can escape, and the vesicle will be able to proceed through the 

pore. Lysis tensions caiculated from Eq. 5.5 using values of Pm;, from the fitting of 

Eq. 5.1 to the viscosity-corrected flowrate data are also shown in Table 5.3. Compar- 

ison with values for lysis tensions obtained from pipette aspiration experiments [';Zl] 

show that the results agree within experimental uncertainties. It appears that the 

observed minimum pressure required to extrude vesicles is due to the surface tension 

necessary to cause the vesicles to rupture. 

Table 5.3: Rupture tension y, of lipid rnembranesdetermined by pipette aspiration [32] 
and minimum extrusion pressure. 

Lipid 
DMPC 

5.3 Vesicle Size 

SOPC 
DOPC 

Figure 4.4 shows that the size of the extruded vesicles changed rapidly at  first, reaching 

a radius 20% larger than the nominal pore radius in just four extrusions, after which 

y, by extrusion (m N/m) 
4.2 =t 1.4 

Pmin(psi) 
23.1 f 7.5 
49.7 f 8.6 
63.9 f 1.4 

y, by pipette asp. (mN/m)  [32] 
2.7 f 0.8 
9.0 & 1.7 
10.2 f 2.5 

9.0 f 1.6 
11.6 5 0.25 
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the rate of size change dropped off. It can be seen from Figs. 4.7 and 4.10 that the 

size of extruded vesicles decreases with increasing extrusion pressure. This is not very 

surprising, as one would intuitively expect the vesicles to get smaller as the force 

applied is increased. (Try varying how hard you blow with a child's soap bubble toy!) 

There does not seem to be any dependence on the lipid composition of the vesicles or 

on temperature. The smallest observed vesicle sizes, which occurred at  a pressure of 

300 psi, is slightly larger thart the nominal pore size. 

The observation t hat vesicle size decreases with flowrate is consistent with other 

studies of complex fluids under shear [57, 581. These studies show that the size of 

structures produced decrease with increasing shear rate, which is most directly related 

to our fiowrate instead of pressure. Certainly, as the Bow rate increases, Eq. 3.8 

predicts that the lubrication Iayer should increase in thickness so that the vesicle 

tube decreases in radius. The boundary layer thickness can be estimated using the 

result of Clerc and Thompson which predicts that the radius of the final vesicle should 

be 1.77 tirnes that of the cylindrical lamella £rom which it forrned.' Assuming that 

this is correct and looking at the sizes of the extruded vesicles, it con be seen that 

the cylinders which would have been inside the pores must have been much smaller 

than the size of the pores. Neglecting the thickness of the bilayer, the radius of a 

cylindrical lamella in a pore is equal to the radius of the pore R, minus the boundary 

layer thickness h'. The radius of the lamella is also equal to the radius of the final 

vesicle R, (laken here as equal to the mean hydrodynamic radius Rh) divided by 1.77. 

Therefore, the boundary layer thickness is given by 

Using the observed hydrodyoamic radii Rh of extruded vesicles for R, and a pore 

radius R, of 50 nm, the boundary layer thickness can be calculated. This estimate of 

h* may then be used to calculate the expected permeability reduction using Eq. 3.7. 

The number of vesicles per unit length in a pore n at any given time is also needed 

for this cornputation. At the concentrations used in these experiments (1 mgIrne), 

I 1 t  would be better to use Bruinsrna's formula, but our data leaves too many parameters unknown 
to do this. 
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we estimate that there are approximately 0.7 vesicles per pore during the extrusion 

process, which translates to 0.061 vesicles per micron. This number was arrived at 

by cdculating the number of vesicles per unit volume using the initial phospholipid 

concentration and an estimated final vesicle radius of 50 nm, and multiplying by the 

volume of a pore. The results of the calculations of h', L' and hér//K are shown in 

Table 5.4. The spherocylinder length is determined by area conservation from the final 

vesicle size &, the pore size R, and the boundary layer thickness h'. The resulting 

equation for L' is 
2 

L- = - (R: - r2) , 
r 

where r = R, - h'. The smallest boundary layer thickness is 9.4 nm, ranging up to a 

maximum of 20.5 nm. It is apparent from these figures that Bruinsrna's assumption 

that the boundary layer is small compared to the pore radius is not valid. On the 

other hand, the calculated decrease in the filters' permeability is very smail, being on 

the order of 0.5%. This is in agreement with the observed permeabilities of Table 5.1. 

