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Abstract 

A pcrceptually adaptive -JPEG coder is irnplernented in this research. The major 

part of the implementation involves the design of a perceptual model that is based on 

the texture masking and luminance masking properties of the human visual system 

(HVS). The main objective is to compute a local multiplier map that can be used 

to scale the quantization matris (QM) so that fewer bits are used to represent the 

perceptually less important areas of an image. The texture masking model is based 

on a proposed block classification algorithm to differentiate between the plain. edge. 

and texture blocks. An adaptive luminance masking scherne is also proposed n-hich 

adaptively adjusts the luminance masking strategy depending on an image's mean 

luminance value. Experimental results show that  the adaptive coder provides savings 

in bit-rate over baseline JPEG. with no overall loss in perceptual quality according 

to a subject test. 
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Chapter 1 

Introduction 

Image compression, and more recentl- video compression. have been among the 

main applications in communications and image processing for many years because 

of the enormous size of digitized images. and consequently the need to transmit or 

store the data in a more compact form. Despite the improvement in the capacity of 

high density storage devices, and the promise of high bandwidth optical transmission 

media. compression remains a key technology. This is because of the new demand 

for digital video storage, and the continued need to utilize bandlimited media such as 

radio and satellite links, and bit-rate-limited storage media such as CD-ROMs and 

solid-state mernory chips [II. 

The JPEG (Joint Photographie Experts Group) [2, 31 standard has been among 

the most important international standards for image compression. Since its stan- 

dardization in the early 90s, the use of digitized image data  in the computing in- 

dustry has coincidentally risen dramatically. This is in large part because of the 

rapid advancernents in computer hardware and software sophistication, but the stan- 

dardization of image compression methods also assumes a pivotal role as it enables 

interoperability of image data  among different systems, and leads to the development 

of cost-effective, non-proprietary implernentations that will in turn further promote 

the use of these multimedia data [4]. 

Despite the popularity and success of the JPEG standard, the coding scheme uti- 



lized by the standard. a bloek-based transform coding scheme based on the discrete 

cosine transfom (DCT) is still not optimal as frir as compression performance is con- 

cerned. In recent years there lias been increased interest in perceptual coding. whicli 

promises a higher compression ratio as compared to tradit ional coding schemes [l] . 
among which the DCT-based transform coding schemes are the rnost widely used. 

The main difference between the traditional coding schemes and perceptual coding is 

that IV hereas the tradit ional coding schemes emphasize the rnean-square-error(MSE) 

criterion between the original and the coded images, perceptual coding also makes 

use of the properties of the human visual system (HVS). A main idea here is that 

because of the masking properties of the HVS, additional signal distortion that can- 

not be noticed perceptually can be introduced into certain areas of the image. thus 

fewer bits (and less fidelity overall) are needed to encode the image and consequently 

the cornprcssion ratio increases. -4 major weakness of the JPEG image compression 

scherne is that despite its good performance in the traditional hfSE sense in general. it 

fails to takc full advantage of the HVS properties to cornpress images more effectively. 

In other words, a standard JPEG coder is a rather limited perceptual coder. 

1.1 Research objectives and thesis outline 

The main objective of this project is the design of a perceptual rnodel based on the 

texture rnaskzng and luminance masking properties of the HVS. The perceptual model 

is then implemented on top of a standard (non-adaptive) JPEG coder. The result is a 

JPEG-based perceptual coder that is able to adapt to the local statistics of different 

areas of an image based on the analysis from the perceptual model. The coder will 

also be referred to as the A-JPEG (Adaptive-JPEG) coder in the thesis. 

The texture masking property of the HVS suggests that the human eye's sensitivity 

to error is low in highly textured image areas, while the luminance masking property 

suggests that human sensitivity to error is low in very bright and dark image regions. 

By using the masking properties of the HVS, the perceptual model cornputes a map 

of scalar multipliers that can be used by the perceptual coder to scale up the local 



qtiantization step sizes so that f ewr  bits are iised to represent the perccptuallj- less 

important areas of an image. 

Experimental results show that with the same JPEG quality factor. the adaptive 

JPEG coder produces compressed images with lower bit-rates than those produced 

with baseline JPEG with no overall loss in perceived quality according to a subjec- 

tive comparative test. One important advantage of the architecture of the adaptive 

coder is that the computational overhead of the perceptual model is inciirred a t  the 

encoder level only No knowledge of the perceptual model is needed for decoding 

or decompression. Thus the perceptual rnodel only needs to be implemented in a 

JPEG encoder and the output can be read by any existing standard-cornpliant JPEG 

decoder without overhead. In addition to the obvious benefit of maintaining com- 

patibility with the esisting standard, the adaptive coder is also ideally matched for 

broadcast-type multimedia imaging applications where most of the information is cre- 

ated only once but accessed many times afterwards. In these applications, the cost of 

the encoding overhead of the perceptual model, in light of the ovcrall systern usage 

cost, will Lie minimal because encoding is done only relatively sparingly. 

The following is the outline of the remaining chapters of the thesis. Chapter 2 

reviews the basic ideas of image compression and some important human visual sys- 

tem properties that form the foundations of perceptual coding. Chapter 3 introduces 

the JPEG compression standard and the transform coding model that JPEG uses. 

The design of the perceptual mode1 and the -4-JPEG coder is presented in cliap- 

ter 4. Chapter 5 presents the experimental results and the corresponding discussions. 

Chapter 6 concludes the thesis and outlincs future work to be done. The appendis at 

the end of the thesis provides a more general discussion on how the adaptive coder 

might be applied in practice. 



Chapter 2 

Review of image compression and 

some human visual system 

properties 

This chapter gives a brief review of image compression. some relevant Iiunian tisual 

system (HVS) properties d l  also be presented. The main purpose of this chapter is to 

establish the compression and HVS terminologies that will be referred to tliroughout 

the whole thesis. 

2.1 Classical informat ion t heory 

The foundation of image compression originates from Shannon's works on Information 

Theory [5]? in which he defined the measure of the average uncertainty, or randomness, 

of a source S as the entropy H(z ) :  

where pi denotes the probability of occurrence of the symbol xi from the source S. The 

term entropy can also be defined as the data compression limit, which corresponds to 

the lower limit for representation of a source. For instance, consider the representation 



of one pixel from an image mith 8 bit pixel dcpth. where 2% different values (symbols) 

are possible for one pisel. If al1 values are equally likely. i.e. pi = for al1 i ( a  totally 

random image tvith a flat distribution), t h e  entropy H ( x )  would be 8. The unit for 

entropy is bit/syrnbol, thus equation 2.1 shotvs tliat the Iower limit for representing 

a pixel from this example image is 8 bit/pisel, or no compression is possible. This 

represents the tvorst case scenario for cornpressing an image pisel. The other extrerne 

is. for example. po = I. and pi = O for al1 i # O. In this case the entropy is O. which 

means that  no bit needs to be transmitted because the symbol is always xo. In reality, 

pi's distribution is norrnally not flat and the value of pi is somewhere between O and 

1 for most i. Frorn information theor!.. a non-flat source distribution w-ould lead to 

an eritropy H ( z )  below 8. and compression is possible. 

It is conventional in the image compression community to use the term bit-rate 

when comparing different compression schemes [6]. The term bit-rate rneans the 

average number of bits per pixel after compression. As with compression's origin 

froni the source coding theonj in information tlieorp the aord  encoding or coding is 

often interchangeable wit li the word comprcssiori. whereas. decodzng nat urally refcrs 

to the act of decornpression. 

The concept of entropy defines the lowcr bound bit-rate for error-free! or lossless 

compression. But in certain cases it is also useful to allow some distortion between 

the original and the decompressed image so that the the compressed bit-rate can be 

lower. This is called lossy compression, and the original image cannot be perfectly 

recovered from the compressed image. Shannon proposed the more general rate- 

distortion function which establishes the theoretical minimum bit-rate. R ( D ) ,  tliat is 

achievable given an average distortion D between the original and the decompressed 

image. The  general form of a rate-distortion function (7, 51 is shown in figure 2.1. The 

curve shows that when D increases, R(D) decreases. In other words the minimum 

theoretical bit-rate decreases, or higher compression is possible, when more distortion 

is allowed. The rate-distortion function is also applicable for lossless compression: 

when D = O, R(0) is the entropy of the source. 

Classical information theory provides a solid t heoretical foundation on which the 



Figure 2.1 : The rate-distortion function 

modern compression techniques can build on. However, there arc scvcral issues con- 

cerning the use of classical information theory in practice 11. 61: 

Performance bounds only The theory is non-constructive, it offers bounds 

on distortion-rate performance rather than techniques for actually achiev- 

ing these target bounds. In practice the calculation of the boiinds is not 

simple and they are mostly used for t heoretical corn parisons on1 y. 

Statistical redundancy removal and input modeling Thc entropy mea- 

sure depends entirely on a known probability distribution of the source. 
- - 

p p p p p p p p p p p p p - - - - - - - - - - - -  

In thepprevious esample, the coding of a single 8-bit pixel source uses a 

histogram of the counts of the 256 different possible symbols as  the  prob- 

ability source. However, image data tend to have a high degree of spatial 

redundancy, i.e. adjacent pixels tend to have sirnilar magnitudes, and 

the above entropy mesure  is sub-optimal as the inter-pixel redundancy 

is not taken into consideration. The calculation of the second-order en- 

tropy H ( x ,  y) requires 256 different histogams of 256 counts each, while 

H ( x ,  y, z) will require a staggering 65,536 different histograms. One  of the 

main goal of compression research is to model, or preprocess the input data  

to take advantage of the inherent statistical redundancy, in particular, the 

interpixel redundancy in the image more efficiently. For example, a typical 

real-life image contains large areas of relatively constant grayscale values. 



By coding the difference of adjacent pisel values instead of each individual 

pixel. the probability distribution of the differential output mil1 be heavily 

skewed near zero. This distribution will very 1ikel~- be more 'non-flat' than 

the original pixel distribution. The source variance i d 1  also be smaller and 

a lower coded bit-rate is achievable. This method is called lossless diger- 

ential coding and is one of the tnost simple and cornmonly used techniques 

to reduce statistical redundancy 

Perceptual redundancy removal For lossy compression. the definition of 

the distortion rneasure D directly affects the R(D) curve and thus the 

coding performance. The traditional mean-square-error (MSE) criterion 

has long been known as a poor indicator of image quality. which ultirnately 

has to be judged by a huinan viewer. Rcsearch on the masking propertie-s 

of the human visual system has shown that local image characteristics have 

different masking effects on the actual perceived distortion [S. 91. In other 

words, the distortion is less noticeable in some area of a n  image tlian in 

otlicr area - that is' there is perceptual redundancy. or uzsual redundancy. 

in an image [IO]. By carefully introducing more distortion into areas that 

are less susceptible to error perceptual l~ the cornpressed bit-rate can be 

decreased without affecting the overall perceived image quality. 

Figure 2.2 shows a typical classification of the well-known compression meth- 

ods [dl. The first generation compression techniques represent the vast majority of 

the compression methods currently in use, including JPEG. Tliey will be the focus in 

the nest section. 

The second generation image compression techniques involve using image synthe- 

sis and sophisticated image feature modeling to  achieve very high compression ratio. 

They are designed for low-bit-rate coding, for example, video conferencing applica- 

tions, where neighbouring image frames are generally very similar to each other, so 

onIy a minimal amount of feature information is needed for transmission to recon- 

struct a frame sequence. The decompressed image using second generation compres- 
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Figure 2.2:  Classification of image compression methods 

sion techniques is generally far from indistinguishable from the original image [Ï]. and 

these techniques mil1 not be furrher pursued in this thesis. 

2.2 Lossless and lossy image compression 

The first generation techniques can be further classified into lossless and Iossy com- 

pression techniques. Lossless compression deals with statistical redundancy removal. 

and allows the original image to be recovered esactly from the compressed image. 

Lossy compression, in addition to performing statistical redundancy removal, also 

removes perceptual redundancy. this introduces distortion and results in imperfect 

reconstruction. Most lossless and lossy compression met hods fit wit hin a general 

framework depicted in figure 2.3 [4]. 

The general compression framework consists of two parts: the preprocessors and 
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the entropy coder. For some compression techniques. the distinction between the 

different building blocks may not be obvious, nevertheless the idea behind the frame- 

Lossless 
Prwrocessing 

work is general and should apply to most compression systems. The entropy coder 

is the simplest but yet most crucial component of rnost compression systems. Given 

Lossless coding - 

an input set of symbols' the probability modeler generates a table of the probability 

distribution. The variable iength coder then uses the table to map the input sym- 

bols into codewords. By using short codewords for symbols with high probability of 

occurrence and long codewords otherwise. overall compression is achieved. 

The lossless entropy coder provides good performance for general data compression 

by itself. hoivever. it is not very effective for complicated input like images. The main 

idea behind the general compression framework is to first preprocess the input image 

data and then entropy code the processed symbols for better performance. The 

preprocessing steps remove the statistical and perceptual redundancy from the input 

using pre-defined perceptual and statistical models, and enable very effective entropy 

coding. 

The differential coding rnethod mentioned previously is a typical lossless prepro- 

cessing operation. Lossy preprocessing is normally realized t hrough quantization. 

Quantization in general refers to the operation of assigning a discrete value to repre- 

sent a group of values. This many-to-one operation is inherently lossy. For instance, 

using a uniform quantizer with a quantization step size A, the quantizer output equals 

the input symbol divided by A. This reduces the precision of the input by hg2A bits. 

and is the main source for irreversible information loss in most lossy compression 

systems. 



The following is a brief oiitiine of some of the more common ~ r ~ l f i s s  compression 

techniques: 

Huffman coding The Hliffman coder is the first widely-used entropy coder after 

Shannon published bis landrnark papers. Its structure is identical to that of 

the entropy coder -hm-n in figure 2.3. K i t h  the input symbol probahilitiec. 

the variable length symbol-to-codewrd mapping is performed using Huffman '~  

algorirhm [llj. One rfisadiantage about Huffman coding is that the probabil- 

ity table also needs to br transmitted for proper decoding. Fimhermore. the 

minimum codexord length is 1 bit. no  matter how high the  probability of oc- 

currence of a syrnhr~l is. h n e r  helrrs. combined xit h proper pre-modehg anri 

quantization of the inpür data. Huffman coding has prown to bc 1-re- effec- 

tive for entrop' coding and i l  is the entropj- coder of choice for most .JPECJ 

implernentat ions. 

Runlength coding Wrin t hr? input contains symbol sequences of constant mag- 

nitudes. compression can be achieved easily by just coding the lenqrh of the 

sequence ( m n j  and the symbol itself. For instance. ten consecutiw zeros ran 

be coded usinq ml! r w ~  symbols - a ten. and a zero. This technique i~ known 

as runlongrh coding. Ir ü frequently used for simple stand-alonc cornpression. 

or  as a preprocessor More  enrropy coding is applied. 

Arithmetic coding -4nother popular entropy coder which is an irnprovemenr owr 

the basic Huffrnan coder. The coder is discussed in details in /12]. It has rhe ad- 

vantage that the miriimurn codex-ord length can be les than 1 bit. Ilorewer. ir 

a1Ion.s dynamic adapration of the probability mode1 with the input r tarist ia  and 

no inputdependent probability table is needed for decoding. Anthmetic coding 

is a h  listed as an optional entrop? c ~ d i n g  method in the JPEG standard i3:. - .  

however. because the algorithm is patented. it is not necessarily supported by 

al1 JPEG implementations [1$. 

Lempel-Ziv coding Lernpel-Ziv coding and anthmetic coding are borh known as 



unzcersal m d i n g  o l g o n t h m ~  as they are hoth capable of dunamir: adaptation ac- 

cording to  the input s ta t i s t ia  and no separate probahility modeling ic necesap-. 

Lrmpril-Ziv coding iiips a dictionanj-hmed approarh. The idea is ro adaptiwj- 

biiild up a dictionan- of the input symbol seqiiencir and iise the dictionan in- 

dexes as the codelvords [11]. Lempel-Ziv coding is veq- popdar  for lossless tex1 

and image compression. For example. variations of Lernp-4-Ziv rmiinq are ilsd 

in the  pkzip compression program and the GIF graphir-5 format. 

Som? of t he  popdar Iossy compression techniques are: 

Differential puise code modulation (DPCM) DPCSI L~longs to the  prpAictii;r 

coding famils in  which a prd ic to r  is tised to predicr a ciirrrnr symbo! x, iising 

prm-ic,us symbols. The lifference. or the error r ,  brtv:wn rhe riirrmt q-mbol 

and the prwiiction is then quantizeri as the wirpiir. Tho varianre d 6 ,  is nor- 

mal!- ionor r han thar  of 1,. this corresponds fo 10wr mtrc~p'.. and thus hiqher 

compression. In some cvos the oiitpiit is iiibjsrtcri ro pnrmpy çr,din,o f ~ r  fur- 

thor c r ,mpr~s ion .  I t  is a l o s s l ~ ~  difforrntial coder if ~ h e  qiiantization step is 
- rernovd. and the OUI PU^ is entropy coded -11. , -. 

