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Abstract 

Systern-level requirements-based testing is an important ta& in  software develop 

ment. providing evidence that each requirement has been satisfied. There are two 

major problems with how these tests are derived. First, the notion of coverage is 

subjective. i.e.. there is a lack of objective definitions of coverage criteria. Second. 

there is a surprising lack of automation in  deriving system-level requirernents-based 

tests. Research into solutions for these problems has led to the formulation of the 

discipline of speci fication- based test derivation presented in  t his dissertation. 

This discipline. which is based on predicate logic. provides a scientific foun- 

dation for objective definitions of coverage criteria and algorit hms for partially 

automating test derivation. This dissertation defines some fundamental coverage 

criteria as esamples. -A general test fmme generution process illustrates a general 

application of the discipline to a broad range of forma1 specifications, which can 

include existential and universal quantification. A refinement of the process can be 

applied to system-level requirements- based testing. 

The discipline leverages work invested in compiling the requirements speci- 

fication. In addition to partially automating the task of verifying that the require- 

ments have been satisfied, the refined process automates the traceability of require- 

ments to test descriptions. Ot her applications of the discipline of specification- based 



test  derivation include requirements validation and objective measurements for re- 

quirements complesity. The discipline can also be used t o  predict the  expected 

number of tests t o  be derived. which can then be used for process statistics. The 

uses of this discipline as a basis For repeatable processes, definitions. and measure- 

rnents imply tha t  i t  can form par t  of software developrnent processes a t  Capability 

LtIaturity &[ode1 (CMM) Levels 2 through -5. 
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Chapter 1 

Introduction 

This dissertation proposes a discipline of deriving test descriptions, which are called 

test /rames, from system-level requirements specifications. The discipline includes 

a nomencidure which consists of a collection of weII-defined names of specification 

components and test frame properties. The nomenclature can be used to objec- 

tively define the completeness of a set of test frames relative to the requirements. 

Definitions of cornpleteness. called coverage criteria. can be used as a basis for au- 

tomatically deriving test frames from a forma1 specification of requirements. The 

discipline supports repeatability and definability, which facilitate its use in soft- 

ware development processes aspiring to Capability Maturity Mode1 (CMM) Levels 

2 through 5. In this dissertation, a formal speciJicntion is a specification rvritten in 

a language t hat can be algori t h mically t ransformed into a set of mat hematical logic 

formulae. 



1.1 Objective 

The objective of this research has been to provide a more scientific basis for systern- 

level requirernentsbased testing in order to help t ransform t his activity from a craft 

requiring considerable appren t iceship and esperience. into an engineering discipline. 

A second objective has been the partial automation of this task to  improve test 

frame quality and to  reduce the time and effort required for derivation and review, 

t hereby reducing the overall costs of system-level requirements-baçed testing. 

1.2 Motivation 

The Focus of t his t hesis. system-level requirements-based testing. is an important 

part of the disciplined development of large. software-based systems for which a 

detailed set ofrequirements is specified. This type of Functional, or black-box. testing 

typically appears in software development processes as portions of System-Level 

Testing. -1cceptance Testing, and Independent Validation and Verification (IVkV). 

The objective of system-leuel reguirements-based tesling is to provide evidence that 

each behaviour specified in the requirements has been satisfied. Documentation that 

a systern has passed each test step in a set of test procedures is commonly used as  

sufficient evidence. The test steps are instances of test frames. which satisfy a given 

coverage criteria. Test procedures are sequences of test steps. This t hesis add resses 

the derivation of test frames. The derivation of test steps and other types of testing, 

which may address properties such as robustness, performance. and availability. are 

not  within the scope of this thesis. 

Two problems motivate this research. The first is lack of objective cover- 

age criteria. This contributes to  the second problem: lack of automated analysis 



tools for test frame derivation. The lack of automated analysis is due partly to the 

su bjectivity of many esisting guidelines for coverage criteria. These guidelines are 

interpreted by specialists who decide which tests are appropriate. and how many 

tests are required to satisfy the guidelines. This subjectivity can lead to  different 

opinions of what consti tu tes satisfaction of the guidelines. Furthermore. the com- 

munication among individrials of coverage issues is difficult. This is due t o  the lack 

of a precise vocabulary. such as a nomenclature for espressing relations hips between 

requirements and test specifications. 

Some au tomated tools assist in bookkeeping tasks associated wit h system- 

levet requirements-based testing. However, much of the analÿsis required for test 

derivation is currently done manually. Reviews of test frames are necessary i n  order 

to ensure that they are logically consistent with the requirements, and that the 

appropriate coverage has been achieved. The analysis is laborious, and the resuIts 

are espensive to review, 

.As this thesis shows, these two problems are intimately related. Atoniic 

components of test frames are referred to  in this dissertation as lmme stimuli. A 

fundamental concept of this tliesis is that coverage criteria describe a relationship 

between the frame stimuli of test frames and the frame stimuli that appear within 

the original requirements. 

1 -3 Relat ed Techniques 

The related test derivation techniques can be categorized as systematic, code-based, 

and logic-based techniques. Systematic techniques have the advantages t hat t hey 

are relatively simple and typically evolve out of a rnanual approach. This evolution 

provides a good fit between the  automated tools and the current process, reducing 



the costs for retraining. Unfortunately. systematic techniques iack the mat hematicai 

soundness required to ensure that transformations involved in  test frame derivation 

do not compromise the rneaning of the requirernents. This is substantiated in Sec- 

tion 3.2. 

Code-based testing. traditionally applied at the unit level. is ive11 developed. 

However. the circumstances and objectives of t h i s  type of testing are f i r  ndament ally 

direrent from those of system-level requirernents-bas4 testing. One issue is t hat. 

in the contest of system-level requirements-based testing, test frames should be 

st ructurally independent from the requirements, Le.. the wording of a requiremen t 

should be irrelevant provided that the appropriate meaning is conveyecl. Another 

distinction is the importance of an expressive requirements language. such as one 

allowing universal and existential quantification, which does not appear in a code- 

based contest. Further issues retevant to system-levet requirements-based testing 

include dependencies between conditions wit hi  n the requirements specification. and 

the need to rninimize the impact of requirements changes on previously generated 

test frames. 

While techniques based on mathernatical logic can provide a sound and es- 

pressive basis. the- do not yet support the combination of automation and espres- 

siveness that would allow them to be applied effectively to system-level requirements- 

based testing. This is substantiated in Section 3.4. 

1.4 Approach 

Test generation techniques based on mathematical logic that appear in the literature 

are based on restricted languages. The philosophy of t hese techniques is that certain 

mathematical structures have the advantage that they support capabilities such 



as the generation of test da ta  for test steps, i.e.. instances of test frames. and 

sequences of test steps. In contrast. code-based test generation techniques protiuce 

whae tests they can. Rather than imposing a specification language designed for 

test generation. code-based techniques are reqiiired to use program source code. 

However. due to the iindecidability of loop invariants. t here are sit itations where 

code-based techniques cannot generate test data. 

The approach of this thesis is similar to code-based techniques in that as 

few restrictions as possibte are placed on the content of a specification. However. 

t his freedom for specification a u  t hors has a cost. Logics permit ting undecidablel 

forniuhe are used in specification languages such as Z [61] and VDM-SL [XI because 

these logics are etpressive. i-e.. properties can be expressed precisely and concisely. 

This dissertation demonstrates t hat specifications based on expressive mathematical 

logics can be rnanipulated algorithmically in order to produce test frames, The cost 

of using logics permitting undecidable formulae is that the instantiation of test 

frames cannot be fully automated. -4s is the case with code-based techniques, the 

approach described in  this dissertation may faiI to produce test frames in  certain 

situations. Hoivever. t hese situations are well-defined and can be identified wit h in  

O(n log n )  time, where n is a rneasure of the size of the given specification, 

A nomenclature is an important part of a scientific discipline. Names within 

nomenciatures are often more than simple identifies. They niay also provide func- 

tional information about the objects t hey identify. As an esample, a classification 

of languages can be achieved using the nomenclature from the Chomsky Hierar- 

chu which names the minimal type of machine needed to recognize a sentence from 

the language. The nomenclature presented in  this dissertation provides a basis For 

'-4 formula is undecidable if a proof of the tmth or faisehood of the formula cannot be determined 
by a mechanical procedure. 



classifying test frame sets using coverage criteria that relate properties of a test 

frame set to  individual behaviours which follotv logicaily frorn the requirements. 

The nomenclature is structured so that definitions of coverage criteria are parame- 

ters to the algorithms of the discipline. Thus.  coverage criteria define the automatic 

production of the corresponding sets of test frames. The nomenclat tire allows test 

engineers to communicate coverage criteria details more precisely than by using the 

terminology in  current systern-level requirements-based testing guidelines found in 

standards documents such as DO178B, DOD-STD-'LL67A. ANSI/IEEE 829-1983. 

and MIL-STD-498 [56. 60, 35, 151. 

The aigorithms presented in this dissertation are based on strategies simi- 

lar to those of Dick and Faivre [17], but with significant differences. However. the 

process of system-level requirernents-based testing is not fully automated by em- 

ploying the algorithms of the discipline presented in this dissertation. The original 

requirements specification must be formalized before test frames can be generated. 

Furthermore. as stated in Section 1.2, the selection of test da ta  to satisfy a test frarne 

is beyond the scope of this thesis. This is due to the use of espressive specification 

languages. 

1.5 Contributions 

The thesis of this dissertation has two main ideas. First? objective criteria for test 

coverage can be defined by embedding system-level requirements in  mathematical 

logic. Second, such criteria form a basis for the algorithmic translation from a forrnal 

requirements specification to test frames, which can be used by test engineers to 

produce test steps. 

The following are the major contributions of this thesis. 



A nomenclature for defining covemtje criteria relative to mquirements specifi- 

cations. 

The nomenciature is bas4  on three fundamental entities: test classes. frame 

stimuli. and test frames. The  terrn "test frame" is used by Ostrand and Bal- 

cer [-161. The terms "test class" and Trame stimuli" are introduced in this 

dissertation. .A test class is a behaviour estracted from the requirements. and 

is bas4 on the  required response. Frame stimuli express the elernentary con- 

ditions used to determine when a response is required. Test frames prescribe 

part,icular conjunctions of frame stimuli that require a particular response. A 

set of test frames is derived from each test class. The frarne stimuliis is the 

principal entity on which coverage criteria are defined. Coverage criteria relate 

test frames to test ciasses. 

=Ilgon'thrns for producing sets of test fmrnes that sntisfy couerage criterin de- 

fined in t e rms  of the nomenclntrrre. 

The algorithms described in this dissertation produce test frames that have 

the following important properties: 

- Conseruatice 

Each test frarne is a logical consequence of the requirements. The sound- 

ness of the rules of logic used in the algorit hms of the discipline ensures 

that a test frarne generator that correctly irnpiements the algorithnis will 

produce only test frames that are irnplied by the requirements. 

- Tractable 

Test engineers can control the automatic derivation of test frames, tvhich 

allows them to exercise engineering judgernent. 



- Complete 

The set of test frames is produced in cornpliance with a specified coverage 

criterion that is an objective definition of completeness. 

I t  is possible to determine the original elements in the formal specification 

from which a selccted test frame was derived. 

Definitions of fundamental coverage criteria. 

This t hesis presen ts a tem plate for detailed mat hematical de finitions of cover- 

age criteria. The definitions of some fundamental coverage criteria. are given 

as examples. I t  is likely that more elaborate coverage criteria will be defined 

according to the discipline of this thesis as it becomes more widely used. 

Along with the above contributions. other results of this research are noted 

below. 

Logicai espressions can be partitioned based on whether or not test frames 

can be algorit hmically produced from t hem. To alIow maximum espressiveness. the 

input to the algorithms is allowed to be as arbitrary a predicate logic expression 

as possible. However. certain restrictions are necessary to ensu re t hat test frame 

generation can be achieved algorit hmically. 

A specification language, Q, has been designed for specifying systern-level 

requirements. This language contains features specifically designed to ease the task 

of formalizing a natural language specification. Q specifications tend to be as  concise 

as natural language, but, of course, do not contain arnbiguities. 

Requirements changes are inevitable during the course of software develop 

ment. The Delta Problem is the problem of integrating existing test frames into new 



test frarne sets produced from the new version of the requirements. The Delta P r o b  

lem can be defined mathematically. In general. the Delta Probleni is undecidabte. 

but partial solutions esist . 

The value of the forma1 specification of systeni-level requirements is in- 

creased. By providing a means of automating the generation of test frarnes. this 

thesis altows more to be done with a forma1 specification of system-level reqiiire- 

ments than simple type-checking. ft also provides a Iess espensive means than 

t heorem-proving for deriving ot her artifacts from a specification. 

The novetty of this thesis is that it provides a firm mathematical foundation 

for the automation of system-level requirernents-based testing. While t here are many 

excellent works devotecl to  specification-based testing, t hey focus on techniques t hat 

are applied to unit-level specifications or to simple models of selected aspects of 

system-Ieve: requirements. These techniques are too restrictive to be successfuily 

applied to  the broad range of system-level requirements addressed by this thesis. 

Chapters 2 through -4 establish ~ h e  research problem and motivation for the disci- 

pline. while Chapters 5 through 7 forrn the core of the discipline and its application. 