The smallness of the decrease is due to the low vesicle density (in turn due to the low 

lipid concentration), which leads to the number of vesicles per pore n being srndl. 

For higher concentrations, a larger decrease in permeability might be expected. 

Another interesting computation is that of the surface tension of the front of a 

vesicle inside a pore. Using the boundary layer just calculated in conjunction with 

Eq. 3.5 and the volume flowrate Q, the surface tension y can be calculated. The 

results of these calculations are shown in Table 5.5. Since the vesicles are rupturing 

at  some point, it is reasonable to assume that the surface tension of the vesicles 

should be at least the same order of magnitude as the rupture tension for the given 

type of lipid membrane. The surface tensions calculated axe smaller than expected, 

but are approaching the correct order of magnitude. It must not be forgotten that 

these numbers were derived from Bruinsrna's equations for steady-state Bow, with no 

allowances for rupture and ignoring the fact that the assumption that the lubrication 

layer thickness is negligible compared with the veiscle radius is not valid. Given this, 

it is not unexpected that there will be some deviation from experiment. Indeed, it is 

surprising that the results agree as well as they do. 
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5.4 Polydispersity 

Of considerable interest is the observation that there is no irnprovement in the rela- 

tive polydispersity as the extrusion pressure is increased. This is somewhat counter- 

intuitive, as one might expect to achieve more uniformity of the vesicle population as 

the applied force is increased. Such an improvement with increasing shear force has 

been observed in oil-water-surfactant systems by Mason and Bibette [57]. A d u e  to 

the reasons for this may be found in the elctron microscope photographs of the surface 

of the polycarbonate filters (cf- Fig. 4.1) used to extrude the vesicles. As discussed 

in Chapter 4, the pores Vary wideIy in size, with some pores apparently being twice 

the manufacturer's stated maximum size. Since the size of a vesicle is dependent on 

the size of the pore through which it is extruded, it is reasonable to expect varying 

pore sizes to Lirnit the degree to which the polydispersity caa be reduced. 
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Table 5.4: Calculated ratios of effective permeability to geometrical permeability 
Keff / K  for polycarbonate filters from observed DMPC vesicle sizes, dong wi t h final 
vesicle sizes a, boundary layer thicknesses h* and the spherocylinder length L*. The 
boundary layer thickness and spherocylinder length were calculated using Eqs. 5.6 
and 5.7, respectively. 

66.85 12.3 162 
64.41 13.7 156 
64.24 13.8 155 
61.42 15.6 148 
51.76 1'7.4 140 
55.67 18.6 135 
54.80 19.1 132 
54.00 19.5 131 

DMPC vesicles extruded at 30' 

P (psi) ( R, (am) 1 h' (nm) 1 L' (nm) ( Kef f /K  
DMPC vesicles extruded at 40°C 

30.0 72.01 ] 9.37 1 1 74 0.994 
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Table 5.4 (Continued). 

Table 5.5 (Continued). 