Vector quantization Instead of quan t iz in~  individual i m q e  pixels. a i-rctor of pix- 

elc are q~iantized together. In short. an  image is docomposeci into rec tos  that 

are rnatcheci against a codebonk of pos5iblo v ~ t o r s .  The encoder tries to find a 

l-ectw h m  the  code book that ber-5ts  each image vector. Like rrqular scalar 

quancization. this is a manu- tmne  operation rhrough which man! image vec- 

tors r d 1  be rnappd into a single codebook i-ector index. One characteristic of 

wctor quantization is that  the decodinq is very fast - the decoder just uses a 

look-uptable to  rctriew the codebook vector from the received indes. HOR-ever. 

encoding. which generaiiy needs to  search the whole codebook for the bat-fit 

vwtor. îs time-concuming. 'ioreover. the codebook ne& tcs be generated off- 

line using a training set of representative images i7. 1.5;. 

Transform coding The basic operation is the transfmmation of a block of pixels 

from the spatial domain to  the transform (frwliienc>- j domain. Thic i i  folloa-ed 



by quantization and tlicri cntropy coding. The transformation perforrns da ta  

decorrelation. while quantization removes percep tual redundancy. The discrete 

cosine transform (DCT) is tlic transform of choice for most transform coders. 

Transform coding is the compression mode1 of the JPEG standard and will be 

discussed in more details in chapter 3. 

Subband coding and wavelet coding Another family of frequency-domain-based 

approaches. Instead of orthogonal transformation: filter banks are used to  spiit 

the input image into individual frequency subbands. One advantage of this ap- 

proach over transform coding is that this is not a block-based approach. So the 

disturbing blocking artifacts cornmon in low-bit-rate compression wit h trans- 

form coding is absent here. Wavelet coding can be considered as a special case 

of subband coding. alierc wavelet coding uses wavelet filters and a more spe- 

cific band-splitting technique for wavelet representations of the data. Please sec 

(16: 171 for more details. 

2.3 Relevant human visual system properties 

Over the years. there h a  been a steady increase in the extent to which knon-ledge 

about human perception has been incorporated into image compression [l]. In par- 

ticular, the filtering and masking characteristics of the human visual system (HVS) 

are of interest. Moreover, when cornpressing colour images, the effects of the use 

of different colour spaces on the compression performance are also important. The 

first part of this section introduces the issues concerning colour image coding. The 

second part surnmarizes the filtering and masking properties of the HVS that form 

the foundations of perceptual coding. 

2.3.1 Colour space and image coding 

The trichromatic theory of colour vision suggests that any colour image can be rep- 

resented by three colour channels [14]. -4mong the many colour spaces that have 



been designed for the representation of colour, the RGB (Red, Green. Blue) colour 

space has been a very popular colour space for digital image processing and general 

manipulation of images in the cornputer industry since it is the device colour space 

for televisions and cornputer monitors. In practice, even if other colour spaces are 

used for the processing of an  image, for display purposes, the final representation of 

the image still needs to be in the RGB colour space as a RGB signal can be dispiayed 

directly on a monitor without other colour transformation [IO. 181. 

One disadvantage of using the RGB colour space for image codirig is that the 

energy contents in the three colour channels are approximately the same. Thus each 

channel carries about the same weight and the potential correlation between the three 

channels cannot be expioited. .A common alternative to the RGB coloiir space is a 

luminance-clirominnnce colour space such as the YIQ colour space. Luminance stands 

for the brightness of an image, while chrominance stands for colour information and 

typically consists of tmo colour channels. In the YIQ colour space. Y is the luminance 

channel. and 1. Q are the chrominance channels. 

The  YIQ mode1 was designed to take advantage of the HVS's greater sensitiv- 

ity to changes in luminance than t o  changes in chrominance in colour images [IO]. 

Tlie colour space transformation decorrelates the input RGB channels so that the 

chrominance cliannels have lower energies and lomr  bandwidths as compared to the 

luminance channel Y [19]. This permits the use of subsampling as ive11 as the use 

of coarser quantization for the chrominance channels and results in much irnproved 

compressiori ratios for colour images [l, 181. In practice, the overall proportion of 

the chrominance information can be as low as onlg 10% of the total bit-rate with 

negligible loss in the perceived image quality (11 and this is also an exarnple of the 

application of perceptual redundancy removal in an image coding system. 

In JPEG image compression, another variation of the luminance-chrominance 

colour space, the YCrCb colour space is normally used [3]. In this case, Cr, Cb 

stand for the red and blue chrominance information respectiveiy. The matrix for the 



Iinear transformation from RGB to I'CrCb is: 

and the reverse process is a similar linear transformation. 

Thc MQ and YCrCb luminance-chrominance colour space systems are also used in 

commercial colour television broadcasting. In addition to the aforementioncd advan- 

tage of bandwidth, or bit-rate conservation. t hey were also developed for maintaining 

compatibility with monochrome black-and-white T V  standards (101. T h c  luminance 

cliannel Y provides al1 the information required by a monochrome TV set. In fact. a 

monochrome grayscale image is jusr a single channel image tha t  contains the lumi- 

nance channel of its colour countcrpart. 

Most the past human visual system rcsearch concerning perceptual coding has 

been concentrated on the response of grayscale images [14, 191. One main reason is 

that ,  as explained above, the luminance channel contains the  majority of the image 

energy and the information that can bc retrieved from the chrominance channels is 

relativelÿ Iimited. Moreover, multi-channel colour vision is still not well understood as 

compared to the single-channel case for grayscale images [Id]. There is also hardware 

constraint as full-colour imaging device has not been widely available until relativel- 

recently. As a result the filtering and masking properties that will be discussed in the 

following section are the luminance properties of the human visual systern. 

2.3.2 The filtering and masking properties 

This section summarizes the  relevant filtering and masking properties of the HVS 

briefly. Of the three HVS properties in discussion, frequency sensitivity is a filtering 

characteristic, whereas the others are masking properties. 

The visibilzt y lhreshold is an important measure for quantifying perceptual re- 

dundancy. I t  can be defined as the magnitude of a stimulus in an  image a t  which it 



becomes just visible or just invisible [14, l 1  201. The stimulus can be a sinusoidal func- 

tion or an a r b i t r a l  form of additive noise or distortion. In theory, any stimulus that 

is below the local visibility threshold can be eliminated (or in the case of distortion, 

tolerated), which results in perceptuai redundancy removal. In somc circumstances, 

instead of the visibility threshold, the measure of the sensitivity of the human eye 

to certain stimuli may be needed. Sensitivity is simpiy the inverse of the visibility 

threshold, i.e. the higher the visibility threshold. the lower the sensitivity. In some 

other cases. the visibility of a stimulus may be described. Sirnilar to the sensitivity 

measure, visibijity is also inversely related to the visibility threshold. 

Frequency sensitivity Psychovisual studies have stiown that the perception of dis- 

tortion depends on the human visual system's frequency response. Esperiments 

have been conducted to measure the visibility of sinusoidal fiinctions of varying 

magnitudes. It was shown that the human eye acts as a bandpass filter, with a 

masimum response (or sensitivity, in the image coding contcst) in the range of 

two to eight cpd (cycles per degree), falling off at lower. and especially higher 

frequencies [8' 211. The response curve is called the modulation transferfunction 

(MTF), of wl-hich the general shape is shown in figure 2.4. Frequency sensitivity 

15 30 45 60 

Spatial frequency (cyciesldegree) 

Figure 2.4: The modulation transfer function 

provides a natural way to incorporate perceptual criteria into transform coding, 

in which the HVS response can be used to weight the relative importance of the 

transform coefficients. The higher the weight, the more important a coefficient 



is. Conversely, a coefficient with a Iow weight can be quantized coarsely. or 

simply discarded [22]. 

Luminance masking In  this thesis. the terms luminance and brightness wili bc iised 

interchangeably. This will suffice for the current work, even though straightiy 

speaking the luminance value is a physical measure, while the terrn brightness 

is a subjective descriptor that cannot be measured [IO, 231. In addition. the 

term gragscale, which refers to  the luminance component of a digital image. 

will also be used to represent brightness or luminance. For instance, an  8-bit 

grayscale value of zero rneans total darkness, or the lowest luminance: while 

the maximum 8-bit grayscale value of 255 means bright white, or the highest 

luminance. The concept of luminance masking is illustrated in figure 2.5 [l-!]. 

The dashed area is perturbed by the magnitüde AL at  which the perturbation 

Stimulus 

Area L + A L 

Figure 2.5: Background luminance and the visibility threshold 

is just visible. Experiments show that the visibility threshold A L  is a function 

of the background luminance L B  and it increases almost Iinearly with Lo.  This 

is known as Weber 's law [14] : 

AL - = constant (the Weber fraction) 
LB 

The implication from Weber's law is that the hurnan eye is less sensitive to errors 

in the bright areas (areas with high luminance values) of a picture because AL is 

relatively high in those areas. Weber's law is generally accurate over the normal 

range of middle-Iow to high luminance values. However, in very dark area, it 

has been reported that the Weber fraction tends to increase with decreasing 

background luminance values [l, 14, 211. In other words, the human eye's 



sensitivity to distortion also decreases in very dark area. Figure '2.6 shows a 

graph of the distortion visibility vs. the background brightness [l]. 

Background brightness 

Figure 2.6: Distortion visibility vs background brightness 

In practicc. luminance masking is very useful for image coding. As the visibility 

thresliold is relatively high in very bright and dark arcas. pcrceptual redundancy 

exists in those area of an  image, and more local distortion can be introduced 

for higher compression. 

Texture masking This is also called spatial masking. In tliis case the visibility 

of distortion decreases when there is a large visible change in the luminance 

background. Figure 2.7 shows an example of the masking effects [14]. 

Luminance 
Edge Perturbed edges 

+ A L  
Luminance 
Edge 

Pixel distance fmrn edqe 

Figure 2.7: Texture (spatial) masking effects 

A large luminance edge represents a rapidly changing background. The visibility 

threshold AL of the perturbed edge is larger with a higher edge. Netravali [14, 

91 shows that the presence of high contrast edges can increase the visibility 



threshold considerably. In perceptiial image coding, testure masking has been 

used extensively with spatial doniain based coding system such as DPCM, in 

wliicli the high luminance edges c m  be located exactly and thus quantized more 

coarsely. Texture masking can also be used in block-based transform coding 

system, where the texture energy c m  be approxirnated by the LI or L2 norm of 

the transform coefficients of the local block. High texture energy irnplies a block 

with rapidly changing luminance values in the spatial domain: thus percept ual 

redundancy esists and additional compression is possible in the local block. 

In addition to the  three properties discussed above, temporal masking is another 

well-knowri masking property of tlie HL'S [1! 241. It indicates that  during video 

playback. when there is scene cliange or object movement. tlie distort ion visibiiity is 

low in the newly displayed areas for a short latency period and ttierefore perceptual 

redundancy can be exploited. However t his property concerns with the time domain 

property of video and can bc used in video coding only. The focus of this projcct 

is still image coding and tlius temporal masking will not be further pursucd in this 

t hesis. 



Chapter 3 

The JPEG image compression 

standard 

The JPEG standard is designed for cornpressing continuous-tone photographie im- 

ages, both grayscale and colour. The standard provides four operating modes. This 

chapter describes the key concepts of the most comrnon baseline sequential mode. 

The baseline .JPEG mode specifies the minimum set of requirements for a JPEG 

compliant implementation and it covers al1 the important features of the standard. 

For more detailed discussion. please refer to (2. 31. The block diagram of a baseline 

JPEG compression system is shown in figure 3.1. 

The JPEG standard requires that the input image be separated into blocks of 8 

by 8 pixels and JPEG compression can be regarded as the compression of a Stream 

of 8x8 grayscale image blocks. The standard also supports multiple channel image 

compression. and colour image compression can be regarded as the compression of 

three grayscale images, which are normally compressed by alternately interleaving 

groups of 8s8 blocks from each channel [2]. 

The JPEG standard is not colour-space specific, thus it can be used for com- 

pression of images in any colour space. In practice, most JPEG implementations 

cornpress colour images using a luminance-chrominance colour space to take advan- 

tage of the narrow-bandwidth characteristic of the chrominance channels as discussed 

in section 2.3.1. The original RGB colour space is converted to the YCrCb colour 
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space using eqiiation 2.7. and the Cr, Cb chrominance channels are subsampled two 

to one both horizontally and vertically before JPEG compression is performed. The 

operations on colour space and sampling rate conversions are not part of the  JPEG 

standard requirements and are shown in the  preprocessing and post processing boxes 

in figure 3.1. 

3.1 The transform coding mode1 

The core JPEG compression operations: discrete cosine transformation, quaritization, 

and entropy coding iorrn the basic components of the transform coding mode1 and 

are introduced in this section. 

In transform coding, the statistical redundancy in a block can be modeled as the 

interpisel correlation. and the main goal is to perform decorrelation on the block 

by a transformation operation. JPEG uses the Dzscrete Cosine Transfonn (DCTJ. 

which closely approsimates the decorrelation performance of the opt imai t ransform 

(the Karhunen-Loève l'ransform (KLT)) for image blocks that are smooth [6 ] .  This 

smoothness property is also a general characteristic of the target image group of 

the JPEG standard: continuous-tone photographic images; in hct  DCT lias enjoyed 

enormous popularity as the transformation of choice for most transform-based coding 

systems. 

The following are the equations of the 8x8 two-dimensional forward DCT of the 

image block f(x, y).  and the inverse DCT of the  transform coefficient block F ( u ,  v ) :  

7 7  (22 + ~ ) U H  (29 -k 1)'Ei; 

16 
COS 

z=O g=O 16 (3-1) 

1 7 ?  (2x+l)ur ( 2 y f l ) v r  
f (x7 Y) = - C C C(u)C(v)F(u,  +OS 16 
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where - - c . ~ ~ u , u = O ,  ..., r ;  

C ( u ) .  C ( v )  = 5 for u ,  c = 0: and C ( u ) ,  C(G) = 1 otherwise. 

The DCT coefficient block F ( u ,  u )  is a function of the horizontai and vertical spatial 

frequencies u and v respectively. The value F(0.  O), a t  the lowest frequency (0: 0) is 

called the DC coeficient, and is equivalent to the rnean value of the 64 piscls. The 

remaining 63 F (u7 u )  ' s  are called t tic A C coeficientsl. 

The DCT is a reversible transforrn apart from roundoff errors, which are generally 

negligible. It also has a nice energy packing property: it is almost as good as KLT in 

packing the most energy in the fewest possible number of transform coefficients. In 

practice, for the rnajority of image blocks. after transformation most of the block en- 

ergy is packed in a few low frequency coefficients only. This is a crucial preprocessing 

step that  leads to more efficient perceptual and statistical redundancy rernoval in the 

later coding procedures: 

r The high frequency DCT coefficients are relatively insignificant, so they can be 

more coarsely quantized with little effects on the overall perceptual quality. 

After quantization? rnost of the high frequency coefficients are zeros or near 

zeros. The 1 s t  step, entropy coding, can take advantage of the new redundancy 

of zeros and cornpress very effectively. 

3.1.2 Quantization 

Each of the 64 DCT coefficients F(u ,  v) is uniformly quantized by a corresponding 

entry Q(u, v)  from an 8x8 quantization matrix: 

FQ (IL, U )  = Round (,":u: u;) 
lstrictly speaking the frequency notation is only correct for the output of the discrete Fourier 

transform (DFT). Nevertheless DCT is closely reIated to DFT and it is intuitive to regard the DCT 
coefficients as the relative weights of 64 2-D DCT basis vectors arranged in the order of rapidity of 
change, which corresponds loosely to the notion of frequency (see p.59 in [il). For instance, F(7,i) 
represents the weight of the DCT basis vector that has the most amount of activity, or the highest 
frequency. 



and the dequantization operation for reconstructing the DCT coefficients at  the de- 

coder is: 

F'iu. ri = FQ(u. L.) x Q(u.  c j. (3 .4)  

Each quantization matris entry Q ( u .  r )  is an  integer from 1 to 2-55 which specifies 

the quantization step size for the DCT coefficient a t  frequency (71. c ) .  The maximum 
Q(u.u i quantization error for reconstructing F ( u .  r )  is then 7. - The qiiantization stage 

is the only lossy operation in JPEG and it is responsible for rrmol-ing perceprual 

redundancy. The goal is t r ~  reduce the precision of the coefficients that are risually 

insignificant. 

The quantization rnatris (Q.\f) is the mort crucial component in the quantization 

stage. There are basically r l v ~  general a-ays of designing the QU: One r hrough the 

use of the rate-distortion theory. the other is based on ps>-chorisiial espiriments and 

properties of the  human 1-isual system [A]. The first general technique calculates 

an image-specific QI\I by allocating bits to each DCT coefficient using rate-disrorrion 

criteria. @en a total bit budget. Typically the low frequency coefficients are allocated 

many more bits because of r he ene rg  compact ion property of DCT. Esamples of t his 

technique can be found in -2.5. 36;. One problem with thii t~chniqiie is that the 

QM generared is image-dependenc and the encoding overhead for cornpuring the O l I  

needs to be taken into consideration. 

