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Abstract

A perceptually adaptive JPEG coder is implemented in this research. The major
part of the implementation involves the design of a perceptual model that is based on
the texture masking and luminance masking properties of the human visual system
(HVS). The main objective is to compute a local multiplier map that can be used
to scale the quantization matrix (QM) so that fewer bits are used to represent the
perceptually less important areas of an image. The texture masking model is based
on a proposed block classification algorithm to differentiate between the plain. edge.
and texture blocks. An adaptive luminance masking scheme is also proposed which
adaptively adjusts the luminance masking strategy depending on an image’s mean
luminance value. Experimental results show that the adaptive coder provides savings
in bit-rate over baseline JPEG. with no overall loss in perceptual quality according

to a subject test.
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Chapter 1

Introduction

Image compression, and more recently, video compression. have been among the
main applications in communications and image processing for many vears because
of the enormous size of digitized images, and consequently the need to transmit or
store the data in a more compact form. Despite the improvement in the capacity of
high density storage devices, and the promise of high bandwidth optical transmission
media. compression remains a key technology. This is because of the new demand
for digital video storage, and the continued need to utilize bandlimited media such as
radio and satellite links, and bit-rate-limited storage media such as CD-ROMs and
solid-state memory chips [1].

The JPEG (Joint Photographic Experts Group) [2, 3] standard has been among
the most important international standards for image compression. Since its stan-
dardization in the early 90s, the use of digitized image data in the computing in-
dustry has coincidentally risen dramatically. This is in large part because of the
rapid advancements in computer hardware and software sophistication, but the stan-
dardization of image compression methods also assumes a pivotal role as it enables
interoperability of image data among different systems, and leads to the development
of cost-effective, non-proprietary implementations that will in turn further promote
the use of these multimedia data [4].

Despite the popularity and success of the JPEG standard, the coding scheme uti-




lized by the standard, a block-based transform coding scheme based on the discrete
cosine transform (DCT) is still not optimal as far as compression performance is con-
cerned. In recent vears there has been increased interest in perceptual coding. which
promises a higher compression ratio as compared to traditional coding schemes {1}.
among which the DCT-based transform coding schemes are the most widely used.
The main difference between the traditional coding schemes and perceptual coding is
that whereas the traditional coding schemes emphasize the mean-square-error(MSE)
criterion between the original and the coded images, perceptual coding also makes
use of the properties of the human visual system (HVS). A main idea here is that
because of the masking properties of the HVS, additional signal distortion that can-
not be noticed perceptually can be introduced into certain areas of the image. thus
fewer bits (and less fidelity overall) are needed to encode the image and consequently
the compression ratio increases. A major weakness of the JPEG image compression
scheme is that despite its good performance in the traditional MSE sense in general, it
fails to take full advantage of the HVS properties to compress images more effectively.

In other words, a standard JPEG coder is a rather limited perceptual coder.

1.1 Research objectives and thesis outline

The main objective of this project is the design of a perceptual model based on the
tezture masking and luminance masking properties of the HVS. The perceptual model
is then implemented on top of a standard (non-adaptive) JPEG coder. The result is a
JPEG-based perceptual coder that is able to adapt to the local statistics of different
areas of an image based on the analysis from the perceptual model. The coder will
also be referred to as the A-JPEG (Adaptive-JPEG) coder in the thesis.

The texture masking property of the HVS suggests that the human eye’s sensitivity
to error is low in highly textured image areas, while the luminance masking property
suggests that human sensitivity to error is low in very bright and dark image regions.
By using the masking properties of the HVS, the perceptual model computes a map

of scalar multipliers that can be used by the perceptual coder to scale up the local




quantization step sizes so that fewer bits are used to represent the perceptually less
important areas of an image.

Experimental results show that with the same JPEG quality factor, the adaptive
JPEG coder produces compressed images with lower bit-rates than those produced
with baseline JPEG with no overall loss in perceived quality according to a subjec-
tive comparative test. One important advantage of the architecture of the adaptive
coder is that the computational overhead of the perceptual model is incurred at the
encoder level only. No knowledge of the perceptual model is needed for decoding
or decompression. Thus the perceptual model only needs to be implemented in a
JPEG encoder and the output can be read by any existing standard-compliant JPEG
decoder without overhead. In addition to the obvious benefit of maintaining com-
patibility with the existing standard, the adaptive coder is also ideally matched for
broadcast-type multimedia imaging applications where most of the information is cre-
ated only once but accessed many times afterwards. In these applications, the cost of
the encoding overhead of the perceptual model, in light of the overall system usage
cost, will be minimal because encoding is done only relatively sparingly.

The following is the outline of the remaining chapters of the thesis. Chapter 2
reviews the basic ideas of image compression and some important human visual sys-
tem properties that form the foundations of perceptual coding. Chapter 3 introduces
the JPEG compression standard and the transform coding model that JPEG uses.
The design of the perceptual model and the A-JPEG coder is presented in chap-
ter 4. Chapter 5 presents the experimental results and the corresponding discussions.
Chapter 6 concludes the thesis and outlines future work to be done. The appendix at
the end of the thesis provides a more general discussion on how the adaptive coder

might be applied in practice.




Chapter 2

Review of image compression and
some human visual system

properties

This chapter gives a brief review of image compression. Some relevant human visual
system (HVS) properties will also be presented. The main purpose of this chapter is to
establish the compression and HVS terminologies that will be referred to throughout

the whole thesis.

2.1 Classical information theory

The foundation of image compression originates from Shannon's works on Information
Theory [5], in which he defined the measure of the average uncertainty, or randomness,

of a source S as the entropy H(z):
H(z) = - ZPilogzpi ) (2.1)

where p; denotes the probability of occurrence of the symbol z; from the source S. The
term entropy can also be defined as the data compression limit, which corresponds to

the lower limit for representation of a source. For instance, consider the representation




of one pixel from an image with 8 bit pixel depth. where 256 different values (symbols)
are possible for one pixel. If all values are equally likely, i.e. p; = E;_é for all 7 (a totally
random image with a flat distribution), the entropv H(z) would be 8 The unit for
entropy is bit/symbol, thus equation 2.1 shows that the lower limit for representing
a pixel from this example image is 8 bit/pixel, or no compression is possible. This
represents the worst case scenario for compressing an image pixel. The other extreme
is, for example. po = 1. and p; = 0 for all  # 0. In this case the entropy is 0. which
means that no bit needs to be transmitted because the symbol is always xy. [n reality,
pi's distribution is normally not flat and the value of p; is somewhere between 0 and
1 for most i. From information theory, a non-flat source distribution would lead to
an entropy H(z) below 8. and compression is possible.

[t is conventional in the image compression community to use the term bit-rate
when comparing different compression schemes [6]. The term bit-rate means the
average number of bits per pixel after compression. As with compression’s origin
from the source coding theory in information theory, the word encoding or coding is
often interchangeable with the word compression. whereas, decoding naturally refers
to the act of decompression.

The concept of entropy defines the lower bound bit-rate for error-free, or lossless
compression. But in certain cases it is also useful to allow some distortion between
the original and the decompressed image so that the the compressed bit-rate can be
lower. This is called lossy compression, and the original image cannot be perfectly
recovered from the compressed image. Shannon proposed the more general rate-
distortion function which establishes the theoretical minimum bit-rate, R(D), that is
achievable given an average distortion D between the original and the decompressed
image. The general form of a rate-distortion function (7, 5] is shown in figure 2.1. The
curve shows that when D increases, R(D) decreases. In other words the minimum
theoretical bit-rate decreases, or higher compression is possible, when more distortion
is allowed. The rate-distortion function is also applicable for lossless compression:
when D = 0, R(0) is the entropy of the source.

Classical information theory provides a solid theoretical foundation on which the
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Figure 2.1: The rate-distortion function

modern compression techniques can build on. However, there arc several issues con-

cerning the use of classical information theory in practice [1. 6|:

Performance bounds only The theory is non-constructive, it offers bounds
on distortion-rate performance rather than techniques for actually achiev-
ing these target bounds. In practice the calculation of the bounds is not

simple and they are mostly used for theoretical comparisons only.

Statistical redundancy removal and input modeling The entropy mea-

sure depends entirely on a known probability distribution of the source.

~ ~ In the previous example, the coding of a single 8-bit ;;ixé[ source uses a

histogram of the counts of the 256 different possible symbols as the prob-
ability source. However, image data tend to have a high degree of spatial
redundancy, i.e. adjacent pixels tend to have similar magnitudes, and
the above entropy measure is sub-optimal as the inter-pixel redundancy
is not taken into consideration. The calculation of the second-order en-
tropy H(z,y) requires 256 different histograms of 256 counts each, while
H(z,y, z) will require a staggering 65,536 different histograms. One of the
main goal of compression research is to model, or preprocess the input data
to take advantage of the inherent statistical redundancy, in particular, the
interpizel redundancy in the image more efficiently. For example, a typical

real-life image contains large areas of relatively constant grayscale values.

6



By coding the difference of adjacent pixel values instead of each individual
pixel, the probability distribution of the differential output will be heavily
skewed near zero. This distribution will very likely be more 'non-flat’ than
the original pixel distribution. The source variance will also be smaller and
a lower coded bit-rate is achievable. This method is called lossless differ-
ential coding and is one of the most simple and commonly used techniques

to reduce statistical redundancy.

Perceptual redundancy removal For lossy compression, the definition of
the distortion measure D directly affects the R(D) curve and thus the
coding performance. The traditional mean-square-error (MSE) criterion
has long been known as a poor indicator of image quality, which ultimately
has to be judged by a huinan viewer. Research on the masking properties
of the human visual system has shown that local image characteristics have
different masking effects on the actual perceived distortion [8. 9]. In other
words, the distortion is less noticeable in some area of an image than in
other area - that is, there is perceptual redundancy. or visual redundancy,
in an image [10]. By carefully introducing more distortion into areas that
are less susceptible to error perceptually, the compressed bit-rate can be

decreased without affecting the overall perceived image quality.

Figure 2.2 shows a typical classification of the well-known compression meth-
ods [4]. The first generation compression techniques represent the vast majority of
the compression methods currently in use, including JPEG. They will be the focus in
the next section.

The second generation image compression techniques involve using image synthe-
sis and sophisticated image feature modeling to achieve very high compression ratio.
They are designed for low-bit-rate coding, for example, video conferencing applica-
tions, where neighbouring image frames are generally very similar to each other, so
only a minimal amount of feature information is needed for transmission to recon-

struct a frame sequence. The decompressed image using second generation compres-




Image comprassion methods
r ‘ m
Second Generalion Techniques First Generation Techniques
|

Model-based Lossless Lossy
) 1
! T ' f 1
Others Statisticat Universal Spatial domain Frequency domain
! ! i
Run-length r Fano *, Anthmetic " OPCM r Fl'vlter-based
Coding : Coding ! !
‘ Huft | L Vector E- Subband
[ nufiman r Lempel Ziv r Quantization !
Lossless | L {- Wavelet
- differential - Others Others Others !
codjng - Qthers
L Others

L Transform-based
f

—p o

Karhunen-Loeve

Haar

-

OFT

e

DCT (JPEG)

Others

Figure 2.2: Classification of image compression methods

{

sion techniques is generally far from indistinguishable from the original image [7}. and

these techniques will not be further pursued in this thesis.

2.2 Lossless and lossy image compression

The first generation techniques can be further classified into lossless and lossy com-
pression techniques. Lossless compression deals with statistical redundancy removal,
and allows the original image to be recovered exactly from the compressed image.
Lossy compression, in addition to performing statistical redundancy removal, also
removes perceptual redundancy, this introduces distortion and results in imperfect
reconstruction. Most lossless and lossy compression methods fit within a general

framework depicted in figure 2.3 [4].

The general compression framework consists of two parts: the preprocessors and




Entropy coder

Lossless coding N .
Input Lossless Probability | 1 Variable Output
tmage Pre-processing modeling length coder
Lossy coding
Lossy
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Figure 2.3: Lossless and lossy compression general framework

the entropy coder. For some compression techniques. the distinction between the
different building blocks may not be obvious, nevertheless the idea behind the frame-
work is general and should apply to most compression systems. The entropy coder
is the simplest but vet most crucial component of most compression systems. Given
an input set of svmbols, the probabilitv modeler generates a table of the probability
distribution. The variable length coder then uses the table to map the input sym-
bols into codewords. By using short codewords for symbols with high probability of
occurrence and long codewords otherwise. overall compression is achieved.

The lossless entropy coder provides good performance for general data compression
by itself. however, it is not very effective for complicated input like images. The main
idea behind the general compression framework is to first preprocess the input image
data and then entropy code the processed symbols for better performance. The
preprocessing steps remove the statistical and perceptual redundancy from the input
using pre-defined perceptual and statistical models, and enable very effective entropy
coding.

The differential coding method mentioned previously is a typical lossless prepro-
cessing operation. Lossy preprocessing is normally realized through gquantization.
Quantization in general refers to the operation of assigning a discrete value to repre-
sent a group of values. This many-to-one operation is inherently lossy. For instance,
using a uniform quantizer with a quantization step size A, the quantizer output equals
the input symbol divided by A. This reduces the precision of the input by logs A bits,
and is the main source for irreversible information loss in most lossy compression

systems.




The following is a brief outline of some of the more common lossless compression

techniques:

Huffman coding The Huffman coder is the first widelv-used entropy coder after
Shannon published his landmark papers. Its structure is identical to that of
the entropy coder shown in figure 2.3. With the input symbol probabilities.
the variable length symbol-to-codeword mapping is performed using Huffman's
algorithm {11.. One disadvantage about Huffman coding is that the probabil-
ity table also needs to be transmitted for proper decoding. Furthermore. the
minimum codeword length is 1 bit. no matter how high the probability of oc-
currence of a svmbol is. Nonetheless. combined with proper pre-modeling and
quantization of the input data. Huffman coding has proven to be very effec-
tive for entropy coding and it is the entropy coder of choice for most JPEG

implementations.

Runlength coding When the input contains svmbol sequences of constant mag-
nitudes. compression can be achieved easily by just coding the length of the
sequence (run; and the symbol itself. For instance. ten consecutive zeros can
be coded using only two svmbols - a ten. and a zero. This technique is known
as runlength coding. [t is frequently used for simple stand-alone compressicn.

or as a preprocessor before entropy coding is applied.

Arithmetic coding Another popular entropy coder which is an improvement over
the basic Huffman coder. The coder is discussed in details in [12]. It has the ad-
vantage that the minimum codeword length can be less than 1 bit. Moreover. it
allows dynamic adaptation of the probability madel with the input statistics and
no input-dependent probability table is needed for decoding. Arithmetic coding
is also listed as an optional entropy coding method in the JPEG standard 3.
however, because the algorithm is patented. it is not necessarily supported by

all JPEG implementations {13}.

Lempel-Ziv coding Lempel-Ziv coding and arithmetic coding are both known as

10




universal coding algorithms as they are both capable of dvnamic adaptation ac-
cording to the input statistics and no separate probability modeling is necessary.
Lempel-Ziv coding uses a dictionary-based approach. The idea is 1o adaptivelv
build up a dictionary of the input svmbol sequences and use the dictionary in-
dexes as the codewords {14]. Lempel-Ziv coding is verv popular for lossless text
and image compression. For example. variations of Lempel-Ziv coding are used

in the pkzip compression program and the GIF graphics formar.
Some of the popular lossy compression techniques are:

Differential pulse code modulation (DPCM) DPCMI belongs to the predictive
coding family. in which a predictor is used to predict a current symbol z, using
previous svmbols. The difference. or the error £, between the current svmbol
and the prediction is then quantized as the ourput. The vanance of £, is nor-
mally lower than that of z,. this corresponds 10 lower entropy. and thus higher
compression. In some cases the output is subjected 1o entropy eoding for fur-
ther compression. It is a2 lossless differential coder if the quantization step is

removed. and the cutput is entropy coded 14, 7.