L 

55.0 
65.0 
75.0 
100.0 
150.0 
200.0 
250.0 
300.0 

67.02 
67.12 
65.39 
64.70 
62.51 
59.53 
58.38 
58.32 

DOPC vesicles extruded at  30°C 

12.2 
12.1 
13.1 
13.5 
14.7 
16.2 
17.1 
17.1 

65.0 
75.0 

100.0 
125.0 
150.0 
200.0 
250.0 
300.0 

162 
162 
158 
156 
151 
145 
141 
141 

68.70 
64.68 
62.39 
62.45 
60.96 
56.89 
55-17 
57-50 

0.995 
0.995 
0.995 
0.995 
0.995 
0.995 
0.996 
0.996 

11.2 
13.5 
14.5 
14.8 
15.6 
17.9 
17.2 
17.4 

166 
156 
151 
151 
147 
138 
141 
140 

0.995 
0.995 
0.995 
0.995 
0.995 
0.996 
0.996 
0.996 
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Table 5.5: Cdculated tensions 7 of vesicle frontcaps, with corresponding final vesicle 
size &, boundâry layer thickness h* (from Eq. 5.6 and viscosity-corrected fiowrate 
qQ. The vesicle size and viscosity-corrected flowrate were determined experimentally. 
The endcap surface tension y was cdculated €rom these data using Eq. 3.8. 

P (psi) 1 R, (nm) 1 h' (nm) ( qQ (cPml/s) 1 y (rnN/m) 
DMPC vesicles extruded at 40°C 

30.0 
50.0 
6v5.0 
65 .O 
100.0 
150.0 
200.0 
250.0 

DMPC vesicles extruded at 30°C 

'72.01 
66.85 
64.41 
64.24 
61.42 
51.76 
55.67 
54.80 

9.37 
12.3 
13.7 
13.8 
15.4 
17.4 
18-6 
19.1 

0.0591 
O. 269 
0.437 
0.418 
0.718 
1 .O0 
1.60 
2.32 

0.173 
0.523 
0.725 
0.686 
1 .O0 
1.15 
1.67 
2.33 
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P (psi) ) R, (nm) 1 h' (om) 1 qQ (cP-rnl/s) 1 y (mN/m) 
SOPC vesictes extruded at 30°C 

100.0 64.70 13.5 0.602 1.02 
150.0 62.51 14.7 1.20 1.78 
300.0 59.83 16.2 1.66 2-12 
250.0 58.38 17.1 2.15 2.56 
300.0 58.32 17.1 3.73 3.24 

DOPC vesicles extruded at 30°C 
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Conclusions 

Our objective in this work \vas to understand better how uniiamellar vesicles are 

formed by extrusion. This would be helpful from the point of view of gaining in- 

sight into the properties and behaviour of phospholipid bilayers and vesicles in non- 

equilibrium and non-steady states. The empirical data gathered aiso has applications 

for researchers using vesicles in the lab and for the industrial production of vesicles 

containing pharmaceuticals. The means of accomplishing this goal that we chose was 

to characterise the end products of extrusion as a function of the lipid composition, 

applied pressure and extrusion temperature. 

The central observation of this study is that there exists a minimum pressure to 

cxtrudc a suspension of vesicles in water through the filter membrane. This minimum 

pressure is dependent on the properties of the lipid composing the vesicles, but not 

on the bending rigidity, as has been suggested previously [43. Instead, the minimum 

pressure seems to be a Iinear function of the lysis tension of the phospholipid bilayer. 

Lysis tensions computed from the minimum pressures agree, within experimental 

error, with other methods [21]. Determination of the minimum pressure is thus a 

convenient method of measuring the lysis tension of a phospholipid. 

It was aiso observed that the flowrate of the solution increased and the size of the 

extruded vesicles decreased as the applied pressure was increased. This is consistent 

with ot her studies of complex Buids under shear [57,58]. Above the region of pressure 

space near the minima (> 100 psi), the pressure dependence of the viscosity-corrected 
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flowrates of al1 the samples are linear and equal, with no apparent effects due to the 

lipid composition. This lack of dependence of flowrate on lipid properties is in agree- 

ment with the results of Bruinsma [5] .  The dependence of flowrate on concentration 

remâins to be determined. The flowrate and vesicle size data were used to estirnate 

the decrease in filter permeability and the vesicle surface tension while inside the 

pore. The permeability estimates agreed with the experimental results within un- 

certainties, but the permeability decreases are small due to the low concentration of 

vesicles present, making a clear verification of Bruinsrna's model difficult. The pre- 

dicted surface tensions are only within an order of magnitude of the appropriate lysis 

tensions. Given the approximations of the model, this is quite a reasonable degree of 

agreement. Any future model needs to consider the necessity of the vesicle rupturing 

and what might occur after such an event. The primary effect of the temperature was 

to change the viscosity of the water. 