The second technique i based on human perception. The idea is to derirmine the 

visibilic~ threshold for each DCT coefficient so that optimally an? quantization dis- 

tortion is not discernible. Typically the quantization step sizes for the high frequency 

coefficients are much larger than those for the loa frequency coefficients. This leads 

to higher distort ion for the high frequencv coefficients. and agrees with the frequenc- 

sensitivity characteristic of the HYS. The JPEG standard prorides a set of example 

quantization matrices that was designed using the psychovisual experimenr described 

in [27]. The standard does nor mandate the use of any specific QhI' nevenheless the 

example QMs have been used as the de facto QMs in a lot of JPEG implementations 

and experience has shown that they are quite robust and are applicable to a a ide  



range of applications[-$ 

. P E G  only allows one global quantization matrix per colour channel. in other 

u-ords. rhc QS1 in use cannot be changed wir hi11 one channel. The implication of this 

for doing adaptive coding with JPEG will he discussed in chapter 4. Figures 3.2 and 

3.3 present the JPEG example QMs for compressing the luminance and chrominanct? 

channels respectively. The luminance Q N  can also be used for the compression of 

single-channel grayscale images. 

Scaling the compression performance 

-4 JPEG user can control the output bit-rate by supplying different Qlls. which are 

also included with the compressed data  for decoding. The higher the quantization 

step sizes in the QSls. the higher the compression ratio and distortion. .\lost .JPEG 

implementations provide a quality factor with n-hich the user can control the bit-rate. 

Please note that the .]PEG standard does not contain a 'quality factor' parameter. 

The quality factor's only purpose is to provide a convenient interface for scaling up or 

down the 011s during encoding for a desired bit-rate and image qualit: The decoder 

only needs the scaled Q!ds to reconstruct t he  image. 

The quality factor of a JPEG encoder is basically a proprietav measure and its 

meaning varies across different implementations. e-g. a quality factor of 1 might mean 

the best quality in one implementation. but the ivorst quality in another case. This 

project uses the JPEG software provided by the Independent JPEG Group ( IJG)  [131. 

rvhich is a very popular JPEG implementation. The IJG JPEG encoder uses a quality 

factor in the range of 1 to 100: with 100 for best quality. The quality factor is used 

to generate a multiplying factor which is used to linearly scale the QHs. by default 

the JPEG example QMs. For example. a multiplying factor of value 0.5 divides ail 

the entries in the QMs by 2. The algorithm for converting the quality factor to a 

multiplying factor is as foI1on.s: 
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Figure 3.2: The JPEG luminance quantization matrix 

Figure 3.3: The JPEG chrominance quant kat ion matris  



if (QualityFactor 2 50) 
temp = 200 - Qualit?jFactor x 2; 

el se 

t e m p  = 5000 + QualityFactor: 

M d  tipl yingFactor = t e m p  i 100: 

Figure 3.4 shows the graph of the QM niultiplying factor as a function of the JPEG 

quality factor (Q). At the best quality wlien Q = 100: al1 entries in the qiiantizatoin 

matris are ones, which means that no quantization is performed. 

JPEG qualny factor 

Figure 3.4: The Q M  multiplying factor as a function of the JPEG quality factor 

3.1.3 Entropy coding 

Preprocessing of the DC and AC coefficients 

After quantization, the DC and AC coefficients are preprocessed differently before 

they are entropy coded. The DC coefficient is differentially coded by coding the 

difference between the current and the previous DC coefficients. This takes advantage 

of the remaining correlation between adjacent blocks as the DC coefficient represents 

the mean value of a block. Typically the variance of the differential output is much 

lower than that  of the original DC values. 



The AC coefficients are ordered into a zig-zagsequence as shown in figure 3.5. This 

vertical 
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AC 7.7 

Figure 3.5: The zig-zag ordering of AC coefficients 

arranges the AC coefficients from Ion frequency to high frequency The sequence is 

then zero-runlength coded by representing it with the runlengths of zeros. and the 

non-zero coefficients. The zig-zag sequence facilitates very effective runlength coding 

by grouping together high frequency coefficients, which are more likely to be zeros [2]. 

Variable length coding 

The preprocessed data: the differential DC coefficients. and the zero-runlength rep- 

resentations of the AC coefficients. are then Huffman coded using a DC Huffman 

table and an AC Huffman table respectively. For details please see [2: 3. 101. The 

JPEG standard also supports using arithmetic coding for entropy coding. However 

the baseline JPEG mode only supports HufFman codicg; moreover, in practice few im- 

plementations support arithmetic coding because of patent and subsequently license 

fee concerns [4, 131. 

The Huffman tables need to be sent to the decoder for proper decoding. -4s in the 

case for quantization matrices, the standard lists a set of example Huffman tables for 

reference purposes. and it does not specify any default set. But unlike the quantization 

rnatrix, a customized, image-dependent Huffman table is rathc-r straightforward to 

generate - an additional statisticsgathering pass is needed pnor to entropy coding. 

The IJG JPEG software uses the JPEG example Huffman tables as default, but also 

provides an option to generate customized Huffman tables. 



Chapter 4 

Design of the adaptive JPEG coder 

This chapter presents the design of the perceptually adaptive JPEG (A-JPEG) coder. 

The first section introduces the coder and its two adaptive coding modes. It is followed 

by a detailed discussion of the design and implementation of the perceptual model 

and other coder components. 

4.1 Perceptually adaptive JPEG coding 

As discussed in chapter 3, JPEG7s quantization matrices take into account the fre- 

quency sensitivity of the HVS by more coarsely quantizing the high frequency DCT 

coefficients. However, the other two masking properties discussed in chapter 2: lumi- 

nance rnasking, and texture masking are not exploited by the JPEG standard at all, 

and this project's primary goal is to incorporate these two local rnasking properties 

into the JPEG compression model for improved compression- The perceptual mode1 

of the coder operates on the luminance channel of the colour images, as the transfor- 

mation to the luminance-chrominance colour space has already concentrated most of 

the signal energy in the luminance channel Y as explained in section 2.3.1. 

I t  is insightful to divide the HVS properties into those that are dependent on local 

image characteristics, and those that are not. In Safranek and Johnston's well-known 

perceptual model, they are also called the local and global properties respectively (28, 

291. Frequency sensitivity, which is based on the rneasure of the modulation tranfer 



function of the HVS. can be considered a global property. Luminance masking is a 

local property that depends on the local average background brightness: and testure 

masking is also a local property tliat depends on local image activities. 

Safranek defines a general perceptual mode1 using the expression [291: 

Masking(u.  v. k) = Global (u, v )  x Local (u, u, k), (4.1) 

where Masking(u.  u. k) corresponds to the masking level a t  frequency (u .  1 : )  for the 

kth block. The higher the masking levcl. the more tolerant the HVS is to distortion 

a t  (u, v). Global (u, v )  represents the base rnasking level, and Local(u, u. k) represents 

the local multiplicatire elevation factors that affect the rnasking levels. The idea is 

that  the masking levels in some areas of an image can be elevated because of the H\*S's 

local masking properties. The goal is to decrease the overall compressed bit-rate by 

adaptively introducing more distortions into image areas that are less susceptible to 

distortions percept ually. 

The perceptual mode1 for tliis project is a loose variation of the ahove general 

model. The masking levels can be considered as  the allowable local quantization step 

sizes for each individual blocks. The global masking levels are represented by the 

entries in the global .JPEG quantization matrix Q ( u ' v ) ,  and the locaily adapril-e QI1 

Q(u, V )  x m(k)  if u, v # O 
QP(u. L.. k) = 

Q(O? 0) else, 

where QP(u, v ,  k) represents the local quantization matrix for the k th  block. and 

m ( k )  is the local multiplying factor. The problem then is to find m ( k )  which elevates 

Q(u, v) to exploit the local masking properties. Note that  the multiplying factor is 

uniform across al1 frequencies in the block except for the DC coefficient a t  frequency 

(0, O), where m(k)  is always 1. This avoids excessive quantization of the important 

DC coefficient, which still maintains a certain level of correlation with adjacent blocks. 

This perceptual mode1 is general in nature and thus may be used in any DCT-based 

block transform coding schemes to  provide perceptual information about a target 



image. In particular' the structure of the perceptual mode1 is designed so that by 

using only a local multiplying factor for local adaptation in each block, compatibility 

witti the  JPEG standard and its extension [301 can be easiiy achieved. as will be 

described in the nest section. 

4.1.1 The two adaptive coding modes 

As mentioned in tlic previous chapter, JPEG only allows one global Q M  per colour 

cliannel and tliere is no direct facility in the original standard for adaptively changing 

the quantization matrix values. Nevertheless since JPEG's standardization in the 

early 90s' there has been active interest in adaptive .JPEG coding in the literatures 

and the JPEG standard extension also specifies added parameters for adaptive scaling 

of the global quantization matrix [30]. Thus there are in generai tmo different ways to 

perform adaptive ccding in a JPEG-style coding system: one involves the inclusion of 

the local multiplier rnap as overhead information with the compressed bit Stream' and 

the other that uses the local multipliers to  threshold the DC,T coefficients without the 

need to serid tlie overhead information. The A-JPEG coder irnplements both modes 

for adaptive coding and the two modes will be discussed in the following sub-sections. 

4.1.1.1 The JPEG compatibility mode 

A common way (in fact, the only way, to the best of the author's knowledge) to 

perform adaptive JPEG encoding while maintaining baseline JPEG decoder compat- 

ibility is to selectively zero-out some insignificant DCT coefficients just before the 

quantization step (1, 3, 31, 291. 

The process is referred to as adaptive thresholding, where selected DCT coefficients 

are thresholded to zero using the entries of the adaptively scaled quantization matrix 

& p h  v7 k): 

The block diagram for the baseline JPEG-compatible adaptive JPEG coder is shown 



in figure 4.1. The diagrani can simply replace the original JPEG encoder biock in 

figure 3.1. The perceptuai model and the adaptive thresholding biocks together can 

Figure 4.1: The baseline JPEG-compatible encoder 

I r 

input Adaptive 

image F(u,v) nreshouing F u v 
A f  . ' .  

be thought of as a HVS-based preprocessing step before quantization. The perceptual 

model block cornputes the local multiplying factor using the pre-quantized original 

DCT coefficients. When the factor is greater than one, the quantization step size 

entries of the scaled QhI will be greater than those of the global Q M  and typicallj- 

compared with non-adaptive quantization? a few more zeros will be introduced by 

adaptive t hresholding, which results in lower bit-rate overall. 

The perceptual model only needs to be implemented in the encoder levei. The 

global quantization matris is still used esclusively in the quantization step during 

encoding. Thus no overhead information is needed in the dequantization step during 

decoding, and any JPEG-conipliant decoder can be used. 

Quantuation Entropy 

4.1.1.2 The overhead mode 

One limitation of doing adaptive coding in the JPEG compatibility mode is that it 

is a comprornised approach that only affects DCT coefficients with small amplitudes 

by thresholding them to  zeros. Larger DCT coefficients that do not get thresholded 

to zero are unaffected by adaptive thresholding. 

Thus to examine the  full effects of adaptive coding, another adaptive coding mode 

is implemented in which the local multipliers are used to scale the Q M  directly during 

quantization. This is referred to as adaptive quantzzution in this thesis and the block 

diagram for this mode of the adaptive JPEG coder is shown in figure 4.2. Another 

main difference between this adaptive coding mode and the JPEG compatibility mode 
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Figure 4.2: The overhead mode encoder 

introduced in the previous section is that tlie local multiplier information also needs 

to be sent to the decoder as overhead information for proprr dccoding. Thus this 

mode \vil1 be referred to as the overhead mode from now on in t h e  thesis. 

In 1994. t h e  draft version of the JPEG standard cstensioii was: relcased [30]. I t  

introduces a variable quantization extension that  specifies a 5-hit scalar multiplier that  

can be iised to locally scale the global Q41 during quantization. Thc decoder can then 

use the multipliers to perform dequantization and reconstriict the image. Thus the 

quantization operation of the overhead mode of the A-JPEG coder is eqiiivalent to 

the variable quantization specified in the JPEG estension and t h e  performance of 

A-JPEG under t h e  overhead mode ail1 also provide insight iiito the performance of 

the new .JPEG ext,ension as tve1l.l Additionally. the adaptivr qtiantizatioxi operation 

performed in the overhead mode is also very sirnilar to tlic adaptiw qiiantization 

schemes of other popular DCT-based video coding scliemes. tlius the performance 

of the overhead mode of A-JPEG may also provide insight for the design of those 

schenies LOO. (32, 33, 341 

From figure 4.2, it can be observed that the adaptive quantization block replaces 

the  original quantization block in the  baseiine JPEG coder. The DCT coefficients 

F ( u ,  u )  's are quantized to: 

FQ(u, v) = Round (Q;::iJ 
'Both of the JPEG extension and the overhead mode of the A-JPEG coder are not compatible 

with baseline JPEG since new extended decoder capabilities are needed during decoding for proper 
interpretation of the multipIier overhead. Ln spite of the added flexibility the JPEG extension 
provides for adaptive coding, the author has not been aware of much industry support for the new 
extention. possibly due to tlie compatibility complexity it incurs. 



where the global quantization matris is replaced by the perceptually scaled QSI 

Q,(u. v _  k)  defined in equation -1.2. The decoder needs both the global quantization 

matr is  and tlie multiplier map as overhead information to reconstruct the image. 

Furthermore. the overhead information needs to be taken into consideration when 

considering the overall cornpressed bit-rate. Note that despite the use of the multipli- 

ers for decoding. the decoder does not require any further knowledge of the interna1 

operation of the perceptual model. Thus the decoder is also free of the computational 

overhead of the perceptual niodel as in the case for the JPEG compatibility mode. 

4.1.1.3 The difference between the two adaptive modes 

Figure 4.3 illustrates the difference between the JPEG compatibility mode and the 

overhead mode in terms of quantization beha~iour.  using the same perceptual mode1 

parameters. In the figure. hlocks (a) .  (b) .  (c). and (d) represent an esample block 

with the original DCT coefficients. the quantized coefficients after baseline JPEG 

quantization with the global Q U  the scenario after adaptive t hresholding in the 

JPEG compatibility mode. and the scenario after full adaptive quantization in tlie 

overhead mode respect ively. 

It can be observed that compared to baseline JPEG quantization (l~lock ( b ) ) .  

adaptive thresholding (block ( c ) )  introduces a few more zeros among the medium 

frequency DCT coefficients. Hon-ever the non-zero coefficients are still the same as 

their counterparts in block (b )  and they can be de-quantized using the global QU 

A fuli adaptive quantization as shown in block (d) produces the zero AC coefficients 

as in block ( c ) :  in addition the magnitudes of the non-zero AC coefficients after 

quantization are smaller overall because a scaled-up quantization matris  is used. 

The  smaller magnitudes provide additional compression since the Huffman codes for 

the srnail quantized coefficients are normaily shorter than those for the larger ones. 

However the trade-off is that the scaling factor used for scaling up the quantization 

matrix also needs to be sent to the decoder for proper reconstruction. 
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Figure 4.3: JPEG compatibility mode YS overhead mode 



4.2 Design of the perceptual model 

The global quantization rnatris Q(u. r . ) .  and the local multiplying factor m ( k ) .  which 

defines the local quantization matris defined in equation 4.2 and reproduced as fol- 

Iows: 

completely defines the quant izat ion behai-iour of the percept iiaily adapt ive JPEG 

coder. This project concentrates on the design of the local multiplying factor m ( k )  

using the testure maçking and luminance masking properties of the HVS. The esam- 

ple quantization matrices from the JPEG standard are used as the  global quantization 

matrices in this project. 

The perceptual mode1 represents the local multiplying factor m ( k )  for the  k t h  

block with the equation: 

and the problem is to find the two local elevation factors Texture.\fa.sk(k~ and 

LuminanceMask(k) using the pre-quantized DCT coefficients F ( u .  c )  ' S .  Section -1.2.2 

and 4.2.3 present the rexture masking model and the luminance masking mode1 re- 

spectively for computing the rwo factors. 

For colour images. the perceptual mode1 computes the m(k)  map using the local 

statistics from the luminance DCT coefficients since the luminance channel contains 

most of the image energu. The same m ( k )  map is then used for adaptive coding 

for the two chrominance channels. Since the chrominance pixels are subsampied 

two to one both honzontally and verticalle four luminance blocks correspond to 

one chrominance block in each chrominance channel and section 4.2.4 presents the 

algorithm for adapting the luminance m(k)  map for use in the chrominance channels. 



4.2.1 Linear t hreshold elevation modeling 

A simple Iinear threshold elevation model[d.il is used as a main tooi for the calculation 

of the local elevation factors. Figure 1.1 shows the mode1 depicted I\-ith a curve. The 

Maxelentior, - 1 

Max - Min 

- Local 
parameter 

Min k Max 

Figure 1.4: Linear threshold elevarion modoling 

mode1 calculates the local eieva~ion iactor as a function of a ~ a r y i n g  local parameter 

in the  range of the parameters Min to Jlaz. For instance. for a local parameter k. 

the local elevation factor rn is: 

J f  azelevat ion - 1 
m =  x ( k  - -\fin) + 1. 

Max - Min 

The model's elevation behaviour can be rnodified by t h e  user easily b -  adjusting 

the .ilaxeleration parameter. This provides a very convenient method to calibrate 

the  perceptual model. The next two sections in this chapter present the details of 

using the linear threshold elevation model for calculations of the texture rnasking and 

luminance rnasking elevation factors. 

4.2.2 The texture masking model 

-4s shown in chapter 2: the human eye is l e s  sensitive to distortions in blocks with 

high complexity or texture activities. This allows the adaptire coder to scale up the 

quantization matrix in complex blocks for higher compression ratio. According to the  

local image statistics. the texture masking model cornputes the local TextureMask(k)  



factor that is used in equation 4 5 .  