Vector quantization Instead of quantizing individual image pixels. a vector of pix-
els are quantized together. In short. an image is decompased into vectors that
are matched against a codebook of possible vectors. The encoder tries 1o find a
vector from the code book that best-fits each image vector. Like regular scalar
quantizaticn. this is a many-to-one operation through which many image vec-
tors will be mapped into a single codebook vector index. One characteristic of
vector quantization is that the decoding is veryv fast - the decoder just uses a
lock-up-table to retrieve the codebook vector from the received index. However,
encoding. which generally needs to search the whole codebook for the best-fit
vector. is time-consuming. Moreover. the codebook needs to be generated off-

line using a training set of representative images {7. 15

Transform coding The basic operation is the transformation of a block of pixels

from the spatial domain to the transform (frequencyj domain. This is followed
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by quantization and then entropy coding. The transformation performs data
decorrelation, while quantization removes perceptual redundancy. The discrete
cosine transform (DCT) is the transform of choice for most transform coders.
Transform coding is the compression model of the JPEG standard and will be

discussed in more details in chapter 3.

Subband coding and wavelet coding Another family of frequency-domain-based
approaches. Instead of orthogonal transformation, filter banks are used to split
the input image into individual frequency subbands. One advantage of this ap-
proach over transform coding is that this is not a block-based approach. So the
disturbing blocking artifacts common in low-bit-rate compression with trans-
form coding is absent here. Wavelet coding can be considered as a special case
of subband coding. where wavelet coding uses wavelet filters and a more spe-
cific band-splitting technique for wavelet representations of the data. Please see

[16, 17] for more details.

2.3 Relevant human visual system properties

Over the vears, there has been a steady increase in the extent to which knowledge
about human perception has been incorporated into image compression {1]. In par-
ticular, the filtering and masking characteristics of the human visual system (HVS)
are of interest. Moreover, when compressing colour images, the effects of the use
of different colour spaces on the compression performance are also important. The
first part of this section introduces the issues concerning colour image coding. The
second part summarizes the filtering and masking properties of the HVS that form

the foundations of perceptual coding.

2.3.1 Colour space and image coding

The trichromatic theory of colour vision suggests that any colour image can be rep-

resented by three colour channels [14]. Among the many colour spaces that have
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been designed for the representation of colour, the RGB (Red, Green. Blue) colour
space has been a very popular colour space for digital image processing and general
manipulation of images in the computer industry since it is the device colour space
for televisions and computer monitors. In practice, even if other colour spaces are
used for the processing of an image, for display purposes, the final representation of
the image still needs to be in the RGB colour space as a RGB signal can be displayed
directly on a monitor without other colour transformation |10, 18).

One disadvantage of using the RGB colour space for image coding is that the
energy contents in the three colour channels are approximately the same. Thus each
channel carries about the same weight and the potential correlation between the three
channels cannot be exploited. A common alternative to the RGB colour space is a
luminance-chrominance colour space such as the YIQ colour space. Luminance stands
for the brightness of an image, while chrominance stands for colour information and
typically consists of two colour channels. In the YIQ colour space, Y is the luminance
channel. and [, Q are the chrominance channels.

The YIQ model was designed to take advantage of the HVS's greater sensitiv-
ity to changes in luminance than to changes in chrominance in colour images [10].
The colour space transformation decorrelates the input RGB channels so that the
chrominance channels have lower energies and lower bandwidths as compared to the
luminance channel Y [19]. This permits the use of subsampling as well as the use
of coarser quantization for the chrominance channels and results in much improved
compression ratios for colour images [1, 18]. In practice, the overall proportion of
the chrominance information can be as low as only 10% of the total bit-rate with
negligible loss in the perceived image quality [1] and this is also an example of the
application of perceptual redundancy removal in an image coding system.

In JPEG image compression, another variation of the luminance-chrominance
colour space, the YCrCb colour space is normally used [3]. In this case, Cr, Cb

stand for the red and blue chrominance information respectively. The matrix for the
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linear transformation from RGB to YCrCh is:

Y [ 0.2989 0.5866  0.1145 R
Cr | = 05000 -0.4183 -0.0816 G | . (2.2)
Cb —0.1687 —0.3312 0.5000 B

and the reverse process is a similar linear transformation.

The YIQ and YCrCb luminance-chrominance colour space systems are also used in
commercial colour television broadcasting. In addition to the aforementioned advan-
tage of bandwidth, or bit-rate conservation, they were also developed for maintaining
compatibility with monochrome black-and-white TV standards {10]. The luminance
channel Y provides all the information required by a monochrome TV set. In fact, a
monochrome grayscale image is just a single channel image that contains the lumi-
nance channel of its colour counterpart.

Most the past human visual systemn research concerning perceptual coding has
been concentrated on the response of grayscale images {14, 19]. One main reason is
that, as explained above, the luminance channel contains the majority of the image
energy and the information that can be retrieved from the chrominance channels is
relatively limited. Moreover, multi-channel colour vision is still not well understood as
compared to the single-channel case for grayscale images [14]. There is also hardware
constraint as full-colour imaging device has not been widely available until relatively
recently. As a result the filtering and masking properties that will be discussed in the

following section are the luminance properties of the human visual system.

2.3.2 The filtering and masking properties

This section summarizes the relevant filtering and masking properties of the HVS
briefly. Of the three HVS properties in discussion, frequency sensitivity is a filtering
characteristic, whereas the others are masking properties.

The wvisibility threshold is an important measure for quantifying perceptual re-

dundancy. It can be defined as the magnitude of a stimulus in an image at which it
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becomes just visible or just invisible {14, 1, 20]. The stimulus can be a sinusoidal func-
tion or an arbitrary form of additive noise or distortion. In theory, any stimulus that
is below the local visibility threshold can be eliminated (or in the case of distortion,
tolerated), which results in perceptual redundancy removal. In some circumstances,
instead of the visibility threshold, the measure of the sensitivity of the human eye
to certain stimuli may be needed. Sensitivity is simply the inverse of the visibility
threshold. i.e. the higher the visibility threshold, the lower the sensitivity. In some
other cases. the visibility of a stimulus may be described. Similar to the sensitivity

measure, visibility is also inversely related to the visibility threshold.

Frequency sensitivity Psychovisual studies have shown that the perception of dis-
tortion depends on the human visual system’s frequency response. Experiments
have been conducted to measure the visibility of sinusoidal functions of varying
magnitudes. It was shown that the human eye acts as a bandpass filter, with a
maximum response (or sensitivity, in the image coding context) in the range of
two to eight cpd (cycles per degree), falling off at lower. and especially higher
frequencies (8, 21]|. The response curve is called the modulation transfer function
(MTF), of which the general shape is shown in figure 2.4. Frequency sensitivity

MTF
:
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Figure 2.4: The modulation transfer function

provides a natural way to incorporate perceptual criteria into transform coding,
in which the HVS response can be used to weight the relative importance of the

transform coefficients. The higher the weight, the more important a coefficient
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is. Conversely, a coefficient with a low weight can be quantized coarsely. or

simply discarded [22].

Luminance masking In this thesis. the terms luminance and brightness will be used
interchangeably. This will suffice for the current work, even though straightly
speaking the luminance value is a physical measure, while the term brightness
is a subjective descriptor that cannot be measured [10, 23]. In addition. the
term grayscale, which refers to the luminance component of a digital image.
will also be used to represent brightness or luminance. For instance, an 8-bit
grayscale value of zero means total darkness, or the lowest luminance; while
the maximum 8-bit grayscale value of 255 means bright white, or the highest
luminance. The concept of luminance masking is illustrated in figure 2.5 [14].
The dashed area is perturbed by the magnitude AL at which the perturbation

Background
Luminance Lpg

Stimulus
Area Lg + AL

Figure 2.5: Background luminance and the visibility threshold

is just visible. Experiments show that the visibility threshold AL is a function
of the background luminance Lg and it increases almost linearly with Lg. This
is known as Weber’s law [14]:

AL

.= constant (the Weber fraction) (2.3)
B

The implication from Weber's law is that the human eye is less sensitive to errors
in the bright areas (areas with high luminance values) of a picture because AL is
relatively high in those areas. Weber’s law is generally accurate over the normal
range of middle-low to high luminance values. However, in very dark area, it
has been reported that the Weber fraction tends to increase with decreasing

background luminance values [1, 14, 21]. In other words, the human eye’s
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sensitivity to distortion also decreases in very dark area. Figure 2.6 shows a

graph of the distortion visibility vs. the background brightness {1].

1

Distortion
visibility

0 127 255

Background brightness

Figure 2.6: Distortion visibility vs background brightness

In practice. luminance masking is very useful for image coding. As the visibility
threshold is relatively high in very bright and dark areas. perceptual redundancy
exists in those area of an image, and more local distortion can be introduced

for higher compression.

Texture masking This is also called spatial masking. In this case the visibility
of distortion decreases when there is a large visible change in the luminance

background. Figure 2.7 shows an example of the masking effects [14].

’ AR +AL
' f\

4 ~

. Y

Luminance L ‘ \
Edge ‘;_/ Perturbed edges
e +AL
Luminance L7 LY t
Edge 1 T
'] I S 1] ]
T L 13 T v
0

Pixel distance from edge

Figure 2.7: Texture (spatial) masking effects

A large luminance edge represents a rapidly changing background. The visibility
threshold AL of the perturbed edge is larger with a higher edge. Netravali [14,

9] shows that the presence of high contrast edges can increase the visibility
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threshold considerably. In perceptual image coding, texture masking has been
used extensively with spatial domain based coding system such as DPCM, in
which the high luminance edges can be located exactly and thus quantized more
coarsely. Texture masking can also be used in block-based transform coding
system, where the texture energy can be approximated by the L; or L, norm of
the transform coeflicients of the local block. High texture energy implies a block
with rapidly changing luminance values in the spatial domain, thus perceptual

redundancy exists and additional compression is possible in the local block.

In addition to the three properties discussed above, temporal masking is another
well-known masking property of the HVS [1, 24]. It indicates that during video
playback, when there is scene change or object movement. the distortion visibility is
low in the newly displayed areas for a short latency period and therefore perceptual
redundancy can be exploited. However this property concerns with the time domain
property of video and can be used in video coding only. The focus of this project
is still image coding and thus temporal masking will not be further pursued in this

thesis.
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Chapter 3

The JPEG image compression

standard

The JPEG standard is designed for compressing continuous-tone photographic im-
ages, both grayscale and colour. The standard provides four operating modes. This
chapter describes the kev concepts of the most common baseline sequential mode.
The baseline JPEG mode specifies the minimum set of requirements for a JPEG
compliant implementation and it covers all the important features of the standard.
For more detailed discussion, please refer to (2. 3]. The block diagram of a baseline
JPEG compression system is shown in figure 3.1.

The JPEG standard requires that the input image be separated into blocks of 8
by 8 pixels and JPEG compression can be regarded as the compression of a stream
of 8x8 grayscale image blocks. The standard also supports multiple channel image
compression, and colour image compression can be regarded as the compression of
three grayscale images, which are normally compressed by alternately interleaving
groups of 8x8 blocks from each channel [2].

The JPEG standard is not colour-space specific, thus it can be used for com-
pression of images in any colour space. In practice, most JPEG implementations
compress colour images using a luminance-chrominance colour space to take advan-
tage of the narrow-bandwidth characteristic of the chrominance channels as discussed

in section 2.3.1. The original RGB colour space is converted to the YCrCb colour
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space using equation 2.2. and the Cr, Cb chrominance channels are subsampled two
to one both horizontally and vertically before JPEG compression is performed. The
operations on colour space and sampling rate conversions are not part of the JPEG
standard requirements and are shown in the preprocessing and postprocessing boxes

in figure 3.1.

3.1 The transform coding model

The core JPEG compression operations: discrete cosine transformation, quantization,
and entropy coding form the basic components of the transform coding model and

are introduced in this section.

3.1.1 Transformation

In transform coding, the statistical redundancy in a block can be modeled as the
interpixel correlation. and the main goal is to perform decorrelation on the block
by a transformation operation. JPEG uses the Discrete Cosine Transform (DCT).
which closely approximates the decorrelation performance of the optimal transform
(the Karhunen-Loéve Transform (KLT)) for image blocks that are smooth [6]. This
smoothness property is also a general characteristic of the target image group of
the JPEG standard: continuous-tone photographic images; in fact DCT has enjoyed
enormous popularity as the transformation of choice for most transform-based coding
systems.

The following are the equations of the 8x8 two-dimensional forward DCT of the

image block f(z,y), and the inverse DCT of the transform coefficient block F(u,v):

7 7 T ™
F(u,v) = iC(u)C(v) ) Zf(:z:,y)cosmz -;-61)& cos (2y J;Gl)v (3.1)
z=0y=0
flo.y) = iiﬂ S° C(w)C () F(u, v)cos & -:61)mrcos(2y “;61)’”’, (3.2)
u=0 v=0

21




where
‘;'.

r,y.u,v=0,...,

C(u),.C(v) = -\15 for u, v = 0: and C(u),C(v) = 1 otherwise.

The DCT coefficient block F'(u,v) is a function of the horizontal and vertical spatial
frequencies u and v respectively. The value F(0.0), at the lowest frequency (0, 0), is
called the DC coefficient, and is equivalent to the mean value of the 64 pixels. The
remaining 63 F(u,v)’s are called the AC coefficients'.

The DCT is a reversible transform apart from roundoff errors, which are generally
negligible. It also has a nice energy packing property: it is almost as good as KLT in
packing the most energy in the fewest possible number of transform coefficients. In
practice, for the majority of image blocks. after transformation most of the block en-
ergy is packed in a few low frequency coefficients only. This is a crucial preprocessing
step that leads to more efficient perceptual and statistical redundancy removal in the

later coding procedures:

e The high frequency DCT coefficients are relatively insignificant, so they can be

more coarsely quantized with little effects on the overall perceptual quality.

e After quantization, most of the high frequency coefficients are zeros or near
zeros. The last step, entropy coding, can take advantage of the new redundancy

of zeros and compress very effectively.

3.1.2 Quantization
Each of the 64 DCT coefficients F'(u, v) is uniformly quantized by a corresponding

entry Q(u,v) from an 8x8 quantization matrix:

Fo(u,v) = Round (%—U—)) , (3.3)

(u, )

!Strictly speaking the frequency notation is only correct for the output of the discrete Fourier
transform (DFT). Nevertheless DCT is closely related to DFT and it is intuitive to regard the DCT
coefficients as the relative weights of 64 2-D DCT basis vectors arranged in the order of rapidity of
change, which corresponds loosely to the notion of frequency (see p.59 in [7]). For instance, F(7,7)
represents the weight of the DCT basis vector that has the most amount of activity, or the highest
frequency.

[RV)
(8]




and the dequantization operation for reconstructing the DCT coefficients at the de-

coder is:

Fllu.vy = Folu.v) x Q(u.v). (3.4)

Each quantization matrix entry Q(u.v) is an integer from 1 to 255 which specifies
the quantization step size for the DCT coefficient at frequency (u.v). The maximum
quantization error for reconstructing F(u.v) is then Q%i The quantization stage
is the only lossy operation in JPEG and it is responsible for removing perceptual
redundancy. The goal is to reduce the precision of the coefficients that are visually
insignificant.

The quantization matrix (QM) is the most crucial component in the quantization
stage. There are basically rwo general ways of designing the QM: One through the
use of the rate-distortion theory. the other is based on psvchovisual experiments and
properties of the human visual system [4]. The first general technique calculates
an image-specific QM by allocating bits to each DCT coefficient using rate-distortion
criteria. given a total bit budget. Typically the low frequency coefficients are allocated
many more bits because of the energy compaction property of DCT. Examples of this
technique can be found in 23. 26!. One problem with this technique is that the
QM generated is image-dependent and the encoding overhead for compuring the QM
needs to be taken into consideration.

The second technique is based on human perception. The idea is to determine the
visibility threshold for each DCT coefficient so that optimally anyv quantization dis-
tortion is not discernible. Tvpically the quantization step sizes for the high frequency
coefficients are much larger than those for the low frequency coefficients. This leads
to higher distortion for the high frequency coefficients. and agrees with the frequency
sensitivity characteristic of the H\V'S. The JPEG standard provides a set of example
quantization matrices that was designed using the psychovisual experiment described
in [27). The standard does not mandate the use of any specific QM, nevertheless the
example QMs have been used as the de facto QMs in a lot of JPEG implementations

and experience has shown that they are quite robust and are applicable to a wide



range of applications{4].