Surprisingly, the polydispersity of the samples did not decrease with increasing 

numbers of extrusions or with increasing pressure. Our primary hypothesis for this is 

that decreases in the polydispersity are limited by the wide variation in the sizes of the 

pores in the polycarbonate filter membranes. The manufacturer's claims and actud 

sample filter pore measurements conflict with each other. Direct measurements of the 

pore sizes and size distributions of the polycarbonate filter membranes by electron 

microscopy are probably the best way to resolve this, but this requires considerable 

effort and patience to develop the necessary sample preparation skill. A distribution 

function for the pore sizes would be very helpful in shedding light on the origin of 

the sarnple polydispersity. This might be determined by a careful analysis of the 

electron microscopy photos. It would be even more helpful if more monodisperse 

filter membranes could be manufactured. 

As stated above, the limiting factor to pushing vesicles through pores is the pres- 

sure required to cause them to break open. Once they break open, they are able 

to enter the pore, but how they re-form themselves into smaller vesicles is unclear. 

From the models of Clerc and Thompson [3] and Bruinsma [5], however, a very basic 

hypothesis of the mechanism can be pieced together. The vesicles do not move into 

the pore until they break. When they do break, the opening will form in the part 
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of the vesicle inside the pore as  this is the portion of the membrane surface under 

the most stress. The vesicle is pushed into the pore, forming cylindrical lamellae, 

separated £rom the pore wall by the boundary layer of water required by viscous Bow. 

The thickness of t his boundary layer is a function of the pressure indirectly through 

the flowrate. The boundary layer thickness in turn determines the radius of the cylin- 

drical larnella. The lamella is under stress due to  the shear force of the water flowing 

past the exterior, which causes the cylindrical form to be unstable to a form of the 

Rayleigh instability. This instability causes the vesicles to break up into the smaller 

vesicles which are observed. 

We operated under the assumption that when the volume flowrate of the extruded 

suspension stopped changing, the size of the vesicles also stopped changing. While 

this was consistent with our observations, some work to clarify this matter is neces- 

sary. Whether or not the Rayleigh instability is applicable here is questionable, as 

Rayleigh's instability assumes a small perturbation to a steady state system. Extru- 

sion is not a steady state phenomenon. If the Rayleigh instabilty is applicable to this 

system, the fastest growing mode of instability for the system should be determined, 

as the X = 27rR criterion is merely the stability limit. The fact that the vesicles do 

rupture should be taken into account in any future model, as should the fact that 

the minimum pressure depeods on the lysis tension rather than the bending rigidity. 



Appendix A 

Derivation of the Scattered 

Electric Field 

The equation for the scattered electric field may be derived using Maxwell's equations. 

This derivation follows that given by Berne and Pecora [9], which in turn follows 

the treatment of Landau and Lifshitz (1960) [59]. More compIete information on 

Maxwell's equations c m  be found there. The treatrnent here places considers that 

the scattering event occurs in a medium rather than in vacuo as is done in Ref. [9]. 

blaxwell's equations, in their most general foms, are 

Here, E is the electric field, B is the magnetic flux density, D is the dielectric dis- 

placement field and H is the magnetic field. In the problem a t  hand, the scattering 

medium is nonconducting and nonmagnetic, with the result that p = 0, J = O ( no 

free charges in the medium), and H = B/p, (no magnetisation of the medium). 

Consider a medium with a local dielectric constant tensor 

where E is the average dielectric constant of the medium and 6g gives the tensor form 

of the fluctuations about the average. It must be noted that the scattered fields are 
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much lower in amplitude than the incident fields. The magnitude of the dielectric 

fluctuations is also small compared to the average. 