Chapter 2 describes system-level requirements-based testing in greater detait, and 

esarnines the associated problems. Chapter 3 describes esisting solutions. Chap 

ter 4 identifies the issues of system-Ievel requirements-based testing t hat distinguish 

this level of testing from others, such as code-based testing. Chapter 5 presents 

a discipline of test derivation that provides a nomenclature that can be used for 

defining coverage criteria. Chapter 5 represents the central contribution of this the- 

sis. Chapter 6 defines coverage criteria using the nomenclature based on extensions 



of the algorit hms from Chapter -5. This represents t lie fundamental application 

of the discipline. Chapter 7 esamines an application of this discipline in its most 

general setting. Chapter 8 presents one possible application of  this discipline t o  

system-Ievel requirementsbased testing. Concllisions and future work are presented 

in Chapter 9. 



Chapter 2 

The Problem 

The development of test frames is a key stage in system-level requirements-based 

testing- This chapter identifies a set of Iirnitations and inefficiencies encountered 

du ring t his stage of test derivation. A coverage criterion determines the -complete- 

ness" of a set of test frames with respect to the requirements specification from 

which they w r e  derived. Subjective coverage standards and the maniial derivation 

of systern-level requirements-based testing incur significant espense. Contributing 

factors include: the labour required to anaIyze the requirements and derive the a p  

propriate tests: revietvs ensuring the quality, correctness, and completeness of the 

tests: and the impact of these activities on software development scheduIes. This the- 

sis focuses on decreasing the subjectivity and increasing the accuracy of test frame 

derivation by providing a mathematical foundation for defining coverage criteria and 

calculating test Frames from specifications. T hese capabilities have the potential to 

reduce the  costs associated with systern-level requirements-based testing. 



2.1 Introduction 

Defective software can be frustrating, expensive. and. in the worst case. life t hreaten- 

ing. However. for comples software systems. it is rarely possible to perform enoiigh 

tests to guarantee that running yet another test is fruitless. For this reaTon. i t  is 

necessary to define a milestone that signals the end of testing and the point at ivhich 

the software can be ÏnstalIed in the field. This milestone is defined as the successful 

completion of a set of tests. For the milestone to be credible. this test set must 

satisfy some pre-agreed criterion. .A central concept in testing. such cri teria define 

test set completeness. inspire methods of test generation. and provide a mediuni for 

cornmunicating issues relevant to ensuring that software is released in both a moral 

and fiscally prudent fashion. 

The focus of t h i s  thesis is a discipline that can be applied to systern-level 

requirements-based testing. This type of testing considers statements of the sys- 

tem's required behaviour in terms of stimuli and responses. Xlthough the internal 

mechanisms that irnplement that behaviour are not considered. an abstract view of 

internal states of the system typically plays a role i n  test derivation. 

Traditionally. tests are derived manually by analyzing the natural language of 

the requirernents. Ruies of t humb are used to determine the rneaning of standardized 

phrases wit hin the requirements. Test engineers use cornmon sense transformations 

of these phrases to derive test Frames. This derivation irnplicitly incIudes an under- 

standing of a coverage criterion. However, the particular criterion and the derivation 

methodology depend on the ski11 and esperience of the test engineers. :l goal of t his  

t hesis is to standardize non-domain-specific aspects of test derivat ion met hodology, 

thereby allowing the ski11 and experience of test engineers to be focused on domain 

speci fic issues. 



.issurance that a set of test frames satisfies a given criterion is achieved 

through a review process. This review process relies on a rnechanism known as 

tmceability. The t raceabili ty of requirements to test frames aIlows reviewers to 

confirm that the test frames are consistent with the requirements. and that the set 

of test frames satisfies the given criterion. 

Jlithough the derivation of test frames from requirements incurs significant 

cost. there is a surprising lack of automation of the analysis required for this task. 

This is partIy due to the difficulties of autornaticaIly processing natural langage. 

but a more important obstacle is the subjectivity of test derivation guidelines such as 

those found in DOlÏSB. DOD-STD-2167.4. ANSI/IEEE 829-1983, and MIL-STD- 

498. Any solution providing a means of automation, will also provide objective 

definitions of criteria for sets of test frames. Additional characteristics of a solution 

include: cont rols enabling test engineers to esercise engineering judgement . trace- 

ability of requirements to test frames, and some degree of containment of the impact 

of requirements changes. 

Several qualities of system-level requirements-based testing point towards a 

solution based on mathematical logic. The automation of Iogical transformations 

and the requirements for test frarne correctness are both addressed by such a solu- 

tion. and would also provide the required objectivity. The importarice of objective 

criteria is a centra1 point of this chapter. 

The importance of testing and the need for criteria signaling its completion 

is given in Section 2.2. The significance of these general criteria is examined further 

in Section 2.3. Section 2.4 describes the application domain of this thesis, system- 

level requirernents-based testing, while Section 2.5 details the process of manual test 

frame derivation. The notion of the traceability of requirements to test frames and 



its current relevance to ensuring completeness is given in Section 2.6. Section 2.7 

examines the lack of a process for automatically deriving test frames. 

Based on the limitations and inefficiencies presented in Sections 2.2 t hrough 

2.7. Section 2.8 details characteristics of a solution. Section 2.9 provides the irnpetus 

for a solution based on machernatical logic. and gives a scientific perspective of the 

essence of system-level requirernents- based testing. 

2.2 Testing 

.A simplified view of software development identifies four basic phases: requirements 

specification, design. implementation, and testing. Requirements specification es- 

tablishes the required behaviour of the sÿstem. The design phase determines how 

these requirements will be achieved. Implementation is the building and assernbling 

of corriponents according to the design. One of the purposes of testing is to provide 

a degree of confidence that each of the required behaviours is eshibited by the im- 

plementation. Testing is essential to ensuring software quality. yet it is a tâsk tha t  

can rarely be cornpleted to the point where nothing can be gained by performing 

more testing. X substantial problem in  testing is deterrnining when enough testing 

has been performed to ensure the desired quality with fiscal efficiency. 

In general. a s u  bstantial measure of professional and public confidence in the 

design and irnplementation of a critical system is based on the assumption t hat the 

system has been "completely tested." However, it is rarely practical to  test every 

conceivable situation in which such a system must perform flawlessly. This is partly 

due to the immense size of the input domain tha t  exists for a large system. To 

exhaustively test the inputs For even a simple program that implements a function 

of two 16-bit integers requires ( . L ' ~ ) ~  = 4,294,967,296 tests. 



Cleârly. t hen. a non-trivial software systern cannot be "completely tested" in 

the sense that every possible situation has been accounted for. The classic "divide 

and conquer" approach does not work. It is impractical to decompose a non-trivial 

system to a level of granularity that coiild be completely tested and then integrate 

the results for the whote systeni. Some criteria are needed to define an adequate set 

of tests to  be tised to determine when software can be installed in  the field. 

2.3 Coverage Crit eria 

.-i program's prosirnity to being "completely tested" is determined by the properties 

of the set of tests as a whole. Criteria describing desirable properties are used to 

construct a test set which is both small. and also satisfies the chosen criteria. The  

intention is that these corTerage criteria lead t o  test sets which exercise a saniple 

of the program's input domain that is likely to uncover faults. if they esist. The 

-cornpletenessu of a test set is rneasured relative to a particular coverage criterion. 

Use of the word coverage stems from the  notion that the criterion implies 

a categorization of the input domain. and tha t  any test set satisfying the coverage 

criteria covers. or esercises. one or more representatives of each of the categories. 

The categorization is not necessarily a partition, i.e., the catepories are not required 

to be disjoint subsets of the input domain. 

Conclusions about the performance of a system are generalized from the 

successfd completion of a test set. The validity of t hese conclusions depends on the 

coverage criteria satisfied by the test set. 

There are several different types of coverage criteria, which correspond to 

different types of testing. Each type of organized testing focuses on a difFerent 

objective and a different abstract view of t h e  software. For example, unit testing 



focuses on demonstrating the correctness and robustness of individual components of 

the system. From this testing. conclusions may be drawn regarding each component 

in isolation. This type of testing supports conclusions about system components. 

but general concti~sions cannot be drawn regarding the operation of the systern as a 

whole. or how rvell t h e  system meets the original requirements specification. Ot her 

coverage criteria focus on these latter concerns. 

Coverage criteria serve a dual purpose: 1) as  a definition of completeness 

to  guide the construction of test sets and evaluate their completeness. and 2) as a 

description to others of the degree to which a program h a ç  been tested. 

2.4 System-Level Requirements-Based Testing 

This t hesis addresses software development processes similar to t hose orttlined in 

softwaresystern developrnent documents such as DOlï8B.  DOD-STD-2167-4, AXSl/- 

IEEE 829- LSS:3. and MIL-STD-498. In t hese processes. system-leuel. requirements- 

based testing refers to a particular IeveI of software testing with the goal of verifying 

through demonstration that each of the requirements wit hiri the specification has 

been satisfied. This can be only a partial verification, due to the sizes of the input 

and state spaces. Such a demonstration assists in signaling the completion of the 

development cycle. I n some software development. processes. t his dernonst ration is 

necessary for the legal completion of a contract between a customer and a software 

manufacturer. 

One method of achieving this demonstration is by performing a nurnber of 

tests. Each test is defined by a test procedure. Each test procedure is a sequence 

of test steps. Each test step contributes to the demonstration that a specified 

requirement has indeed been satisfied. Each test step involves the application of 



a stimulus to the software system, and a cornparison of the actual response of the 

system wi th the espected response specified by the tequiremen ts. 

This level of testing is "system-levet' in the sense that the internal structure 

of the system is not visible: al1 testing must be perforrned by the application of 

esternally generated stimuli and the observation of externally visible responses- It 

is nrequirernents-based" in  contrast to other kinds of system-Ievel testing which may. 

for instance. be based on scenarios intended to approsimate the expected use of the 

system for such purposes as determining system performance or reliability. 

This thesis is oriented to  a very general style of requirernents specification i n  

which requirements are espressed by statements that express relationships between 

esternally generated stimuli and externally visible responses. The requirements 

may also contain references to an abstract representation of the internal state in the 

form of pre-conditions and post-conditions. This style of requirements specification 

s t  rong1y discourages the description of internal processing. tt is distinguishable from 

-model-oriented" approaches which involve the presentation of a n  abstract mode1 

as a means of describing the desired functionality of a system. in particular. the 

style of specification addressed by t his t hesis is characterized by logically corn ples 

statements of behaviour. relating system stimuli and responses rather than stating 

simple transitions amongst a complex network of states. 

in a typical large systern. each test procedure serves as a script for a test 

session that would typically require no more than several hours of effort to esecute. 

However. many months of effort rnay be required to develop the test procedure. The  

manual development of a test procedure by a test engineer can be described in  terms 

of two main phases. 

The first phase decomposes requirement statements into a set of test frames. 



This involves lexical analysis of the syntactic structure of the requirements state- 

ments guided by key words and phrases such as "and ." &or.' "not ." "if,- "unles." 

%henever.- 'providecl that.' &on the condition thate7 and "except if one of the 

following conditions is true." 

The second phase of a tÿpical test procedure development process is to or- 

ganize t tie test frames into sequences. The sequences must be arranged in order 

to ensure that the pre-conditions of each test frame are satisfied by the preceding 

sequence of test frames. The pre-condi t ions and post-conditions may be assertions 

about the internat state of the software system, or they may be assertions about 

parameters of the stimuli or responses. 

This second phase of developing a test procedure also involves the instan- 

tiation of sequenced test frarneç into test steps in a test procedure by replacing 

data references. e.g.. &the current altitude of the aircraft." with actual values. e-g.. 

nlO.OOO feet..' The instantiation of test frames during this second phase may involve 

the use of techniques siich as Boundary Analysis and Equivalence Partitioning [45] 

to ensure that a suitable sample of act ual values is used i n  the test procedure. .A 

test step. an instantiated test frarne, is often referred to in the literature as a test 

case. 

As stated in Section 1.2, the scope of this thesis is limited to the first of 

the two phases described above: the decomposition of requirements into a set of 

test frarnes. The second phase of this process, both the instantiation of test frames 

with actual data values and the ordering of test steps, is outside the scope of t his 

dissertation. 

'Other authors &O use "test case" to refer to an entire test procedure. Due to the multiple mean- 
ings of this term, it is excluded from the vocabulary of this dissertation to avoid misinterpretations. 



2.5 Manual Test F'rame Derivation 

Esperienced test engineers use "rules of thumb" to decompose requirernent state- 

ments into test Frames. For esample, the presence of the key word rior" i n  the 

antecedent of a requirement of the form. 

iVhen Stimulus S occurs and Condition Cl or Condition C'2 is true. then 

the systern shall produce Response R 

indicates chat the requirernent must be decomposed into at least two separate test 

frames - one for when Condition Cl  is true. and another. separate test frame for 

when Condition C2 is true. This would yield a pair of test frames, 

1. S and C l  and (not C2)  a R. and 

2. S and (not CL) and C2 3 R. 

where the symbol separates the stimulus part (both the externally generated 

stimuIus and the pre-conditions) from the response part (both the externally visible 

response and the post-conditions). This symbol may be read informallÿ as -yieldsW 

or -results in." Depending on the coverage criterion used by the test engineers. 

additional test frames ma? also be generated to test For situations when the response 

R should not be produced, i.e., "a not R." 