JPEG only allows one global quantization matrix per colour channel. in other
words. the QM in use cannot be changed within one channel. The implication of this
for doing adaptive coding with JPEG will be discussed in chapter 4. Figures 3.2 and
3.3 present the JPEG example QMs for compressing the luminance and chrominance
channels respectively. The luminance QM can also be used for the compression of

single-channel grayscale images.

Scaling the compression performance

A JPEG user can control the output bit-rate by supplving different QMs. which are
also included with the compressed data for decoding. The higher the quantization
step sizes in the QMs. the higher the compression ratio and distortion. Most JPEG
implementations provide a quality factor with which the user can control the bit-rate.
Please note that the JPEG standard does not contain a ‘quality factor’ parameter.
The quality factor’s only purpose is 1o provide a convenient interface for scaling up or
down the QM\s during encoding for a desired bit-rate and image qualitv. The decoder
only needs the scaled QMs to reconstruct the image.

The quality factor of a JPEG encoder is basicallv a proprietary measure and its
meaning varies across different implementations. e.g. a quality factor of 1 might mean
the best quality in one implementation. but the worst quality in another case. This
project uses the JPEG software provided by the /ndependent JPEG Group (IJG) [13].
which is a verv popular JPEG implementation. The LJG JPEG encoder uses a quality
factor in the range of 1 to 100. with 100 for best quality. The quality factor is used
to generate a multiplying factor which is used to linearly scale the QMs. by default
the JPEG example QMs. For example, a multiplying factor of value 0.5 divides all
the entries in the QMs by 2. The algorithm for converting the quality factor to a

multiplying factor is as follows:




16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51t 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

Figure 3.2: The JPEG luminance quantization matrix

17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 g9
99 99 99 99 99 99 99 99
939 99 99 99 99 99 99 99
99 99 99 89 99 99 99 99
99 99 99 99 99 99 89 g9

Figure 3.3: The JPEG chrominance quantization matrix
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tf (QualityFactor > 50)

temp = 200 — QualityFactor x 2;
else

temp = 5000 + QualityFactor:

Multiplying Factor = temp + 100:

Figure 3.4 shows the graph of the QM multiplying factor as a function of the JPEG
quality factor (Q). At the best quality when Q = 100, all entries in the quantizatoin

matrix are ones, which means that no quantization is performed.
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Figure 3.4: The QM multiplying factor as a function of the JPEG quality factor

3.1.3 Entropy coding
Preprocessing of the DC and AC coefficients

After quantization, the DC and AC coefficients are preprocessed differently before
they are entropy coded. The DC coefficient is differentially coded by coding the
difference between the current and the previous DC coefficients. This takes advantage
of the remaining correlation between adjacent blocks as the DC coefficient represents
the mean value of a block. Typically the variance of the differential output is much

lower than that of the original DC values.
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The AC coefficients are ordered into a zig-zag sequence as shown in figure 3.5. This
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7.7

Figure 3.3: The zig-zag ordering of AC coefficients

arranges the AC coefficients from low frequency to high frequency. The sequence is
then zero-runlength coded by representing it with the runlengths of zeros. and the
non-zero coefficients. The zig-zag sequence facilitates very effective runlength coding

by grouping together high frequency coefficients, which are more likely to be zeros {2].

Variable length coding

The preprocessed data: the differential DC coefficients, and the zero-runlength rep-
resentations of the AC coefficients, are then Huffman coded using a DC Huffman
table and an AC Huffman table respectively. For details please see [2, 3, 10l. The
JPEG standard also supports using arithmetic coding for entropy coding. However
the baseline JPEG mode only supports Huffman coding; moreover, in practice few im-
plementations support arithmetic coding because of patent and subsequently license
fee concerns [4, 13].

The Huffman tables need to be sent to the decoder for proper decoding. As in the
case for quantization matrices, the standard lists a set of example Huffman tables for
reference purposes, and it does not specify any default set. But unlike the quantization
matrix, a customized, image-dependent Huffman table is rather straightforward to
generate - an additional statistics-gathering pass is needed prior to entropy coding.
The IJG JPEG software uses the JPEG example Huffman tables as default, but also

provides an option to generate customized Huffman tables.
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Chapter 4

Design of the adaptive JPEG coder

This chapter presents the design of the perceptually adaptive JPEG (A-JPEG) coder.
The first section introduces the coder and its two adaptive coding modes. It is followed
by a detailed discussion of the design and implementation of the perceptual model

and other coder components.

4.1 Perceptually adaptive JPEG coding

As discussed in chapter 3, JPEG’s quantization matrices take into account the fre-
quency sensitivity of the HVS by more coarsely quantizing the high frequency DCT
coefficients. However, the other two masking properties discussed in chapter 2: lumi-
nance masking, and texture masking are not exploited by the JPEG standard at all,
and this project’s primary goal is to incorporate these two local masking properties
into the JPEG compression model for improved compression. The perceptual model
of the coder operates on the luminance channel of the colour images, as the transfor-
mation to the luminance-chrominance colour space has already concentrated most of
the signal energy in the luminance channel Y as explained in section 2.3.1.

It is insightful to divide the HVS properties into those that are dependent on local
image characteristics, and those that are not. In Safranek and Johnston's well-known
perceptual model, they are also called the local and global properties respectively [28,

29]. Frequency sensitivity, which is based on the measure of the modulation tranfer
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function of the HVS. can be considered a global property. Luminance masking is a
local property that depends on the local average background brightness; and texture
masking is also a local property that depends on local image activities.

Safranek defines a general perceptual model using the expression [29]:

Masking(u. v, k) = Global(u,v) x Local(u,v, k), (4.1)

where Masking(u.v. k) corresponds to the masking level at frequency (u.r) for the
kth block. The higher the masking level, the more tolerant the HVS is to distortion
at (u,v). Global(u,v) represents the base masking level, and Local(u, v. k) represents
the local multiplicative elevation factors that affect the masking levels. The idea is
that the masking levels in some areas of an image can be elevated because of the H\'S’s
local masking properties. The goal is to decrease the overall compressed bit-rate by
adaptively introducing more distortions into image areas that are less susceptible to
distortions perceptually.

The perceptual model for this project is a loose variation of the above general
model. The masking levels can be considered as the allowable local quantization step
sizes for each individual blocks. The global masking levels are represented by the
entries in the global JPEG quantization matrix Q(u, v), and the locally adaptive QM
is:

Qu,v) x m(k) ifu,v#0

Qpu.v. k) = (4.2)
Q(0,0) else,

where Qp(u,v, k) represents the local quantization matrix for the kth block, and
m(k) is the local multiplying factor. The problem then is to find m(k) which elevates
Q(u,v) to exploit the local masking properties. Note that the multiplving factor is
uniform across all frequencies in the block except for the DC coefficient at frequency
(0,0), where m(k) is always 1. This avoids excessive quantization of the important
DC coefficient, which still maintains a certain level of correlation with adjacent blocks.

This perceptual model is general in nature and thus may be used in any DCT-based

block transform coding schemes to provide perceptual information about a target
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image. In particular, the structure of the perceptual model is designed so that by
using only a local multiplying factor for local adaptation in each block, compatibility
with the JPEG standard and its extension [30] can be easily achieved, as will be

described in the next section.

4.1.1 The two adaptive coding modes

As mentioned in the previous chapter, JPEG only allows one global QM per colour
channel and there is no direct facility in the original standard for adaptively changing
the quantization matrix values. Nevertheless since JPEG’s standardization in the
early 90s, there has been active interest in adaptive JPEG coding in the literatures
and the JPEG standard extension also specifies added parameters for adaptive scaling
of the global quantization matrix {30]. Thus there are in general two different ways to
perform adaptive coding in a JPEG-style coding system: one involves the inclusion of
the local multiplier map as overhead information with the compressed bit stream, and
the other that uses the local multipliers to threshold the DCT coefficients without the
need to send the overhead information. The A-JPEG coder implements both modes

for adaptive coding and the two modes will be discussed in the following sub-sections.

4.1.1.1 The JPEG compatibility mode

A common way (in fact, the only way, to the best of the author’s knowledge) to
perform adaptive JPEG encoding while maintaining baseline JPEG decoder compat-
ibility is to selectively zero-out some insignificant DCT coefficients just before the
quantization step (1, 3, 31, 29].

The process is referred to as adaptive thresholding, where selected DCT coefficients
are thresholded to zero using the entries of the adaptively scaled quantization matrix

Qp(u, v, k):

F(u,v) if Round (5225 #0.

Far(u,v) = (4.3)

0 else.

The block diagram for the baseline JPEG-compatible adaptive JPEG coder is shown
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in figure 4.1. The diagram can simply replace the original JPEG encoder block in

figure 3.1. The perceptual model and the adaptive thresholding blocks together can
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A

Figure 4.1: The baseline JPEG-compatible encoder

be thought of as a HVS-based preprocessing step before quantization. The perceptual
model block computes the local multiplying factor using the pre-quantized original
DCT coefficients. When the factor is greater than one, the quantization step size
entries of the scaled QM will be greater than those of the global QM and typically
compared with non-adaptive quantization, a few more zeros will be introduced by
adaptive thresholding, which results in lower bit-rate overall.

The perceptual model only needs to be implemented in the encoder level. The
global quantization matrix is still used exclusively in the quantization step during
encoding. Thus no overhead information is needed in the dequantization step during

decoding, and any JPEG-compliant decoder can be used.

4.1.1.2 The overhead mode

One limitation of doing adaptive coding in the JPEG compatibility mode is that it
is a compromised approach that only affects DCT coefficients with small amplitudes
by thresholding them to zeros. Larger DCT coefficients that do not get thresholded
to zero are unaffected by adaptive thresholding.

Thus to examine the full effects of adaptive coding, another adaptive coding mode
is implemented in which the local multipliers are used to scale the QM directly during
quantization. This is referred to as adaptive quantization in this thesis and the block
diagram for this mode of the adaptive JPEG coder is shown in figure 4.2. Another

main difference between this adaptive coding mode and the JPEG compatibility mode
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Figure 4.2: The overhead mode encoder

introduced in the previous section is that the local multiplier information also needs
to be sent to the decoder as overhead information for proper decoding. Thus this
mode will be referred to as the overhead mode from now on in the thesis.

In 1994. the draft version of the JPEG standard extension was released [30]. It
introduces a variable quantization extension that specifies a 3-bit scalar multiplier that
can be used to locally scale the global QM during quantization. The decoder can then
use the multipliers to perform dequantization and reconstruct the image. Thus the
quantization operation of the overhead mode of the A-JPEG coder is equivalent to
the variable quantization specified in the JPEG extension and the performance of
A-JPEG under the overhead mode will also provide insight into the performance of
the new JPEG extension as well.! Additionally. the adaptive quantization operation
performed in the overhead mode is also very similar to the adaptive quantization
schemes of other popular DCT-based video coding schemes. thus the performance
of the overhead mode of A-JPEG may also provide insight for the design of those
schemes too. (32, 33, 34]

From figure 4.2, it can be observed that the adaptive quantization block replaces
the original quantization block in the baseline JPEG coder. The DCT coefficients

F(u,v)’s are quantized to:

F
Fg(u,v) = Round (5;((:%)’5) - (4.4)

!Both of the JPEG extension and the overhead mode of the A-JPEG coder are not compatible
with baseline JPEG since new extended decoder capabilities are needed during decoding for proper
interpretation of the multiplier overhead. In spite of the added flexibility the JPEG extension
provides for adaptive coding, the author has not been aware of much industry support for the new
extention. possibly due to the compatibility complexity it incurs.
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where the global quantization matrix is replaced by the perceptually scaled QM
Qp(u.v. k) defined in equation 4.2. The decoder needs both the global quantization
matrix and the multiplier map as overhead information to reconstruct the image.
Furthermore. the overhead information needs to be taken into consideration when
considering the overall compressed bit-rate. Note that despite the use of the multipli-
ers for decoding. the decoder does not require any further knowledge of the internal
operation of the perceptual model. Thus the decoder is also free of the computational

overhead of the perceptual model as in the case for the JPEG compatibility mode.

4.1.1.3 The difference between the two adaptive modes

Figure 4.3 illustrates the difference between the JPEG compatibility mode and the
overhead mode in terms of quantization behaviour. using the same perceptual model
parameters. In the figure. blocks (a). (b). (c). and (d) represent an example block
with the original DCT coefficients. the quantized coefficients after baseline JPEG
quantization with the global QM. the scenario after adaptive thresholding in the
JPEG compatibility mode. and the scenario after full adaptive quantization in the
overhead mode respectively.

It can be observed that compared to baseline JPEG quantization (block (b)).
adaptive thresholding (block (c)) introduces a few more zeros among the medium
frequency DCT coefficients. However the non-zero coefficients are still the same as
their counterparts in block {b) and they can be de-quantized using the global QMI.
A full adaptive quantization as shown in block (d) produces the zero AC coefficients
as in block (c), in addition the magnitudes of the non-zero AC coefficients after
quantization are smaller overall because a scaled-up quantization matrix is used.
The smaller magnitudes provide additional compression since the Huffman codes for
the small quantized coefficients are normally shorter than those for the larger ones.
However the trade-off is that the scaling factor used for scaling up the quantization

matrix also needs to be sent to the decoder for proper reconstruction.
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Figure 4.3: JPEG compatibility mode vs overhead mode
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4.2 Design of the perceptual model

The global quantization matrix @Q(u. v). and the local multiplying factor m(k). which
defines the local quantization matrix defined in equation 4.2 and reproduced as fol-

lows:
Qu.t) x m(k) ifu,v#0

Qplu.v.k) =
Q(0,0) else.

completely defines the quantization behaviour of the perceptually adaptive JPEG
coder. This project concentrates on the design of the local multiplving factor m(k)
using the texture masking and luminance masking properties of the HVS. The exam-
ple quantization matrices from the JPEG standard are used as the global quantization
matrices in this project.

The perceptual model represents the local multiplving factor m(k) for the kth

block with the equation:
m(k) = TertureMask(k) x LuminanceMask(k). (4.3)

and the problem is to find the two local elevation factors TextureMask(k) and
LuminanceMask(k) using the pre-quantized DCT coefficients F(u. v)’s. Section 4.2.2
and 4.2.3 present the texture mnasking model and the luminance masking model re-
spectivelv for computing the two factors.

For colour images, the perceptual model computes the m(k) map using the local
statistics from the luminance DCT coefficients since the luminance channel contains
most of the image energy. The same m(k) map is then used for adaptive coding
for the two chrominance channels. Since the chrominance pixels are subsampled
two to one both horizontally and vertically, four luminance blocks correspond to
one chrominance block in each chrominance channel and section 4.2.4 presents the

algorithm for adapting the luminance m(k) map for use in the chrominance channels.




4.2.1 Linear threshold elevation modeling

A simple linear threshold elevation model[335] is used as a main tool for the calculation
of the local elevation factors. Figure 4.4 shows the model depicted with a curve. The
Elevation
facter

A

Maxelevation -

Maxelevaton - 1

Max - Min

Locat
parameter

Min k Max

Figure 4.4: Linear threshold elevation modeling

model calculates the local eievation factor as a function of a varving local parameter
in the range of the parameters Min to Maz. For instance. for a local parameter k.,

the local elevation factor m is:

Mazelevation — 1 o
m= Var — Min x (k- \Min) + 1. (4.6)

The model’s elevation behaviour can be modified by the user easily by adjusting
the Mazelevation parameter. This provides a very convenient method to calibrate
the perceptual model. The next two sections in this chapter present the details of
using the linear threshold elevation model for calculations of the texture masking and

luminance masking elevation factors.

4.2.2 The texture masking model

As shown in chapter 2, the human eye is less sensitive to distortions in blocks with
high complexity or texture activities. This allows the adaptive coder to scale up the
quantization matrix in complex blocks for higher compression ratio. According to the

local image statistics. the texture masking model computes the local TeztureMask(k)
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factor that is used in equation 4.5.

The AC energy of the DCT coefficients has long been used as an indicator of
the local block activity in DCT-based transform coding schemes [36]. It provides a
convenient measure of block activities as the DCT coefficients are readily available as
input to the perceptual model. In practice, however, not ail high energy blocks are
texture blocks that can be quantized coarsely. An image block with a strong edge
tyvpically has high energy too. but the distortions in an edge block will be more visible
than that in a randomly textured block.