The AC enerQ of the DCT coefficients has long been used as an indicator of 

the local block activity in DCT-based transform coding schemes [36]. It provides a 

couvenient mesu re  of block activities as the DCT coefficients are readily available as 

input to the perceptual model. In practice, however, not ail high energy blocks are 

texture blocks that can be quantized coarsely. An image block with a strong edge 

typically has high energy too. but the distortions in an edge block will be more visible 

than that in a randomly testured block. 

Hence in addition to AC energy calculation. a more robust mode1 is needed to more 

accurately characterize the statistics of each block. .A classzfied quantization scheme 

is thus proposed to address the issue. The goal is to ciassify each block into one of 

several statistical activit y classes [37] so t hat appropriate quant izat ion st rat egies can 

be designed for each class separately 

The proposed scheme can be diz-idcd into two simple steps: 

1. Block classification is performed to clasif>- a block into one of three classes: 

Plain. Edge, and Texture. 

2. The TextureMask(k)  parameter is then cornputed accordingly using the clas- 

sification result. 

4.2.2.1 Block classification 

From a historical perspective in image coding block classification has been used 

extensively in two main areas. In classified vector quantization: different codebooks 

are designed for different block classes so that the size of each codebook is smaller than 

that  of the otherwise general codebook for the whole image, and the codebook search 

time during encoding can be reduced [38, 39: 40, 411. Block classification has also 

been frequently used in adap t ive quant izat ion schemes for transforrn-coding- based 

block coders 136, 42, 43: 44. 45. 461. 

The block classification scheme in this project is a modified version of the scheme 

proposed in (431. First the DCT coefficients of the target block are divided into 



four areas as s h o w  in figure 4.5. The absolute sums of tlic DCT coefficients in the 

Horizontal 

edge 
indication 

Vertical edge indication 

f 
DC 

L (low ftequency) 

E (edge) 

H (htgh frequency! 

Diagonal edge indication 

Figure 4.5: The block classification indicative areas 

four areas are denoted by the symbols DC, L, E, and H respectively The groups of 

DCT coefficients that most strongly indicate the presence of a vertical. horizontal, 

or diagonal edge are also marked by three dotted lines respectively. For instance, as 

shown in figure 4.5, the sum of L + E represents the overall edge strength in the biock 

since the areas L and E include al1 of the indicative areas of an edge. 

Three general block classes are defined for classification: 

EDGE Blocks that contain a clear edge as the prima- feature. 

TEXTURE Biocks that contain a lot of comples spatial activities. 

PLAIN Blocks t hat are generally smooth, with few spatial activities. 

Figure 4.7 shoivs the block diagram of the proposed classification algorithm. Based 

on experimental findings i t  has been observed that high magnitudes in the ratios 

and strongiy indicate the presence of an edge. As discussed previously, the H 

surn L + E represents the edge strength. The value H, which indicates the strength of 

the medium and high frequency coefficients, provides a measure of the 'textureness' 

of the block. Thus the ratio 9 provides a relative rneasure of the strength of the 

two factors and a high value indicates that an edge is present. 

The ratio $ is also found to provide a very good edge strength measurement for a 

block with an  edge that is more diagonally oriented. Two example edge blocks from 



(4 ('4 
Figure 4.6: 8 x 8 blocks From the image sail 

L L+E the test image sail are shown in figure 4.6. The ratios {z, of block (a) of 

figure 4.6 are {1.7,4.7} and those of block (b) are (3.3.1.9) respectively. It can be 

L+E observed that block (a) contains a horizontal edge and the ratio 7 = 4.7 correctly 

reflects that an edge is present. In block (b), the edge has a somewhat more tilted, or 

diagonal orientation. The value of X, which reflects the high frequency coefficients, 

L i - E  , is thus higber and the ratio 7 - 1.9 does not suggest the presence of a strong edge. 

However the ratio = 3.3 is able to provide a strong indication of an edge since block 

(b)  still contains a substantial amount of smooth areas on the two sides of the edge. 

Thus the the strength of the low spatial frequencies, or the value of L. is relatively 

high. In fact the ratio $ is also a perceptually significant rneasure as the human eye 

is very sensitive to the kind of sharp, clear edges on a mostly smooth background 

that $ indicates. 

The classification of the TEXTURE class is relatively simpler and it is performed 

by investigation of the value of E + H .  If the value is high. and the block does not 

satisfy the criteria for the EDGE class, it is assigned to the TEXTURE class. For the 

classification of the PLAIN class, if a block's E + H value is low, or the block is not 

classified to the EDGE or the TEXTURE class, it is assigned to the PLAIN class. 

The actual classification procedure is illustrated in figure 4.7. It can be divided 

into five condition blocks and the blocks are explained as follows: 

Condition A: If E + H is srnaller than or equal to pi ,  the block is classified as 

PLAIN. Othenvise it will be further tested. pl is set to be 125 in this project. 

0 Condition B: It was experirnentally decided that for a block with high spatial 

activities, an edge can still be pcesent but the thresholds for detecting the edge 



Figure 4.7: The block classification algorithm 



will need to be lowered as compared to the ttiresholds for a block with moderate 

or low spatial activities. Thus two sets of EDGE thresholds are designed. II 

E + H > p2 is false. condition C l  will be tested: otlierwise condition C2 will be 

used. The value of ,Y* is set to be 900. 

O Conditions Cl and C2: These two conditions are for the detection of the edge 

L L+E blocks. The ratios { E :  7) are the primary indicators of the presence of an 

edgc. The higher thresholds of { a l :  F31) of condition C l  are set to be (2.3. 1.6). 

{CI?, a} of condition C2 are set to bc {i.-4.1.1}. 

For esample; in condition Cl ,  the ratios { $. y} need to be greater than either 

{û~ , f i l }  or {pl, al} for a block to be assig~ied to the EDGE class. .A very high 

value in the ratio 9 is also found to be sufficient as indication of an edge. So 

if y > 7 in condition Cl  or C2, the EDGE class will also be assigned. ni is 

set to be 4. 

* Condition D: If a block does not satisfy condition C2, it is assigned to the 

TEXTURE class. If a block does not satisfy condition Cl ,  it is tested with the 

condition E+H > K. If the outcome is true. the block contains sufficient testure 

activities and is assigned to the TEXTURE class' othenvise it is assigned to 

the PLAIN class. ic is set to be 290 in this project. 

Locally adaptive classification correction 

The edge detection thresholds of the classification algorithm are designed to be as 

reasonably sensitive as possible. However there might be misclassified edge blocks 

that should be texture blocks in reality. -4 simple locally adaptive correction scheme 

is used to re-classify the possibly misclassified blocks back to texture blocks using 

perceptual criteria. Figure 4.8 shows turo scenarios when the correction is perforrned. 

Rom the figure, T represents texture block and E represents edge block. If one of 

the scenarios in figure 4.8 happens then the edge block in the scenario, which is the 



Figure 4.5: Locally adaptive classification correctiori 

current blocko is re-classified as a texture block. For causality2 only the blocks above 

and to the left of the ctirrent block are exarnined. The main rationale for performing 

the correction is that an edge block that is surrounded by testure blocks a s  shown 

in figure 4.8 is Likely a misclassified block in a mostly textured rcgion. Sloreover, as 

discussed before. in general the human eye is more sensitive to a clear edge on a plain 

background. Thus the perceptual importance of the edge block in question. and the 

penalty against an incorrect re-classification is small as a result. The newiy classified 

texture block mil1 bc assigned the lowest masking factor for the TESTI 'RE  class (to 

be calculated and showii in table 4.1) to avoid over-harsh quantization. 

Classification examples 

Figures 4.9 to 1.12 present some test images and their corresponding block classifi- 

cation maps, urhere the black colour represents the plain blocks. gray represents the 

texture blocks. white represents the edge blocks, and the darker the gray blocks, the 

higher the testure activities. The result for the image lenna is presented separatel- 

in chapter 5. 

I t  can be observed that the algorithm is quite successful in differentiating the edge 

and texture blocks from the plain blocks. The algorithm's ability to detect edges is 

the main focus since the detection of texture is relatively simple - the sensitivity of the 

algorithm to testure can be modified easily by adjusting the parameter K .  The image 

houses is most challenging since it contains a lot of short, low contrast edges that are 

close to each other and are near the windows and roof-tops, which also contain some 

cornplex activities. However t hese edges are likely not very percep t ually significant 

and testure masking with nearby features probably mask the errors. In general 

'In the current JPEG implementation, the processing of the 8 x 8 image blocks is from top to 
bottom, and left to right. 



Figure 1.9: (a) barbara, (b) block classification 

Figure 4.10: (a) peppers, (b) block classification 
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(4 (b) 

Figure 4.1 1: (a )  susie, (b) block classification 

Figure 4.12: (a) houseso (b) block classification 
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it can be observed that most of the ciear edges in the images barbara. peppers. and 

susie are detected correctly and the texture areas are also well represented. Thus the 

results verify the accuracy of the classification algorithm. 

4.2.2.2 Calculation of the texture masking factor 

The distortion sensitivit- varies among different block classes. In general. the sensi- 

tivity decreases in the order of plain. edge. and texture [12] and the testure masking 

factors are calculated independently for each class. 

The texture blocks 

The testure blocks can be quantized most coarsely. In fact the- provide the major- 

iry of the redundancy removal in the testure masking mode1 in general. The local 

adaptation depends on the local texture energu, which is approximated by the siim 

E + H. the LI  norm of the medium to high frequency AC coefficients. Csing the 

linear threshold elevation modei, the texture masking factor is derived as a function 

of the approsimated testure energu: 

(4.7) 

where T e x E n e ~ g y ( k )  is the local testure energy of the kth block. and MaxEnergy  

and MinEnergy represent the maximum and minimum energy of the testure blocks 

respect ively. The parameter Mu.zTextureElevation can be used to scale the 

amount of texture elevation and is a convenient tool for fine-tuning the extent of 

the additional quantization introduced in the texture masking mode!. The parame- 

ters MazEnergy and MinEnergy  are determined to be 1800 and 290 respectively. 

-4s an exampie, for MazTextureEleoation = 2.25' the masking factors for the 

TEXTURE class are shown in table 4.1. 



Table 4.1: Esample testure masking factors for the TEXTCRE class 

Texture Energy ( E  + H) 
290-400 

The plain blocks 

TextureMask ' 
1.125 

The plain blocks are the most sensitive to distortion and tlius thc Teztur-e.\lask(k) 

factor for the PL.-iI:V class is one. which means that  no elevation of the global 

quantization matrix is performed. 

The edge blocks 

The edge blocks have been reported to be more tolerant to distortion perceptually 

compared to plain blocks 113, 421. Nevert heless, over-harsh quant iza t ion of an edge 

block may result in 'dirty' blocks along an  edge that are ver' objectionable to the 

human eye. Thus only moderate amount of testure masking elevation is designed and 

table 4.2 presents the texture masking factors empirically designed for t lie E DG E 

class. Note that for the EDGE class, the texture energy is approximated by the sum 

1 Texture Energy ( L  + E )  1 TextureMask ] 

Table 4.2: Example texture masking factors for the EDGE class 

L + E instead of the sum E + H as in the case for the TEXTURE class. 



4.2.3 The luminance masking model 

Chapter 2 introduces the concept of luminance masking, which shows that the human 

eye's sensitivity to distortion depends on the local background luminance. The lu- 

minance masking model cornputes the LuminanceMask(k) factor that provides the 

local luminance-adjusted multiplying factor for use in equation 4.5. 

4.2.3.1 The luminance sensitivity subjective experirnent 

.An informa1 subjective experiment was performed to determine the change in the 

distortion visibility for various background luminance? or grayscale values. The main 

purposes for performing the test were to verify the validity of Weber's law (equa- 

tion 2.3) and to collect a set of reference luminance sensitivity data for use in this 

project. 

In the experiment [28. 201' a uniformly distributed random noise of known maxi- 

mum magnitude is added to or subtracted from the pixels in an 100 x 100 square area 

of a background image with a constant grayscale level, and of size 360 x 360 pixels. 

Figure 4.13 shows an exampie testing image used in the experiment. The maximum 

Figure 4.13: The luminance mas king subjective experiment 

magnitude of the noise square is adjusted until the observer cannot reliably deter- 

mine if the testing image contains the noise square or not. And the test is repeated 

to determine the noise visibility threshold for different background grayscale levels. 

The position of the noise square on the testing image is randomized to avoid observer 

anticipation of the noise features in a fixed position. This differs from other sirnilar 

experiments [28! 201 in which the noise square is always placed in the center of the 

image. 



Background grayscale values 

Figure 4.14: The noise visibility thresholds vs. background luminance 



The experiment \vas conducted in a darkened room on a Pentium PC n-ith a %-bit 

colour SIatros Slillenium graphics card and a l i" \ïeasonic Optiquest 1'775 monitor. 

The test subject tva... the aiit hor. and the viewinp distance iras approsimately sis t imes 

the image height. 

Figure 4.14 shows the graph of the measured noise visibility thresholds A L  as a 

Function of the background luminance L B .  The crosses are the measured thresholds 

and the curie is deriveci iising the  polymmial curve fitting function in the !LATLA% 

program. The result in general is close to those reported in the lireratures in a 

comparable form [ l -  203. .ind it confirms the well-knoam HVS properry that the 

Weber fraction (eqiiarion 0.3) is approsimately constant from medium-Ion- to 

high luminance values and whon L B  is l o ~ - .  srans to increase non-linpari>- with 
Lti 

decreasing L B  i1-L 21. -17. 481. 

4.2.3.2 The influence of the viewing conditions 

The viewing conditions shouid also be taken into consideration when inrerpretinq the 

subjective tesring resiilts. The follon-in% factors are considered $91 : 

Viewing distance Ir is obïious thac the human eye's sensitivity t o  disortion dc- 

creases with increaing viewing distance. The vietving distance of sis timcs the 

picture height follow the standard viewing conditions recommended for quality 

assessment of television images in Recommendation 300 by the I n t ~ m a t i o n a l  

Radio Consultaticc Cornmittee (CCIR) [50. 21. 51;. 

Ambient lighting It  h a  been reported that the HVS is more sensitive in a dark 

room, and l e s  sensitive when the lighting is brighter [dg]. Thus the current 

subjective experiment. which was conducted in a slightly darker condition t han 

it is in a normal office. offers a more consenative result with a relatively sensitive 

Hi ' s  response. 

Monitor brightness The monitor brightness, or in more objective ternis. the lumi- 

nance or the radiant energy. can be rneasured by a digital Lus meter against 

the screen of the monitor [14. -491- l lost  monitors also provide a siritch for the 



user to adjust the local monitor brightncss set ting. The subjective experiment 

was informally conducted with different monitor brightness settings. It  was dis- 

covered that for low brightness settings' the HVS was considerably less sensi t i~e  

when the background luminance LB was low (e.g. below 60. in the non-linear 

area in figure 4.14). For Ls > 60, which includes the range of most commonly 

used grayscale values, the effect of the change in the monitor brightness setting 

was limited. This finding also agrees with that reported in (491. 

The monitor brightness setting for the current subjective test was about 75% 

(in a scale of O% jlowest) to 100%(highest) for the testing monitor), which again 

provides a more conservative measurement as the HVS \vas more sensitive at 

t his relatively high brightness set t ing. 

Displaying system This factor refers to the influence of riiffercnt video cards and 

monitors. The subjective eesperiment was also informally conducted with several 

different workstations and monitors; and the results in general are very simi- 

lar with the current result. This also agrees wi th  [49] wliidi reports that the 

luminance masking measurements are virtually independent of the displaying 

systcm. 

4.2.3.3 Calculation of the luminance masking factor 

The idea of luminance masking is that the mode1 can selectively scale up the quan- 

tization matrix where the added distortion will be masked by the local background 

luminance. The DC coefficient F(0,O) represents the mean value of the input im- 

age block. Thus the DC coefficient of the luminance channel provides a readily 

available measure of the average background luminance of a block with which the 

LurninanceMask(k) scaling factor in equation 4.5 can be calculated. 

An important design decision is: a t  what DC luminance value(s) does the scale-up 

process begin? In the literatures, there are two common types of approaches to uti- 

lizing luminance masking in image coding: (1) Watson suggested the use of a scaling 

power function (s)", where OC' is the mean luminance of the display (or grayscale 



value 128 approximately) [4S. 531. (2) Other attempts utilized ernpirically derived 

luminance thresholds above or below which additional distortions are introduced to- 

cally 137, 53). 

The main problem with using the above techniques for the current adaptive coding 

scheme is that they are not adaptive enough. Consider the scenario when the mean 

grayscale value of the whole picture is only about 90. üsing the technique (1) above 

d l  result in under-utilization of the luminance masking model because most of the  

image blocks will have DC grayscale values below 128. Similarly, a bright picture 

with mean grayscale value of about 160 will result in over-aggressive quantization in 

the luminance masking model as the majority of the image blocks will have block DC 

values above 1'25. 

In sumrnary. the key to using luminance masking in a more robust way is to also 

take into account the mean grayscale value of each individual picture. An analysis 

of 24 colour and grayscale images in the digital signal processing laboratory has 

uncovered a [ride range of average picture grayscale values3 from 78 to 164. which 

further confirms the need for a more adaptive utilization of luminance masking. 

The proposed luminance masking model mil1 be divided into two parts and de- 

scribed in the nest two sub-sections: a linear modelzng part for medium to high 

background luminance. where Weber's law is used for the modeling; and a non-linear 

approximation part for low background luminance, where Weber's law can no longer 

be used. The main idea of the proposed scheme is to adjust the behaviour of the 

luminance masking model depending on the mean luminance of each individual im- 

age so that a reasonable amount of luminance masked distortion is ensured for every 

image. 