It is often necessary to combine requirernent statements to generate test 

frames. For instance, a statement of the forrn, 

Unless Conditions C3 and Ca are bot h true, the system shall also produce 

Response R1 whenever Response R.2 is producecl 

needs to be paired with another statement such as, 



When Stimulus S occurs. then the system shall produce Response R2 

to obtain an "end-to-end" stimulus-response relationship between Stimulus S and 

Response R1. The combination of these two statements can then be decornposed 

in to  a set of test frames. 

While performing this ta&. test engineers manitally apply rules of logical 

reasoning such as Deh[organ's Laws. e-g.. 

not (A and B) = (not A)  or (not B). 

This is illustrated by the above esample. which would Iikely involve substituting 

(perhaps just menta1Iy) the phrase -unless Conditions C3 and C4 are both triie" 

with the logically equivalent phrase "if Condition C3 is false or Condition C4 is 

Fatse." The -or' in the resutt of tliis substitution could then be used to sptit this 

requirement into two test frames. Another esaniple is the substitution of the phrase 

-whenever Response R2 is produced" with the phrase -when stimulus S occurs," 

using a rule of logical reasoning sornetimes called -pre-condition st rengt hening." 

Test engineers niay not be aware of the fact that they are using DeiLIorgan's L a w  or 

-pre-condition strengt hening.' but. reassuringiy. t here is a correspondence between 

engineering intuition and format logic. 

Thus. the decornposition of requirements into test frames can be viewed as a 

series of lexical transformations based on rules of logical reasoning. in general, the 

resulting test frames are logically implied by the requirernents. This makes sense 

from a practical engineering point of view. Obviously. it would be undesirable to 

test for stimulus-response relationships not irnplied by the requirements. 

The work performed by a test engineer during this first phase is not entirely 

a rnatter of routine logical deduction. Much effort is typically spent "disambiguat- 

ing" naturaf language in order to expose the logical structure of the requirements 



statements. Other considerations, such as domain knowledge, also contribute t o  

this process. Knowledge of the application domain is needed t o  understand depen- 

dencies between various conditions referenced in the requirements. and t o  avoid the  

generation of irnpractical o r  infeasible combinations of conditions in test irames. For 

esample. the conditions "is airborne" and "has landed" rnay appear together as con- 

ditions in a test frame which is logically derivable from the  requirernents for an air 

trafic control system - but which would be rejected by a test engineer on the basis 

t hat it is infeasible. Nevert heless, reasoning about stimulus-response relationships 

in a systematic manner is a central part of this ta&. 

T h e  effectiveness of these conventions is highly subject to  the discipline of 

requirements authors in avoiding words o r  phrases which may be ambiguous o r  

have shown a tendency t o  be misinterpreted. For example. esperience shows that  a 

requirement of the form. 

\Vhen Stimulus S2 occurs and Condition C.3 is true. then the system 

shall produce Response R2 unless Condition C-l is false 

is not necessarily arnbiguous. but it is more likely to  be misinterpreted than the  

following, logically equivalent. staternent of this requirement: 

When Stimulus S2 occurs and Conditions C 3  and C-L are both true, then 

the system shal1 produce Response R2. 

The task of systernaticaIIy deriving test frames becomes niore cornples when the 

interpretation of a particular requirement depends on other  requirements. For ex- 

ample, the  interpretation of the  requirement, 

When Response R3  is produced and  Condition C5 is true, then also 

produce Response R4 



depends on the set of requirements which specily conditions iinder which Response 

R3 will be produced. When interpreting this requirement for the purpose of deriving 

test frames. one possibility is to lexically replace the phrase -When Response R3 

is produced- with one of the possible conditions under which Response R3 will be 

produced. Another possibility is to lexically replace this phrase bp the logical dis- 

junction of al1 of the possible conditions under ivhich Response R3 ivill be produced. 

For esample. suppose that the conditions for producing Response R3 are espressecl 

by the following two requirements: 

When Stimulus S4 occurs. then produce Response R.3. 

When Stimulus S5 occurs, then produce Response R3. 

With the first approach, lexical replacement of the phrase "When Response R3 is 

produced" ivill yield a re-statement of the original requirement in a form, 

When Stimulus S-I occurs, then also produce Response R-4 if Condition 

C.5 is true. 

ivhich would then be decomposed into a single test frame. This is different Frorn the 

result of following the second approach, 

When Stimulus S4 or Stimulus S5 occurs, then aiso produce Response 

R4 if Condition C S  is true, 

which would be decomposed into twodistinct test frames because OF the introduction 

of the word -or" into the test of the requirement. 

Yet anot her source of complexity in the process of deriving test frames from 

requirements is illustrated by the following esample requirement: 



When Stimulus S6 occurs. and ((Condition C6 is triie or Condition CT is 

true) and (Condition C8 is true or Condition Cc) is true)). then produce 

Response R5. 

In t his esample. parent heses are rised to iinam bigitotisly state the requirernent by 

clarifying the nesting of the logical connectives. -or' and -and." As an alternative to 

parentheses. a decision table or an itemized list of conditions may be niore readable. 

However. the formatting style of a requirernents specification is beyond the scope of 

this thesis, 

The nesting of disjunctions. i.e.. phrases containing the word -orn. [vit hin  

a conjunction. i.e.. the phrase containirrg the word -and". is the source of a furi- 

damental choice of coverage in the methodologv used to systematically cierive test 

frames from a set of requirements. For the above esaniple. this choice is a matter of 

deciding which subset of the following test frames are necessary to verify the above 

requirement: 
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Stimulus 

S6 

S6 

S6 

S6 
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S6 

S6 

S6 

S6 

S6 

S6 

S6 

S6 

Conditions 

C6, C i .  C8, C9 

C6, CI. CS, not CO 

C6. CI. not CS, C 9  

C6. not C7. Cs, C9 

not C6, G, CS. C9 

C6. not C7, L8, not C9 

C6, not CI. not CS. C9 

not C6. C i .  CS, not C'9 

not C6. C i .  not C8, C9 

C6,  CS 

ci. L9 

C6. C9 

Li', CS 

Res ponse 

Rb5 

R .S 

R5 

R.5 

R.5 

R.5 

R.5 

R*5 

R.5 

R.5 

R.5 

R 5 

R.5 

Several notions of corn pleteness are possible. Those discussed here are given 

narnes and definitions in Chapters -5 and 6. Under one notion of completeness. only 

the first nine test frames are necessary to daim that the verification set for the 

requirement is complete. Under anot her notion of compieteness, test frarnes 10- 13 

are sufficient, The difference between these two test frame sets is t h e  amount of 

detail specified in the test frarnes. Under yet another notion of completeness, it 

would be possible to reduce the verification set to just test frames 6-9. Ender le t  

another notion of completeness, it would be possible to reduce the verification set 

for this requirement to just test frames 6 and 9, or, alternatively, just test frames 

ï and 8. Hence, depending on the notion of cornpleteness used in the methodology, 

the minima1 size of the verification set for this requirernent would be nine, four or 



two test frarnes. DiFerent situations may favour a farger number of test frames or 

a smaller one. However. it is clear that these notions of cornpleteness need to be 

distinguished in a standard way, and referred to using standard names. 

The illustrative esamples given above are simplistic i n  the sense that they 

amount to relatively small differences in the number of test frames required to 

completely verify a requirement. However. differences in the coverage criteria used to  

derive test frames from requirements, when applied to large, comptes specifications 

of requirements, have potentially large differences with respect to the niimber of test 

frarnes required to satisfy a particular form of coverage. 

Perhaps more importantly, the esarnples given above suggest that the deriva- 

tion of test frames from a set of requirements is not necessarily a routine process 

that always leads to the same result independently of the ski11 and esperience of 

the individuals performing the work. Some skill and esperience will always be re- 

quired to perform this task. However. this thesis is motiva.ted by a desire to focus 

test engineer skill and esperience on less tedious aspects of the task. In addition 

to improving the process by reducing the number of corrections that need to be 

made du ring test procedure reviecvs. the precise description of coverage criteria for 

systern-level requirements-based testing provides the basis for the development of 

software tools to partially automate the derivation of test frames from requirements. 

The estraction of test frarnes from a requirernents specification requires a 

great deal of manual effort. The volume of the requirements, and the complesity 

t hat can be present through the use of decisions wit hin the text referring to several 

conditions and negating such decisions, make this task tedious, routine, and error 

prone. Thus, additional effort must be spent in reviews to ensure that the set of 

test frames satisfy certain properties. Reworking test procedures as a result o l  



specification changes is costly not only due to the effort involved. but also due to 

the impact on schedules. 

The act of producing test frames often uncovers anomalies in the specifi- 

cation. However. the loose connection between specification aut horing and test 

planning causes this feedback to be delayed until late in the authoring stages. 

2.6 Coverage via Traceability 

In a disciplind approach to requirements-based testing, the -completeness" of a set 

of test procedures is determined by inspecting the relationship between the require- 

ments specification and the contents of stcps in test procedures. A traceability 

mapping from reqiiirements to individuai test steps is used to demonstrate that 

the set of test procedures is &complete9 in  the sense that every functional require- 

ment can be traced to an appropriate set of distinct steps in a test procedure [L6]. 

The size of this appropriate set is determined by the number of choices rvithin the 

requirement. 

Typicaily. each requirement h a s  a unique identifier. and each step in a test 

procedure is annotated with a list of requirement identifiers. Confirmation of the 

implernentation of a requirement is demonstrated upon successful completion of 

al1 steps associated with that requirement. The requirement identifiers provide a 

met hod of maintaining t his association. 

The completeness of a set of test procedures can be determined automatically 

bÿ a software tool that parses out requirement identifiers listed in the test proce- 

dure and compares this set of identifiers against a complete set of al! requirement 

identifiers. The test set is not complete until every functional requirement has been 

mapped to an appropriate number of specific test steps. In this case, coverage refers 



to coverage of the requirernents. 

Traceability is necessarÿ for providing an audit trait to support process mon- 

itoring as well as assisting in  evaluating completeness. Traceability between require- 

ments and tests also assists in determining the scope of test set changes required 

when requirements changes occur by providing a n  index that can be used to facilitate 

the appropriate review tasks. 

However. traceability is only a partial solution to determining the complete- 

ness of a test set. This type of tool assumes that the requirenient identifiers attached 

to the test steps are correct. More importantly, it is aIso assumed that the appropri- 

ate combination of tests that refer to any particular requirement has been procliiced. 

The reality of human error necessitates the use of reviews to ensure that these re- 

quirement identifiers are correct and that a suitable number of test steps has been 

produced for each requirement. 

2.7 Lack of Automation 

It is possible that the proprietary state-of-the-art is more advanced than the doc- 

uments quoted beIow. Hoivever, the quoted documents represent the pu blished 

sources of coverage criteria upon which industry standards could be based. 

Requirements-based testing guidelines contained in  documents such as 

D0178B. D O D - S T D - ~ ~ ~ T . ~ ~ .  ANSI/IEEE 829-1953. and MIL-STD-498 do not con- 

tain enough detail to objectively define algorithms for deriving test frames in  the con- 

test of logically complex requirements specifications. Of these documents, DOITSB 

gives the most detaiied description. Paragraph 6.4.4.1 (a) states: 

.Mt hough superseded by &l ILSTD-498, some software development projects stiU use DOD- 
STD-2 167.4 



Test cases esist for each software requirement. 

Figure 2.1 is an image of Table -4-7 from DO 1XB. and indicates the differences 

in the amount of detail given between requirements-based test coverage and code- 

based test coverage: The descriptions for code-based coverage criteria given in Rows 

.5 throiigh 8 refer t o  specific. objective definitions. By corn parison. the description 

of coverage in Row 3. for requirements-based testing. is not defined. 
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In paragraph 4.3.4 of DOD-STD-'LL67A. coverage is described by referring 

to t raceability: 

The contractor shall document the traceability of the requirements in  

the Software Requirements Specifications (SRSs) and Interface Requi re- 

ments Specification (IRS) that are satisfied or partially satisfied by each 

test case identified in the Software Test Description (STD). 

Paragraph 5.5 of IlIL-STD-498. the document tvhich supersedes DOD-STD-2167.A. 

specifies only that the coverage criterion should be documented: 

-3.5 Software requirernents analysis. The developer shall define and record 

the software requirements to be met by each CSCl [Computer Software 

Configuration Item]. the methods to be used to ensure that each require- 

ment has been niet. and the traceability between the CSCl requirements 

and system requirements. The result shall include a11 applicable items 

in t h e  Software Requirements Specification (SRS). 

-4YSI/IEEE 829-1983 is the IEEE standard For software test documentation. Its 

contribution is similar to that of MIL-STD--198, as it States that the approach must 

be documented but does not specify a collection of possibIe approaches for system- 

level requirements: 

3 2 . 6  ... Identify the techniques which will be used to judge the compre- 

tiensiveness of the testing effort ... 

In  addition to a lack of detail in the above guidelines, the definitions of cov- 

erage criteria are determined by the subjective interpretation of these documents. 

This subjective interpretation is the responsibility of esperienced test engineers. 



To prevent this interpretation from becorning too ad hoc or unsystematic. well es- 

tablished techniques impose discipline and formality. e.g., the use of requirement 

identifiers for tracing requirements to test steps. While establistiecl techniques pro- 

vide a disciplined approach to interpreting standard guidelines. certain problems 

arise due to the lack of an objective definition of coverage. 