Hence in addition to AC energy calculation, a more robust model is needed to more
accurately characterize the statistics of each block. A classified quantization scheme
is thus proposed to address the issue. The goal is to classify each block into one of
several statistical activity classes {37] so that appropriate quantization strategies can
be designed for each class separately.

The proposed scheme can be divided into two simple steps:

1. Block classification is performed to classifv a block into one of three classes:

Plain. Edge, and Texture.

2. The TertureMask(k) parameter is then computed accordingly using the clas-

sification result.

4.2.2.1 Block classification

From a historical perspective in image coding, block classification has been used
extensively in two main areas. In classified vector quantization, different codebooks
are designed for different block classes so that the size of each codebook is smaller than
that of the otherwise general codebook for the whole image, and the codebook search
time during encoding can be reduced {38, 39, 40, 41]. Block classification has also
been frequently used in adaptive quantization schemes for transform-coding-based
block coders {36, 42, 43, 44, 45, 46].

The block classification scheme in this project is a modified version of the scheme

proposed in [43]. First the DCT coefficients of the target block are divided into
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four areas as shown in figure 4.5. The absolute sums of the DCT coefficients in the

Vertical edge indication

DC

N
. L (low frequency)

Honzontal / E (edge)
edge :

indication

D H (high frequency)
\— Diagonal edge indication

Figure 4.5: The block classification indicative areas

four areas are denoted by the symbols DC, L, E, and H respectively. The groups of
DCT coefficients that most strongly indicate the presence of a vertical. horizontal,
or diagonal edge are also marked by three dotted lines respectively. For instance, as
shown in figure 4.5, the sum of L + £ represents the overall edge strength in the block
since the areas L and FE include all of the indicative areas of an edge.

Three general block classes are defined for classification:

EDGE Blocks that contain a clear edge as the primary feature.
TEXTURE Blocks that contain a lot of complex spatial activities.

PLAIN Blocks that are generally smooth, with few spatial activities.

Figure 4.7 shows the block diagram of the proposed classification algorithm. Based
on experimental findings it has been observed that high magnitudes in the ratios
BH—E and % strongly indicate the presence of an edge. As discussed previously, the
sum L+ E represents the edge strength. The value H, which indicates the strength of
the medium and high frequency coefficients, provides a measure of the ‘textureness’
of the block. Thus the ratio L—;}Q provides a relative measure of the strength of the
two factors and a high value indicates that an edge is present.

The ratio % is also found to provide a very good edge strength measurement for a

block with an edge that is more diagonally oriented. Two example edge blocks from
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(a) (b)
Figure 4.6: 8 x 8 blocks from the image sezl

the test image sail are shown in figure 4.6. The ratios { ;’5—, ’—‘;’,—E of block (a) of
figure 4.6 are {1.7,4.7} and those of block (b) are {3.3,1.9} respectively. It can be
observed that block (a) contains a horizontal edge and the ratio [‘—}}@ = 4.7 correctly
reflects that an edge is present. In block (b), the edge has a somewhat more tilted, or
diagonal orientation. The value of H, which reflects the high frequency coefficients,
is thus higher and the ratio E*H;@ = 1.9 does not suggest the presence of a strong edge.
However the ratio % = 3.3 is able to provide a strong indication of an edge since block
(b) still contains a substantial amount of smooth areas on the two sides of the edge.
Thus the the strength of the low spatial frequencies, or the value of L, is relatively
high. In fact the ratio -é— is also a perceptually significant measure as the human eye
is very sensitive to the kind of sharp, clear edges on a mostly smooth background
that £ indicates.

The classification of the TEXTURE class is relatively simpler and it is performed
by investigation of the value of E' + H. If the value is high, and the block does not
satisfy the criteria for the EDGE class, it is assigned to the TEXTURE class. For the
classification of the PLAIN class, if a block’s £ + H value is low, or the block is not
classified to the EDGE or the TEXTURE class, it is assigned to the PLAIN class.

The actual classification procedure is illustrated in figure 4.7. It can be divided

into five condition blocks and the blocks are explained as follows:

e Condition A: If F + H is smaller than or equal to yu;, the block is classified as
PLAIN. Otherwise it will be further tested. pu, is set to be 125 in this project.

e Condition B: It was experimentally decided that for a block with high spatial

activities, an edge can still be present but the thresholds for detecting the edge
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Figure 4.7: The block classification algorithm




will need to be lowered as compared to the thresholds for a block with moderate
or low spatial activities. Thus two sets of EDGE thresholds are designed. If
E+ H > pu, is false. condition C1 will be tested; otherwise condition C2 will be

used. The value of yu» is set to be 900.

e Conditions CI and C2: These two conditions are for the detection of the edge
blocks. The ratios {é LT*}E} are the primary indicators of the presence of an
edge. The higher thresholds of {«;. .}, } of condition CI are set to be {2.3,1.6}.
{aa. 32} of condition C2 are set to be {1.4,1.1}.

L L+E

For example, in condition C1, the ratios {E, =

} need to be greater than either
{ay,5:} or {B1,a,} for a block to be assigned to the EDGE class. A very high
value in the ratio L—;’,—E is also found to be sufficient as indication of an edge. So
if 5},—5— > 7 in condition C1 or C2, the EDGE class will also be assigned. 7 is

set to be 4.

e Condition D: If a block does not satisfv condition C2, it is assigned to the
TEXTURE class. If a block does not satisfy condition C1, it is tested with the
condition E+H > k. If the outcome is true, the block contains sufficient texture
activities and is assigned to the TEXTURE class, otherwise it is assigned to

the PLAIN class. & is set to be 290 in this project.

Locally adaptive classification correction

The edge detection thresholds of the classification algorithm are designed to be as
reasonably sensitive as possible. However there might be misclassified edge blocks
that should be texture blocks in reality. A simple locally adaptive correction scheme
is used to re-classify the possibly misclassified blocks back to texture blocks using
perceptual criteria. Figure 4.8 shows two scenarios when the correction is performed.
From the figure, T represents texture block and E represents edge block. If one of

the scenarios in figure 4.8 happens then the edge block in the scenario, which is the
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Figure 1.8: Locally adaptive classification correction

current block, is re-classified as a texture block. For causality,? only the blocks above
and to the left of the current block are examined. The main rationale for performing
the correction is that an edge block that is surrounded by texture blocks as shown
in figure 4.8 is likely a misclassified block in a mostly textured region. Moreover, as
discussed before. in general the human eye is more sensitive to a clear edge on a plain
background. Thus the perceptual importance of the edge block in question. and the
penalty against an incorrect re-classification is small as a result. The newly classified
texture block will be assigned the lowest masking factor for the TEXTU RE class (to

be calculated and shown in table 4.1) to avoid over-harsh quantization.

Classification examples

Figures 1.9 to 4.12 present some test images and their corresponding block classifi-
cation maps, where the black colour represents the plain blocks, gray represents the
texture blocks, white represents the edge blocks, and the darker the grav blocks, the
higher the texture activities. The result for the image lenna is presented separately
in chapter 5.

It can be observed that the algorithm is quite successful in differentiating the edge
and texture blocks from the plain blocks. The algorithm’s ability to detect edges is
the main focus since the detection of texture is relatively simple - the sensitivity of the
algorithm to texture can be modified easily by adjusting the parameter k. The image
houses is most challenging since it contains a lot of short, low contrast edges that are
close to each other and are near the windows and roof-tops, which also contain some
complex activities. However these edges are likely not very perceptually significant

and texture masking with nearby features will probably mask the errors. In general

*In the current JPEG implementation, the processing of the 8 x 8 image blocks is from top to
bottom, and left to right.
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(a) (b)
Figure 4.9: (a) barbarae, (b) block classification

(a) (b)
Figure 4.10: (a) peppers, (b) block classification
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Figure 4.11: (a) susie, (b) block classification

Figure 4.12: (a) houses, (b) block classification
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it can be observed that most of the clear edges in the images barbara, peppers. and
suste are detected correctly and the texture areas are also well represented. Thus the

results verify the accuracy of the classification algorithm.

4.2.2.2 Calculation of the texture masking factor

The distortion sensitivity varies among different block classes. In general. the sensi-
tivity decreases in the order of plain. edge. and texture [42] and the texture masking

factors are calculated independently for each class.

The texture blocks

The texture blocks can be quantized most coarsely. In fact they provide the major-
ity of the redundancy removal in the texture masking model in general. The local
adaptation depends on the local texture energy, which is approximated by the sum
E + H. the L1 norm of the medium to high frequency AC coefficients. Using the
linear threshold elevation model, the texture masking factor is derived as a function

of the approximated texture energy:

TexEnergy(k) — .«WinEnergy+1

TertureMask(k) = (MazTeztureElevation—1)x MazEnergy — MinEnergy
(4.7)
where TerEnergy(k) is the local texture energy of the kth block. and MazEnergy
and MinEnergy represent the maximum and minimum energy of the texture blocks
respectivelv. The parameter MaxTextureElevation can be used to scale the
amount of texture elevation and is a convenient tool for fine-tuning the extent of
the additional quantization introduced in the texture masking model. The parame-
ters MazrEnergy and MinEnergy are determined to be 1800 and 290 respectively.

As an example, for MazTeztureElevation = 2.25, the masking factors for the

TEXTURE class are shown in table 4.1.




Texture Energy (£ + H) | TextureMask
290-400 1.125
400-500 1.125
500-600 1.25
600-700 1.25
700-800 1.375
800-900 1.5

900-1100 1.625

1100-1300 1.75

1300-1600 2
>1600 2.25

Table 4.1: Example texture masking factors for the TEXTU RE class

The plain blocks

The plain blocks are the most sensitive to distortion and thus the TexturelMask(k)
factor for the PLAIN class is one, which means that no elevation of the global

quantization matrix is performed.

The edge blocks

The edge blocks have been reported to be more tolerant to distortion perceptually
compared to plain blocks [43, 42]. Nevertheless, over-harsh quantization of an edge
block may result in 'dirty’ blocks along an edge that are very objectionable to the
human eyve. Thus only moderate amount of texture masking elevation is designed and
table 4.2 presents the texture masking factors empirically designed for the EDGE

class. Note that for the EDGE class, the texture energy is approximated by the sum

Texture Energy (L + E) | TextureMask
<400 1.125
>400 1.25

Table 4.2: Example texture masking factors for the EDGE class

L + FE instead of the sum F + H as in the case for the TEXTUREFE class.
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4.2.3 The luminance masking model

Chapter 2 introduces the concept of luminance masking, which shows that the human
eve’s sensitivity to distortion depends on the local background luminance. The lu-
minance masking model computes the LuminanceMask(k) factor that provides the

local luminance-adjusted multiplyving factor for use in equation 4.5.

4.2.3.1 The luminance sensitivity subjective experiment

An informal subjective experiment was performed to determine the change in the
distortion visibility for various background luminance, or grayscale values. The main
purposes for performing the test were to verify the validity of Weber’s law (equa-
tion 2.3) and to collect a set of reference luminance sensitivity data for use in this
project.

In the experiment [28, 20], a uniformly distributed random noise of known maxi-
mum magnitude is added to or subtracted from the pixels in an 100 x 100 square area
of a background image with a constant grayscale level, and of size 360 x 360 pixels.

Figure 4.13 shows an example testing image used in the experiment. The maximumn

Figure 4.13: The luminance masking subjective experiment

magnitude of the noise square is adjusted until the observer cannot reliably deter-
mine if the testing image contains the noise square or not. And the test is repeated
to determine the noise visibility threshold for different background grayscale levels.
The position of the noise square on the testing image is randomized to avoid observer
anticipation of the noise features in a fixed position. This differs from other similar
experiments (28, 20] in which the noise square is always placed in the center of the

image.
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Figure 4.14: The noise visibility thresholds vs. background luminance
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The experiment was conducted in a darkened room on a Pentium PC with a 24-bit
colour Matrox Millenium graphics card and a 17" Viewsonic Optiquest V775 monitor.
The test subject was the author. and the viewing distance was approximately six times
the image height.

Figure 4.14 shows the graph of the measured noise visibility thresholds AL as a
function of the background luminance Lg. The crosses are the measured thresholds
and the curve is derived using the polynomial curve fitting function in the MATLAB
program. The result in general is close to those reported in the literatures in a
comparable form {1. 20]. And it confirms the well-known HVS property that the

AL

Weber fraction e (equation 2.3) is approximatelyv constant from medium-low to

high luminance values and when Lg is low. '}_% starts to increase non-linearly with

decreasing Lg [14. 21. 47. 48].

4.2.3.2 The influence of the viewing conditions

The viewing conditions should also be taken into consideration when interpreting the

subjective testing results. The following factors are considered [49]:

Viewing distance It is obvious that the human eve’s sensitivity to distortion de-
creases with increasing viewing distance. The viewing distance of six times the
picture height follows the standard viewing conditions recommended for quality
assessment of television images in Recommendation 500 by the International

Radio Consultative Committee (CCIR) {30. 21. 51].

Ambient lighting [t has been reported that the HVS is more sensitive in a dark
room. and less sensitive when the lighting is brighter [49]. Thus the current
subjective experiment. which was conducted in a slightly darker condition than
it is in a normal office. offers a more conservative result with a relatively sensitive

HV'S response.

Monitor brightness The monitor brightness, or in more objective terms. the lumi-
nance or the radiant energy, can be measured by a digital Lux meter against

the screen of the monitor [14. 49]. Most monitors also provide a switch for the
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user to adjust the local monitor brightness setting. The subjective experiment
was informally conducted with different monitor brightness settings. It was dis-
covered that for low brightness settings, the HVS was considerably less sensitive
when the background luminance Lg was low (e.g. below 60, in the non-linear
area in figure 4.14). For Lg > 60, which includes the range of most commonly
used grayscale values, the effect of the change in the monitor brightness setting

was limited. This finding also agrees with that reported in [49].

The monitor brightness setting for the current subjective test was about 75%
(in a scale of 0%(lowest) to 100%(highest) for the testing monitor), which again
provides a more conservative measurcment as the HVS was more sensitive at

this relatively high brightness setting.

Displaying system This factor refers to the influence of different video cards and
monitors. The subjective experiment was also informally conducted with several
different workstations and monitors; and the results in general are very simi-
lar with the current result. This also agrees with [49] which reports that the
luminance masking measurements are virtually independent of the displaying

system.

4.2.3.3 Calculation of the luminance masking factor

The idea of luminance masking is that the model can selectively scale up the quan-
tization matrix where the added distortion will be masked by the local background
luminance. The DC coefficient F(0,0) represents the mean value of the input im-
age block. Thus the DC coefficient of the luminance channel provides a readily
available measure of the average background luminance of a block with which the
LuminanceMask(k) scaling factor in equation 4.5 can be calculated.

An important design decision is: at what DC luminance value(s) does the scale-up
process begin? In the literatures, there are two common types of approaches to uti-
lizing luminance masking in image coding: (1) Watson suggested the use of a scaling

power function (—%)“, where DC' is the mean luminance of the display (or grayscale
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value 128 approximately) [48. 52|. (2) Other attempts utilized empirically derived
luminance threshaolds above or below which additional distortions are introduced lo-
cally [37, 53].

The main problem with using the above techniques for the current adaptive coding
scheme is that they are not adaptive enough. Consider the scenario when the mean
grayscale value of the whole picture is only about 90. Using the technique (1) above
will result in under-utilization of the luminance masking model because most of the
image blocks will have DC gravscale values below 128. Similarly, a bright picture
with mean grayscale value of about 160 will result in over-aggressive quantization in
the luminance masking model as the majority of the image blocks will have block DC
values above 128.

In summary. the key to using luminance masking in a more robust way is to also
take into account the mean grayscale value of each individual picture. An analysis
of 24 colour and grayscale images in the digital signal processing laboratory has
uncovered a wide range of average picture grayscale values® from 78 to 164, which
further confirms the need for a more adaptive utilization of luminance masking.

The proposed luminance masking model will be divided into two parts and de-
scribed in the next two sub-sections: a linear modeling part for medium to high
background luminance, where Weber’s law is used for the modeling; and a non-linear
approrimation part for low background luminance, where Weber’s law can no longer
be used. The main idea of the proposed scheme is to adjust the behaviour of the
luminance masking model depending on the mean luminance of each individual im-
age so that a reasonable amount of luminance masked distortion is ensured for every

image.