The electric, dielectric displacement, and magnetic fields of the incident plane 

wave are Ei, Di,  and Hi, respectively. Similarly, the scattered fields are Es, D,, and 

Hs. The totals of the fields at any given point in the medium are then 

Since (E: D, H ) and (Eit Di ,  Hi) satisfy Maxwell's equations, (Es, D,, H,) must 

ais0 do so. Therefore, Maxwell's equations for this particular problem axe 

V*D, = 0 , and 

V=Hs = O .  

The scattered magnetic field H. can be eliminated by taking the curl of Eq. -4.7 and 

substituting Eq. A.8 into it 

The total displacement vector D is related to the total electric field vector E by the 

relation 
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Expanding this using Eq. A.4 and the fact that Di = €Ei  gives 

neglecting the second order term (&)-Es. The scattered electric field Es is then 

We are now in a position to substitute Eq. A.16 into Eq. A.12 to  get a wave 

equat ion 
a * ~  V x V x (D, - (6g)*Ei) = -E-+ . 
dt  

Using the vector identity V x V x A = V(V- A) - V2A, we notice that V- Ds = 0, 

leaving only the Laplacian of D,, so that Eq. A S 7  becomes 

This wave equation has an inhomogeneous source term, which makes solving the 

equation difficult. The problern c m  be simplified by defining a new vector, rr ( the 

Hertz vector), where 

D , = V x V x r r .  (A.19) 

If Eq. A.19 is substituted in Eq. A.18, it is c m  be shown that the Hertz vector 

satisfies a wave equation with the simple source term -(&)*Ei, 

the forma1 solution of which is 

1 
=(R, t )  = - d3r6'(r' "1  

47r IR- rl *Ei(r, t f )  , 

where t f  is the retarded time 

t ' = t - @ I ~ - r l .  c 

The retarded time t f  is the time at  which the radiation detected a t  position R at time 

t  was emitted at position r. 
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Now, Eq. 2.1 for Ei is substituted into Eq. A 2 1  

1 
*(R,t) = -/ d3r  k ( i ,  t') *ni E, exp i(ki*r - W; t') . 

47r v IR-r( 

The scattered displacement vector is obtained by using Eq. A 2 3  in the definition 

of the Hertz vector Eq. A.19. The scattered electric field is related to the scattered 

displacement vector by Ds = E.E,, where E, is the dielectric constant at  the detector 

position R. Thus, E, is 

Es(R, t )  =VXVX-  E" / d 3 r  I (6&, t') * f i i )  exp i(k;*r - wi t') . ( A  .24) 
4a~, v IR-il 

The detector will be assumed to be very far away from the scattering medium, 

such that R dominates r. Therefore IR - r( may be expanded as a binomial power 

series 

IR - rl ' R - r*kr + . . . (A.25) 

where kJ is a unit vector in the direction of R. Thus, to a good approximation, the 

retarded time t' is - 

Now, Let us  do a Fourier analysis of &(r, t') over a time interval T 

6g(r, t') = 6 5  (r) exp iR,tf , 
P 

where R, = (%/T)p, the frequency components of the Fourier decomposition. The 

only components Rp that contribute significantly to this sum are those that correspond 

to the natural frequencies of rotation and translation of the system. These frequencies 

are less than 1013 Hz, which is much smaller than the frequency of the incident light, 

w; which is on the order of lV4 Hz, Le., wi > Rp for al1 significant 0,. Equations A 2 6  

and A.27 are now substituted into Eq. A 2 4  

EO E, =VXVX- 
1 

c J ~ ~ ~ ~ R -  il 
&)-f i i  exp(i0, t)  exp i(ki*r - wit) 