-4s described in Section 2.5, to derive test frames from a set of requirements. 

a test engineer is required to break up possibly IogicaIlÿ cornplex requirements into 

a set of atomic stimulus-response reIationships. Addressing logicaI cornplexity to 

the degree necessary to derive an appropriate set of systeni-level test frames has 

not been addressed in software deveiopment Iiterature. The guidelines mention 

data selection concepts such as -average." -boundary,' and -ou t-of- bou nds" values. 

The? add only t hat there should esist a test for each software requirement, and 

that different combinations of operations should be esercised. Cinfortunately. none 

of this describes the analysis of logical complesity, nor does it define the level of 

detail that should be reflected in the test steps produced. 

While documents such as DO l X B ,  DOD-STD-2 167-4. ANSI/IEEE 529-1983. 

and BIIL-STD-498 provide some general guidelines for requiremen ts- based testing, 

they do not provide the specific detail required to  objectively decide if a particular 

test frame is missing from the test set, or if a particular elernent of the test set 

is redundant. Different esperiences arnongst senior test engineers, combined with 

subjective guidelines. almost guarantee t hat disagreements will arise. Resolutions of 

these disagreements can only be arbitrary, and are in danger of being inconsistent. 

Therefore, the lack of an objective definition becornes a management issue because 

it places too much dependence on engineering judgrnent and experience. 

Communications with the customer regarding the thoroughness of the testing 



performed are  sornetimes in terms of statistics based on the amount OF resources 

spent. rather t han an objective account of the coverage achieved. This forces the 

customer to place a great deal of faith in the developer. or to incur additional espense 

to review the test process in order to becorne farniliar with the level of testing being 

applied to  their product. 

The lack of objective definitions of coverage has resulted in a lack of auto- 

mated tools for the anaiysis of requirements. There are commercial tools for deriv- 

ing tests From esecu table models of requiremen ts. The disadvantages of esecu table 

models are presented in Section 3.4. The disciplirie presented in this dissertation 

advocates the use of forma1 translation rat her t han modelling. 

2.8 Towards a Solution 

Any solution to the limitations and inefficiencies presented in this chapter should 

eshibit the following characteristics: 

1. -4 means of defining objective coverage criteria is provided. 

2. Test frame derivation is, a t  least partially, automated. 

3 .  Test engineers can control the automated portions of test frame generation in 

order to  esercise engineering judgment when necessary. 

4. Traceability is supported. 

5- The impact of requirements changes on previously derived test frames can be 

containedo to some degree. This capability requires analysis beyoiid traceabil- 

i ty. 



Characteristic 1). objective definitions of coverage criteria. is the most im- 

portant. The existence of such definitions would: 

(a) eliminate the su bjectivity of current coverage guidelines upon w hich disagree- 

ments of interpretation are based: 

(b) reduce the impact of esperience on the performance of test engineers. allowing 

junior test engineers to perform more like senior test engineers earlier: 

(c) allow completeness to be measured objectively and. per haps. algorit hmically: 

(d)  provide a means of partially autornating the construction of test sets: and 

(e) allow communications to the customer to be based on progress relative to 

pre-agreed coverage criteria. t h u s  refiecting act ua l  achievemen t. 

Furthetmore. objective definitions of coverage. standardized across the software cle- 

velopment industry. wotild provide a ctearer picture of the degree to which products 

had been tested. 

Characteristic 2) corild potentially reduce testing costs and increase the con- 

sistency and accuracy of the tests produced. Characteristic 3) is essential to any 

software development process applied to a non-t rivial project . Test engineers must 

be able to control the test frame generation process in  order to deaI with special 

circumstances which may arise. It is also important that the test frame generator be 

able to buiId test sets around test engineer guidance, rather than simply tolerating 

it. Characteristic -4) provides an audit trail for various purposes. Traceability not 

only provides a means of reviewing the test frarne sets produced by the test frame 

generator, but also provides a means of tracking down errors in the requirements 

flagged by a n  incorrect test frame. Characteristic 5 )  is important for reducing costs, 



but will be limited since the iinderlying logic ailows undecidable fornlulae in order 

to be expressive. 

2.9 Motivation for a Mat hematical Approach 

Mathematics provides the rneans of achieving the accuracy required to accomplish 

great feats. AS long as 4.500 ÿears ago. Khtifu's Great Pyramid a t  Giza tvas con- 

structed so accurately that the perimeter of the base divided by twice the height is 

q u a 1  to Pi t o  5 decimal places. The Pont du Gard. built before the first century 

-4.D.. is an architectural masterpiece that belies the accuracy of the aqueduct it 

supports. This Roman aqueduct had the capacity to deliver 120.000 rn3 of water 

per day along a 50 km run and a mere I i  metre drop (34 cm/km) into a "castellurn 

divisorium" with the capacity to  distribute L25,000 m3 per day. Today. mathemat- 

ics provides the means of piloting spacecraft on gravity-assisted t rajectories taking 

them close to the inner pianets to steal mornentum in order to hasten the spacecraft 

towards Jupiter and Satu rn. 

In the field of computer science. the construction of parsers for higher level 

programrning languages in  the Iate 1950's and early 1960's was a craft. not a science. 

It was not until Xoam Chomsky proposed a mathematical hierarchy of languages, 

originally for classifying natural languages? that  parsing became well understood. 

In addition. the Chomsky Hierarchy has had a profound influence on the syntactic 

structure of modern program ming languages. This is one exam ple of the use of mat h- 

ematics to change a labour-intensive, error-prone process, e.g., parser construction. 

into one that is automatic and Bawless. 

It is reasonable to expect a similar benefit by applying a mathematical so- 

lution to automating test frame generation. The  logical complexity within require- 



ments speci fications forces test engineers to perform logical reasoning (informallÿ) 

during their manual deritation of test frames. This reasoning process is an escellent 

candidate For the appIication of mathematical logic. 

These considerations motivate the use of rules of mathematical logic to ma- 

nipulate a formai expression of the requirements specification for the purpose of 

calculating test frames. The idea of usirig iogic as a medium for calculation is not 

new. e-g.. Prolog [-Il and Binary Decision Diagrams (BDDs) [SI. Using a set of 

mathematically sound rules guarantees that the algorithmically cierived test frames 

are logical consequences of the specification. It is possible that an incorrect im- 

plementation of these algorit hrns  may introduce errorç into the test frames derived. 

However. the centralization of expression manipulation employed i n  theorem provers 

such as HOL ['28]. PVS [JT]. and Isabelle [50, -18. -171, can provide a high degree of 

confidence that the risk of such errors is negligible. 

A scientific perspective of system-levet requirements-based testing can be 

espressed by the following questions: 

Hou? can test frarnes be derired from an nrbitrarg formuln expressing a reln- 

t ionship between st imuli  and responses? 

Currentlÿt requirements specification aut hors are free to express the mquire- 

ments in  any way they find appropriate to accurately and eficiently convey 

the meaning of a requirement. Although a mathematical logic approach wilt 

impose some restrictions on authors' styles, this must be minimized in  order 

to make the implementation of such an approach practical in a n  industrial 

setting. To achieve t his, any algorithm must assume that the input format of 

the formal version of the requirements is as general as possible. 



CVhnt con-sstitirtes a test  fmme? 

It is Iikely that a test frame will consist of a list of stimuli and a list of espected 

responses. However. to satisfy au t hors' needs for expressiveness. it is l i  kely 

that the underlying logic will allow quantification. The effect of quantifiers on 

these lists of stiniuli and responses must be understoocl. Also. it is likely that 

test engineers will require some control of the amount of detail contained in 

the test frames. 

f Vhrt restrictions on the stimulus-response formula are necessnry in order to  

crllow automatic processing? 

Since the elernents of the logic that allow undecidable formulae cannot be re- 

moved without reducing expressiveness, it is Iikely that there must be some 

other restrictions on the use of these elements in  order to allow for an algo- 

rithmic transformation From a definable class of input specifications to test 

frarnes. 

a Hou? can the relrtionship bettoeen tes t  /rames and the originalstimulus-response 

/orm ula be descn'bed? 

Some means of relating test frames to the stimulus-response Formula supplied 

by the requirements au thors rnust be possible in order to provide some measu re 

of completeness. 

-A mathematical logic foundation for the definition of coverage criteria for 

system-IeveI requirements-based testing should provide a depth of understanding 

similar to that of language syntax. Mathematics is both a method of definition and 

a means of calculation. Both of these aspects are present in the goals of defining 

objective coverage criteria and automating test frame generation. The nomenclature 



of coveragecriteria definitions is motivated by the  goal of caicufating test frames 

from specifications. 



Chapter 3 

Existing Solut ions 

This chapter presents esisting solutions which might be applied to system-level 

requirements-based testing. Although each approach has advantages in deriving 

different types of tests, certain shortcomings remain. Esamining these techniques 

introduces the background for underlying issues which are examined furt her in C h a p  

ter 1. 

3.1 Introduction 

The techniques examined in  this chapter can be categorized as systematic. code- 

based. and logic-based. Some of the techniques referenced in this chapter produce 

test frames, whik others produce test steps and test procedures. In  this dissertation, 

when it is not necessary to distinguish the differences between these products, t hey 

are referred to simply as tests. 

Perhaps the most obvious approach to automating the analysis aspects of 

system-level requirements-based testing is to simply define standard phrases and the 

systematic transformation of these phrases into test frames. Sÿstematic approaches 



have the potential to be successful within the environment for which they were 

developed. However. the fact that they are not based on a mathematical foundation 

will hamper t heir applicability in a general set ting. 

Discrepancies between the circumstances and objectives of unit-level testing 

and t hose of system-levet testing lead to the conclusion t hat system-level require- 

ments-based testing and code-based testing are fundarnentally different. T hus. al- 

though code-based testing is tvell understood. it does not provide a direct solution 

for system-levei requirements-based testing. This is esamineci further i n  Section 3-3. 

Techniques based on mat hematical logic solve some of the problems of the 

systematic and code-based techniques. However. the prirnary difficulty wit h current 

techniques based on mathematical logic is the lack of a combination of both a u -  

tomation and the espressiveness to specify u:hat is required wit hou t specifying hou? 

it is achieved, 

Section 3.2 examines the sÿstematic approach of using mechanized transfor- 

mations to produce test frames from requirements. The possibility of exploiting the 

success of code-based techniques from unit-level testing is exploreci in Section 3.5. 

Section 3.1 examines curren t approaches based on mat hematical logic. 

3.2 Systematic Approaches 

One possible approach to automating the derivation of test franies from system-Ievel 

requirements is to restrict the requirernents language to a standard set of phrase 

styles. This avoids the problems associated with parsing the ambiguities of natu rai 

Ianguage. The information within the restricted phrases could then be extracted 

by a parser designed for this language, and rearranged into test frarnes by a set 

of standardized transformations. The distinction between this approach and those 



described in Section 3.4 is that there is no mathematical basis for the soundness of 

t hese transformations. This means that situations rnay exist w here appIications of 

these transformations do not preserve the true meaning of a specification. Therefore. 

reviews are required to ensure test frame quality. 

This approach would be finely tuned to the process for which it was designed. 

and would probably be reasonabiy successful. However. there are fundamental lim- 

itations to this approach. The first is that this would be a solution only for spec- 

ifications that can be written using the particular set of phrases. There is also no 

guarantee t hat a subsequent specification aiithor would not use the specification 

phrases in  an un  foreseen rnanner. Thus, improvernents to the specification style 

rvould require changes to the test frarne derivation algorithms. 

A second limitation is that there is no rvell-founded assurance of test frame 

correctness. Therefore. it would be necessary to maintain a strict review process in 

order to monitor the test frames produced by this approach. This task may prove 

to be more difficult than in the manual approach of Section 2.5. For esample, if an 

incorrect test Frame is produced. there are two possibilities: 1) the error occurred in  

the derivation. or 2) there is an error in the specification- Since the test frame was 

produced automaticaIly. there is no test engineer to justify the derivation of the test 

frame. as there would be in the manual process. 

-4 further limitation is t tiat coverage criteria defined in terms of this approach 

would be basecl on one set of phrases. Coverage criteria based on another set of 

phrases could potentially refer to Fundamentally different entities, thereby creating 

confusion. 

This approach might be successful in mechanizing a current process, such as 

the one described in Section 2.5, but would not be able to assist in  improving and 



evolving that process beyond mechanization. This is due to the Iack of a sound basis 

from which general conclusions about the process can be made. Such generalizations 

are critical for process improvernent. 

It is likely that esamples of these techniques esist in industry. However. it is 

unlikely that piiblished accounts are available for two reasons. First, t hey rnay be 

too specific to be of general interest. Second. they may be regtiarded as a proprictary 

advantage. 

Code-based Test ing 

Coverage criteria for unit and module testing are well known. These types of testing 

fit into a category referred to as  code-based testing. Objective code-based coverage 

criteria are founded on a nomenclature provided by the inherent precision of code. 

This advantage is absent from the type of system-level requirements-based testing 

addressed by t his t hesis. This section descri bes code-based techniques. but also 

illustrates t h e  importance of a nomenclature for defining coverage criteria. 

L~nfortunately. code-based techniques cannot be directly applied to system- 

level requirernents-based testing because of differences between t hese Levels of test- 

ing. These differences are esarnined in greater detail in Chapter 4. 

Code-based testing techniques attempt to find faults in  an implementation by using 

tests constructed from information ext racted primarily from details wit hin the pro- 

gram source code itself, or from design specifications of system components. These 

tests provide a means of evaluating the implementation components. Tests based 

on component design specifications are referred to as black-box, or functional, tests, 



while those based on source code are referred to as glass-box.L or structural, tests. 