The linear modeling for medium to high background luminance

Figure 4.15 shows the linear threshold elevation function that is an approximation of

the Weber’s law for blocks with medium to high average background luminance. The

3For colour images, the luminance component was used.
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Figure 4.15: Luminance masking linear modeling

symbols L., and L., represent the range of the luminance values for the linear
modeling and with respect to the subjective data from figure 4.14, they are chosen
to be 90 and 255 respectively. F,,; represents the marimum luminance elevation
factor, or MazLuminanceElevation . [t controls the slope of the linear func-
tion and can be used to scale the extent of luminance masking like the parameter
MazTeztureElevation for texture masking.

The LuminanceMask(k) factor is calculated as follows:

1. The mean grayscale value (meanDC) of the whole image is first calculated; the
reference multiplying factor F,.r is then obtained from figure 4.15 using the

meanDC value.

2. Only the blocks with DC values above meanDC will have a scaling factor > 1.
The active area for luminance masking is shown in the gray area in figure 4.15,
and the luminance masking factor for the kth block, DC(k) > meanDC, is

given by equation 4.8 below:

DC(k) — meanDC
Lmer — meanDC

LuminanceMask(k) = (Fumaz — Frey) % +1, (4.8)
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and if DC(k) is smaller than meanDC,

LuminanceMask(k) = 1, Lyin < DC(k) < meanDC. (1.9)

The LuminanceMask(k) factors are image-dependent as the calculation is based
on the mean luminance value of each image. An example table of the luminance mask-
ing factors for medium to high background luminance will be presented in chapter 5

for the image lenna.

The non-linear approximation for low background luminance

The low luminance areas of the image (grayscale < Ly, = 90) need to be treated
carefully because of the following factors: (1) The relationship between the visibility
threshold and the background luminance: z\—g becomes non-linear and is hard to
model. (2) Except for the very dark areas, the low luminance areas are in general
most sensitive to errors.

A conservative luminance masking scheme is thus designed in light of the sensi-
tivity and non-linearity problems for low background iuminance. Table 4.3 presents

a set of empirically designed multiplying factors that are based on the experimental

result from figure 4.14. As described in sub-section 4.2.3.2, the distortion visibility

Block DC values | LuminanceMask
0-15 1.25
15-25 1.125
25-90 1

Table 4.3: The luminance masking factors for low background luminance

in low luminance areas is very sensitive to the local monitor brightness setting. Thus
the parameters presented here, which are designed under a relatively high monitor
brightness setting, only provide a conservative degree of luminance masking and un-
der informal testings have been shown to perform well for a wide range of images and

different viewing conditions.




4.2.4 Processing for the subsampled chrominance channels

For colour images, the m(k) multiplier map is generated from the data in the lumi-
nance channel. However, since the two chrominance channels are subsampled two to
one both horizontally and vertically, the multiplier map cannot be used directly for
the chrominance data. This section presents a simple algorithm that is used to adapt

the multiplier map for use in the chrominance channels.

16

|
16 8 8

Y Cr Cb

Figure 4.16: A 16 x 16 area: four Y blocks. one Cr block, one Cb block

Figure 4.16 shows a 16 pixel by 16 pixel area of a colour image separated into
three colour channels, using the YCrCb colour space. Because of subsampling, the
chrominance channels contain in reality only one 8 x 8 block for each chrominance
channel in the 16 x 16 area. In other words, there are four luminance-generated m(k)
values in each 16 x 16 area and the problem is to find a coresponding chrominance
multiplier m. using the four luminance m(k)’s.

The generation of the chrominance multiplier cannot be dependent on the infor-
mation from the perceptual model, e.g. the block classification results, because the
same process also has to be done in the decoder and the perceptual model is imple-
mented in the encoder level only. Thus the only available data are the luminance
multiplier map, and the chrominance multiplier generation algorithm is illustrated in
figure 4.17.

The algorithm is a generalization of a similar procedure presented in [46]. The
main idea is to inspect the four luminance m(k) values and count the number of
m(k)’s with the value one (condition A), or the number of blocks with no local QM
elevation. If the count is bigger than one, the percetual model indicates that at least
two of the luminance blocks are sensitive to error and should not be further quantized.

Thus the chrominance multiplier m, is also assigned to be one, giving priority to the
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sensitive area. If the count of m(k)’s equal to one is one or less, at least three of
the luminance blocks have m(k)’'s bigger than one. A majority rule is used and m,
is assigned to the smallest m(k). m(k) # 1.k = 1,2,3,4. Note that the algorithm
will always assign m, the value of the lowest or the second lowest m(k) out of four
possible luminance m(k)’s. This reduces the chance of the chrominance blocks being

over-quantized when they are located near a strong luminance edge.

Luminance
multipliers m(k)'s,

k=1234

|

A
Y
JN
! Chrominance ch ]
| multiplier m rominance
! ¢ multiplier me
I =minimum ( m(k) ). .
i m(k) x 1 -

Figure 4.17: Generation of the chrominance multiplier

4.3 Coding of the overhead information

The overhead mode (figure 4.2) requires that the adaptive multiplier map be sent as
overhead information with the compressed image data for decoding. Encoding of the
overhead information is thus necessary to help reduce the overhead cost. This section

discusses two encoding methods that are examined in this project.

The standard coding method

The predominantly slowly varying nature of JPEG’s target continuous-tone images

suggests that neighbouring blocks will likely have identical local multiplying factors
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m(k)’s [54, 52]. The method discussed in this section is a simple technique emploved
in most video coding standards for encoding of the local parameters [14].

The technique is a variant of differential coding. It utilizes a single-bit status bit
that monitors if the current block requires a new multiplying factor than the one used
by the previous block, and a 5-bit index that specifies the value of the multiplying
factor. If a new multiplying factor is needed, the block overhead costs are 6 bits:
the status bit pluses the 5-bit new index: otherwise the coder just set the status bit
and the cost is 1 bit.! Table 4.4 summarizes the overhead coding cost for using the

standard overhead coding method.

Block status Code description | Code size
No change from previous status bit 1
New multiplier status bit, new index 6

Table 4.4: Overhead coding - Standard

A Lempel-Ziv estimation of the overhead cost

The standard overhead coding scheme makes a simple assumption that consecutive
image blocks are more likely to use the same multiplier. The coding parameters are
independent of the statistics of the input multipiier map and experimentation with
different images has shown that the compression ratio achieved by using the standard
coding method over plain transmission of the uncompressed multiplier map ranges
from about 1.7 to 3 times.

For medium and high bit-rate image coding systems, the overhead cost is generally
insignificant compared to the total compressed image data. However, when high
compression ratio is desired, the overhead cost might actually account for a significant
contribution to the total cost and it is beneficial to also examine more optimal ways

of encoding the overhead information [54].

In practice, the status bit is generally only one part of a status byte (or bytes) that also contains
other status information. The status byte might also be variable length coded, so the 1-bit size of
the status bit is only an approximation which might vary slightly across different pictures.[14]




The goal is to find an adaptive overhead coding scheme that can adapt to the input
statistics and thus generate a more compact representation of the multiplier map. A
universal coding algorithm. Lempel-Ziv coding (chapter 2), is chosen because of its
speed, the availability of programming source. and its close approximation of the
source entropy rate [3, 53].

The Lempel-Ziv- Welch (LZW) algorithm, which is a variation of Lempel-Ziv cod-
ing, is used [56]. The programming source code is obtained from the GIF file format
encoder/decoder functions® that are parts of the JPEG software library used in this
project {13]. In general, for coding the overhead information, the gain in compression

ratio ranges from 16 to 26% compared to using the input-independent standard codes.

5The GIF file format uses the LZW method to perform lossless image compression.
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Chapter 5

Experimental results

5.1 Introduction and set-up of the coder parame-
ters

The methodology proposed by Safranek in [31, 29] is utilized in this project to examine
the performance of the adaptive coder. The idea of the methodology is that both
qualitative and quantitative measurements must be examined for a perceptual coding
system. Qualitative measurements ensure that the introduction of the additional
distortion by the adaptive coder does not lower the perceived quality of the coded
image, when compared to the result using a non-adaptive baseline JPEG coder with
the same quality factor. Additionally, quantitative measurements. for instance, bit-
rate savings, are also needed to demonstrate the advantage of the adaptive method
objectively.

In this project, the quantitative measurements will be described as the objective
results; whereas the qualitative measurements will be described as the subjective re-
sults. Bit-rate savings and a comparative subjective test performed with a group of
human subjects are the primary objective and subjective measures utilized respec-
tively.

Table 5.1 summarizes the coder parameters examined in this project. The target

application area for the adaptive coder is for high quality image compression. The
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Descriptions Parameters
Quality factor 72
Adaptive modes JPEG-compatibility, Overhead
Overhead info coding Standard. LZW
MaxTextureElevation 2.25
MaxLuminanceElevation 2

Table 5.1: The adaptive coder parameters

JPEG quality factor 72, which produces a bit-rate of 0.916 bit/pixel for the lenna
grayscale image with the baseline JPEG coder. is used. This bit-rate has been re-
ported to produce perceptually transparent quality for lenna in a previous work [37].
Using the same perceptual model parameters, the performance of adaptive coding
both with overhead (overhead mode) and without overhead (JPEG compatibility
mode) will be examined. For the coding of the overhead information. the standard
coding method and Lempel-Ziv coding will be investigated. Although the adaptive
coder is designed for the perceptually lossless quality level, this quality level is a rather
subjective measure and it is instructive to also examine the coder’s performance at
other bit-rates. The results for varving bit-rates will be presented in section 5.4.

The parameter MazTeztureElevation is used to scale the extent of texture mask-
ing in the perceptual model. The higher the parameter. the more the compres-
sion in the texture area but the lower the quality. The value 2.25 has been found
to provide a good balance between compression performance and perceptual qual-
ity for the test images compressed using the two adaptive modes. The parameter
Maz LuminanceElevation for luminance masking is chosen to be 2. This choice is
based on the subjective test results from figure 4.14, where the approximated maxi-
mum noise visibility threshold, 6. is two times the minimum threshold 3.

Table 5.2 sums up the JPEG system parameters used in this project. The 4:2:0

Descriptions Parameters
Colour space YCrCb
Colour subsampling 4:2:0
Quantization matrices | JPEG standard example matrices
Huffman tables Customized

Table 5.2: The JPEG system parameters
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colour subsampling scheme requires that the colour spaces Cr and Cb be subsampled
two pixels to one both horizontally and vertically. The JPEG example quantiza-
tion matrices are shown in figures 3.2 and 3.3. Customized Huffman tables. which
are image-dependent. have been reported to provide improvements over the example
Huffman tables listed in the standard by a few percent in bit-rate [L3]. The JPEG
system parameters are listed here for completeness. They remain the same through-
out the chapter as the emphasis is on the comparison between the baseline JPEG and
the adaptive JPEG coders.

Eighteen 5312 x 512 grayscale and colour images are used in this project. They
consist of both standard test images and high quality Kodak images!. chosen to
provide a variety of different examples of JPEG’s target continuous-tone photographic

images. The images are shown in thumbnail forms in figures 5.1 to 5.4.

! The images can be found on the internet at ftp://ipl.rpi.edu/pub/image/still.
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(d)
Figure 5.1: (a) lenna, (b) barbara, (c) boats, (d) goldhill. (e) harbor

Figure 5.3: (a) sail. (b) hats, (c) windows, (d) houses. (e) girl

(b)
Figure 5.4: (a) river, (b) motorbike. (c) lock
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5.2 A coding example with the image lenna

The popular grayscale lenna image is used to illustrate the operation of the adaptive
coder. Figure 5.5 shows the original lenna image. Figure 5.6 shows the results of
performing block classification on lenna, where the black colour represents the plain
blocks; gray represents the texture blocks; white represents the edge blocks; and the
darker the texture blocks, the higher the texture activities. [t can be observed that
the algorithm successfully locates the feather areas of lenna’s hat as texture areas.
The edges are also well represented by the edge blocks.

The performance of the perceptual model is also examined. Figure 5.7 shows
the texture masking multiplier map for lenna, where the black colour represents the
lowest multiplier value of one, i.e. no change from the global quantization matrix.
The lighter the blocks. the higher the multiplier values. It can be observed that the
lightest blocks are mostly located around the feather areas of lenna’s hat, where the
textured. complex activities are concentrated.

As explained in chapter 4, the values of the luminance masking multiplving factors
for medium to high background luminance depend on the average grayscale value
(mean DC) of each individual image. The mean DC value of lenna is 123. Using
the procedure described in section 4.2.3.3, the luminance masking multiplying factors
for background luminance > 90 are calculated and shown in table 5.3. Table 4.3 in

section 4.2.3.3 lists the multipliers for background luminance below 90.

Block DC values | LumminanceMask

90-140 1

140-160 1.125
160-180 1.25
180-200 1.375
200-220 1.50
220-240 1.625
240-255 1.75

Table 5.3: The LuminanceMask factors for medium to high background luminance
for lenna

Figure 5.8 shows the luminance masking multiplier map for lenna. Again the
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Figure 5.5: The original lenna image

Figure 5.6: Block classification of the lenna image
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Figure 5.7: The texture masking multiplier map for lenna

Figure 5.8: The luminance masking multiplier map for lenna
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lighter the blocks, the higher the multiplier values. It can be observed that the
model is able to locate the bright areas of the lenna image quite successfully. The
highest LuminanceMask value in table 5.3 is 1.75, which is smaller than 2, the value
of the MazxLuminanceElevation factor shown in table 5.1. This is because the
Maz LuminanceElevation factor is designed for the whole dynamic range of medium
to high background luminance from 90 to 255. The mean DC value of 123 allows
luminance masking only for background luminance from 123 to 255. a smaller dynamic
range and hence lower elevation factors overall.

Figure 5.9 shows the final, combined multiplier map for lenna. Each entry in the
combined multiplier map is just the product of the corresponding texture masking
multiplier and luminance masking multiplier presented in the previous figures. The
reconstructed lenna image, coded under the JPEG compatibility mode at the JPEG

quality factor 72, is shown in figure 5.10.

5.3 Compression results for a fixed quality factor

The performance of the adaptive coder using a fixed JPEG quality factor (Q) 72 is
examined in this section. The objective bit-rate savings performance will first be

presented and the subjective results will follow.

5.3.1 Objective results

This section presents the bit-rate savings over baseline JPEG that can be achieved by
the adaptive coder, under both JPEG compatibility and overhead modes. Tables 5.4
and 5.5 show the results for grayscale and colour images respectively. The bit-rates
using baseline JPEG are also presented for reference purposes. The baseline JPEG
bit-rate is a very good measure of the overall image complexity. For the same quality
factor, the higher the compressed bit-rate, the more difficult the image is to com-
press, which in turn implies that the image is relatively complex and lacks statistical
redundancy which can be exploited by baseline JPEG.

As an example, an uncompressed grayscale image requires 8 bits per pixel. Thus
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Figure 5.9: The combined muitiplier map for lenna

Figure 5.10: The reconstructed lenna image, JPEG compatibility mode
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Image Baseline JPEG mode Overhead mode
JPEG bit-rate bit-rate savings savings
(bit/pixel) savings (no overhead) | (overhead(LZW))
lenna(g) 0.92 5.1% 9.4% 5.5%
barbara 1.3 6.8% 15% 11.2%
boats 0.97 5% 9.7% 6.4%
goldhill 1.3 6.2% 11% 8.2%
harbor 1.3 9% 18% 14%
bridge 1.8 12% 21% 18%
| Average | ] 7.4% 14% ! 11% )

Table 5.4: The bit-rate savings over Baseline JPEG (grayscale)

Image Baseline JPEG mode Overhead mode
JPEG bit-rate bit-rate savings savings
(bit/pixel) savings (no overhead) | (overhead(LZW))
lenna(c) 1.05 5.2% 9.5% 6%
peppers 1.11 6% 11% 7.5%
mandrill 2.19 13% 23% 21%
flower 1.08 5.2% 10% 6.5%
lady 1.02 3% 9% 5.8%
sail 1.08 T.1% 12% 9%
hats 0.84 7.1% 14% 10%
windows 1.77 11% 19% 16%
houses 1.86 10% 20% 17%
girl 1.05 6% 11% 8%
river 2.16 13% 25% 22%
motorbike 2.01 8% 17% 14%
lock 1.02 3.4% 7.2% 4.5%
| Average 7.7% 15% 11.3%

Table 5.5: The bit-rate savings over Baseline JPEG (colour)
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for the gravscale lenna image. the baseline JPEG bit-rate of 0.92 bit/pixel implies

that the compression ratio is or approximately 8.7 times and the lower the

8
0.92"

bit-rate. the higher the compression ratio. Note that the compression ratio for the
colour images are in reality much higher than those for the grayvscale images because
an uncompressed colour image needs 24 bit/pixel representation as opposed to 8
bit/pixel for a grayscale image. The higher compression ratio for colour images is
mainly due to the sub-sampling of the two chrominance channels and the use of the
separate chrominance quantization matrix, which has higher quantization step sizes
than its luminance counterpart.