The Linear modeling for medium to high background luminance 

Figure 4.15 shows the linear threshoid elevation function that is an approsimation of 

the Weber's law for blocks with medium to high average background luminance. The 

3For colour images, the luminance cornponent was used. 
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Figure 4.13: Luminance masking linear modeling 

symbols L,n,, and Lm, represent the range of the luminance values for the linear 

modeling and with respect to the subjective data from figure 4.14, they are chosen 

to  be 90 and 255 respectivel- Fm represents the rnozimum luminance eleuution 

jactor, or MuxLuminanceElevation . I t  controls the dope of the linear func- 

tion and can bc used to scale the extent of luminance masking like the parameter 

M a x T e x t u ~ e E l e v a t i a  for testure masking. 

The Luminancellask (k)  factor is calculated as follows: 

1. The mean grayscale value (rneanDC) of the whole image is first calculated; the 

reference multiplying factor Fref is then obtained from figure 4.15 using the 

meanDC value. 

2. Only the blocks with DÇ values above meanDC will have a scaling factor 2 1. 

The active area for luminance masking is shown in the gray area in figure 4.15, 

and the luminance masking factor for the kth block, D C ( k )  > meanDC, is 

given by equation 4.8 below: 



and if DC(k)  is smaller than rneanDC, 

The LuminanceMask(k) factors are image-dependent as the calculation is based 

on the mean luminance value of each image. An esample table of the luminance mask- 

ing factors for medium to high background luminance will be presented in chapter 5 

for the image Zenna. 

The non-linear approximation for low background luminance 

The low luminance areas of tlie image (grayscale 5 Lmin = 90) need to he treared 

carefully because of t lie following factors: (1 ) The relationship between the visil~ility 

threshold and the background luminance: becomes non-linear and is liard to 

model. (2) Except for tlie ver- dark areas, the low luminance areas are in general 

most sensitive to errors. 

-4 conservative luminance niasking scfieme is thus designed in light of tlie sensi- 

tivity and non-linearity problems for low background luminance. Table 4 -3 presents 

a set of empirically designed multiplying factors that  are based on the esperimental 

result from figure 4.14. As described in sub-section 4.2.3.2, the 

1 Block DC values ] LuminanceMask 1 

distort ion visi bi1i tj. 

Table 4.3: The luminance masking factors for low background luminance 

in low luminance areas is very sensitive to the local monitor brightness setting. Tlius 

the parameters presented here, which are designed under a relatively high monitor 

brightness setting, only provide a conservative degree of luminance masking and un- 

der informal testings have been shown to perform well for a wide range of images and 

different viewing conditions. 



4.2.4 Processing for the subsarnpled chrominance channels 

For colour images. the m(k)  multiplier map is generated from the da ta  in the Iiimi- 

nance channcl. However7 since tlie two chrominance cliannels are subsampled two to 

one both horizontally and vertically, the multiplier rnap cannot be used directly for 

the chrominance data. This section presents a simple algorithm that  is used to adapt 

the multiplier map for use in the chrominance channels. 

76 

Figure 4.16: A 16 x 16 area: four Y blocks. one Cr block, one Cb block 

Figure 4.16 shows a 16 pixel by 16 pixel area of a colour image separated into 

three colour channels, using the YCrCb colour space. Because of' subsampling, the 

clirorninance channels contain in reality only one 8 x 8 block for each chrominance 

channei in the 16 x 16 area. In other words, there are four luminance-generated m ( k )  

values in each 16 x 16 area and the problem is to find a coresponding chrominance 

multiplier m, using tlie four luminance m(k) ' s .  

The generation of the chrominance multiplier cannot be dcpendent on the infor- 

mation from the pcrceptual model, e.g. the block classification results, because the 

same process also has to  be done in the decoder and the perceptual model is imple- 

mented in the encoder level only. Thus the only available da ta  are the luminance 

multiplier map. and the chrominance multiplier generation algorithm is illustrated in 

figure 4.17. 

The algorithm is a generalization of a similar procedure presented in [46]. The 

main idea is to inspect the four luminance m(k)  values and count the number of 

m(k)'s with the value one (condition A),  or the number of blocks with no local QM 

elevation. If the count is bigger than one, the percetual model indicates that  a t  l e s t  

two of the luminance blocks are sensitive to error and should not be further quantized. 

Thus the chrominance multiplier m, is also assigned to  be one, giving priority to the 



sensitive area. If the count of m ( k ) ' s  equal to one is one or less, a t  Ieast three of 

the luminance blocks have m(k)k bigger than one. A majority rule is used and m, 

is assigned to the smallest m(k ) .  m(k)  + 1. k = 1,2,3.4. Note that the algorithm 

will always assign m, the value of the lowest or the second lowest m(k)  out of four 

possible luminance m(k)'s.  This reduces the chance of the chrominance blocks being 

over-quantized when they are located near a strong luminance edge. 

Luminance 
multipliers m(k)'s. 

k = 1.2.3,4 

1 Chrominance / multiplier mc i 
1 = minimum ( m(k) ). 

m(k) f 1 

Chrominance 
multiplier mc i 

Figure 1.17: Generation of the chrominance multiplier 

4.3 Coding of the overhead information 

The overhead mode (figure 4.2) requires that the adaptive multiplier map be sent as 

overhead information with the compressed image data for decoding. Encoding of the 

overhead information is thus necessary to help reduce the overhead cost. This section 

discusses two encoding methods that are exarnined in this project. 

The standard coding method 

The predominantly slowly varying nature of JPEG 's target continuous- tone images 

suggests that neighbouring blocks will likely have identical local multiplying factors 



m ( k ) ' s  154, 521. The method discussed in this section is a simple technique employed 

in most video coding standards for encoding of the local parameters [Ml. 

The technique is a variant of differential coding. I t  utilizes a single-bit statiis bit 

that monitors if the current block requires a new multiplying factor than the one used 

by the previous block, and a 5-bit index that specifies the value of the multiplying 

factor. If a new multiplying factor is needed. the block overhead costs are 6 bits: 

the status bit pluses the 5-bit new index: otherwise the coder just set the status bit 

and the cost is 1 bit." Table 4.4 summarizes the overhead coding cost for osing the 

standard overhead coding method. 

Table 1.4: Ocerhcad coding - Standard 

Block status 
No change from previous 

Yew multiplier 

A Lempel-Ziv estimation of the overhead cost 

The standard overhead coding scheme niakes a simple assumption that consecutive 

image biocks are more likely to use the sarne multiplier. The coding parameters are 

Code description 
status bit 

status bit? new index 

independent of the statistics of the input multiplier map and esperimentation ai th  

different images has shown that the compression ratio achieved by iising the standard 

coding method over plain transmission of the uncompressed multiplier map ranges 

from about 1.7 to 3 times. 

For medium and higli bit-rate image coding systems, the overhead cost is generally 

insignificant compared to the total compressed image data. However, when high 

compression ratio is desired, the overhead cost might actually account for a significant 

contribution to the total cost and it is beneficial to also examine more optimal ways 

of encoding the overhead information 1541. 

Code size 
1 
6 

'In practice, the status bit is generaily only one par t  of a status byte (or bytes) that also contains 
other status information. The  status byte might aiso be variable length coded, so the 1-bit size of 
the status bit is only an approximation which might vary slightly across different pictures.[l4] 



The goal is to find a n  adaptiw overhead coding scheme that  can adapt to the input 

statistics and t h u s  generate a more compact representation of the multiplier map. -1 

universal coding algorithm. Lenipel-Ziv coding (chapter 2) ,  is chosen because of its 

speed, the availability of programrning source. and its close approximation of the 

source entropy rate [5, 533. 

The Lempel-Ziü- Welch (LZCV} algorithm. which is a variation of Lempei-Ziv cod- 

ing: is used 1561. T h e  programming source code is obtained from the GIF file format 

encoder/decoder functions' that are parts of the JPEG software 1ibrax-y used in th is  

project [13]. In general. for coding the overhead information, t h e  gain in compression 

ratio ranges frorn 16 to 26% compared to using the input-independent standard codes. 

'The GIF file format uses the LZW method to perform lossless image cornpressioo. 



Chapter 5 

Experimental results 

5.1 Introduction and set-up of the coder parame- 

ters 

The methodology proposed by Safranek in [31? 291 is utilized in this project to esamine 

the performance of the adaptive coder. The idea of t h e  methodology is that both 

qvalztative and quantitative measurements rnust be esamined for a perceptual coding 

system. Qualitative measurements ensiire that the introduction of the additional 

distortion by the adaptive coder does not lower the perceived quality of the coded 

image, when compared to the result using a non-adaptive baseline JPEG coder mith 

the same quality factor. Additionally, quantitative measurements. for instance. bit- 

rate savings, are also needed to demonstrate the advantage of the adaptive method 

objectively. 

In this project, the quantitative rneasurements will be described as t lie objective 

results; whereas the qualitative measurements ivill be described as the subjective re- 

sults. Bit-rate savings and a comparative subjective test performed with a group of 

human subjects are the primary objective and subjective measures utilized respec- 

t ively. 

Table 5.1 surnmarizes the coder parameters examined in t his project. The target 

application area for the adaptive coder is for high quality image compression. The 



1 Descript ions 1 Paramet ers 1 
1 Qualitu factor i 12 1 - 1 

Adaptive modes 1 JPEG-compatibilitv. Overhead 1 
1 Overhead info coding 1 

1 

standard. LZW 1 

Table 5.1: The adaptive coder parameters 

JPEG quality factor 72. which produces a bit-rate of 0.916 bit/pixel for the lenna 

grayscale image with the baseline JPEG coder. is used. This bit-rate has been re- 

ported to produce perceptually transparent quality for lenna in a previous work [3T]. 

üsing the sarne perceptual model parameters. the performance of adaptive coding 

both with overhead (overhead mode) and without overhead (JPEG compatibility 

mode) will be examined. For the coding of the overhead information. the standard 

coding method and Lempel-Zic coding will be investigated. Although the adaptil-r 

coder is designed for the perceptually lossless quality level' this quality level is a rather 

subjective measure and it is instructive to also examine the coder's performance at 

other bit-rates. The results for varying bit-rates will be presented in section 5.4. 

The parameter MaxTeztureE[ecation is used to scale the estent of testure mask- 

ing in the perceptual model. The higher the parameter. the more the compres- 

sion in the texture area but the l o w r  the quality. The value 2.25 has been found 

to provide a good balance between compression performance and perceptual qual- 

ity for the test images compressed using the two adaptive modes. The pararneter 

ibfaxLurninanceElevation for luminance masking is chosen to be 2. This choice is 

based on the subjective test results from figure 4-14? ahere  the approximated r n a ~ i -  

mum noise visibility threshold, 6. is two times the minimum threshold 3. 

Table 5.2 sums up the JPEG system parameters used in this project. The 4:2:0 

1 Descriptions 1 Parameters 1 - 
1 

1 Colour space 1 YCrCb 1 
Colour subsampling 1 

I 

4:2:0 1 - - 

1 Quantization matrices 1 JPEG standard examole matrices 1 
1 Huffman tables 1 Customized 1 

Table 5.2: The JPEG system parameters 



colour subsampling scheme requires that the colour spaces Cr and Cb be subsampled 

two pixels to one both horizontally and verticall. The JPEG esample quantiza- 

tion matrices are shown iri figures 3.2 and 3.3. Customized Huffman tables. which 

are image-dependent. have been reported to provide improvements over the  example 

Huffman tables listed in the standard by a few percent in bit-rate [13]. The JPEG 

system parameters are listed here for completeness. Tliey rernain the same through- 

out the chapter as the emphasis is on  the cornparison between the baseline JPEG and 

the adaptive JPEG coders. 

Eighteen 512 x 512 grayscale and colour images are used in this project. They 

consist of botli standard test images and higli quaiity Kodak images1. cliosen to 

provide a variet!* of different esamples of JPEG's target continuous-tone photographie 

images. The images arc? stiown in thumbnail forms in figures 5.1 to 5.4. 

lThe images can be found on the internet at ftp://ipl.rpi.edu/pub/imagejstill. 
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(a) (b) (4 (4 ( e )  

Figure 5.1: (a) lenna, (b )  barbara, ( c )  bouts, (d) goldhill. ( e )  harbor 

- -  

(a) (b) (4 (4 (4 
Figure 5.2: (a) bridge. ( b )  peppers. ( c )  mandrill. ( d )  jlower. ( e )  lady 

(4 ('4 (4 (4 (4 

F i y r e  5.3: (a) aail. (b) hats. ( c )  windows. (d) homes. (e) girl 

(4 (b) (4 
Figure 5.4: (a) river. ( b )  rnotorbake. ( c )  lock 



5.2 A coding example with the image lenna 

The popular grayscale lenna image is used to illustrate the operation of the adaptive 

coder. Figure 5.5 shoivs the original lenna image. Figure 5.6 shows the results of 

perfoming block classification on lenna: where the black colour represents the plain 

blocks; gray represents the texture blocks: white represents the edge blocks; and the 

darker the testure blocks, the higher the testure activities. It can be obsemed that 

the aigorithm successfully locates the feather areas of lenna's hat  as testure areas. 

The edges are also ive11 represented by the edge blocks. 

The performance of the perceptual mode1 is also exarnined. Figure 5.7 shows 

the testure rnasking multiplier rnap for lenna. mhere the black colour represents the 

lowest multiplier value of one, i.e. no change from the global quantization matris. 

The  lighter the blocks. the higher the multiplier values. It can be observed that the 

lightest blocks are rnostly located around the feather areas of lenna's hat. where the 

textured. cornples act ivi ties are concentrated. 

As explained in chapter 1. the values of the luminance masking multiplying factors 

for medium to high background luminance depend on the average grayscale value 

(rnean DC) of each individual image. The rnean DC value of lenna is 123. Csing 

the procedure described in section 4.2.3.3: the luminance masking multiplying factors 

for background luminance > 90 are calculated and shown in table 5.3. Table 4.3 in 

section 1.2.3.3 lists the multipliers for background luminance belon. 90. 

Block DC values LuminanceMask 

Table 5.3: The LuminanceMask factors for medium to high background luminance 
for lenna 

Figure 5.8 shows the luminance masking multiplier map for lenna. Again the 



Figure 5.5: The original lenna image 

Figure 5.6: Block classification of the lenna image 



Figure 5.7: The texture masking mu1 tiplier map for lenna 

Figure 5.8: The luminance masking multiplier map for lenna 
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lighter the blocks, the higher the multiplier values. It can be observed that thc 

mode1 is able to locate the bright areas of the lenna image quite successfuI1y. The 

highest Luminancehlask value in table 5.3 is 1.75, wliich is smaller than 2. the value 

of the MaxLuminanceElevatiun factor shown in table 5.1. This is because the 

MaxLuminanceElevation factor is designed for the whole dynamic range of medium 

to high background luminance from 90 to 255. The mean DC value of 123 allows 

luminance masking only for background luminance from 123 to 255. a smaller dynamic 

range and hence lower elevation factors overall. 

Figure 5.9 shows the final, combined multiplier map for lenna. Each e n t v  in the 

combined multiplier map is just the product of the corresponding testure masking 

multiplier and luminance masking multiplier presented in tlie previous figures. The 

reconstructed lenna image. coded under the JPEG compatibility mode at tlie .JPEG 

quality factor 72, is sliown in figure 5.10. 

5.3 Compression results for a fixed quality factor 

The performance of the adaptive coder using a fixed JPEG quality f x r o r  ( Q )  72 is 

examined in this section. The objective bit-rate savings performance will first be 

presented and the subjective results wiIl foliow. 

5.3.1 Objective results 

This section presents the bit-rate savings over baseline JPEG that can be achieved by 

the adaptive coder, under both JPEG compatibility and overhead modes. Tables 5.4 

and 5.5 show the results for grayscale and colour images respectively. The bit-rates 

using baseline JPEG are also presented for reference purposes. The baseline JPEG 

bit-rate is a very good measure of the overall image complexity. For the same quality 

factor, the higher the compressed bit-rate, the more difficult the image is to com- 

press, which in turn implies that the image is relatively complex and lacks statistical 

redundancy which can be exploited by baseline JPEG. 