One class of glass-bos testing derives its tests from branch and loop structures 

within the code. Attributes of these code structures are used to construct tests. For 

branches. tests are constructed to expose the difference between the true and false 

cases. The ttvo tests distinguish betrvecn two different execution paths through the 

code. Similar tests are derived from loops. JL typical set of tests for a loop wiIl resrilt 

in zero. one. and some number of iterations of the loop that reflects a -typica19 use 

of the component. 

The esistence of esecution paths Ieacls to the notion of code coverage. A 

test set satisfying code coverage esercises each program statement at Ieast once. A 

more rigorous code-based coverage criterion is path coverage in tvhich each feasible 

path is esecuted at Ieast once. Path coverage is rarely achieved for non-trivial 

components due to the large number of tests required and the Fact that some paths. 

although feasible. may prove estremely dificult to reach due to the sequence of 

stimu1i required. 

Code-based coverage criteria need not refer onlÿ to execution paths wit hin a 

prograrn, but can refer atso to equivalence classes in  the input domain, the assign- 

ment and use of variables. or various other aspects of the implementation. Beizer [5] 

mentions over a dozen types of coverage. Lode-based coverage criteria are founded 

on a nomencIature which is standardized by the constructs of programming lan- 

guages. Programs contain a number of useful artifacts. such as branches, loops, 

variables, blocks, and interfaces. Coverage criteria are defined in terrns of these 

artifacts, which are common to al1 programming languages. 

' ~ i s o  referred to as dear-box or white-box test ing. 



3.3.2 An Objective Criterion 

Block A 
if (x > 3) 

Block B 
e l s e  

Block C 
if (y > 10) 

Block D 

Figure 3.1: Esampte Prograni 

The esample program in Figure 3.L illustrates code-based testing principies 

and the value of an objective coverage criterion. Such a criterion. Block Coverage. 

is defined. simply for the pirrposes of t h i s  esample. as: 

There esists a t  least one test which esercises each block of code in the 

program. 

.-1 block is defined as a seqiience of statements containing no  branches. Code- 

based tests can be described by a set of input settings. The test set { {r  = 4). { r  = 

2 .9  = 1 l}} satisfies the esample Block Coverage criterion. The test { r  = -1) 

esercises blocks A and B while {x = 2. y = 11 } esercises blocks A, C and D. This 

test set is complete because it satisfies the stated criterion. It can also be shown to 

be a minimal test set. since removing either of the tests results in a test set that 

fails to satisfy the example Block Coverage criterion. 

This esample provides an opportunity to show the value of an objective 

coverage criterion. The precision of a well defined coverage criterion promotes test 

team agreement of the level of confidence attained by unit and module testing. 



A member of a test team might argue that the test set in this esample does not 

adequatety test this program, and that the addition of {x = 2. g = 5 }  would result 

in an adequate test set. This is a n  argument that the chosen coverage criterion 

is inadequate. not that the test set was produced incorrectly. The team member 

is espressing their concern that perhaps a higher Ievel of confidence is required 

for this piece of software. This concern should be addressed and a decision made 

as to whether a different coverage criterion should be chosen. The precision of 

the coverage criterion focuses discussion on the issue of deterrnining the proper 

trade-off between confidence and resources. There can be no argument about the 

completeness of the test set, since the definition of the coverage criterion provides a 

simple means of evaluation. 

The nonienclature provided by the precise structure of programming lan- 

guages makes it possible to determine the completeness of a test set objectively. 

The nomenclature also provides a forum For defining and evaluating different cov- 

erage criteria. This activity also supports confidence in software by leveraging the 

confidence in  well established code-based coverage criteria. These standards p r e  

vide sufficient precision that the test steps can be derived automatically, or at least 

in a much more rigorous and systematic way than system-level requirements-based 

testing. 

3.3.3 Automation 

SeveraI techniques esist for deriving some tests from code automatically. toops p r e  

vide the biggest obstacle to fully automatic code-based test generation, due to the 

undecidability of loop invariants. Chilenski and Newcornb's Ada Testing Workbench 

(ATW} [12] generates test specifications frorn an Ada subset and conducts coverage 



analysis for 21 structural coverage criteria. ATW employs a theorem prover to elim- 

inate infeasible pat hs. It uses abst ract syntax trees to extract structural elements 

from the Ada code. but does not construct test specifications for code with loops. 

Ferguson and Iiorel [24] describe a chaining approach that uses data dependencies 

within code to generate test data. The technique can produce test data for some 

simple types of loops. Voas. Payne. and Miller [65] use a simplified form of mutation 

testing to automate the generation of unit level tests for coverage criteria mentioned 

in D0178B. 

Code-based techniques focus on a distinctly different level of testing from 

systern-level requiremen ts- based testing. One distinction between t hese levels of 

testing is that quantification appears in system-level requirements. Another dis- 

tinction is that code-based tests are tightly coupled to the structure of the code 

from which they were derived. This means that changes in  the code are likely to 

cause changes in the test set. This is quite desirable for unit-level testing, since the 

structure of the code is closely related to the machine code which is fundamental 

to systern behaviour, Any change i n  the machine code warrants re-testing a t  the 

unit level. However, this is not the case for changes to  system-level requirernents. -1 

change i n  requirements does not necessarily require re-testing. Chapter 4 addresses 

these differences in more detail. 

3.4 Logic-Based Techniques 

A nurnber of test generation techniques make use of various types of mat hematical 

logic specifications. T hese techniques have two significant advantages. The first 

is that they are based on logical systems that have been rnathematically proven 

to be sound. This ensures that derivations correctly maintain the meaning of the 



specification. The second advantage is that many of these logics are more expressive 

t han program source code. 

Here. an exec-utable language is a specification language cornbined with a def- 

inition of state such that transitions between States are decidable. For specifications 

built on primitives within an esecutable Ianguage. the primary advantage is that the 

resulting specifications can be simulated at sorne level of detaii. Simulation allows 

requirements authors to interact wit h t heir specifications in  order to vaiidate t hat 

the specification implies what the author intended. Some of these techniques also 

provide partial code generation. 

Format specifications based on mathematicai semantics provide a basis for 

au tornatic test-generation techniques. This ma t  heniatical structure allows formal 

specifications to be manipulated mechanically so that information contained within 

the specification can be isolated, transformed, assembled, and repackaged. Vsing 

rules of transformation in  this rnanner. test frames for a sÿstem can be derived 

from its formai specification. if the specification is esecutable. test steps can also be 

derived. The soundness of the transformation rules and the mathematical semantics 

of the specification language guarantee that the tests are logical consequences of the 

specification. This provides a high degree of assurance in the correctness of the tests 

produced by test generators based on these techniques. 

3.4.1 Finite State Machines 

RichardsonS work [22, 10, 64. 54. 53:  521 is based o n  specifications that are ese- 

cutable models. The advantages of this approach include the foilowing: 

1. the specification provides test oracles allowing testing to be fuily automated 

once the executable mode1 has been constructed, and 



2. the specification can be sirnulated. 

Some of the disadvantages of this approach are: 

1. that test oracles assume that the portions of the specification to be tested 

actrially terminate, and 

2. that it might be quite costly to produce an executable mode1 from a given 

specification that contains a similar level of detail as the original specification. 

Eickelmann and Richardson's etduation of software test environment archi- 

tectures [10] takes the position that testing should be fully automated. Horvever. 

the techniques addressed in their evaluation are typically appIied at the unit level. 

Richardson and Wolf [55] argue the importance of testing at the architectural 

level. They suggest t hat this can be accomplished by applying current techniques 

to an esecutable mode1 of the architecture. The template for this mode1 is called 

-CHAhI," Chemical Abst ract Machine. This machine provides the structural basis 

for a nomenclature for coverage criteria. The test process can be used to assess the 

validity and testability of the architecture and the conformity of the implementation 

to the architecture. 

The T-VEC system by Blackburn and Busser [7] generates test vectors from 

hierarchical. esecu table requirements speci fications. d test vector includes bot h the 

input data and the espected output. This allons the automation of test execution 

by producing a report of the success or failure for each test. However, it also requires 

that the specification contain a mechanism which details precisely how the desired 

output might be achieved. This r u n s  counter to the philosophy of many system-level 

specification paradigms, which encourage specifying what is desired while refraining 

From specifying how it is achieved. 



T-VEC specializes in dealing wit h non-linear inequalities. T-VEC also per- 

forms coverage analysis. test driver generation, and test results analysis. The cover- 

age anaiysis is a matching of t he feasible generated test vectors and the requirements 

from which they were generated. Any mismatches indicate anomalies in the require- 

nients. T-VEC does not deal with quantification over infinite dornains. nor condition 

dependencies beyond inequalities. T herefore. any specificat ion containing stich de- 

pendencies must be modeled in a way that expresses these dependencies in  terms of 

inequalities. 

The primary disadvantage of T-VEC is that it requires a n  executable speci- 

fication. This requires that requirements be reformulated to match this model. The 

limited espressiveness. e.g.. lack of quantification over infinite sets. of the T-VEC 

specification Ianguage. makes this a non-trivial and espensive task when applied to 

the type of specifications addressed in this dissertation. 

Various techniques esist for deriving tests and test sequences from variations 

on finite state machines [ 3 3 ] .  e.g., those based on specification languages such as 

Statecharts [6ï]. SDL [43], LOTOS [11]. .Y-machines [42], and that of the Valida- 

tor/Req [:3] test generation tool. The test sequencing provided by t hese techniques is 

important for testing protocols in communication systems, e.g., specifications with 

simple transitions but a cornples state space. In contrast, this thesis focuses o n  

specifications t hat do not necessarily refer to states. but whose complesity lies in 

the logical retationships between stimuli and responses of the system. 

These techniques have similar limitations of expression. Constructing an 

executable model is often a complex and expensive ta&. This effort is well spent if 

it adds value by proving certain properties of the model. However, t h is  is a separate 

issue and is not the purpose of system-level requirements-based testing. 



3.4.2 Logical Manipulation 

Laycock [.Il] applied the category-partition method of Ostrand and Balcer '161 to a 

Z specification. The work demonstrated the feasibility of automating test generation 

from a formai specification. 

tnspired by the work of Bernot. Gaudel. and Marre [6], Dick and Faivre 

[li] describe a technique for deriving test steps based on a disjunctive normal form 

(DNF) of a formal specification expressed as  a s tate  relation in first-order predicate 

calculus. The technique is based on a procedure for transforrning a formai spec- 

ification into a disjunctive normal form that represents the possible states of the 

system. Test steps are inferred from the disjuncts by determining the pre-condition 

for the corresponding state. A means of sequencing test steps is also given by Dick 

and Faivre. Their technique can produce a combinatorially large nurnber of tests. 

since it produces everÿ possible corn bination of choices provided by disjunctions in  

the specification. 

First-order predicate calculris is lirnited for general use in specifications at 

the system level. Forrnal specification ianguages such as Z [61] and VDM-SL [3ï] are 

more suitabie a t  the system level since they are more expressive. e.g,. by allowing 

quantification. ?Vork based on Z that is sirnilar to the approach used by Dick and 

Faivre has been done by Horcher [34]. Helke. Neustupny, and Santen [32] have 

re-implernented this  technique using a n  ernbedding of Z in the Isabelle theorem 

prover [Xj. This latter work demonstrates the  feasibility of applying theorem- 

proving technology to test generation. This provides a standardized mechanism 

for ensuring test correctness. The underlying logic of the specification languages 

for these techniques is expressive enough for use in system-level requirements-based 

testing. However, the derivation algorithrns do not deal with quantification. 



Stocks and Carrington [62] have presented a framework for specification- 

baseci testing tha t  addresses such issues as test oracles and test suite maintenance. 

The use of test oracles assumes t hat, for a given specification, the output can be 

computed from a given input. This assurnption iniplies that the forma1 specifica- 

tion must be esecutable. The approach presented in this dissertation allows non- 

executable specifications, but does not produce test oracles. The importance of 

non-executable specifications is argued by Hayes and Jones [30]. 

Gaudel [6. 261 describes a theory of testing based on algebraic specifications 

that are characterized by the use of functions to denote operations. -4 set of asioms. 

typically espressed as universally quantified equations. defines a class of algebras. 

Each algebra is a mode1 of the specification, In  contrast. predicate logic specifica- 

tions typically use relations between states to denote operations, and hoth universal 

and esistential quantification are often present. 

Hayes [31] argues that algebraic techniques are best suited to testing prirni- 

tive data types and that. for more comples abstract da t a  types. model-based spec- 

ification is simpler. Hayes describes a manual technique for appIying model-based 

specifications to  module testing. 

-4s noted by Gaudel, predicate logic specifications are more general than 

algebraic specifications. However, the price of this generality is the restriction that. 

i n  general, only test frames can be generated automatically. Algebraic techniques 

such as the one by Bernot. Gaudei, and Marre [6] can generate test data. This test 

da ta  corresponds to  what this thesis refers to as test steps. Test steps are instances 

of test frames. 