It can be observed that using the same perceptual model parameters. the bit-rate
savings achieved by the JPEG compatibility mode range from about 3% to 13%. while
for the overhead mode (with overhead information coded with the LZ\W method). the
range is from 5% to 22%.

In general. the results show that the harder the image to compress (high baseline

JPEG compressed bit-rate). the better the adaptive coder performs. Figure 5.11
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Figure 5.11: Bit-rate savings vs. baseline JPEG bit-rate (colour images)

illustrates that indeed the adaptive coder has better performance for images that do
not compress well with baseline JPEG (complex images with baseline JPEG bit-rates

over 1.5 bit/pixel). This confirms a similar finding reported in [31]. The result is
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actually not surprising since those hard-to-compress images often contain a lot of
high activity areas that contain large DCT coefficients that are difficult to quantize.
The texture masking property of the HVS suggests that distortions in these high
activity areas are also hard to notice. Thus an important key to the adaptive coder’s
performance is the texture masking model which is able to locate the high activity
areas and scale up the quantization matrix accordingly for improved compression. It
can also be observed that for smooth images with baseline JPEG bit-rates of about
1 bit/pixel or below, the coder’s performance is more limited and is in the range of
about 5 to 10%. In general, the more complex the image. the harder it is to compress
using baseline JPEG, and the better the adaptive coder performs.

In fact a similar observation can be extended for the luminance masking model.
which more coarsely quantizes blocks that have much brighter or darker average
luminance than the mean luminance of the image. Thus an image with a broad and
relatively flat luminance histogram will benefit greatly from luminance masking in

the perceptual model.

Impact of the overhead information

The savings with the overhead mode without the overhead information are also pre-
sented in tables 5.4 and 5.5. Note that an image compressed with the overhead mode
cannot be decoded correctly without the overhead information. However, the savings
in this case provide a more accurate indication of how much more compression can
be achieved by using full adaptive quantization instead of just adaptive thresholding
as in the case in the JPEG compatibility mode. It is clear from the tables that per-
forming full adaptive quantization can almost double the raw bit-rate savings when
the overhead information is not included. This section analyzes briefly the impact of
the overhead information on the final bit-rate savings in the overhead mode.

The overhead information in the overhead mode generally constitutes about 3
to 4% of the total bit-rate (savings without overhead minus savings with overhead).
Although for all of the test images, the overhead mode out-performs the JPEG com-

patibility mode at Q = 72, the benefit of using the overhead mode diminishes con-
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siderably (see figure 5.11) when the images are relatively smooth since there is not
enough perceptual redundancy that can be exploited as explained in the previous
section. For these low complexity images, the overhead information required offset
most of the limited additional savings that could be realized by using the overhead
mode.

The test images in this project are all 512 x 512 images. The corresponding size

of the uncompressed multiplier map is thus 22 x 212 — 4096 bytes. Table 5.6 shows

8 8
Image Standard LZW
overhead overhead
size (bytes) | size (bytes) | improvements

lenna(c) 1631 1199 26%
barbara 1901 1578 17%
boats 1449 1035 29%
harbor 1810 1476 18%
peppers 1616 1299 20%
mandrill 2117 1682 21%
flower 1613 1235 23%
lady 1427 1104 23%
motorbike 2414 2039 16%

Table 5.6: Overhead coding - Standard vs LZW

the size of the coded overhead with standard coding and LZW coding for a sub-group
of test images. It can be observed that LZW coding consistently provides at least
16% improvements over the input-independent standard coding method. Thus for
theoretical comparison purposes, this project chooses the LZW method for overhead
coding in the overhead mode to more accurately model and analyze the performance
differences between adaptive coding with overhead (overhead mode) and without

overhead (JPEG compatibility mode).

5.3.2 Subjective results
5.3.2.1 Description of the subjective test

A subjective test was performed to compare the subjective quality between the base-

line JPEG coded images and the A-JPEG coded images. The seven-grade comparison
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scale (table 5.7) from the CCIR Recommendation 300 [50, 51] was used. The test was
conducted on a Pentium-Pro PC with a 24-bit colour Matrox Millenium graphics card
and a 17”7 Nanao Eizo FlexScan TX.C7S Trinitron monitor. The viewing distance
was four times the picture height, which was closer than the recommended distance
of six times {50, 21], and the testing room was under normal office lighting condition.

A group of 19 subjects were invited to participate in the test. Seven of the
participants were members of the digital signal processing group. The rest of the
participants were non-experts and they were mostly undergraduate and graduate

students in the university. A test subset of eleven pictures was used.

Comparison scale
+3 Much better
+2 Better

+1 Slightly better

0 The same

-1 Slightly worse
-2 Worse

-3  Much worse

Table 5.7: The CCIR comparison scale

The testing procedure was conducted as follows:

1. In each comparison the subject was simultaneously shown two images side by
side on the monitor screen. One of them was the baseline JPEG image and
the other was the adaptive JPEG image. There are two comparisons for each
baseline JPEG image so that each of the two images produced by the two
adaptive modes respectively will be compared once with the baseline JPEG
image. The screen location (left or right), and the order of appearance of the
adaptive coding modes (JPEG compatibility mode first, overhead mode second,
or vice versa) were both randomized. The JPEG quality factor of 72 was used

for all baseline JPEG and A-JPEG images in the test.

2. The subject was told that one of the images contained more distortion than
the other and was asked to use the comparison scale in table 5.7 to evaluate

the images. The subject was allowed to view the pictures for as long as he or
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Image | JPEG mode result | Overhead mode result

lenna(c) 0.316 0.158
barbara 0.368 0.053
boats 0.000 0.158
peppers 0.316 0.421
goldhill 0.263 0.211
mandrill 0.263 0.053
flower 0.421 0.474
hats 0.211 0.526
lady 0.158 0.316
sail 0.158 0.000

motorbike 0.316 0.368 ]

| Average | 0.254 | 0.249 ]

Table 5.8: The subjective test results - by images

Subject No. | JPEG mode result | Overhead mode result
1 0.182 0.091
2 0.273 0.455
3 -0.182 0.182
4 0.636 0.455
3 0.000 0.455
6 0.091 0.000
7 0.091 0.182
8 0.818 0.273
9 0.727 0.727
10 0.000 0.091
11 0.545 0.455
12 0.182 0.273
13 0.636 0.000
14 0.727 0.364
15 0.273 0.182
16 -0.273 -0.182
17 -0.091 0.364
18 0.273 0.364
19 0.000 0.000

[ Average 0.254 T 0.249 IR

Table 5.9: The subjective test results - by subjects

=~
N




she desired. Moreover, the subject was encouraged to use the mouse to change
the locations of the pictures on the screen to make sure that any perceived
distortion was not due to possible non-uniformity across the monitor screen.

However, manual zoom-in of the images was prohibited.

3. After the two comparisons for each baseline JPEG image were completed, the
subjects were told if their choices of the ‘better’ images were indeed the less
distorted baseline JPEG image. However they were not allowed to see the

images again until after the whole test was finished.

The results of the subjective test are presented in tables 5.8 and 5.9. Table 5.8
shows the test images in their order of presentation in the test, i.e. lenna(c) (c
represents colour) was always the first test image; and motorbike the last. A positive
result means that the baseline JPEG image on average was rated 'better’ to a certain
degree (using the scale in table 5.7) than the A-JPEG image. The higher the value of
the result, the more the baseline JPEG image was perceived 'better’ than the A-JPEG
image. Table 5.9 shows the results by subjects, where a positive result means that
the subject. on average rated the baseline JPEG images ‘better’ to a certain degree

than the A-JPEG images.

5.3.2.2 Discussions

The low average results of 0.254 for the JPEG compatibility mode and 0.249 for the
overhead mode show that for the test image set, the two adaptive modes both produce
output that are essentially indistinguishable from those produced with baseline JPEG.
Nevertheless the fact that the results are not closer to zero or even negative means
that there is still some slight difference between a baseline JPEG image and an A-
JPEG image, and on average viewers are a little more likely to prefer the less-distorted
baseline JPEG image than the A-JPEG image.

The most puzzling implication from the test is that the subjective results for
the two adaptive coding modes are almost identical - in fact the overhead mode

was even rated a bit closer to baseline JPEG than the JPEG compatibility mode.
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This is intriguing since by definition, using the same perceptual model parameters,
the multiplier map overhead allows more aggressive quantization in the overhead
mode than the adaptive thresholding operation of the JPEG compatibility mode (see
section 4.1.1.3). The author, who is familiar with the types of distortion introduced
by A-JPEG, has done the test several times (the result is not included because it
is obviously biased). The overhead mode always achieves a higher subjective resuit
than the JPEG compatibility mode and this was the expected outcome before the
test was conducted.

An answer to the confusion between the two adaptive modes is that the human eye
simply is not sensitive enough to be used as a reliable quality metric. It mayv be able
to tell a baseline JPEG image from an A-JPEG one. But it will not be a successful
metric for differentiating a more distorted A-JPEG image from another less distorted
A-JPEG image. This raises the need for a reliable perceptual metric that can replace
the traditional mean-square based metrics and also be computed objectively [58. 39].

Another possible answer to the above problem lies in some observers’ inability
to differentiate distortion from true image features. At least four or five subjects
(subjects 13 and 16 in particular) had indicated that the distorted images looked
‘sharper’ to them and consequently they picked those images over the baseline JPEG
images.? As the overhead mode images were the most distorted, they were most
likely to be mistaken as 'better’ than baseline JPEG images. In the subjective test,
this created negative results and could pull down the overhead mode’s overall result.
(Interestingly, several subjects who obtained high results indicated that they picked
the baseline JPEG images because the A-JPEG images appeared less sharp in some
high details areas.)

The following summarizes other notable issues regarding the subjective test:

e The subjects’ abilities to notice distortion vary greatly. Some subjects had

sharp eyes and were able to see some differences between almost every pair of

2Subject 13 used to work in Sony Japan as a video engineer and he mentioned that the granularity
introduced in the A-JPEG images was similar to the effect of increased picture sharpness in a
television set.
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images. Indeed the results obtained by subject 9 were even higher than those
of the author, who were much more familiar with the images. Yet some other

subjects were less successful and were not able to see any difference at all.

e In general most subjects agreed that the baseline JPEG images and the A-JPEG
images were very close in quality and the comparison scale in table 5.7 was never
extended beyond the subset {-1, 0, +1}. This is the main reason for the design
of the relatively strict test where the user was allowed an unlimited viewing
time, freedom to move the images around, and a close viewing distance of four
times the picture height. Most viewers indeed require about thirty seconds to
one minute before a decision can be made. Thus it is reasonable to expect
that in a more casual viewing situation, the percentage of users noticing the
difference between the baseline JPEG images and A-JPEG images will be even

lower.

e The subjects were told if their picks were the baseline JPEG images after the two
comparisons with each baseline JPEG image were finished. A few subjects were
quick-learners and they were able to pick the baseline JPEG images much more
accurately in the last few comparisons than in the beginning. They indicated
this and voiced concerns that the results for the last few images might not be
accurate. Nevertheless, from table 5.8, the results for the last few images do not
show large deviations from the average. It can also be argued that the results
for the first few images might be lower than what could have been if the order
of presentation was different. Thus the ’'learning’ concerns might not matter

after all the individual results are averaged together.

The subjective quality of the images lenna and motorbike can be examined from
figures 5.12 to 5.17. For each of the two images, the baseline JPEG coded image
and the A-JPEG coded images in the two adaptive modes are shown. As explained
previously, the overhead mode images are more distorted than their corresponding
JPEG compatibility mode counterparts since the same perceptual model parameters

are used for all A-JPEG images. It can be seen that the two A-JPEG coded lenna
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images are basically perceptually lossless compared to the baseline JPEG image. The
JPEG compatibility mode motorbike image is also coded at a perceptually lossless
level. Upon close examination at the overhead mode motorbike image, some jagginess
artifacts can be found on some high activity areas, like the biker’s bodies, or the
paintings on the helmets or the motorcycle bodies. But the overall perceptual quality

of the image is still very close to the baseline JPEG motorbike image.
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Figure 5.12: The baseline JPEG coded lenna image

77



Figure 5.13: The A-JPEG coded lenna image - JPEG compatibility mode
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Figure 5.14: The A-JPEG coded lenna image - overhead mode



Figure 5.15: The baseline JPEG coded motorbike image
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Figure 5.16: The A-JPEG coded motorbike image - JPEG compatibility mode
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Figure 5.17: The A-JPEG coded motorbike image - overhead mode
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5.4 Compression results for varying quality factors

The results presented in the previous sections are all obtained using the coder param-
eters listed in table 5.1. In particular. the JPEG quality factor of 72 was chosen. The
value corresponds to a bit-rate of 0.916 bit/pixel for the grayscale image lenna. It is
generally recognized that at the compressed bit-rate of about 0.73 to 1.5 bit/pixel, the
quality of a decompressed colour image is excellent. and is sufficient for most appli-
cations [2]. Thus it is insightful to also investigate the adaptive coder’s performance
for other quality factors to establish a more thorough understanding of the coder’s

capabilities or shortcomings.

5.4.1 Objective results

Table 5.10 and 5.11 present some compression results for the range of quality factors
from 10 to 90. The colour images lenna and houses. and a grayscale image barbara are
used. The image lenna represents a mainly smooth. low complexity image. barbara
represents a moderate complexity image, and houses represents a high complexity
image. The bit-rate column under each image provides the baseline JPEG bit-rate for
the corresponding quality factor, and the savings column presents the bit-rate savings
in percentage over baseline JPEG with the adaptive coder. Table 5.10 contains the
results for the adaptive coder in the JPEG compatibility mode. while table 5.11 is
for the overhead mode, with the overhead information LZW coded.

It can be observed from table 5.10 that for the JPEG compatibility mode. the bit-
rate savings for a particular image increase with the increase in compression (lower
bit-rate). In fact from the experimental data, the savings in bits actually decrease
with the decrease in the quality factor. But because the corresponding decrease in
bit-rate is even higher, the overall bit-rate savings in percentage still increase.

The results for the overhead mode is quite different from that of the JPEG com-
patibility mode. The main difference is that the cost of the multiplier map overhead
needs to be taken into consideration. The cost of the overhead is a constant for each

image, and is independent of the coding bit-rate. Thus the lower the bit-rate, the

83




Quality lenna(c) barbara houses
factor bit-rate | savings | bit-rate | savings| bit-rate | savings
(bit/pixel) | (%) | (bit/pixel) | (%) | (bit/pixel) | (%)

90 2.07 4.4% 2.25 5.3% 3.20 7.1%
80 1.32 4.8% 1.56 6.2% 2.23 9.0%
70 1.01 5.1% 1.26 7% 1.79 10.1%
60 0.83 5.3% 1.07 8.1% 1.51 10.8%
50 0.72 5.6% 0.94 9.5% 1.32 11.4%
40 0.61 5.8% 0.82 10.7% 1.15 12.6%
30 0.50 6% 0.68 12.4% 0.96 13.7%
20 0.38 6.7% 0.51 15.4% 0.72 14.7%
10 0.23 8% 0.30 15.8% 0.43 18.1%

Table 5.10: Bit-rate savings (JPEG mode) for varying quality factors

Quality lenna(c) barbara houses
factor bit-rate | savings | bit-rate | savings | bit-rate | savings
(bit/pixel) | (%) | (bit/pixel) { (%) | (bit/pixel) | (%)
90 2.07 6.5% 2.25 11.1% 3.20 14.7%
80 1.32 6.3% 1.56 11.6% 2.23 16.2%
70 1.01 5.6% 1.26 11.1% 1.79 16.7%
60 0.83 4.8% 1.07 11.6% 1.51 16.7%
50 0.72 4.5% 0.94 12.4% 1.32 16.9%
40 0.61 4.2% 0.82 12.5% 1.15 17.5%
30 0.50 2.8% 0.68 12.5% 0.96 17.5%
20 0.38 1% 0.51 12.1% 0.72 16.0%
10 0.23 -4.4% 0.30 3.8% 0.43 12.5%

Table 5.11: Bit-rate savings (Overhead mode - LZW) for varying quality factors
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higher the relative cost of the overhead, which offset the potential bit-rate savings.
For high baseline JPEG bit-rates. the overhead cost is relatively insignificant and
the full adaptive quantization performed in the overhead mode delivers much better
performance than adaptive thresholding in the JPEG compatibility mode. However,
for lower bit-rates, the relative cost of the overhead starts to hamper the final bit-rate
savings result.