4 n ~ ,  
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Eq. A.28 can be simplified somewhat by defining the relations w~ E w; - Q, and 

kp E (,/E/c)ufkf. Using these relations, Eq. A.28 becomes 

Next, we notice that the curls of the integral are taken with respect to R, not r, 

so that they c m  be taken inside the integral. Furthemore, we will discard al1 terrns 

of order greater than (l /R).  Effectively, this means that a11 of the derivatives of the 

l/IR-rl factor are neglected, as they are necessarily of order 1/R2 or higher. Pulling 

the 1/IR - r j factor out of the double curl and approximating it by l /R ,  the scattered 

field is 

The curIs in Eq. A.30 can be dealt with using the vector identity 

Using this identity simplifies Eq. A.30 to 

Since fl, < w;, X, is, to a good approximation, 

ivhere w; = cki/n and n = fi is the local index of refraction.' Therefore, it can seen 

that kpi(l % k;kj = k (cf. Fig. 2.2)2. The only p-dependent quantities left in the 

sum are hg aad e i R p t ,  so the sum can be evaluated using Eq. A.27 

'1t is important to note that this is the index of refraction in the medium, where the scatter- 
ing takes place. Normaily, this fact is neglected in derivations of the scattered field (but not by 
experimentalists!). 

2~emember that kp is a mathematical construct, originating in the Fourier transform in Eq. A.27. 
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where q = k; - kr is the scattering vector. 

It should be noted that kr = ki and the definitions of q and kf are consistent with 

Fig. 2.2 and with Eq. 2.6. Also, Eq. A.34 depends only on the real time t and not the 

retarded time t'. 
Taking the component of Es in the direction of polarization of the scattered field 

nj gives 

which this the same as Eq. 2.5. 

It is important to remember that this and aü other results given in this thesis 

assume that the incident light wave is scattered only once. Multiple scattering is 

the result of terms in 6~ of greater than k s t  order, which have been neglected after 

Eq. A.15. 



Appendix B 

Form Factor of a Hollow Shell 

As an example, we will derive the form factor P(q) of a hollow sphere with a finite 

thickness starting fiom Eq. 2.15: 

The inner and outer radii of the shell are R, and Ro, respectively. 

The first step is to convert Eq. 2.15 from a summation to an integal forrn. Since 

the problem obviously has spherical symmetry, we convert the summation to a n  inte- 

grd in spherical coordinates over the volume of the sphere. Noting that the summation 

is normdised by the factor of l/t2, we normalise by dividing by an integral over the 

same volume. The form factor is now given by 

Ir de sin 0 /** lRO dr r2eiqer 

3 sin qr 
d r  r2- 

QT 
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Equation B.2 can be integrated by parts to obtain 

P ( q )  = [ (-$) (sin qRo - qR. cos qRo - sin qR. + pi$ cos qR,) . 1' P - 3 )  

Note that it is unnecessary to average over al1 angles due to the spherical symmetry. 

If this were not so: a second integration over the totai solid angle would be required. 



Appendix C 

Extrusion by Vesicle Deflat ion 

As an alternative to rupturing a vesicle a t  the entrance to a pore and expelling the 

contents, we wiIl consider the possibiiity that water instead flows out of the vesicle 

more quickly than it flows in, decreasing the vesicle's volume and allowing it to enter 

the pore without rupturing. If the functional form of the rate of outflow of water is 

known, the time required to forcibly decrease the vesicle's volume by the necessary 

amount can be determined by integration. The time required to extrude the entire 

5 me sarnple in this fashion is then also easily calculated. 

For a quasi-stationary membrane exposed to both a hydrostatic pressure 6 P  = 

Pi, - Peut and an osmotic pressure difference 6Ii  = Hi, - Hout, the solvent volume 

current J is given by 

J =  A(6P  - 6I i )  , (C-1) 

where A is the permeability of the membrane. We must be careful to note here that 

A is actually proportional to the area of the appropriate section of membrane, and 

will therefore be different for the volume current into and out of the vesicle. 