3.4.3 Disadvantages of Modelling 

The techniques described in the previous section are based on mathematical rnod- 

elling. -4 disadvantage of the above techniques. in the context of system-level require- 

ments-based testing For large projects. is that determining the underlying primitives 

for the model is often a non-trivial task. which is outside the bounds of typical 

requirements aut horing. Constructing a model that supports the appropriate de- 

pendencies between conditions wit hin the requirements is a Fundarnentatly different 

ski11 from the presentation of system-level requirements. This is because the model 

contains technical detail particular to the model. or modelling language. that is 

not readable by typica[ requirements aut hors. Thus, specifications based on math- 

ematical logic often require the maintenance of two specifications: one readable by 

requirements aut hors for cont ract purposes. and the forma1 version iised to generate 

tests. Thus, mathematical logic approaches usually incur additional costs associated 

wit h t his second specification. 

This approach also requires a review process to ensu re t hat the two specifica- 

tions rernain synchronized as  changes are niade. This tends to delay the derivation 

of the formal specification in order to ensure that changes are minimized. However. 

the process of generating tests often uncovers inaccuracies wit hin the requirements 

specification. This feedback is criticaI for requirements authors. The result is that a 

possibly lengthy delay for testing-to-requirements-author feedback is built into the 

process. 

For specifications where a Large number of requirements can be based on 

a small number of primitives with relative ease, these modelling costs are usually 

repaid in ensuring consistency within the specification. This is due to the high 

degree of interdependence between requirements. However, for specifications with a 



large number of independent requirenients. the costs of rnodelling are less fruitfui. 

sirnpIy because there are fewer possibilities for inconsistencies. in such cases. a 

manual review is likely to be less expensive and just as effective in  discovering them. 

3.4.4 Coverage Schemes 

Some work has esplored issues of coverage schemes. A coverage scheme is an algo- 

rithrn for constructing a test set that satisfies a given coverage criterion. MacColl. 

Carrington. and Stocks [44] describe a mechanized but not automated approach to 

deriving test steps from forma1 specifications. They provide for a variety of deriva- 

tion s t  rategies which could embody different coverage schemes. Arnmann and Offu t t  

['LI descri be each-choice-used and base-choice coverage. T hese coverage cri te ria d ra- 

rnatically reduce the number of test steps produced. These criteria are different 

from code-based criteria, since they describe coverage in terms of a relationship be- 

tween two behaviours of the system. These coverage criteria are examined Further 

in Chapter 6. 

T tie author has introduced a frarnework for several coverage criteria based on 

prime implicants of a partitioning of the specification referred to as  test classes [HI. 

The same paper presents details of generating test frames frorn a forma1 specification 

containing universal and existential quantification. This thesis is the fruition of this 

earlier work. 

3 -5 Conclusion 

This chapter has described three categories of techniques that might serve as  a basis 

for a solution to the problem described in Chapter 2. Systematic techniques Iack 

the mat hematical soundness required to ensure test frames correctness. Code- based 



techniques. while providing rvell developed notions of coverage. do not address fea- 

t ures foiind in more expressive specification languages t hat are suitable for system- 

level requirements. Current logic-based techniques lack a combination of automation 

and espressiveness. 



Chapter 4 

Fundament al Challenges 

-4 central conclusion of th i s  research is that the problem of generating test frarnes 

algorit hrnically from a set of requirements for the purpose of systern-level testing is 

significantly different from the probleni of generating test frarnes from code for the 

purpose of unit level testing. This chapter examines the challenges that illustrate 

t his difference. 

4.1 Introduction 

There are four fundamental challenges to sÿstem-level requirements-based testing: 

structural independence. condition dependence, quantification, and the Delta Prob- 

lem. Code-based techniques provide a rich vocabulary for describing coverage cri- 

teria. the means of evaluating the coverage achieved by a given test set, and. t o  

some degree. a means of automatically generating tests. However. techniques for 

code-based testing do not need t o  address the fundamental challenges oCsystem-level 

requirernentsbased testing. 

At the system level, the readability of the requirements specification is of pri- 



mary concern. The purpose of t h i s  specification is to communicate what is required 

of the system so that the appropriate stakeholders, cg.. customers. requirements 

authors. software designers. governrnent regulators. can comprehend and discuss 

requirements issues as easily as possible. To ensure that previousty generated test 

frarnes are not made obsolete by simple changes in presentation to address readabil- 

ity issues. it is essential that the derivation of test frarnes be structurally independent 

of how the requirements are stated. 

Recognizing dependencies between conditions within the requirements is nec- 

essary to avoid generating infeasible test franies. Depending on the way i n  which 

requirements are specified, different strategies For recognizing condition dependen- 

cies may be more or less appropriate. For example, properties of well understood 

primitives can be used to compute dependencies between conditions defined in terrns 

of these primitives. However. in  more abstract specifications. other techniques maÿ 

be more appropriate. 

Esistential and universal quantification are logic rnechanisms that reflect 

phraseology cornmonly found in  natural Ianguage. These rnechanisms provide a 

means of describing what is required. rather than how it is achieved. For esample. 

it is easier to state universalIy that -al[ men are mortal," than to enumerate the 

fact for each and every man. Thus. quantification is an important quality of a 

systern-level specification langage. 

The impact of specification changes on previously generated test frarnes is 

an important ccnsideration when applying any au tomated test frame derivat ion 

technique to large projects. When generating new test frames. it is expensive to 

ignore test results based on existing test frames that are still valid. .A valid test 

frame is one that is logically imptied by the specification, The Delta Problem is to 



integrate esisting valid test frames into new test frame sets. Structural independence 

is mandators but additional capability is required to solve the Delta Problern. 

Section -1.2 examines an application of a code-based approach to system-level 

requirements. This leads to the issue of struct lirai independence. which is etaborated 

furt her in Section 4.3. Section 4.4 examines the impact of specification type on the 

choice of condition recognition strategy. Section 4.5 presents the importance of 

universal and existential quantification to system-level requirements-based testing. 

This is followed by Section 4-6. a description of the Delta Problem. 

4.2 Specifications as Code 

The systematic derivation of tests based on the structure of code for the purpose of 

testing software coniponents is well-established. It is sensible, t herefore. to consider 

the possibility of sirnply tifting this idea up to the level of requirements-based testing 

for the purpose of generating test frames. 

tt is relatively easy to translate stimulus-response statements. provideci t hey 

do not require quantification. into a logical representation using simple code-Iike con- 

st ructs such as if-t hen-endif. if-t hen-else-endif, and, or, and not. For esam ple. 

the requirement. 

When Stimulus S occurs and Condition C l  or Condition L 2  is true. then 

the system shall produce Response R 

could be translated into the following code-like representation: 

if S and (Cl or C2) then R endif. 

This simple approach takes into account only the toplevel logical structure. 

The phrases represented symbolically by S, Cl,  C2 and R would correspond to 



phrases such as "the aircraft is airb0rne.l which are left unformdized. Such phrases 

could be represented Formally in a parseable notation such as S [31)1! which allows 

test strings such as "the aircraft is airborne- to be introduced as uninterpreted 

constants. 

This simple approach would yield a code-like representation. in the sense t hat 

it would have a logical structure espressed by standard logical operators of common 

programrning languages. This logical structure serves as  the b a i s  for generating 

tests from code using well-known techniques. 

For esample. the following code-like statement. 

if (Si and S.3) 

or ((not S1) and S2) 

or ((not Si) and (not SB)) then 

R 

endif 

could be used as input to a test franie generation tool based on the condition/decision 

coverage criterion defined by Chilenski and Newcomb [l'LI. Their definition of con- 

dition/decision coverage is: 

Every possible decision and condition has taken al1 possibIe outcomes a t  

least once. 

For the above esample, the decision is, 

(S1 and S3) or ((not SI) and S2) or ((not S I )  and (not S3)) 

and t h e  conditions are: S 1, S2, and S3. 

-4 test frame generation tool based on condition/decision coverage must gen- 

erate a set of test frames that includes a t  least one test frame in which the decision 



evaliiates to true, and at least one test frame in which the decision evaluates to false. 

Also, for each condition, SI, S'2 and S3. there must be a t  Ieast one test [rame in 

which the condition is true. and another test frarne in which t h e  condition is false. 

A minimal set of test frames satisfying condition/decision coverage is. 

L. SI and (not S2) and (not 53) not R. and 

2. (not SI)  and 52 and S3 + R 

where. a s  before. the symbol "=+' is iised to separate the stimuli part of the test 

frame from the response part. 

The first test specifies that when SL is true and S2 and S3 are false in the 

environment, the system should respond in a manner consistent wit h -not R." Under 

the truth values specified by t h e  first test, the decision in t h e  specification evaluates 

to false. In the second test. the decision evaluates to trtre and the appropriate 

response is R. Since each of the conditions takes on the values true and false in at 

least one test. these two tests satisfy the condition/decision coverage criterion. The 

set is minimal because there must be a t  least two tests: one in which the decision 

evaluates to true, and a second in which the decision evaluates to false. 

So it may appear that the met hods previousiy developed for algorithmically 

generating tests from code can simply be re-used. These methods are based exclu- 

sively on structure. which. in this example, is expressed by code-like constructs, e.g., 

if-t hen-endif, if-t hen-else-endif, and, or and not . 

Hotvever. a limitation of this simple approach is illustrated by the fact that 

the statement, 





of the code directly affects compilation in terrns of which instructions are executed, 

and the order in which they are esecuted, For unit testing, the test se t  must be 

structuralIy tied to the irnplementation, since a change in implementation source 

code actiially changes the  iinderlying system. 

The situation is very different for system-level, reqriirernents-based testing. 

where it is likely to be highly undesirable for two semantically equivalent. but struc- 

turally different. statements to  yield a different set  of tests. Hence. the  above es- 

ample suggests t hat the usefulness of techniques based purely on code-li ke structure 

rnay be limited as the basis for automating the task of generating test frames from 

forrnalized requirements for the purpose of verifying requirements. 

4.3 Structural Independence 

The term struclurnl dependence refers to  the coupling bettveen the structure of the 

input of a test  frame generation process. and the  test frames produced. Ideally test 

frames should be structurally independent from the  specification from which they 

were deriveci. The out put of a test frame generation process should be affected by 

requirements changes only to the estent  t hat the  revised requirements differ seman- 

tically from the original requirernents. Tivo s t  ruct urally differen t,  bu t seman tically 

equivalent. versions of t h e  requirements should ideally produce the same set of test 

frames. 

This conjecture is based on the observation that ,  for a variety of reasons, 

requirements may be organized structurally in a manner that  is not conducive t o  

generating tests. [t would be undesirable for redundant test frames t o  be generated 

simply because of the structure of the requirements. Mso, for a variety of reasons, 

a significant change to  the  structure of the  requirements may be made with little 



or no semantic change. i.e., no irnplernentation changes are required. It wouid be 

undesirable for such changes to  yield a significantly different set of test frames if this 

entails re-working existing test procedures. and/or repeating previously e'cecuted 

tests. 

One approach to addressing structural dependence may be to impose con- 

straints on the formal representation of requirements so that there is only one rvay 

espress the requirements. However. it is doubtful that it is possible to devise an 

effective set of constraints that would gain wide acceptance. Instead. the strategy 

adoptai in Chapter .5 is based on the transformation of sets of requirements irito a 

normal form using rules of iogical reasoning. 

Unfortunately. com piete structural independence cannot be achieved. A con- 

dition espression can be rephrased such that the new form cannot be recognized as 

being equivalent to the originai by automatic means. in mathematical logic terms. 

complete structural independence cannot be achieved because the truth of a conjec- 

ture of the equivalence of two general formulae may be undecidable. 

Condition Dependence 

The term condition dependence refers to logical relationships between conditions 

wit hin a requirements specification. it is often the case that these dependencies are 

not explicitly documented in the requirements. t hough t hey impact the derivat ion 

of test frames. 

For instance, the requirements specification for an air traffic control system 

may use ph rases such as "is airborne,' "has landed," and "is cleared for departure," 

as primitive terms. The choice of these phrases as primitives rests upon the assump 

tion that the users of the specification have enough common domain knowledge to 



recognize dependencies between these primitives. For example, an aircraft cannot 

simultaneously satisfy the condition "is airborne" and "has landed." 

The set of primitive terms used in  a natural language requirements speci- 

fication of a system constitutes the level of abstraction used by the requirements 

authors. One approach to addressing condition dependence is to recfuce the number 

of primitive terms to a very smalI number of purely mathematical primitives. Deci- 

sion procedures cari then be used to search for dependencies at this standard level. 

In eff't. this lowers the level of abstraction in a manner analogous to the refine- 

ment of a reqiiirements specification into esecutable code. Whereas the primitives 

in code are operations on bits. the primitives in this unrestrained style of formal- 

ization are. for instance. operations on mathematical sets. In both cases. the result 

is a much niore detailed description that blurs the distinction between -whatY and 

-howM in  the specification of the required functionality. In  more practical terms, 

the refinement of hundreds or thousands of primitives down to the level of abstract 

mathematics. though it may be intellectually chailenging, is an indirect and costly 

way to address condition dependence. 

The strategy presented in Chapter 7 allows the level of abstraction used by 

the domain experts to be maintained by introducing the primitive terms of the nat- 

ural langiiage specification as uninterpreted elernents of the  forma1 representation. 

Many forma1 specification notations allow elements such as types. constants, fu nc- 

tions and predicates to be introduced as uninterpreted elements. In simple terms. 

this  means that names for these elernents may be dectared as  part of the working vo- 

cabulary of the formal representation without providing a definition of the element 

in terrns of some previously introduced or built-in element. Condition dependence is 

addressed in this dissertation by alfowing the user to selectik-ely provide some forms 



of dornain knowledge as input to the test franie generator. This doniain knowledge 

takes the form of axiom schemata that define mutually esclusive conditions and con- 

ditions forming partial orders and states. This provides the required information i n  

order to determine dependencies between conditions. This approach is describer1 i n  

further detail in Chapter 7. 