It can be observed from table 5.11 that for bit-rates above approximately 0.5
bit/pixel, the bit-rate savings are generally quite stable for all three images. Although
apparently lenna’s performance is worst since A-JPEG does not perform well for
smooth images in general. The bit-rate savings for barbare and houses are remarkably
stable above the baseline JPEG bit-rate of 0.5 bit/pixel. This shows that the raw bit-
rate savings achieved by full adaptive quantization are 'just’ offset by the overhead
costs. However, at bit-rates below 0.5 bit/pixel, it can be observed that there are
sharp drop-offs in the final bit-rate savings since the overhead information begins to
dominate the final bit-rates. There has been interest in reducing the overhead cost in
low-bit-rate situations and [54] presents an algorithm which optimizes the overhead

cost for video coding.

5.4.2 Subjective results

Informal comparisons between the baseline JPEG images and the A-JPEG images
compressed at the same quality factors by the author show that the two types of
images are perceptually very close to each other at the different quality levels exam-
ined. In fact the quality factors from 70 to 90 produce images that are so close to the
originals that there is no real incentives in using the quality factor 90, which requires
a much higher bit-rate than the factor 80 and below.

For low quality compression at bit-rates below about 0.5 bit/pixel, the infamous
JPEG blocking artifacts are apparent in the reconstructed images. However, this
problem is a general weakness of block-based lossy compression systems and the
artifacts exist in both baseline JPEG images and A-JPEG images. The adaptive

JPEG coder, designed for high quality compression, is not an effective tool to deal with
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the blocking artifacts with low-bit-rate compression and there are more established
methods that are available [60]. Nevertheless, it is insightful to investigate if the
blocking artifacts can be reduced by using the adaptive JPEG coder.

Instead of comparing images compressed using the same quality factor, an informal
comparative test was carried out to compare the quality of images compressed at
the same bit-rates. The rationale is that, if compared to baseline JPEG, A-JPEG
requires lower bit-rates at approximately the same perceptual quality for the same
quality factor, an A-JPEG image should have 'better’ quality than a baseline JPEG
image compressed at the same bit-rate. For the image lenna, the A-JPEG image with
the quality factor (Q) equals 22 has approximately the same bit-rate as a baseline
JPEG image with Q = 20. For the image barbara, the A-JPEG image with Q = 25
has approximately the same bit-rate as a baseline JPEG image with Q = 20. The
JPEG compatibility mode was used so that the multiplier map overhead was not
a factor. It was discovered that both of the A-JPEG images have fewer blocking
artifacts than their baseline JPEG counterparts. especially in the facial areas of the
female subjects in the two pictures. The main reason behind this is that the facial
areas are generally classified as plain blocks by block classification in the perceptual
model (assume texture masking is the dominant factor for now). Thus the local
multipliers in those areas are generally one and they are quantized by the global QM
at Q = 22 or 25. The A-JPEG coder can compensate for the higher bit-rates in
the plain blocks by more coarsely quantizing the texture blocks with a scaled QM
using a lower quality factor at, say, Q = 18. This is the main advantage of adaptive
coding, where more bits are used to code the perceptually more important areas.
The advantage is also true at higher bit-rates, but it is more apparent at low bit-rate
situations, where the artifacts are more visible.

Figure 5.18 shows the graph of the JPEG quality factor as a function of the
bit-rate of the compressed image. The results for the three images lenna, barbara,
and houses are presented. The solid lines represent the results for baseline JPEG
compression, while the dotted lines represent the results for A-JPEG compression

in the JPEG compatibility mode. It can be observed that to achieve the same bit-
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Figure 5.18: The JPEG quality factor as a function of the compressed bit-rate

rate, the solid line (baseline JPEG) always requires a lower quality factor than the
corresponding dotted line (A-JPEG) for the same image. In general, the use of a
higher quality factor by A-JPEG does not necessarily mean that the A-JPEG image
will be perceived ’better’ than the baseline JPEG image since the rating of image
quality is a highly subjective matter and a reliable perceptual metric that can be
computed objectively is still not available. But it can be claimed that the adaptive
JPEG coder is able to preserve the quality of the perceptually more important areas
such as the plain or the middle-luminance areas, better than baseline JPEG at the
same bit-rate by more aggressively compressing image areas that are perceptually
less important. In fact, for a high complexity image like houses for which A-JPEG
performs well, the A-JPEG quality factor can be as many as 9 units higher than that
of baseline JPEG at the same bit-rate (50 vs. 41 at 1.1 bit/pixel) .

Figures 5.19 and 5.20 show the baseline JPEG and A-JPEG (JPEG compatibility
mode) barbara images respectively. Both are coded at 0.51 bit/pixel (Q = 20 for
baseline JPEG, Q = 25 for A-JPEG). The facial areas of the images are zoomed
in to emphasize any potential difference. The differences are more apparent on a

high quality computer monitor, but it can still be observed that A-JPEG provides a
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slightly better reproduction of barbara’s face and the flat area on the left hand side
of the images. However, the texture area of barbara’s clothes near the lower left hand
side is better preserved in the baseline JPEG image, although in fact both images
look quite bad in those areas anyway as the blocking artifacts dominate the viewer’s

attention and texture masking no longer holds at this low bit-rate.

5.5 Computational complexity of the coder

The computational complexity of the coder is examined in this section. One impor-
tant advantage of the architecture of the adaptive coder is that the computational
overhead of the perceptual model is incurred at the encoder level only. The percep-
tual model only needs to be implemented in a JPEG encoder and the output can be
read by any existing standard-compliant JPEG decoder without any overhead cost.
Thus the adaptive coder is ideally matched for broadcast-type multimedia applica-
tions wheremost of the information is created only once but accessed many times
afterwards. In these applications, the computational cost of the encoding overhead
of the perceptual model, in light of the overall system usage cost, will be minimal
because encoding is done only relatively sparingly. Appendix A provides a more
in-depth discussion on the applications of the adaptive coder.

The emphasis of this section is on analyzing the computational overhead of the
perceptual model over the total encoding cost of baseline JPEG. The results are pre-
sented in table 5.12. The performance is in second, for encoding of the 512 x 512
colour image lenna. The performance for baseline JPEG, A-JPEG in the JPEG com-
patibility mode, and A-JPEG in the overhead mode (multiplier map LZW coded)
for different computer processors is presented. The corresponding performance over-
heads over baseline JPEG in percentage are also calculated for the two adaptive
coding modes.

[t can be observed that the overheads for the JPEG compatibility mode range
from 9% to 14%, while those for the overhead mode range from 6% to 10%. The

computational costs mainly come from the calculations in the perceptual model, some
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Figure 5.20: The A-JPEG barbara image coded at 0.51 bit/pixel (JPEG mode)
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Machine Baseline Adaptive JPEG
tvpe JPEG | JPEG compatibility | Overhead mode
time time overhead time | overhead
Pentium 133 0.79s | 0.90s 13.9% 0.87s | 10.1%
Pentium Pro 200 | 0.33s | 0.36s 9.1% 0.35s 6.1%
Sun Sparc-5 1.12s | 1.23s 9.8% 1.20s 7.1%
Sun Ultrasparc-1 | 0.49s | 0.55s 12% 0.53s 8%

Table 5.12: The A-JPEG encoding computational overhead over baseline JPEG

of the most important operations are:

e Pre-computation of the scaled quantization matrices (QMs) before the parsing

of the image blocks so that during quantization the scaled QMs can be called

upon quickly by LOT(Look-Up Tables).

e The summations of individual DCT coeflicients for the symbols L (low fre-

quency), E (edge). H (high frequency) for block classification.
e Performing block classification using the algorithm presented in section 4.2.2.1.
e The calculation of the mean luminance of the image for luminance masking.

The overhead mode is faster than the JPEG compatibility mode since the JPEG
compatibility mode requires an extra adaptive thresholding step before the actual
quantization step.

[t is expected that with better hardware and software optimization, the encoding
computational overhead can be lowered considerably. For instance, the perceptual
model uses a lot of repetitive loops to perform summations in block classification
and luminance masking. The Intel MMX extensions to the x86 architecture allows
up to eight integer pairs to be added together in parallel in one instruction [61]

and thus should provide substantial performance improvement for future Intel-based

applications.
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Overhead for mean luminance calculation

The impact of the mean luminance (mean DC) calculation for luminance masking is
substantial since for a 512 x 512 colour RGB image with 3 channels, 512 x 512 x
3 = 786432 additions are needed. To examine the impact, the sub-routine for the
mean luminance calculation was taken out and the adaptive coder was re-run. For
the Sparc-5 workstation, the new overhead costs were 7% and 4.5% for the JPEG
compatibility mode and overhead mode respectively. These represent improvements
of about 30% as compared to the results in table 5.12. Thus a convenient way to speed-
up the A-JPEG coder is to fix the mean luminance value at, for example, 128. But
this is done at the expense of decreased adaptivity in the luminance masking model
and would not be recommended for still image compression in general. However.
for video coding, there is generally high correlation between adjacent image frames
until a scene change occurs. Thus the perceptual model can take advantage of the
previous frame’s mean luminance value to reduce the computational cost in a video
coding svstem.

For colour images, another possibility is to calculate the mean luminance from
the luminance (Y) component only. after the colour space conversion. This requires
a full colour space conversion of the whole image before any DCT and quantization
is performed. The current implementation is not able to do that because the coder
structure is to perform the whole compression process, including colour space con-
version and chrominance subsampling, one horizontal row of 8 x 8 blacks at a time.
With a slight change in the coder structure so that the colour space conversion step
for the whole image is completed before the core JPEG coder is invoked, the mean
luminance value can be calculated from the luminance channel only and the total
number of additions is 512 x 512 = 262144, a saving of two third of the cost of the

mean luminance calculation as implemented currently.
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Chapter 6

Conclusions

A perceptually adaptive DCT-based transform coder (A-JPEG) is implemented in
this project. The implementation involves the design of a perceptual model and the
implementation of an adaptive coding structure on top of a standard (non-adaptive)
JPEG coder implementation. The main objective is to devise a more perceptually
uniform quantization strategy so that fewer bits are used to represent the perceptually
less important areas of an image. The result will be a saving in bit-rate. with no overall

loss in perceptual quality.

The perceptual model

The perceptual model contains a texture masking model and a luminance masking
model. The key to the texture masking model is a block classification step that dif-
ferentiates between the plain, edge, and texture blocks so that the local multipliers
can be calculated separately for each type of blocks. A new classification algorithm is
proposed, which makes use of the ratios between the high frequency and low frequency
DCT coefficients of each block to perform the classification. An innovative adaptive
luminance masking scheme is also proposed. The scheme is motivated by the obser-
vation that in general a bright image needs a different luminance masking strategy
than a dark image. The proposed luminance masking scheme adaptively adjusts the
luminance masking strategy for an image depending on the image’s mean luminance

value. A convenient feature of the proposed perceptual model is that both masking
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models are linear threshold elevation models {33] and the user can easily adjust the
extent of the distortion introduced by each of the masking models by modifving the

value of the maximum elevation factor of the corresponding model.

The two adaptive coding modes

The perceptual model is designed to produce a multiplier map that contains 3-bit
scalar multipliers that can be used to scale the quantization step sizes of each in-
dividual image block. Two adaptive coding modes are examined in this thesis. In
one mode. the multipliers are used for scaling the global quantization matrix during
quantization and the multiplier parameters are included with the compressed image
data as overhead information for decoding. This adaptive coding mode is referred to
as the overhead mode in the thesis.

Baseline JPEG compatibility requires a different approach since the original JPEG
standard only allows global quantizatiou step sizes. The coder adaptively thresholds
some DCT coefficients to zero based on information from the perceptual model. This
provides an encoded image output that does not need a multiplier map overhead for
decoding and is baseline JPEG compliant. This adaptive coding mode is referred to

as the JPEG compatibility mode.

Performance - high bit-rate

The performance of the two adaptive coding modes for high quality image compression
is examined. In this project, the quality level at which the compressed lenna image is
about perceptually lossless from the original is used. Using the same JPEG quality
factor and perceptual model parameters (table 5.1). for the test image set the bit-rate
savings for the JPEG compatibility mode (no overhead) over baseline JPEG range
from 3% to 13%. and for the overhead mode. the savings range from 5% to 22%. A
subjective test that involves 19 human subjects demonstrates that the A-JPEG coded
images are essentially indistinguishable from the baseline JPEG coded images.

The experimental results also show that the adaptive coder provides better per-

formance for images that are hard to compress under baseline JPEG. The reason for
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A-JPEG's better performance is that the hard-to-compress areas are generally highly
textured. or complex areas that can tolerate more distortion perceptually. Thus A-
JPEG is able to identifv a lot of those areas in images that are complex and achieve
a much better compression.

The results for the overhead mode always surpass those for the JPEG compatibility
mode at high bit-rates since the availability of the multiplier map overhead allows
more aggressive quantization of the DCT coefficients. However the advantage of the
overhead mode over the JPEG compatibility mode is much less for smooth images

since A-JPEG does not perform very well for smooth images in general.

Performance - low and medium bit-rate

The perceptual model is designed with high quality image compression as the target
application since the JPEG standard is not a veryv effective tool for low bit-rate. or
low quality compression. The texture masking and luminance masking properties
of the HVS are not relevant at low bit-rates any more because the blocking artifacts
introduced by JPEG will dominate the viewer’s attention. Nevertheless, it is insightful
to also investigate the performance of A-JPEG at different quality levels since there
is a certain gap between the perceptually lossless quality level and the quality level at
which the blocking artifacts become annoying. And a user might want to use A-JPEG
for a quality level somewhere in between the two extremes.

Section 5.4 shows that the performance of A-JPEG in the JPEG compatibility
mode improves with the decrease in bit-rate. But for the overhead mode. the results
are different because of the quality-independent multiplier map overhead that also has
to be included with the compressed image. The results show that the performance
of A-JPEG in the overhead mode is in general quite stable over a wide range of bit-
rates. But the resulting bit-rate savings drop off considerably at bit-rates below 0.5

bit/pixel as the overhead information begins to dominate the total bit costs.
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Performance - summary

In general. the performance of the A-JPEG coder is affected by two main factors:
the source image complexity and the target resulting bit-rate. The project confirms
the finding in [31] that the more complex the source image. the better the A-JPEG
coder performs. The overhead mode provides substantial improvement over the JPEG
compatibility mode for medium to high complexity images. But it is only marginally
better for smooth. or low complexity images.

The target bit-rate can affect the choice of the adaptive coding mode. At low bit-
rates, sav below 0.5 bit/pixel. the performance of the overhead mode is poor since the
overhead costs dominate the final bit-rate. The JPEG compatibility mode provides
good results for all bit-rates. in fact. the performance of the JPEG compatibility
mode improves with the decrease in the resulting bit-rate.

Figure 6.1 summarizes the adaptive coder’s performance as a function of the source
image complexity and the target baseline JPEG bit-rate. It is only a crude measure
but it can serve as a quick reference for determining if the adaptive coder is suitable
for compression of a certain kind of image. at a certain bit-rate. The performance of
the adaptive coder in the overhead mode can also be directly related to that of the
new JPEG extension (section 4.1.1.2). Thus figure 6.1 will also help a JPEG user
decide if it is worth switching to the new JPEG extension at the expense of the loss

of baseline JPEG decoder compat;bility.