As an erample, an uncompressed grayscale image requires 8 bits per pixel. Thus 



Figure 5.9: Tbe combined multiplier map for lennu 

Figure 5.10: The reconstructed lenna image, JPEG compatibility mode 



Image 

Tablc 5.4: The bit-rate savings over Baselinc .JFEG (grayscale) 

Baseline 
JPEG bit-rate 

1 (bit/pisel) savings 
5.1% 
6 -8% 

lenna(g) 
barbara 

8.2% 
14% 
18% 
11% 

I goldhill 
harbor 
bridge 

Average 

Table 5.5: The bit-rate savings over Baseline JPEG (colour) 

.JPEG mode 
bit-rate 

0.92 
i -3 

Image 

lenna(c) 

Peppers 
mandrill 

flower 
lady 
sail 
hats 

windows 
houses 

girl 
river 

motorbike 
lock 

Average 

Overhead mode 
savings 1 savings 

(no overhead) 
9.4% 
15% 

7 1 

(overhead(L2W)) 
5.5% 
11.2% 

Baseline 
.JPEG bit-rate 

(bit/pisel) 
1.05 
1.11 
2.19 
1 .O8 
1 .O2 
1 .O8 
0.84 
1.77 
1.86 
1.05 
2.16 
2.01 
1 .O2 

11% 
18% 
21% 
14% 

1.3 
1.3 
1.8 

6 -2% 
9% 
12% 
7.4% 

JPEG mode 
bit-rate 
savings 

5.2% 
6% 
13% 

-5.2% 
5% 

7.1% 
7.1% 
11% 
10% 
6% 
13% 
8% 

3 -4% 
7.7% 

Overhead mode 
savings 

(no overhead) 
9.5% 
11% 
23% 
10% 
9% 
12% 
14% 
19% 
20% 
11% 
25% 
17% 
7.2% 

15% 

savings 
(overhead(LZ1V)) 

6% 
7.5% 
21% 
6.3% 
5.8% 
9% 
10% 
16% 
17% 
8% 
22% 
14% 
4.5% 
11.3% 



for the gayscale Irinna image. the baseline JPEG bit-rate of 0.92 bit/pisel implies 

that  the compression ratio is =, " o r  approsimately 8.7 tirnes and the lon-er the 

bit-rate. the higher the compression ratio. So t e  that the compression ratio for the 

colour images are in reality much higher than those for the grayscale images because 

an uncornpressed colour image needs 24 bit/pixel representation as opposed to 8 

bitlpixel for a grayscale image. The higher compression ratio for colour images is 

mainly due to  the sub-sampling of the two chrominance channels and the use of the 

separatc chrominance quantization matris: which has higher quantization step sizes 

than its luminance counterpart. 

It can be observed that using the same perceptual mode1 parameters. the bit-rate 

savings achieved by the JPEG compatibility mode range frorn about 3% to 13%. while 

for the overhead mode (n-ith overhead information coded with the LZ\\' merhod). the 

range is frorn 5% to 22%. 

In general. the resuIts show that the harder the image to compress (high baseline 

JPEG compressed bit-rate). the better the adaptive coder performs. Figure 5.11 

25.  

Figure 5.1 1: 

"O 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Basel' i  JPEG bir-rate WpxW 

Bit-rate sak-ings vs. baseline JPEG bit-rate (colour images) 

illustrates that  indeed the adaptive coder has better performance for images that  do 

not compress well with baseline JPEG (cornplex images with baseline JPEG bit-rates 

over 1.5 bit/pixel). This confirms a similar finding reported in (311. The result is 



actually not surprising since those hard-to-cornpress images often contain a lot of 

high activity areas that contain large DCT coeficients that  are difficult to quantize. 

The texture masking property of the HVS suggests that  distortions in these high 

activity areas are also hard to  notice. Thus an important key to the adaptive coder's 

performance is the texture masking model which is able to locate the high acti\-ïty 

areas and scale up the quantization matrix accordingly for improved compression- It 

can also be observed that for smooth images with baseline JPEG bit-rates of about 

1 bit/pisel or  below. the coder's performance is more limited and is in the range of 

about 5 to  10%. In generd. the more comples the image. the harder it is to cornpress 

using baseline JPEG. and the better the adapt ive coder performs. 

In fact a similar obsenation can be estended for the luminance masking rnodel. 

which more coarsely quantizes blocks that  have much brighter or darker average 

luminance than the mean luminance of the image. Thus a n  image with a broad and 

relatiwly flat luminance histogram will benefit greatly from luminance masking in 

the perceptual model. 

Impact of the overhead informat ion 

The savings with the overhead mode without the overhead information are also pre- 

sented in tables 5.4 and 5.5.  Note that an image compressed with the overhead mode 

cannot be decoded correctly without the overhead information. Howevero the savings 

in this case provide a more accurate indication of how much more compression can 

be achieved by using full adaptive quantization instead of just adaptiw thresholding 

as in the case in the JPEG compatibility mode. It is clear from the tables that per- 

forming full adaptive quantization can almost double the raw bit-rate savings when 

the overhead information is not included. This section analyzes briefly the impact of 

the overhead information on the final bit-rate savings in the overhead mode. 

The overhead information in the overhead mode generally constitutes about 3 

to  4% of the total bit-rate (savings without overhead minus savings with overhead). 

Although for al1 of the test images, the overhead mode out-performs the JPEG com- 

patibility mode at Q = 72, the benefit OF using the overhead mode diminishes con- 



siderably (sce figure 5.11) when the images are relatively smooth since there is not 

enough perceptual redundancy that can be exploited as explained in the previous 

section. For these low complexity images, the overhead information required offset 

most of the limited additional savings that could be realized by using the overhead 

mode. 

The test images in this project are al1 512 x 512 images. The corresponding size 

of the uncompressed multiplier map is thus y x = 4096 bytes. Table 5.6 shows 8 

Image 

lenna(c) 
barbara 

boats 
harbor 

PePPers 
mandrill 

fiowcr 
lady 

motorbike 

Standard 1 L Z W  1 

Table 5.6: Overhead coding - Standard vs LZX' 

overhead 
size (bytes) 

1631 

the size of the coded overiiead with standard coding and LZW coding for a sub-group 

overhead 
size (bytes) 1 improvements 

1199 1 26% 

of test images. It can be observed that LZW coding consistently provides at  Ieast 

16% improvements over the input-independent standard coding method. Thus for 

theoretical comparison purposes, this project chooses the LZW method for overliead 

coding in the overhead mode to more accurately mode1 and analyze the performance 

differences between adaptive coding with overhead (overhead mode) and wit hout 

overhead (JPEG compatibility mode). 

5.3.2 Subjective results 

5.3.2.1 Description of the subjective test 

A subjective test was performed to compare the subjective quality between the base- 

line JPEG coded images and the A-JPEG coded images. The seven-grade comparison 



scale (table 5.7) from the CCIR Recommendation 500 [30. 511 mas used. The test mas 

conducted on a Pentium-Pro PC with a 24-bit colour Matrox Millenium graphics card 

and a 17' Nanao Eizo FlexScan TS.CîS Trinitron monitor. The viewing distance 

was four times the picture height, which was closer than the recommended distance 

of six times [50, 211, and the testing room was under normal office lighting condition. 

-4 group of 19 subjects were invited to participate in the test. Seven of the 

participants were mernbers of the digital signal processing group. The rest of the 

participants were non-experts and the' were mostly undergraduate and graduate 

students in the university. A test subset of eleven pictures was used. 

1 +2 Better 1 
+l Slightly better 

O The same 
-1 Slightly worse 
-2 Worse 

/ -3 4luch worse 1 
Table 5.7: The CCIR comparison scale 

The test ing procedure was conducted as follo~vs: 

1. In each comparison the subject was simultaneously shown two images side by 

side on the monitor screen. One of them was the baseline JPEG image and 

the other was the adaptive JPEG image. There are two cornparisons for each 

baseline JPEG image so that each of the two images produced by the two 

adaptive modes respectively will be compared once with the baseline JPEG 

image. The screen location (left or right), and the order of appearance of the 

adaptive coding modes (JPEG compatibility mode first, overhead mode second, 

or vice versa) were both randomized. The JPEG quality factor of 72 was used 

for al1 baseline JPEG and A-JPEG images in the test. 

2. The subject was told that one of the images contained more distortion than 

the other and was asked to use the comparison scale in table 5.7 to evaluate 

the images. The subject was allowed to view the pictures for as long as he or 



1 goldhill 1 0.263 0.21 1 1 
mandrill 1 0.263 1 0.053 1 

Overhead mode resuit 
0.158 
0 .O53 
0.158 
0.421 

Image 
lenna(c) 
barbara 

boats 
PePPers 

1 Rower 1 
1 1 

0.421 0.474 1 

JPEG mode result 
0.316 
0.368 
0.000 
0.316 

I I 

1 hats 0.211 0.526 I 
1 

I I 1 

1 Averaqe 1 0.254 1 0.249 

lady 
sail 

motorbike 

- - -  - - 

Table 5.8: The subjective test results - by images 

O. 158 
O. 158 
0.316 

0.316 
4 

0.000 
0.368 

Subject No. 
1 
2 
3 
4 - 
3 

6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

1 Average 

Table 5.9: The subjective test results - by subjects 

JPEG mode result 
O. 182 
0.273 
-0.182 
O. 636 
0.000 
0.091 
0.091 
0.818 
0.727 
0.000 
0.545 
0.182 
O. 636 
0.727 
0.273 
-0.273 
-0.091 
0.273 
0.000 

0.254 

Overhead mode result 
0.091 
0.455 
O. 182 
0.455 
0.455 
0.000 
0.182 
0.273 
0.727 
0.091 
0.455 
0.273 
0.000 
0.364 
O. 182 
-0.182 
0.364 
0.364 
0.000 
0.249 

I 



she desired. Moreover. the subject mas encouraged to use the mouse to change 

the locations of the pictures on the screen to make sure that any perceived 

distortion was not due to possible non-uniformity across the monitor screen. 

However? manual zoom-in of the images was prohibited. 

3. .4fter the two compansons for each baseline JPEG image were completed. the 

subjects were told if their choices of the 'better' images were indeed the less 

distorted baseline JPEG image. However they were not allowed to see the 

images again until after the whole test \vas finished. 

The results of the subjective test are presented in tables 5.8 and 5.9. Table 5.8 

shows the test images in their order of presentation in the test. i.e. lenna(c) (c 

represents colour) was always the first test image: and rnotorbike the last. -4 positive 

result means that the baseline JPEG image on average was rated 'better' to a certain 

degree (usiiig the scale in table 5.7) than the -4-JPEG image. The higher the value of 

the result, the more the baseline JPEG image ivas perceived 'better' than the A-JPEG 

image. Table 5.9 shows the results by subjects. where a positive result means that 

the subject on average rated the baseline JPEG images 'better' to a certain degree 

than the A- JPEG images. 

5.3.2.2 Discussions 

The low average results of 0.254 for the JPEG compatibility mode and 0.249 for the 

overhead mode show that for the test image set, the two adaptive modes both produce 

output t hat are essentially indistinguishable from those produced with baseline JPEG. 

Nevertheless the fact that the results are not closer to zero or even negative means 

that there is still some slight difference between a baseline JPEG image and an A- 

JPEG image, and on average viewers are a little more likely to prefer the less-distorted 

baseline JPEG image than the A-JPEG image. 

The most puzzling implication from the test is that the subjective results for 

the two adaptive coding modes are almost identical - in fact the overhead mode 

[vas even rated a bit closer to baseline JPEG than the JPEG compatibility mode. 



This is intriguing since ùy definition, using the same perceptual mode1 parameters. 

the multiplier map overhead allows more aggressive quantization in the overhead 

mode than the adaptive thresholding operation of the JPEG compatibility mode (see 

section 4.1.1.3). The author, mho is familiar mith the types of distortion introduced 

by -4-JPEG, has done the test several times (the result is not included because it 

is obviously biased). The overhead mode almays achieves a higher subjective result 

than the JPEG compatibility mode and this was the expected outcorne before the 

test was conducted. 

An answer to the confusion between the two adaptive modes is that the human eye 

simply is not sensitive enough to be used as a reliable quality metric. It may be able 

to tell a baseline JPEG image from an L J P E G  one. But i t  will not be a successful 

metric for differentiating a more distorted -A-JPEG image from anot her less distorted 

-4-JPEG image. This raises the need for a reliable perceptual metric that can replace 

the traditional mean-square based metrics and also be computed objectively 1%. 591. 

-4nother possible answer to the above problem lies in some observers' inability 

to differentiate distortion from true image features. -4t least four or five subjects 

(subjects 13 and 16 in particular) had indicated that  the distorted images iooked 

'sharper' to them and consequently they picked those images over the baseline JPEG 

images? As the overhead mode images were the most distorted, they were most 

likely to be mistaken as 'better' than baseline JPEG images. In the subjective test. 

this created negative results and could pull down the overhead mode's overall result. 

(Interestingly, several subjects who obtained high results indicated that they picked 

the baseline JPEG images because the A-JPEG images appeared less sharp in some 

high details areas.) 

The following summarizes other notable issues regarding the subjective test : 

r The subjects' abilities to notice distortion Vary greatly. Some subjects had 

sharp eyes and were able to see some differences between almost every pair of 

'Subject 13 used to work in Sony Japan as a video engineer and he mentioned that the granularity 
introduced in the A-JPEG images was simiiar to the effect of hcreased picture sharpness in a 
television set. 



images. Indeed the results obtained by subject 9 were even higher than those 

of the author, who were much more familiar with the images. Yet some other 

subjects were less successful and were not able to see any difference a t  all. 

In general most subjects agreed that the baseline JPEG images and the A-JPEG 

images were very close in quality and the comparison scale in table 5.7 was never 

extended beyond the subset {-1, 0: +1}. This is the main reason for the design 

of the relatively strict test where the user was allowed an onlimited viewing 

time. freedom to move the images around, and a close viewing distance of four 

times the picture height. Most viewers indeed require about thirty seconds to 

one minute before a decision can be made. Thus it is reasonable to espect 

that in a more casual viewing situation, the perccntage of users noticing the 

difference between the baseline JPEG images and A-JPEG images will be eren 

lower. 

The subjects were told if their picks were the baseline .JPEG images after the two 

comparisons mith each baseline JPEG image were finished. A few subjects were 

quick-learners and they ir-ere able to pick the baseline JPEG images much more 

accurately in the last few comparisons than in the beginning. Tliey indicated 

this and voiced concerns that the results for the last few images might not be 

accurate. Nevertheless, from table 5.8, the results for the last few images do  not 

show large deviations from the average. I t  can also be argued that the results 

for the first few images might be lower than what could have heen if the order 

of presentation was different. Thus the 'learning' concerns might not matter 

after al1 the individual results are averaged together. 

The subjective quality of the images lenna and rnotorbzke can be examined from 

figures 5.12 to 5.17. For each of the two images, the baseline JPEG coded image 

and the A-JPEG coded images in the two adaptive modes are shown. As explained 

previously, the overhead mode images are more distorted than their corresponding 

JPEG cornpatibility mode counterparts since the same perceptual mode1 parameters 

are used for al1 A-JPEG images. It can be seen that  the two A-JPEG coded [enna 



images are basically perceptually lossless compared to the baseline JPEG image. The 

JPEG cornpatibility mode motorbzke image is also coded a t  a perceptually lossless 

level. Upon close esamination a t  the overhead mode motorbzke image, some jagginess 

artifacts can be found on sorne high activity areas, like the biker's bodies, or the 

paintings on the helmets or the motorcycle bodies. But the overall perceptual quality 

of the image is still very close to the baseline JPEG motorbike image. 



Figure 5.12: The baseline JPEG coded lenna image 



Figure 5.13: The A-JPEG coded lenna image - JPEG compatibility mode 



Figure 5.14: The A-JPEG coded lenna image - overhead mode 



Figure 5.15: The baseline JPEG coded motorbzke image 



Figure 5.16: The A-JPEG coded motorbike image - JPEG compatibility mode 



Figure 5.17: The A-JPEG coded motorbzke image - orerhead mode 



5.4 Compression results for varying quality factors 

The results presented in the previous sections are al1 obtained using the coder param- 

eters listed in table 5.1. In particular. the JPEG quality factor of 72 was chosen. The 

value corresponds to a bit-rate of 0.916 bitlpixel for the grayscale image lenna. It is 

generally recognized that at the compressed bit-rate of about 0.75 to 1.5 bit/piseIt the 

quality of a decompressed colour image is excellent. and is sufficient for rnost appli- 

cations [2]. Thus it is insightful to also investigate the  adaptive coder's performance 

for other quality factors to establish a more thoroiigh understanding of the coder's 

capabilities or shoncomings. 

5.4.1 Objective results 

Table 5.10 and 5-11 present sorne compression rfsults for the range of quality factors 

from 10 to 90. The colour images lenna and hou se.^. and a grayscale image barbara are 

used. The image lenna represents a mainly smooth. low complexity image. harbaro 

represents a rnoderate complexity image. and houses represents a high cornplesity 

image. The bit-rate column under each image provides the baseline JPEG bit-rate for 

the corresponding quality factor. and the savings column presents the bit-rate savings 

in percentage over baseline JPEG with the adaptive coder. Table 5.10 contains the 

results for the adaptive coder in the JPEG compatibility mode. \\-hile table 5.1 1 is 

for the overhead mode. with the overhead information LZW coded. 

It can be observed from table 5-10 that  for the JPEG compatibility mode. the bit- 

rate savings for a particular image increase with the increase in compression (lower 

bit-rate). In fact from the expenmental datao the savings in bits actually decrease 

with the decrease in the quality factor. But because the corresponding decrease in 

bit-rate is even higher, the overall bit-rate savings in percentage still increase. 