4.5 Quantification 

Finite forms of quantification are. of course. espressi ble in  any program ming lan- 

guage. Universal quantification over a finite set of values can be espanded into a 

conjunction of conditions. Similarly. esistential quantification over a finite set of 

values can be espanded into a disjunction of conditions. However. forma1 specifica- 

tions often involve quantification over sets of values t hat are not necessarily finite. 

or whose members are left unspecified, Even in  the case of quantifying over some 

finite sets. it may not be practical to espand the quantification into a conjunction 

or disjunction if the finite set is large, e.g.. the set of al1 32-bit integers. 

Section 4.3 outIined how a modest level of formalization could be achieved 

using only simple code-like structures, such as if-then-endif. if-then-else-endif. 

and. or. and not, However. ttiis propositional logic style of formal specification 

may  not be adequate in al1 cases. Circiimstances may require more expressive kinds 

of formal specification, based. for instance. on predicate logic wit h quanti fiers. 

The ability to quantify universally, i.e.. -for all," or esistentially. i-e., -there 

esists," over a set of values often allows the expression of requirements in the forma1 

representation to more closely correspond to their expression in  natural language. 

This is often a matter of being able to express what functionality is required. rat her 

than how the function is to be realized. Quantifiers are also useful when specifying 



global constraints that influence the interpretation of other requirement statements. 

For this reason. quantification is also a fiindamental challenge which must 

be addresseci by any practical approach to generating test frames from formalized 

requirements. Obviously, esisting techniques for generating test frames from code 

are not equipped to accept input containing quantifiers. since prograrnrning lan- 

guages do not include general quantifiers as operators. 

4.6 The Delta Problem 

The Delta Problem. which is the integration of existing tests with new ones. requires 

analysis and is different from structural independence. Striict ural independence 

provides a degree of latitude that allows the test generator to produce tests to fit 

certain criteria. This also allows the test generator to integrate existing tests with 

new ones. 

IVhen specification changes occur. it is necessary to minimize their impact 

on esisting test sets previously constructed. Although generating a completely new 

test set is possible. t h i s  is undesirable if testing has already begun. Assurning that 

the requirements changes do not require any iniplementation changes. it is less ex- 

pensive to perform a few new tests to augment positive results already obtained than 

to disrniss previous positive results and perform a larger number of different tests. 

For example, il a portion of the requirements is re-worded for clarity or contractual 

reasons, but no implementation changes are necessary and the test generator pro- 

duced different tests based on the re-wording, then unnecessary and perhaps costly 

testing would be performeci. Thus ,  existing tests must be integrated with any new 

tests by the test generator. 

This capability is not necessary in the context of code-based testing. .A rear- 



rangement of conditions wit hin coded decisions rarely results in a situation where the 

implementation does not need to be re-tested. This is because such a change usually 

resutts in a change to the implernentation. For example. in  a C program. sirnply 

changing i f  (a I I b) to if (b 1 I a) changes the order of evaluation. Since the 

implementation has changed. it must be te-tested: therefore. generating new tests 

is not wasteful. 

In order to minimize test set impact due to specification changes. a test frame 

generator shouid accept two inputs: the specification for which test frames are to be 

derived. and the previous set of test frames. To the extcnt possible, the test frame 

generator should attempt to use the previously generated test frames as a starting 

point for constructing a test set that satisfies the given coverage criterion. This 

should be the case whether the specification or the coverage criterion is changed. 

Estending this idea, it is desirable to allow test engineers to specify the -previous 

tests." This would provide a means of allowing test engineers to mandate certain 

tests. and to use the test frame generator to comptete the test set according to a 

chosen coverage scheme. 

This chapter has examined the possibility of writing requirements like program code 

to take adkxntage of well-known, esisting code-based techniques. This has led to the 

identification of certain challenges to be overcome by a technique that can be applied 

to requirements-based testing. The challenges, structural independence. condition 

dependence, quantification, and the Delta Problem, distinguish requirements-based 

testing from code-based testing. 

The first challenge is that requirements-based tests should be structurally 



independent of the way in which the requirements are written. This is not required 

of code-bwed test generation techniques which produce tests that are structurally 

dependent. Un fort unately, complete structural independence can not be achieved for 

al1 specification languages. 

The second challenge is to capture condition clependencies amongst condi- 

tions that may not be defined in terms of primitives. as is the case in  code. These 

dependencies are necessary in order to avoid generating infeasible tests and to sirn- 

plify those that are feasible. 

Quantification provides a n  espressiveness that is useiul for describing require- 

ments at  the system level. This challenge dues not exist in the domain of code-based 

techniques. but must be addressed in  a discipline of requirements-based testing. 

The fourth challenge is the Delta Problem. Wasteful rework can be avoided 

with the ability to integrate e'cisting tests into new test sets wheri requirernents 

changes occur. This challenge is specific to requirements-based testing, because a 

substantial re-wording of the requirements does not necessitate the obsolescence of 

ail esisting tests. 



Chapter 5 

A Foundation for the Discipline 

This chapter presents a discipline of test derivation which incliides algorithms for 

generating test frames from formal specifications containing universal and esistential 

quantification. .A nomenclature for defining specification-based coverage criteria is 

based on the parameters of these algorithms. The foundation of this technique on 

formal rules of logical derivation ensures that the test frames produced are logical 

consequences of the specification. Since this technique deals with quantification. it 

can be appIied to more expressive specifications than previous approaches. This also 

makes the technique appIicable to specifications wïitten at the system requirernents 

levet . 

5.1 Introduction 

It is well recognized that there is an important distinction between specifying what a 

system should do, and how this goal is to be achieved. In particular, when specifying 

system-level requirements it is important to focus o n  "what." while specifying as 

little "how" as possible. Mathematical logic provides a means of describing "what" 



withoiit describing "hoiv.- Conversel~r, code is well suited to describing "how,' but is 

more difficult to use when trying to describe 9vhat" without "how." For this reason. 

along with the issues raised in the previous chapter. logic-based approaches seeni 

to be better suited as a foundation for automating system-level requirements-based 

testing. 

The most appropriate esisting test-generation technique for the type of spec- 

ifications addressed by this thesis is the DNF approach, which arose from the work 

of Dick and Faivre [LT]. However. this approach has certain limitations. An alter- 

native to the D X F  approach forms the basis of the discipline of specification-based 

test derivation presented in t his dissertation. 

There are t hree fundarnental entities t hat highlight the intermediate stages 

to generating test frames: test classes, frame stimuli, and test frames. These entities 

form the basis of the nomenclature which will be used in Chapter 6 to define coverage 

criteria. During the production of test classes, certain fornis of specifications can be 

flagged as possibie specification errors. Test class normal form is the key mechanism 

by which system behaviours are grouped- The production of test frames introduces 

the notion of specification coverage. The terms test class, test frame. a d  frame 

stimuli form the foundation for the nomenclature t hat will be used to define coverage 

criteria. The basic coverage concepts introduced in this chapter are estended further 

in Chapter 6. 

Section 5.2 begins this chapter by detailing some of the limitations of test 

generation techniques based on the ivork of Dick and Faivre [17]. Section 5.3 intro- 

duces the notation and fundarnental terminology for the discipline. This is followed 

by Section 5.4, which defines test classes, test frames, and test steps and provides a n  

overview of the relationships between them. Section 5.5 presents one of the funda- 



mental ideas of t h is  t hesis: Test CIass Normal Form. Section 5.6 deaIs wit h coverage 

schemes and the actuat generation of test frames from test classes. 

5.2 A Place to Start 

The DNF approach is based on a procedure for transforming a forma1 specification 

into a clisjunctive normal form that represents the possible states of the system. 

Test steps are inferred from the disjuncts by cietermining t h e  pre-condition for the 

corresponding state. Specifications are transformed using logical manipulations such 

as 

-4 a B =-.-iv ( A A  B),  and 

.4 V B = (-4 A T B )  V (7:1 A B) V (-4 A B). 

An esample from Dick and Faivre's original paper [ l i }  illustrates their pro- 

c e s .  The specification (ma2 = n v ma+ = 6 )  A maz 2 a A maz  2 b is transformed 

and simplified into the set of state descriptions: 

{ m a l  = a A mar = b. max = a A max > 6 ,  max = b A mar > a} .  

Each element of the above set represents a possible state of the system. 

-4 limitation of this approach is that  disjunction and implication are treated 

differently This implies that if an author wrote B v 7.4 or Y B  + 7.4 rather than 

-4 B,  different tests woutd result. The  limitations of this type of structural 

dependence were presented in Section -4.3. 

Care must be taken when dealing with non-determinism in the contest of 

the DNF approach. This thesis does not consider the merits or  problems associated 

wit h non-deterrninistic specifications, but acknowledges their existence. Hayes and 



Jones [3O] describe situations where non-deterrninistic specifications are particularly 

useful. The non-deterministic specification S A ( R i  V R2)  leads to  three possible 

states: 

However. these three s tates  do not directly correspond to  three valid tests. i-e., tests 

that will not reject a correct program. This is different from the first esample. 

where each state corresponds to a valid test. Clearly, it would be more appropriate 

not to  split the original disjunction in this case. This problem hints that  there is a 

fundamental difference betweeii stimuli and responses. which needs to be addressed 

when generating tests. 

A further limitation of this approach is that it does not esplicitly address 

the presence of universal and esistential quanti fiers \vit hin the specification. Along 

with addressing quantification issues, the discipline presented in this dissertation 

takes a siightly different approach to test derivation. Rather than producing a 

disjunction of al1 possible states, a conjunction of the stimulus-response behaviours 

of the system is produced. In the specification of possible states produced by the 

D X F  approach, stimuli. responses. and non-determinism are not obvious. Tests can 

be more readily derived from stimulus-response descriptions, since the stimuli and 

responses are espIicitly separated. 

5.3 Notation and Terminology 

The technique presented in this dissertation is based on the logical relationships 

between elements within the specification. Since it is not tied to a particular speci- 

fication language such as S [39] or Z [61], standard logical expressions shall be used 



in the test  below. The technique is cornposed of ttvo algorithms, which are foundecl 

on the following definitions: 

1. -4 predicate represents a pararneterised truth va l~ ie .~  The symbols T and I 

represent the Boolean values true and false. 

2 .  A n  atom is either a predicate or a negated predicate. 

3 .  -4 stimulus is an atom that only refers to the state of the system before an 

operation is perfornied, 

4. .A stirnuIus expression is a predicate logic expression where each atom is a 

stiniulus. 

5 .  .A fmme stimulus is a restricted form of stimulus espression. The exact defini- 

tion of a frame stimulus for a particular test class is provided algorithmicaliy 

in Section 5.6.1. A frame stimulus has one of the following forms: 

(a) an atom. 

(b)  a universaily quantified atorn. 

( c )  a universally quantified disjunction of stimulus expressions. or 

(d)  a u niversally quan tified stimulus espression w hich is itself esistentially 

quantified, e.g., Vx. 3 y . E ( x ,  y) ,  where E is a stimulus expression. 

6 .  .A response is an atom that contains a t  least one reference to the state of the 

sÿstem after the operation has completed, and may also rekr to the previous 

state, Le., anÿ atom which is not a stimuIus is a response. 

'In this dissertation, the term predicate refers to the predicate symbol and its parameters. 



- 
i .  A response espression is a predicate logic expression where each atom is a 

response. 

A specification of a system is a logical expression relating t h e  s ta te  of the 

system a t  the time a stimulus occurs. to the state of the system at the time the 

response is produced. The expression is const ructed from predicates. the logical 

connectives conjunction. disjunction. implication. and negation. along with universal 

and esistential quantification (the standard logic symbols are v. A, *. 1 . V .  and 3. 

respectively). .A systern specification may be of the form: 

(SI * R I )  A (Sz R2) A . .  - 

rvhere the Si are stimulus expressions and the Ri are response expressions. This 

specifies a system that will satisfy Ri when given the stimulus Si- In this spec- 

ification. each implication describes a class of behaviour to  be eshibited by the 

systeni. However. a specification is not restricted to this form. The restrictions on 

specification form are given in Sections 5.5.3 and 5.5-4. 

The following example illustrates the above definitions. The specification 

used in this esample is a Z adaptation of a portion of the VDhI-SL style RSL solution 

by Schinagl [S] to  Abrial's steam boiler specification problem [LI. hlodificat ions 

were made to  construct a concise esample. but these changes do not affect its logical 

compIexity. Test frames generated from a larger portion of Schinagl's specification 

are given in -4ppendi.u B. 

Abrial's specification problem is to formally specify requirements for a control 

system responsible for maintaining the correct Ievel of water in a boiler attached 

to a stearn, driven turbine. One of the requirements of this system is to identify 

whether or not any inconsistencies esist in the sensor readings. 



1 OutOfOrd~r' 

(3!n : Ne Leuel n) A 

(3!n : N o  Steam n )  A 

(V i : PL;.\lP a PumpStnte(i. T) e 1 (PumpStnte(i ,  1))) A 

(V i : PCiJIP a 3 b : bool a PumpCtrState(i. 6 ) )  

-4 w B is defined as  (-4 s B) A ( B .4). Exists unique. 3!. is defined as. 