Image
complexity
low medium to high
target
bit-rate
low JPEG mode: Good JPEG mode: Very good
Overhead mode: Poor Overhead mode: Fair
medium JPEG mode: Good JPEG mode: Good
to high Overhead mode: Good | Overhead mede: Very good

Figure 6.1: A summary of the performance of the adaptive coder




The scales and terminologies in figure 6.1 are defined quite arbitrarily. But they
approximately reflect the previous results for varying quality factors presented in
tables 5.10 and 5.11. In figure 6.1, the threshold between low bit-rate and medium
to high bit-rate is defined to be 0.5 bit/pixel. The complexity of an image can be
approximated by its corresponding baseline JPEG bit-rate. For a fixed quality factor,
the higher the resulting baseline JPEG bit-rate, the more complex the image. Thus
using the quality factor of 72, which is approximately equivalent to encoding with the
JPEG example quantization matrix scaled by a factor of 0.56. a threshold bit-rate of
1.2 bit/pixel is chosen to differentiate between the low complexity and the medium
to high complexity images.

For instance, the image lenna is a typical low complexity image, barbara is a
medium complexity image, and houses is a high complexity image. The two threshold
bit-rates can be applied for both grayscale and colour images since the chrominance
channels normally only account for a small percentage of the total bit-rate of a colour
image [1]. As for the performance measures, 'very good® refers to a bit-rate saving of
above 10%, ’good’ refers to a saving of about 4% to 10%, 'poor’ refers to a saving of
less than 4%, and ‘fair’ represents a non-consistent saving, somewhere between poor

and good.

Computational complexity

The computational complexity of the adaptive coder is modest. Experimentation with
different microprocessors shows that for encoding, the computational overhead over
baseline JPEG is about 11% for the JPEG compatibility mode, and 8% for the over-
head mode. It is expected that with better hardware and/or software optimization,
the encoding overhead will go down substantially.

There is no overhead cost for decoding since the perceptual model is only used in
the encoder. Thus the adaptive coder is ideally suited for broadcast-type multimedia
applications where most of the information is created only once but accessed many
times afterwards. Appendix A provides a more general discussion on the applications

of the adaptive coder.
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6.1 Future work

A lot of work can still be done for further improvement. The following summarizes

some of the possibilities for further study:

1. The subjective test in chapter 5 verifies that the human eye is not good at
differentiating the small differences between images. A perceptually-motivated
objective metric that can be computed (like the common signal-to-noise ratio)
is highly preferable to a possibly error-prone, and labour-intensive subjective
test. Unfortunately a perceptual metric requires the use of a perceptual model
and as of now a universally agreed-upon perceptual model is still not available
(otherwise the design of a perceptual model in this project will be deemed
unnecessary). A possible choice is a metric that is based on the just-noticeable-
distortion profile of an image. described in [1, 20]. Some other choices can be

found in [59, 62].

2. The perceptual model’s two masking elevation parameters as described in ta-
ble 5.1 are fine-tuned to provide a good trade-off between perceptual quality
and coder performance for the test images. However the optimization of percep-
tual fidelity is a rather subjective problem, and for many individual images, the
parameters can still be increased without introducing perceptual loss according
to most observers. One of the main reasons behind the need of a perceptual

metric is for more robust calibration of the perceptual parameters.

3. The use of the same perceptual parameters for the two adaptive coding modes
allows direct comparisons between the performance of the two modes. However,
by definition, the overhead mode introduces more distortions to the images than
the JPEG compatibility mode (see sections 4.1.1.3). Thus the coder parameters
that are designed for good quality in both modes actually under-compress the
image in the JPEG compatibility mode. Due to time limitations, a formal
analysis has not been performed, but it would be interesting to investigate the

JPEG compatibility mode’s performance separately.
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In an informal test, with an educated guess, the perceptual model’s masking
elevators are raised so that the JPEG compatibility mode produces an output
that has the same size as the output of the overhead mode using the original
masking elevators. The two reconstructed images are then compared and there
is virtually no perceptual difference between the two, even after close examina-

tion with zoom-ins.

Frequency sensitivity, one of the HVS properties introduced in chapter 2, has
not been investigated in this project. The JPEG quantization matrix (QM)
models the HVS's frequency sensitivity. Thus any investigation into frequency
sensitivity requires the modification of the QM. In general, QM modification
is a global procedure and the analysis is expected to be quite different from
the work done in this project since the other HVS properties considered in this
project are block level, local masking properties. Some well-known literatures

on QM design are in [48, 23].

The block classification procedure can also be improved [63]. The classification
algorithm’s ability to extract edge information is less than perfect since the
analysis is done using the DCT coefficients of non-overlapping 8 x 8 blocks. So
the result’s precision is much less than that of other classical edge detection
techniques, such as the Sobel operators, which use 3 x 3 kernels for each indi-
vidual pixel [10] and the current algorithm might miss an edge that happens to

locate just near the boundaries of two adjacent blocks.

In situations where edge features preservation is highly desirable, it might be
advantageous to simply turn off the locally adaptive classification correction
scheme described in section 4.2.2.1. This ensures that edge blocks that are
close to texture blocks will not be re-classified as texture blocks. With some
slight change in the design, the user might also add a preprocessing module to
perform a separate edge detection analysis. The results can then be used to aid

the block classification decision. With the fast computer processors currently

98




available, the added overhead will be small' and may not be a big performance
bottleneck to overcome for non-realtime use. Furthermore, to take advantage of
the inherently varving block statistics of real-life images, a fuzzy classification

method might also be used [64].

6. For colour images. only the luminance properties of the HVS are considered
in the perceptual model. Reference [14] introduces some issues concerning the
masking properties of the chrominance channels that can be very useful for

further improvement of the perceptual model.

There has also been report that the use of a perceptually uniform colour space
like the CIE? L*a*b* and L*u*v* colour spaces provides better JPEG compres-
sion performance than the traditional RGB and YIQ (similar to the YCrCbh
colour space used in JPEG) colour spaces [18]. As discussed in chapter 3. the
colour space conversion module is independent of the core JPEG coder. Thus
the change in colour space does not require major coder modification® and it
would be interesting to investigate if the A-JPEG coder can also benefit from

the use of a new colour space.

7. The perceptual model proposed in this project can also be implemented in a
MPEG (Moving Picture Expert Group) [32] video coding system since MPEG is
also based on the DCT-based block transform coding model and MPEG’s intra-
coding mode is basically identical to JPEG image coding. However video coding
involves substantially more design issues than image coding and the usefulness of
the perceptual model in a video coding environment is still to be investigated.
A comparison between the results obtained with MPEG's standard adaptive
quantization scheme [65] and the results obtained with the proposed perceptual

model is to be examined [37, 44, 45]. Moreover, in video coding, there is also

!Performing the edge detection function with the popular zv program takes less than one second
in the Linux OS on a Pentium Pro 200 PC.

2Commission Internationale de L'Eclairage.

3The perceptual model requires the luminance channel Y. Thus the new colour space conversion
module may need to compute an additional Y channel for interim use by the perceptual model
during encoding.
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the added opportunity for temporal masking (14| that can be implemented in

the perceptual model for further improved results.
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Appendix A

Possible applications for adaptive

JPEG coding

This appendix attempts to provide and discuss about some application scenarios in
which the adaptive coder might prove useful. An important characteristic of the
adaptive coder is that all the perceptual overhead are done in the encoder only. The
decoding performance for an A-JPEG compressed file is the same as that for a baseline
JPEG file. Thus any decoding-heavy applications will benefit from a smaller A-JPEG
file size, while at the same time the cost of the encoding overhead. in light of the

overall system usage cost, will be minimal because encoding is done sparingly.

Asymmetric multimedia communications

One application scenario is in multimedia communications. With the continuous
advancement of computer processing power and display device technology, and the
rapidly rising popularity of the Internet, multimedia information, in particular, image

and video! data, are now very much within reach for even casual computer users. One

IThe perceptual model’s usefulness in a video coding scheme like MPEG has not been tested.
Nevertheless, in some applications, Motion-JPEG (application of JPEG on a sequence of pictures,
disregarding temporal redundancy - there is no recognized standard for Motion-JPEG, thus it is
mostly a proprietary format) has also been used in video applications, e.g. the Miro miroVIDEQO
DC30 digital video editing system uses Motion-JPEG for studio-quality video compression. Thus
the discussions on video is not totally irrelevant for A-JPEG.
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characteristic of multimedia information is that they are, in most cases, accessed by
decoding-heavy applications or systems. In other words, multimedia information
resembles Write-Once. Read-Many (WORM) information. For instance. the front
page images of Cable News Networks’ (CNN) world wide web home page? are accessed
by thousands of hits evervday world wide, but the images are only created once. The
same is true for millions of JPEG files on the Internet.

Entering the digital age, the consumer electronics industry and the segment of
the computer industry that is concerned with multimedia technology are starting to
merge already. And the term playback used in consumer electronics can easilv be
related to decoding in computer terminology as decoding of digitized multimedia data
(compressed or not) is always needed before the actual reproduction, or playback.
Similarly, the multimedia term encoding can be loosely regarded to in consumer elec-
tronics terminology as recording digitized data. with or without compression, into a
standard format for later reproduction. Examples of the aforementioned decoding-
heavy (playback-heavy) applications are also abundant in consumer electronics. For
instance, the laserdiscs or movie tapes sold or rented in the local video stores are
designed for playback only. A similar case can be made for audio data for the mil-
lions of music CDs sold every year worldwide. In fact the broadcasting of television
programs to the national households evervday is a perfect example of the record-once,
playback-many scenario. This link between the computer and consumer electronics
industry is important since sooner or later the present analog video signal used by the
consumer electronics industry will be replaced by digital signal (possibly in the DVD
format) and JPEG and MPEG are expected to play an important role in helping to
reduce the transmission and storage costs.

As an adaptive scheme designed for reducing storage costs for image information
encoded using the JPEG standard, A-JPEG offers an attractive option for storage of
these 'decoding-heavy’ image data for a small one-time encoding cost. This promise
of A-JPEG also echoes a main advantage of vector quantization and fractal coding,

for which the decoding times are much smaller than the encoding times [4, 66]. The

2http://www.cnn.com




difference being that for the latter two coding schemes. the encoding overheads are
actually several magnitudes higher than that for decoding. This encoding-decoding
inequality of multimedia data can also be related to the design philosophy of the
Asymmetric Digital Subscriber Line (ADSL) [67]., where the download bandwidth
is much higher than the upload bandwidth. This reflects a fact that the average
consumers have relatively more interest in receiving information (and subsequently
decoding it). than creating information (encoding).

Please note that A-JPEG will be useful only when the multimedia data are suitable
for the DCT-based transform coding compression method used by JPEG. namely.
continuous-tone photographic image data. Two exceptions are computer graphics
images. which are used extensively in the video and computer game industry: and
when there are needs for near-perfect quality reproduction. like those demanded by
big-screen IMAX movies and Kodak Photo CD images . Nevertheless. in most
practical situations where real-life images and video are involved. the JPEG and
MPEG standards have been proven to be most useful. In fact the Grand Alliance for
HDT\ has chosen MPEG as the compression scheme for the future digital HDTV

standard in North America.

The two groups of prospects

As an example. consider a 1 GByte hard drive for storing image and video data. A
7.5% reduction in the storage requirement will translate into an additional 75 MBuytes
of disk space. Assume that one high quality colour JPEG image consumes on average
50.000 bytes, the additional disk space will allow the storage of 1.500 more images.
Two different groups can be identified as potential customers who might be interested
in the A-JPEG technology. The first group consists of the majority of multimedia
content providers, who will obviously benefit from the reduced storage cost provided
by A-JPEG. For instance, a lot of the Internet web page content providers will likely be

interested. This includes any company that has a sizable presence on the world wide

3Photo CD’s further on-line information: http://www kodak.com
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web. Multimedia CD-ROM makers. like those that produce digital encvclopedias. will
also be interested because more images can be put into the CD-ROMI. Other prospects
include any maintainer of large image databases. and future DV'D and HDTV software
providers (a.k.a. Hollvwood studios). The definition of multimedia content providers
is not limited to commercial organizations only. Anyv individual consumer who uses
a scanner to digitize a picture has produced multimedia content alreadv. And he
or she will benefit from using A-JPEG as the size of the library of scanned pictures
increases. Similarly, as digital cameras and digital camcorders start to become more
popular. A-JPEG will provide an attractive alternative to reduce storage cost since
portable storage media are tyvpicallv more expensive and have lower capacity than
their desktop counterparts.

Besides multimedia content providers. the other group of prospects of A-JPEG
includes the software and hardware companies that will be interested in implementing
the A-JPEG coder. The main difference between the two groups is that the first group
consists of companies or individuals that will be interested in using the A-JPEG coder.
However, not all parties in this group are necessarily going to implement the coder
in-house. This is especially true for individual consumers, who will likely purchase
a software coder off-shelf, or use the bundled software that comes with the scanner.
digital camera, etc.

Thus this creates a need for the second group of prospects, which contains compa-
nies that will be more interested in implementing the coder for use by other parties.
This group can be further classified into two subgroups, software companies and
hardware manufacturers. Examples of software companies include companies that
produce image processing, image database, and Motion-JPEG/MPEG encoder soft-
wares. A low complexity implementation of the A-JPEG coder actually does not
require much research and development expertise, so software firms that specialize in
delivering customized software solution for business will likely be interested as well.
As for hardware manufacturers, firms that produce customized JPEG encoding chips
will obviously be interested. Other prospects include companies that manufacture the

consumer electronics gadgets such as the digital scanners, or digital cameras discussed
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in the preceding paragraphs. These firms. however. do not necessarily need to design
the encoding chips in-house. they can just purchase the needed hardware components
from a third party company. Alternatively. these firms can choose to use software
instead by providing bundled softwares that the customers can use once the digitized
data are captured. Tables A.l and A.2 summarize the two groups of prospects who

might be interested in using A-JPEG for ‘decoding-heavy’ multimedia information.

Subgroup Name | Description
Multimedia Content providers | Web page content providers i
(companies) Multimedia CD-ROM makers :

Maintainers of image/video databases }
Digital video-on-demand providers |
Future DVD. HDTYV software providers |
Individual consumers Users of digital scanners, digital cameras. :
digital camcorders, and future DVD recorders ;

Table A.1: Potential users of A-JPEG

Subgroup Name Description |
Software companies | Image processing software |
|

1

| Image database/archival software
| Motion-JPEG/MPEG encoders ;
i Customized software solution providers ‘
Hardware companies | Makers of customized DSP chips
Makers of digital scanners, digital cameras.
digital camcorders. and future D\'D recorders |

Table A.2: Potential implementers of A-JPEG

Symmetric multimedia communications

Although the majority of multimedia information is decoding-heavy, there are cases
in which encoding is done just as frequently as decoding. In these situations the
encoding overhead of A-JPEG will need to be taken into consideration carefully.
Examples of these scenarios are in video conferencing, video phone, or live video
broadcasting applications, where Motion-JPEG might be used for video coding. As
these are all real-time applications. any encoding or decoding delay will possibly

result in quality deterioration. A detailed analysis of the channel bandwidth and
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cost. encoding/decoding time. quality requirement, and the statistics of the target
video sources is needed for a more complete evaluation. The following provides some

arguments as to why A-JPEG might still be useful for these applications:

e Buffer control is needed to maintain a constant bit-rate for video conferencing.
By reducing frame size for a given quality factor. A-JPEG provides a tradeoff

of slightly increased encoding time but better buffer utilization.

e [t can be argued that at present the network bandwidth is a bigger limiting
factor than the encoder processing speed. Moreover. network characteristics
will also affect the overall svstem performance. The internet and the ethernet-
based local area networks commonlyv encountered nowadays are generally not
designed for video delivery. However. as network bandwidth increases. at some

point the processing speed might become the limiting factor.

o Hardware acceleration or better software optimization should lower the encoding
overhead considerably. More advanced microprocessor technology will also help.

such as the Intel MMX extensions to the x86 processor architecture (section 3.3).
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