The results for the overhead mode is quite different from that of the JPEG com- 

patibility mode. The main difference is that the cost of the multiplier map overhead 

needs to be taken into consideration. The cost of the overhead is a constant for each 

image, and is independent of the coding bit-rate. Thus the lower the bit-rate. the 



Quality lenna(c) barbara 
factor bit-rate savings bit-rate savings 

(bit/pisel) (%) (bitlpixel) (%) 
90 2.07 4.4% 2.25 5.3% 
80 1.32 4.8% 1.56 6.2% 
70 1.01 5.1% 1.26 7% 
60 0.53 5.3% 1.07 8.1% 
50 0.12 5 -6% 0.94 9.5% 
40 O -6 1 5.8% 0.82 10.7% 

ho uses 
bit-rate ( savings 

Table 5.10: Bit-rate savings (JPEG mode) for varying quality factors 

- - -- - - 

Table 5.11: Bit-rate savings (Overhead mode - LZW) for varying quality factors 

Quality 
factor 

90 

lenna(c) 
bit-rate 

(bitlpisel) 
2.07 

savings 

(%) 
6.5% 

barbara houses 
bit-rate 

(bit/pixel) 
2.25 

bit-rate 
(bit/pisel) 

3.20 

savings 

(%) 
11.1% 

savings 

(%) 
14.7% 



higher the relative cost of the overhead, which offset the potential bit-rate savings. 

For high baseline JPEG bit-rates. the overhead cost is relatively insignificant and 

the full adaptive quantization performed in the overhead mode dclivers much better 

performance than adaptive t hresholding in the JPEG compati bility mode. However, 

for lower bit-rates, the relative cost of the overhead starts to hamper the final bit-rate 

savings result. 

I t  can be observed from table 5-11 that for bit-rates above approximately 0.5 

bit/pixel, the bit-rate savings are generally quite stable for al1 three images. Although 

apparently lenna's performance is worst since -4-JPEG does not perform well for 

smooth images in general. The bit-rate savings for barbara and hozrses are remarkably 

stable above the baseline JPEG bit-rate of 0.5 bit/pisel. This shows that the raur bit- 

rate savings achieved by full adaptive quantization are 'just' offset by the overhead 

costs. Howevero at  bit-rates below 0.5 bit/pixel, it can be observed that there are 

sharp drop-offs in the final bit-rate savings since the overhead information begins to 

dominate the final bit-rates. There has been interest in reducing the overhead cost in 

low-bit-rate situations and [54] presents an algorithm which optimizes the overhead 

cost for video coding. 

5.4.2 Subjective results 

Informai cornparisons between the baseline JPEG images and the A-JPEG images 

cornpressed a t  the same quality factors by the autlior show that the two types of 

images are perceptually very close to each other at the different quality levels exam- 

ined. In fact the quality factors frorn 70 to 90 produce images that are so close to the 

originals that there is no real incentives in using the quality factor 90, which requires 

a much higher bit-rate than the factor 80 and below. 

For low quality compression at bit-rates below about 0.5 bitlpixel, the infamous 

JPEG blocking artifacts are apparent in the reconstructed images. However, this 

problem is a general weakness of block-based lossy compression systems and the 

artifacts esist in both baseline JPEG images and A-JPEG images. The adaptive 

JPEG coder, designed for high quaiity compression, is not an effective tool to deal mith 



the blocking artifacts witli low-bit-rate compression and there are more established 

methods that are available [60]. Nevertheless, it is insightful to investigate if the 

blocking artifacts can be reduced by using tlie adaptive JPEG coder. 

Instead of comparing images compressed using the same quality factor, an informai 

comparative test was carried out to compare the quality of images compressed at 

the same bit-rates. The rationale is that, if compared to baseline JPEG, A-JPEG 

requires lower bit-rates at approximately the same perceptual quality for the same 

quality factor: an A-JPEG image should have 'better' quality than a baseline JPEG 

image compressed at the same bit-rate. For the image lenna, tlie A-JPEG image with 

the quality factor (Q) equals 22 has approsimately the same bit-rate as a baseline 

.JPEG image with Q = 20. For the image barbara. the Pi-JPEG image mith Q = 25 

lias approximately the same bit-rate as a baseline JPEG image with Q = 20. The 

JPEG compatibility mode was used so that the multiplier map overhead nras not 

a factor. I t   vas discovered that both of the A-JPEG images have fewer blocking 

artifacts than their baseline JPEG counterparts. especially in the facial areas of the 

fernale subjects in the two pictures. The main reason behind this is that the facial 

areas are generally classified as plain blocks by block classification in the perceptual 

mode1 (assume texture masking is the dominant factor for now). Thus the local 

multipliers in those areas are generally one and they arc quantized by the global QU 

at  Q = 22 or 25. The A-JPEG coder can compensate for the higher bit-rates in 

the plain blocks by more coarsely quantizing the texture blocks with a scaled QM 

using a lower quality factor at, Say, Q = 18. This is the main advantage of adaptive 

coding, where more bits are used to code the perceptually more important areas. 

The advantage is also true at higher bit-rates, but it is more apparent a t  low bit-rate 

situations, where the artifacts are more visible. 

Figure 5.18 shows the graph of the JPEG quality factor as a function of the 

bit-rate of the compressed image. The results for the three images lenna, barbara. 

and houses are presented. The solid lines represent the results for baseline JPEG 

compression, while the dotted lines represent the results for A-JPEG compression 

in the JPEG compatibility mode. It can be observed that to achieve the same bit- 
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Bit-rote (bit/pixel): (a) lenna (b) barûara (c) houses 

Figure 5.18: The JPEG quality factor as a function of the comprcssed bit-rate 

rate, the solid line (baseline JPEG) always requires a lower quality factor than the 

corresponding dotted line (A-JPEG) for the same image. In general, the use of a 

higher quality factor by A-JPEG does not necessarily mean that the A-JPEG imagc 

will be perceived 'better' than the baseline JPEG image since the rating of image 

quality is a highly subjective matter and a reliable perceptual rnetric that  can be 

computed objectively is still not available. But  it can be claimed that the adaptire 

JPEG coder is able to preserve the quality of the perceptually more important areas 

such as the plain or the middle-luminance areas, better than baseline JPEG a t  the 

same bit-rate by more aggressively cornpressing image areas that are perceptually 

less important. In fact, for a high complexity image like houses for which A-JPEG 

performs well, the A-JPEG quality factor can be as many as 9 units higher than that 

of baseline JPEG a t  the same bit-rate (50 vs. 41 a t  1.1 bitlpixel) . 

Figures 5.19 and 5.20 show the baseline JPEG and A-JPEG (JPEG compatibility 

mode) barbara images respectively. Both are coded a t  0.51 bit/pixel (Q = 20 for 

baseline JPEG, Q = 25 for A-JPEG). The facial areas of the images are zoomed 

in to ernphasize any potential difference. The differences are more apparent on a 

high quality computer monitor, but it can still be observed that -4-JPEG provides a 



slightly better reproduction of barbara's face and the flat area on the left hand side 

of the images. However. the testure area of barbara's clothes near the lower left hand 

side is better preserved in the baseline JPEG image. although in fact both images 

look quite bad in tliose areas anyway as the blocking artifacts dominate the vierver's 

attention and testure masking no longer holds at this low bit-rate. 

5.5 Computational complexity of the coder 

The computational complesity of the coder is examined in this section. One impor- 

tant advantage of the architecture of the adaptive coder is that the computational 

overhead of the perceptual mode1 is incurred at  the encoder level only. The percep- 

tua1 mode1 only needs to be implemented in a JPEG encodcr and the output can be 

read by any existing standard-corn pliant JPEG decoder without any overhead cost. 

Thus the adaptive coder is ideally matched for broadcast-type multimedia applica- 

tions wheremost of the information is created only once but accessed many times 

afterwards. In these applications, the computational cost of the encoding overhead 

of the perceptual model, in light of the overall system usage cost, will be minimal 

because encoding is done only relatively sparingly. Appendix A provides a more 

in-depth discussion on the applications of the adaptive coder. 

The emphasis of this section is on analyzing the computational overliead of the 

perceptual model over the total encoding cost of baseline JPEG. The results are pre- 

sented in table 5.12. The performance is in second, for encoding of the 512 x 512 

colour image lenna. The performance for baseline JPEG, A-JPEG in the JPEG corn- 

patibility mode, and A-JPEG in the overhead mode (multiplier map LZW coded) 

for different computer processors is presented. The corresponding performance over- 

heads over baseline JPEG in percentage are also calculated for the two adaptive 

coding modes. 

It can be observed that the overheads for the JPEG cornpatibility mode range 

from 9% to 14%, mhile those for the overhead mode range from 6% to 10%. The 

computational costs mainly corne [rom the calculations in the perceptual model, some 



Figure 5.19: The baseline JPEG barbara image coded at 0.5 1 bit/piseI 

Figure 5.20: The A-JPEG barbam image coded at 0.51 bit/pixel (JPEG mode) 
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Machine 
type 

Pentium 133 
Pentium Pro 200 

Sun Sparc-5 

Baseline 
JPEG 
t irne 
0.79s 
0.33s 
1.12s 

Adaptive JPEG 

- - 

Table 8.12: The A-JPEG encoding computational overhead over baseline JPEG 

.I PEG cornpatibility 
tirne 1 overhead 

of the most important operations are: 

Overhead mode 
time 1 overhead 

0 Pre-computation of the scaled quantization matrices (Qhils) before the parsing 

of the image blocks so that during quantization the scaled QMs can be called 

upon quickly by LOT(Look-L'p Tables). 

0 The summations of individual DCT coefficients for the symbols L (low fre- 

quency), E (edge), H (high frequency) for block classification. 

O Performing block classification using the algorithm preserited in section 4.2.2.1. 

The calculation of the mean luminance of the image for luminance masking. 

The overhead mode is faster than the JPEG compatibility mode since the JPEG 

cornpatibility mode requires an estra adaptive thresholding step before the actual 

quantization step. 

It is expected t hat wi th bet ter hardware and software optimization, the encoding 

computational overhead can be Iowered considerably. For instance, the perceptual 

mode1 uses a lot of repetitive loops to perform summations in block classification 

and luminance masking. The Intel MMX extensions to the x86 architecture allows 

up to eight integer pairs to be added together in parallel in one instruction [Gl] 

and thus should provide substantial performance improvement for future Intel-based 

applications. 



Overhead for mean luminance calculation 

The impact, of the mean luminance (mean DC) caiculation for luminance masking is 

substantial since for a 512 x 512 colour RGB image with 3 chaniiels. 512 x x 

3 = 786432 additions are needed. To examine the impact: the sub-routine for the 

mean luminance calculation was taken out and the adaptive coder was re-run. For 

the Sparc-5 workstation, the new oïerhead costs were 7% and 4.5% for the JPEG 

compatibility mode and overliead mode respectively. These represent improvements 

of about 30% as compared to the results in table 5.12. Thus a convenient way to speed- 

up the A-JPEG coder is to f i l  the mean luminance value at. for example, 128. B u t  

this is done a t  the expense of decreased adaptirity in the luminance masking mode1 

and would not be recommended for still image compression in general. Hoivever. 

for video coding. there is generally high correlation be twen  adjacent image frames 

until a scene change occurs. Thus the perceptual mode1 can take advantage of the 

previous frame's mean luminance value to reduce the computational cost in a video 

coding system. 

For colour images, another possibility is to calculate the mean luminance from 

the luminance (Y) component only. after the colour space conversion. This rcquires 

a full colour space conversion of the whole image before any DCT and quantization 

is performed. The current implementation is not able to do that because the coder 

structure is to perform the whole compression process; including colour space con- 

version and chrominance subsampling, one horizontal row of 8 x 8 blocks at a time. 

With a slight change in the coder structure so that the colour space conversion step 

for the ivhole image is completed before the core JPEG coder is invoked? the mean 

luminance value can be calculated from the luminance channel only and the total 

number of additions is 512 x 512 = 262144, a saving of two third of the cost of the 

mean luminance calculation as implemented currently. 



Chapter 6 

Conclusions 

-4 perccptually adaptive DCT-based transform coder (A-JPEG) is implemented in 

this project. The implementation involves the design of a perceptual model and the 

implementation of an adaptive coding structure on top of a standard (non-adaptive,) 

JPEG coder irnplementation. The main objective is to devise a more perceptually 

unifom quantization strategy so that fewer bits are used to represent the perceptually 

less important areas of an image. The result will be a saving in bit-rate. with no overall 

Ioss in perceptual quality. 

The perceptual model 

The perceptual rnodel contains a testure masking model and a luminance masking 

model. The key to the texture masking model is a block classification step that dif- 

ferentiates between the plain, edgeo and texture blocks so that the local multipliers 

can be calculated separately for each type of blocks. -4 new classification algorithrn is 

proposed, which makes use of the ratios between the high frequency and low frequency 

DCT coefficients of each block to perform the classification. An innovative adaptive 

luminance masking scheme is also proposed. The scheme is motivated by the obser- 

vation that in general a bright image needs a different luminance masking strategy 

than a dark image. The proposed luminance masking scheme adaptively adjusts the 

luminance masking strategy for an image depending on the image's rnean luminance 

value. A convenient feature of the proposed perceptual model is that  both rnasking 



models are linear threshdd eleuution models [35i and the user can easily adjust the 

estent of the distortion introduced bu each of the masking models by modifying the 

value of the maximum elevaation factor of the corresponding model. 

The two adaptive coding modes 

The perceptual model is designed to produce a multiplier map chat contains %bit 

scalar multipliers that can be used to scale the quantization step sizes of each in- 

diridual image block. Two adaprire coding modes are esamined in this thesis. In 

one mode. the mulcipliers are used for scaling the global quantization matrix during 

quantization and the multiplier parameters are included n-ith the compressed image 

data  as overhead information for decoding. This adaptive coding mode is referred to 

as the otyerhead mode in the thesis. 

Baseline JPEG compatibility requires a different approach since the original JPEG 

standard only allon-s global quantizatiori step sizes. The coder adaptive1~- thresholds 

some DCT coefficients to  zero based on information from the perceptual model. This 

provides an encoded image output that does not need a multiplier rnap overhead for 

decoding and is baseline JPEG compliant. This adaptire coding mode is referred to  

as the JPEG compatibifity mode. 

Performance - high bit-rate 

The performance of the tn-O adaptive coding modes for high quality image compression 

is examined. In this project. the quality level a t  nhich the compressed lenna image ic 

about perceptually lossless from the original is used. Csing the same JPEG quality 

factor and perceptual model parameters (table 5.1). for the  test image set the bit-rate 

savings for the JPEG cornpatibility mode (no overhead) over baseline JPEG range 

from 3% to 13%. and for the overhead mode. the savings range from 5% to 22%. A 

subjective test that involves 19 human subjects demonstrates that the A-JPEG coded 

images are essentia1l'- indistinguishable from the baseline JPEG coded images. 

The experimental results also show that the adaptive coder provides better per- 

formance for images that are hard to cornpress under baseline JPEG. The reason for 



.A-JPEGk hetter performance is t har the hard-to-cornpress areas are generally highly 

testured. or comples areas that can tolerate more distortion perceptually. Thus A- 

JPEG is able to identify a lot of those areas in images t hat are comples and achievc 

a rnuch better compression. 

The results for the overhead mode always surpass those for t h e  JPEG compatibility 

mode at  high bit-rates since the availability of the multiplier map overhead allows 

more aggressiw quantization of the DCT coefficients. Horvever the advantage of the 

overhead mode over the JPEG compatibility mode is much less for smootli images 

since A-JPEG does not perforrn very well for smooth images in general. 

Performance - Iow and medium bit-rate 

The perceptual mode1 is designed witli higli quality image compression as the target 

application since the JPEG standard is not a very effective tool for low bit-rate. or 

low quality compression. The texture masking and luminance masking properties 

of the HVS are not relevant a t  low bit-rates any more because the blocking artifacts 

introduced by JPEG d l  dominate the viewer's attention. ne ver the les^^ it is insiglitful 

to also investigate the performance of A-JPEG at different quality levels since there 

is a certain gap between the perceptually lossless quality level and the qualit? level at 

which the blocking artifacts become annoying. And a user might want to use A-JPEG 

for a quality level somewhere in between the two estremes. 

Section 5.4 shows that the performance of A-JPEG in the JPEG compatibility 

mode improves with the decrease in bit-rate. But for the overhead mode. the results 

are different because of the quality-independent multiplier rnap overhead that also has 

to be included with the cornpressed image. The results show that the performance 

of A-JPEG in the overhead mode is in general quite stable over a wide range of bit- 

rates. But the resulting bit-rate savings drop off considerably at bit-rates below 0.5 

bit/pixel as the overhead information begins to dominate the total bit costs. 



Performance - summary 

In general. the performance of the -1-JPEG coder is affected by two main factors: 

the source image cornplexit- and the target resulting bit-rate. The project confirms 

the finding in (311 that the more cornplex the source image. the better the -4-JPEG 

coder performs. The overhead mode provides substant ial improvement over the JPEG 

compatibility mode for medium to high complexity images. But it is only marginally 

better for smoorh. or low complesity images. 

The target bit-rate can affect the choice of the adapt iw coding mode. At Ion- bbit- 

rates, sa? belon- 0.5 bit,/pisel. the performance of the  o~erhead  mode is poor since the 

overhead cosrs dominate the final bit-rate. The JPEG compatibility mode prorides 

good results for a11 bit-rates. in fact. the performance of the JPEG cornpatibility 

mode improves n-it h the decrease in the resulting bit-rate. 