Let us consider the situation shown in Fig. 5.2. In addition to the quantities shown, 

let the concentrations of osmolytes below, above and inside the vesicle be given by Co, 

Cr and Ca, respectively. These c m  be changed to osmotic pressures by rnultiplying 

them by %T, where R, = 8.3143 J/rnol-K and T is the temperature in kelvins. The 

portion of the vesicIe inside and outside the pore will be referred to by the subscripts 

O and i, respectively. This Ieads to two equations for the volume current across the 
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two sections of the vesicle 

The two permeabilities Ai and A, will be expressed as the product of the appropriate 

area with a constant factor A, such that 

Ai = XA; = X ( A -  A,) , and 

A, XA, . 

where A is the total area of the vesicle. By their definitions, these volume currents are 

positive for flow into the vesicle. The total rate of change of volume J of the vesicle 

is given by the sum of these two volume currents 

Substituting the definitions of Ji and JO in Eq. C.6 and simplifying, and noting 

that the concentrations Co and Cl are equd gives 

J = X(A[(Pz - Pi) - RgT(Cz -CI)] + A o  (Pl - Po)) . (C.7) 

We will approximate the pressure difference Pz - Pl across the upper portion of the 

vesicle by the Laplace pressure ??IR, and assume that neither this pressure nor the 

area of the vesicle across which water c m  flow is changing. 

Next, we note that we are considering solvent concentrations, not solute concen- 

trations. The exterior concentration Cr is constant and the interior concentration C2 
is very nearly so. The result is that the term in Eq. (3.7 involving the concentrations 

is negligible. Al1 of the remaining terms are constant, so that we have 

The time rate of change of the volume of the vesicle dV/dt  is by definition the 

volume current J. The time required for a change of volume from to 1/2 is found 

by integrating, which of course yields a function inversely proportional to  J. 
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Now some assumptions must be made about numerical values used to evaluate 

Eq. C.9. We will consider the situation where DMPC vesicles with a mean radius R 
of 1 pm are extruded at  30 psi and 30°C. The pressure ciifference Pl - Po is equal to 

the pressure drop of 30 psi. The surface tension will be taken to be 4.2 x N/m, 
equal to the lysis tension shown in Table 5.3. We also need to know something about 

A. The flux permeability P of egg PC membranes to water is 2 x m/s [60]. From 

these values we find that X = 1.43 x 10-l4 m4/J S. 

The initial volume of the vesicle is effectively i r R 3  = 4.19 x 10-l8 m3, the 

volume of the small portion inside the pore being negligible. The final vesicle is 

assumed to be a spherocylinder of the same area as the initial vesicle and having 

a radius r equal to that of the pore, which in this case is 50 nm. The volume of 

this spherocylinder is 1/2 = 3.14 x IO-'' m3. The volume of the whole vesicle A is 

47rR2 = 1.26 x 10-'lm2 and the area of the vesicle inside the pore is A, = 27rr2 = 

1.57 x 10- 'h2 .  

With these areas and the values above, we find that J = 1.55 x l ~ - ~ l r n ~ / s .  This 

result is dorninated by the term involving the surface tension. The time to change 

the vesicle volume from & to is 

- 6 -3.88 x 10-l8 m3 
t =  - - 

J 
= 2500 s N 42 min . 

1.55 x IO-*' m3/s 
(C. 10) 

The result is negative due to our definition of J as being positive for net flow into 

the vesicle. If we had defined J such that it was positive for net outflow from the 

vesicle the time would have been positive. Forty-two minutes are required to deflate 

a vesicle enough so that it will fit through the pore. A typical 5 me vesicle solution 

has 8.84 x 10'' vesicles suspended in it, while there are around 1.66 x 109 pores on a 

membrane surface. This means that an average of 53 vesicles must p a s  through each 

pore. It would take about 37 hours to push al1 of the vesicles through the membrane 

under t hese conditions. It is observed experimentally that vesicles pass through the 

filter in a fraction of this time, implying that permeation of the membrane is not a 

significant factor in extruding vesicles. 
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