Figure 6.1 summarizes the adaptire coder's performance as a function of the source 

image complexity and the target baseline JPEG bit-rate. It is only a crude measure 

but it can serve as a quick reference for determining if the adaptive coder is suitable 

for compression of a certain kind of image. a t  a certain bit-rate. The performance of 

the adaptive coder in the overhead mode can also be directly related to  that of the 

new JPEG estension (section 4 . l . l . 3 .  Thus figure 6.1 will also help a JPEG user 

decide if it is worth sn-itching to the nen- JPEG extension a t  the espense of the loss 

of baseline JPEG decoder cornpatibility. 
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The scales and terminologies iri figure 6.1 are defined quite arbitrarily. But they 

approximately reflect the previous results for varying quality factors presented in 

tables 5.10 and 5-11. In figure 6.1, the threshold between low bit-rate and medium 

to high bit-rate is defined to be 0.5 bit/pixel. The complexity of an image can be 

approximated by its corresponding baseline JPEG bit-rate. For a fised quality factor, 

the higher the resulting baseline JPEG bit-rate, the more cornpler the image. Thus 

using the quality factor of 72, which is approsimately equivalent to encoding witli the 

JPEG esarnple quantization matrix scaled by a factor of 0.56. a threshold bit-rate of 

1.2 bit/pisel is chosen to differentiate between the low complexity and the medium 

to high complesity images. 

For instance, the image lenna is a typical low complexity image, barbura is a 

medium complesity image, and houses is a high complexity image. Tlie two threshold 

bit-rates can be applied for both grayscale and colour images since the chrominance 

cliannels normally only account for a small percentage of the total bit-rate of a colour 

image [ I I .  As for the performance measures. 'very good' refers to a bit-rate saving of 

above 10%: 'good' refers to a saving of about 4% to 1096, 'poor' refers to a saving of 

less than 4%: and 'fair' represents a non-consistent saving, somewhere between poor 

and good. 

Computational complexity 

The computational complexity of the adaptive coder is modest. Experimentation with 

different microprocessors shows that for encoding, the computational overhead over 

baseline JPEG is about 11% for the JPEG compatibility mode, and 8% for the over- 

head mode. It is expected that with better hardware and/or software optirni~ation~ 

the encoding overhead will go down substantially. 

There is no overhead cost for decoding since the perceptual mode1 is only used in 

the encoder. Thus the adaptive coder is ideally suited for broadcast-type multimedia 

applications where most of the information is created only once but accessed many 

times afterwards. Appendix A provides a more general discussion on the applications 

of the adaptive coder. 



6.1 Future work 

A lot of work can still be done for further improvcment. The follonring summarizes 

some of the possibilities for furt her st  udy: 

1. The subjective test in chapter 5 verifies that the human eye is not good a t  

differentiating the small differences between images. A perceptually-motivateci 

objective metric that  can be computed (like the common signal-to-noise ratio) 

is highly preferable to a possibly error-prone, and labour-intensive subjective 

test. Unfortunately a perceptual metric requires the use of a perceptual model 

and as of now a universally agreed-upon perceptual mode1 is still not availablc 

(othenvise the design of a perceptual model in this project will be deerned 

unnecessary). A possible choice is a metric that is based on the just-noticeable- 

distortion profile of an image. described in [l, 201. Some other choiccs c m  be 

found in (59, 621. 

2. The perceptual model's two masking elevation parametcrs as described in ta- 

ble 5.1 are fine-tuned to  provide a good trade-off between perceptual quality 

and coder performance for the test images. However the optirnization of percep- 

tua1 fidelity is a rather subjective problem, and for rnany individual images, the 

parameters can still be increased without introducing perceptual loss according 

to rnost observers. One of the main reasons behind the need of a perceptual 

metric is for more robust calibration of the perceptual parameters. 

3. The use of the same percepttial parameters for the two adaptive coding modes 

allows direct cornparisons between the performance of the two modes. However, 

by definition, the overhead mode introduces more distortions to the images than 

the JPEG compatibility mode (see sections 4.1.1.3). Thus the coder parameters 

that are designed for good quality in both modes actually under-compress the 

image in the JPEG compatibility mode. Due to time limitations, a formal 

analysis has not been performed, but it would be interesting to  investigate the 

JPEG compatibility mode's performance separatel.  



In an informa1 test, with an educated guess. the perceptual modei's masking 

elevators are raised so that the JPEG compatibility mode produces an output 

that has the same size as the output of the overhead mode using the original 

masking elevators. The two reconstructed images are then compared and there 

is virtually no perceptual difference between the two: even after close exarnina- 

tion with zoom-ins. 

4. Frequency sensitivity, one of the HVS properties introduced in chapter 2, has 

riot been investigated in this project. The JPEG quantization matris (QM) 

models the HVSk frequency sensitivity. Thus any investigation into frequency 

sensitivity requires the modification of the QhrI. In general. Q M  modificat.ion 

is a global procedure and the analysis is espected to be quite different from 

the work done in this project since the other HVS properties considcred in this 

project are block level, local masking properties. Some well-known literatures 

on Q M  design are in [48! 251. 

5. The block classification procedure can also be improved [631. The classification 

algorithm's ability to extract edge information is less tlian perfect since the 

analysis is done using the DCT coefficients of non-overlapping 8 x 8 blocks. So 

the result's precision is much less than that of other classical edge detection 

techniques, such as the Sobel operators, which use 3 x 3 kernels for each indi- 

vidual pixel (101 and the current algorithm might miss a n  edge that liappens to 

locate just near the boundaries of two adjacent blocks. 

In situations where edge features preservation is highly desirable, it might be 

advantageous to simply turn off the locally adap tive classification correction 

scheme described in section 4.2.2.1. This ensures that  edge blocks that are 

close to texture blocks will not be re-classified as texture blocks. With some 

slight change in the design, the user might also add a preprocessing module to 

perform a separate edge detection analysis. The results can then be used to aid 

the block classification decision. With the fast computer processors currently 



awilable. the added overhead r d 1  be smalll and rnay not be a big performance 

bottleneck to overcorne for non-realtime use. Furt hermore, to take advantage of 

the inhercntly varying block statistics of real-life images, a fuzzy classification 

metliod might also be used [64!. 

6. For colour images. only the luminance properties of the HVS are considered 

in the perceptual model. Reference [la] introduces some issues concerning the 

masking properties of the chrominance cliannels that  can be very useful for 

further improvement of die perceptual model. 

Tliere has also been report that the use of a perceptually uniform colour space 

like the  CIE^ L*a*bf and L*ufv* colour spaces provides better JPEG compres- 

sion performance than the traditional RGB and YIQ (similar to the I'CrCb 

colour space used in JPEG) colour spaces [la]. -4s discussed in chapter 3. the 

colour space conversion module is independent of the core JPEG coder. Thus 

the change in coloiir space does not require major coder modification3 and it 

would be interesting to investigate if the A-JPEG coder can also benefit from 

the use of a new colour space. 

7. The perceptual model proposed in this project can also be implemented in a 

MPEG (Moving Picture Espert Group) (321 video coding system since LIPEG is 

also based on the DCT-based block transform coding model and MPEGTs intra- 

coding mode is basically identical to JPEG image coding. However video coding 

involves substantially more design issues than image coding and the usefulness of 

the perceptual model in a video coding environment is still to  be investigated. 

A cornparison between the results obtained with MPEGTs standard adaptive 

quantization scheme [65] and the results obtained with the proposed perceptual 

mode1 is to be examined [37, 44, 45). Moreover, in video coding, there is also 

'Performing the edge detection function with the popuiar m program takes less than one second 
in the Linux OS on a Pentium Pro 200 PC. 

2Commission Internationale de L'Eclairage. 
3The perceptual mode1 requires the Iuminance channel Y .  Thus the new colour space conversion 

module may need to compute an additional Y channe1 for interim use by the perceptual model 
during encoding. 



the added opportunity for temporal masking (141 tliat can be implemented in 

the perceptual mode! for further improved results. 



Appendix A 

Possible applications for adapt ive 

JPEG coding 

This appendix attempts to provide and discuss about some application scenarios in 

which the adaptive coder might prove useful. An important characteristic of the 

adaptive coder is that al1 the pcrceptual overhead are done in the encoder only. The 

decoding performance for an A-JPEG cornpressed file is the sarne as that  for a b a d i n e  

JPEG file. Thus an' decodzng-heavy applications tvill benefit from a smaller -1-JPEG 

file size. while a t  the same time the cost of the encoding overhead. in light of the 

overall system usage cost, will be minimal becaiise encoding is done sparingly. 

Asymmetric multimedia communications 

One application scenario is in multimedia communications. With the continuous 

advancement of computer processing power and display device technology. and the 

rapidly rising popularity of the Internet, multimedia information, in part icular: image 

and video' data,  are now very much within reach for even casual computer users. One 

'The perceptual model's usefulness in a video coding scheme like MPEG has not been tested. 
Nevertheless, in some applications. Motion-JPEG (application of JPEG on a sequence of pictures, 
disregarding temporal redundancy - there is no recognized standard for Motion-JPEG, thus it is 
mostly a proprietary format) has dso been used in video applications, e.g. the M ~ O  miroVIDE0 
DC30 digital video editing system uses Motion-JPEG for studiequality video compression. Thus 
the discussions on video is not totally irrelevant for A-JPEG. 



characteristic of multimedia information is that they areo in most cases, accessed by 

decoding-heavy applications or systems. In other words, multimedia information 

resembles Write- Once. Read-Many ( WORM) information. For instance. the front 

page images of Cable News Networks' (CNN) world wide web home page' are accessed 

by thousands of hits evelday world wide, but the images are only created once. The 

same is true for miIlions of .JPEG files on the Internet. 

Entering the digital age, the consumer electronics industry and the segment of 

the cornputer industry that is concerned with multimedia technology are starting to 

merge al read.  And the term playback used in consumer electronics can easily be 

related to decoding in computer terminology as decoding of digitized multimedia data 

(compressed or not) is always needed before the actual reproduction, or playback. 

Similady, the multimedia term encoding can be loosely regarded to in consumer elec- 

tronics terminology as recording digitized data. with or without compression. into a 

standard format for later reproduction. Examples of the aforementioned decoding- 

heavy (playback-heauy) applications are also abundant in consumer electronics. For 

instance, the laserdiscs or movie tapes sold or rented in the local video stores are 

designed for playback only A similar case can be made for audio data for the mil- 

lions of music CDS sold every year worldmide. In fact the broadcasting of television 

programs to the national households everyday is a perfect esample of the record-once. 

playback-many scenario. This link between the computer and consumer electronics 

industry is important since sooner or later the present analog video signal used by the 

consumer electronics industry will be replaced by digital signal (possibly in the DVD 

format) and JPEG and MPEG are expected to play an important role in helping to 

reduce the transmission and storage costs. 

As an adaptive scheme designed for reducing storage costs for image information 

encoded using the JPEG standard, A-JPEG offers an attractive option for storage of 

these 'decoding-heavy' image data for a smdl  one-time encoding cost. This promise 

of A-JPEG also echoes a main advantage of vector quantization and fractal coding, 

for which the decoding times are much smaller than the encoding times [4, 661. The 

* http://www.cnn.com 



difference being that for the latter tn-O codinq schernes. the encoding overheads are 

actually several magnitudes higher than that for decoding. This encoding-decoding 

inequality of multimedia data can also be related to the design philosophy of the 

Asyrnmetric Digitai Subscriher Line (ADSL) [67j. ahere the don-nload bandwidth 

is much higher than the upload bandu-idth. This reflects a fact that  the average 

consumers have relarively more inrerest in receiving information (and subsequently 

decoding it ). than creating inforrnat ion (encoding). 

PIease note that A-JPEG n-il1 be useful only when the multimedia data are siiitable 

for the DCT-based transform coding compression method used by JPEG. narnely. 

continuous-tone photographie image data. TITO exceptions are cornputer graphics 

images. which are used estensi\-el' in the vide0 and cornputer game indusr?: and 

when t here are needs for near-perfect quality reproduction. like t hose demanded by 

big-screen ISIAX movies and Kodak Photo CD images 3.  Severtheless. in mosr 

practical situations ahere real-life images and video are involved. the JPEC; and 

MPEG standards have been pro\-en to be most useful. In fact the Grand r\lliance for 

HDTY has chosen SIPEG as the compression scheme for the future digital HDTV 

standard in North Arnerica. 

The two groups of prospects 

As an esample. consider a 1 GByte hard drive for stonng image and video data. A 

7.5% reduction in the storage requirement will translate inro an  additional 75 IIBytes 

of disk space. Assume rhat one high quality colour JPEG image consumes on average 

50.000 bytes. the additional disk space si11 allow the storage of 1.500 more images. 

Two different groups can be identified as potential customers nho might be interested 

in the A-JPEG technolog-. The first group consists of the majority of multimedia 

content pmviders, who will obviously benefit from the reduced storage cost provideci 

by A-JPEG. For instance: a lot of the Intemet a-eb page content providers wiil likely be 

interested. This includes any Company that has a sizable presence on the world tride 

photo CD's further on-line information: http: //aaa..kodak.com 



web. IIiiltirnedia CD-ROM makers. like those tiiat produce digital encyclopedias. ail1 

also be interested because more images can be put into the CD-ROSI. Other prospects 

include any maintainer of large image databases. and future DVD and HDTY software 

providers (a. ka. Hollywood studios) . The definit ion of multimedia content providers 

is not limited to commercial organizations only. Any individual consumer who uses 

a scanner to digitize a picture has produced multimedia content already. And he 

or she d l  benefit from using -4-JPEG as the size of the library of scanned pictures 

increases. Sirnilarly as digital cameras and digital camcorders start to becorne more 

popular. A-JPEG wiI1 provide an attractive alternative to reduce storage cost since 

portable storage media are typically more espensive and have lower capacity than 

t heir desktop counterparts. 

Besides multimedia content providers. the other group of prospects of A-JPEG 

includes the software and hardware companies t har will be interested in implement ing 

the A-JPEG coder. The main difference between the two groups is that the first group 

consists of cornpanies or individuals that will be interested in using the A-JPEG coder. 

However. not al1 parties in rhis group are necessarily going to implement the coder 

in-house. This is especially crue for individual consumers. wi1o will Iikely purchase 

a software coder off-shelf. or use the bundled software that cornes with the scanner. 

digitaI camera. etc. 

Thus this creates a need for the second group of prospects. which contains compa- 

nies that will be more interested in implementing the coder for use by other parties. 

This group can be further classified into two subgroups, software companies and 

hardware rnanufacturers. Esamples of software companies include cornpanies that 

produce image processing, image database. and IIotion-JPEG/MPEG encoder soft- 

wares. .A Iow complexity implementation of the A-JPEG coder actually does not 

require much research and development expertise, so software firms that specialize in 

delivering customized software solution for business will likely be interested as well. 

As for hardware rnanufacturers, firms that produce customized JPEG encoding chips 

will obviously be interested. Other prospects include companies that manufacture the 

consumer electronics gadgets such as the digital scanners, or digital cameras discussed 



in the preceding paragraphs. These firms. hoivever. do not necessarily need to design 

the encoding chips in-house. the? can just purchase the needed hardware components 

from a third party Company. -4lternatively. these firms can choose to use software 

instead by providing bundled softu-ares rhat the customers can use once the digitized 

data are captured. Tables -1.1 and -4.2 surnmarize the two groups of prospects ivho 

might be interested in using A-JPEG for 'decoding-heavy' multimedia information. 

r 

Subgroup Name 1 Description 
Multimedia Content providers 1 Web page content providers 

t I 

l 

.\laintainers of irnage/video databases ! 

Digital video-on-demand providers 1 

I 

Future DVD. HDTV softaare providers ! 
Individual consumers 1 Csers of digital scanners. digital cameras. 

I C - - 
1 diRital camcorders. and future DVD recorders i 

Table -4.1: Potential users of -4-JPEG 

/ Subgroup Name 1 Description 1 
Software companies i Image processing software 1 

1 Image database/archival software i 

1 Motion-JPEG/hiPEG encoders 1 
1 : Customized software solution proriders 

i 

1 Hardware companies 1 3lakers of customized DSP chips t I 

I 

I i llakers of digital scanners. digital cameras. 
I 

- - 

diata1 camcorders. and future DVD recorders I 

Table -4.2: Potential implementers of A-JPEG 

Symmetric multimedia communications 

Although the majority of multimedia information is decoding-hea\~ there are cases 

in which encoding is done just as frequentb as decoding. In these situations the 

encoding overhead of A-JPEG ail1 need to be taken into consideration carefully. 

Esamples of these scenarios are in video conferencing, video phone. or live video 

broadcasting applications. where Motion-JPEG might be used for video coding. As 

these are al1 red-time applications. any encoding or decoding d e l -  si11 possibly 

result in quality detenoration. A detailed analysis of the channel bandwidth and 



cost. encoding/decoding t ime. qualit- requirernent. and the st a t  ist ics of the target 

video sources is needed for a more complete evaluation. The following provides some 

arguments as to n-hy A-JPEG rnight still be usefui for t hese applications: 

Buffer control is needed to maintain a constant bit-rate for video conferencing. 

Bu reducing frame size for a given qualit- factor. A-JPEG provides a tradeoff 

of slightl?- increased encoding time but better buffer utilization. 

It can be argued that at present the netir-ork bandwidth is a bigger limiting 

factor than tne encoder processing speed. .\loreover. network characreristics 

wil1 also affect the ol-erall system performance. The internet and the ethernet- 

based local area netn-orks commonly encounrered non-adays are penerally not 

designed for video delivery- However. as network bandnidth increases. at some 

point the processing speed rnight become the limiring factor. 

Hardware acceleration or better software optimization should lower the encoding 

overhead considerablu. More advanced microprocessor technolog- will also help. 

such as the Intel .\I.\IX extensions to the s86 processor architecture (section 3.5). 
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