3!x.S L. = 3 x . S  r A ( V r .  y.S 1 A S y * ( r  = y) )  

T h i s  specification requires tha t  the "out of order- indicator. OutOfOrrler. is 

true if a n d  only if there is a detected malfunction. T h e  predicates Leuel, Stecrm. 

PilmpState. and PumpCtrState represent t h e  presence of various messages just re- 

ceived from t h e  sensors. Leuel indicates t h e  quanti ty of wa te r  in t lie boiler. Stenm 

indicates t h e  quanti ty of s t e a m  coming frorn the  boiler. PumpState indicates whether 

the given pump. i. is turned o n  (T) or  off (1). PumpCtrState indicates whether o r  

not water  is circulating from t h e  purnp, i. t o  t h e  boiier. Prirned variables are ref- 

erences t o  the  after s tate.  t h u s  -0utOfOrder' is a response. -411 t h e  o ther  atoms.  

such a s  PumpState(i. T ) .  a r e  stimuli. 

T h i s  specification is a relationship between the  response a n d  various stimuli. 

Atthough it is not  written direct ly in the  form of (5.1). i t  can be translated into tha t  

form as pa r t  of test frame generation. 

5.4 Overview 

Requirements specifications a r e  written to be understood at particular levels of 

abstraction. For this  reason, many details a r e  hidden within definitions of more 



abstract concepts. Issues of darity are left to the discretion of the specification 

authors. Hence, it must be assumed that the  specification is a n  arbitrary logical 

expression and t,here is some means of distinguishing stimuli from responses. 

Test classes are the intermediate step bettveen the specification and test 

frames. The derivation of test classes requires a rneans of distinguishing stimuli 

from responses. -4 test class isolates one behaviour from the specification. The test 

cl- can be considered as a standard format for writing requirements. However. for 

practical reasons. it is unlikely that al1 specifications would be written as a simple 

conjunction of test classes as in  (5.1). 

Specification 

Test Classes 

Test Frames 

Test Steps 

Figure 5.1: Entity Relationships 

Figure .5.1 illustrates the relationships between the specification, test dasses. 



test frames. and test steps. 

Definition 1 -4 test class is ari implication S 3 R. uthich naay be quantifie$. where 

S is n stimulus etpression and R is n response expression. Quantifiers may appear 

nnywhere in the test clnss. and may also bind tlnn'ables occurrincj in both S and R. 

The purpose of the test class is to isolate a class of behaviour based on the response. 

The first step of the test franie generation process is to transform the specification 

into its test cfass normal form such a s  (5.1). Details of this transformation are 

presented i n  Section 5.5. 

A set of test frames is produced from each test class. 

Definition 2 -4 test frame is an implication -4 + R. uhich may 66 qunntified. 

wherr -4 is a conjunction of fmme stimuli and R is tire response expression from the 

corresponding test class. Quantifiers may also bind cariables occurring in both :1 

and R. .-I test fmme -4 3 R generated /rom the test class S a R has the properfy 

that -4 + S. 

The generation of test frames is presented in  Section 5.6. 

Definition 3 -4 test step is an implication t a R. luhere t is a conjunction of 

atorns and R is a response erpression. Quantljïers can only occur in R .  

Although it is desirable to derive test steps, these cannot, in  general? be gener- 

ated automaticaIly from the type of specifications considered in t his dissertation. 

However. much of the effort required to generate a test step can be performed au- 

tomatically by producing a test frame. -4s stated in Section L.2. the instantiation 

of test frames into test steps is beyond the scope OF this thesis. 



The computation of test frames from a specification can be performed rvithin 

any Iogic consistent with the manipulations used in  this chapter. The algorithms 

do not diverge. due to the use of convergent subsets of logical inferences when 

transforming portions of the specification. 

5.5 Test Class Normal Form 

This section presents the underlying algorit hm for producing test classes. Variations 

of t his  algorit hm are presented Iater in  Section 6.4. This algorit hm has the following 

important properties: 

1. For non-demonic2 formal specifications. test class normal form can be corn- 

puted in  O ( n  log n )  time in the size of the specification. 

2. tt is founded on rules of mathematical logic, which ensures that the algorithm 

is logically sou nd. 

Definition 4 Test class normal form is n conjunction 01 t e s t  classes with distinct 

respo nses. 

It can be achieved by applying the test class algorithm to a specification which is 

a logical relation with restrictions (Sections .5.S.S, 5.5.4). Test class normal form is 

no t canon ical. 

5.5.1 The Test Class Algorithm 

The test ctass algorithm can be described as a function on logical espressions. The 

result of applying this  function to an espression, E, is a conjunction of test classes 

'~emonic specifications are deçnibed in Section 5.5.4. 



which is logically quivalent to E. The test class algorithm rewrites the specification 

into its test class normal form. This does not alter its logical content. 

Assuming R is a response and S is a stimulus. a definition lor the recursive 

test c l a s  algorithm. TC. is: 

TC(.4 A B )  = Reui.rite.-lnd( TC(.-!) A TC(B)) conjunction 

TC(+4 v B) = Relurite&( TC( . -1)  V TC'( B )  ) disjunction 

T C ( Q  x .  P) = Fornllln(tlc. TC( P)) quantification 

T C ( 3 x . P )  = E x i s t s l n ( 3 ~ . T C ( P ) )  quantification 

TC(.-1 =+ B) = TC(-.-1 V B) implication 

T C ( R )  = T a  R response 

TC(S)  = -S + 1 stimulus 

S and R can refer to negated predicates. Xegated expressions are dealt rvith by 

applying Dehlorgan's laws and double negation to  move the negation inrvards and 

proceedi ng. 

7j.4 V B )  = 1.4  A - B  

In the descriptions below, it is assumed that the TC' algorit hm is operating 

on an expression that has a test class normal form. Expressions that do not have a 

test class normal form are addressed in Sections 5.5.3 and 5.5.4, below. 

The algorithm R e u ~ i t e . 4 n d  operates on  a conjunction of test classes and 

corn bines any iike antecedents and consequents using the equivalences: 



Combining response expressions is preferred over combing stimuli expressions. Ap- 

plications of these equivalences may require a rearrangement of the two implications 

to be combined. For example. a conjunction such as. 

tvouid be rewritten to: 

( (Steam x V Leuel y)  * L) A C 

The algorit hm Re uriteOr operates on a disjiinction of two conjunctions of 

test classes and first reduces any XND/OR connectives above these test classes to 

conjunctive normal form. Xest. any universal and existential quantifiers are movecl 

outside the disjunctions. This is done using the equivalences: 

where r is alpha converted if necessary to avoid capturing any free occurrence of r 

in P. Finally. the test classes are OR'd together using the equivalence 

The Re wriieOr algorit hm is illust rated wit h the follocving exam ple. When 

manipulating the expression, 

((Steam x + -0utOfOrder') A (T + OutOfOrder')) v (V t .Leve1 r * L) 



the first step is to produce the conjunctive normal form: 

((Steam r 3 ~Out0fOnIer ' )  V (Vx-Leuel x =. 1)) A 

( ( T  OutOfOnler') V (V r.Leve1 x 1)) 

Xest. the universal quantifiers are moved outside the disjunctions, Here. the variable 

XI is introduced to avoid capturing the 1 of Stearn r. 

The last step in  the Rewriteor aIgorithrn is to use Equation I.5.2) to remove the 

disjunctions between the implications. 

( V q . ( S t e a m  I A Lecel q) =+ -OutOfOrdert) A (Vx.Lece1 r Out0fOn1ert) 

For non-demonic specifications. the Re writeOr algorithm is O(n  Iog n )  since 

a t  least one of TC'(.J) and T C ( B )  in Rewriteor( TC(-4) v T C ( B ) )  produces a single 

in termediate test c ~ a s s . ~  

The algorithm Fomflln operates on a conjunction of test classes and moves 

the universal quantifier into the conjunction, if possible, using the equivalences: 

trnpiications formed during the production of test classes are referred to as intermediale test 
clauuea. 



where x is free in P and M. and x is not free in Q. 

The algorithm EzistsIn operates on a conjunction of test ciasses and moves 

the existential quantifier. if possible. into the test class using the equidences: 

where r is free in P and JI. and x is not free in Q, 

Some expressions do not have a test class normal form due to the arrangement 

of quantifiers. It is also possible for the conjunctive normal form produced by 

ReiariteOr to be combinatoriaI1y large. These types of specifications are esamined 

in Sections .7..5.:3 and 5.5.4. 

This esample illustrates the derivation of the test class normal form of the specifi- 

cation given in  Section 5.3 above. The derivation is the evaluation of 

TC(-.OutOfOrderr o 

( 3 ! n .  Leuel n) 

(g!n.Stearn n )  A 

(V i. PurnpStateIi, T )  w -( PurnpState ( i ,  I))) A 

(V i .  3 b-PumpCtrState (i. b ) )  



As a preliminary step in the derivation. the definition of 3! is expanded &O obtain: 

TC(~OutOfOrder t  o E )  

where E is: 

( ( 3  n-Lecel n )  A 

(V n .  m.(Leoel n )  A (Leoel m )  + ( n  = m ) )  A 

( 3  n.Stenm n )  A 

(V n .  ni.(Steam n )  A (Stean m )  3 ( n  = m ) )  A 

(V i. PumpStcrte(i. T) e 1 PumpStnte(i. 1)) A 

(V i. 3 b.PumpCtrState(i. 6)))) 

Xest. the definition of H is used to derive: 

TC((-OutOfOrder' =+ E )  A ( E  10utOfOrderr)) 

Following t his. the application of the TC' algorit hm's conjunction rule yields: 

The nest operation is to rewrite the implication of the first TC terrn and then use 

the rule for disjunction (the . . . represent unaffected subespressions): 

The double negation is removed and the response rule is then applied: 

= R e ~ ~ t e A n d ( R e w r i t e O r ( ( T  3 OulO/Orderf) V TC(.  . .)) A TC(.  . .)) 



Lïsing the rule for conjiinction on the nest TC term produces: 

The quantification rule followed by the stimulus rule gives: 

= R~utrite.-lnd( Retcri teOr((T OutOf ln fe r ' )  V 

Rewrite .- lnd(Erists ln(3 n . l (  Leaef n E i ~ r n e s s )  1) A TC'(. . .)) 

A TC( .  . .))) 

.AppIyi ng Ezists ln yields: 

= Reuvite.-lnd( RerüriteOr((T OutOfOrder') v 

Rewrite.-lnd(((V n.-(Leçel n ) )  1) TC(. . .)) A TC(.  . .))) 

-4 full application of the algorithm to t h e  nest TC term produces: 

= RetrriteAnd (Reu:r i leOr((T OutOfOrrler') V 

Reu?rite,-lnd(((V n.-(Level n ) )  + 1) A 

( ( ( 3  n .  rn.(Lecel n )  A (Lecel n )  A -(n = ni)) V 

(V n.-(Stcam n ) )  v 

( 3  n .  m . (S team n )  A (Sterrm n )  A - ( n  = m ) )  V 

(3 i . (PurnpSta te( i .  T )  A PumpState( i l  1)) V 

( - (PurnpSta te( i .  T ) )  A -.(PumpStute(i,  I)))) V 

( 3  i. 'd b. - (PumpCtrSta te( i ,  6) E inmess) ) )  

* u A 

TC( -  - -Hl 



Since the consequents of the two inner-most implications are identical (1). applying 

the inner-most Rerorite.4 nd produces: 

= R e l u r i t e . - L n d ( R e ~ , ~ i t e O r ( ( T a  OutOfOrder') v 

(((Y n. l (Lece1 n ) )  v 

( 3 2 .  m.(Lecel n )  A (Leoel n E inmess) A - ( n  = m ) )  v 

(V n.-t(Stearn n ) )  V 

(3 n .  m.(Steam n )  A (Steam n E inmess) A - ( n  = m ) )  V 

( 3  i .(  PumpState(i ,  T )  A PumpStnte(i .  I)) v 

(-(PurnpState(i .  Tj) A -(PurnpState(i ,  1 ) ) ) )  V 

( 3  i. V 6.-( PumpC'trState(i. 6) E inmess ) ) )  

=> L) A 

ru* 4) 

.-ippluing ReuriteOr combines the response and stimuli to produce the first test 

class: 

= Reu~ite,-lnd( 

(((Y n.- ( leael  n ) )  v 

( 3  n ,  m.(Leuel n )  A (Leoel n é inmessj A -(n = m ) )  V 

(V n . ~ ( S t e a r n  n ) )  V 

( 3  n ,  m.(Steam n )  A (Steam n C inmess) A - (n  = m)) V 

( 3  i.(PurnpState ( i ,  T )  A PumpState(i ,  I)) V 

( - (PumpSta te ( i ,  T ) )  A l ( P u m p S t a t e ( i ,  1 ) ) ) )  V 

( 3  i. V b.-i(PumpCtrState(i,  b )  E inmess))) 



Continuing with t h e  remaining TC term produces the second tes t  class: 

(3  n.Lece1 n )  A 

(V n .  n i . ~ ( L e c e l  n )  V ~ ( L e r e l  m E inntess) V ( n  = m ) )  A 

(3 n.Steam n )  A 

(V n. m . l ( S t e a m  n )  V ~ ( S t e a m  m E inmess)  V ( n  = m ) )  A 

(V i.(-( PumpState(i .  T)) V -( PumyState(i .  L)))  A 

(PirmpState( i ,  T )  V PumpState(i .  I)) A 

(V i. 3 b .  PumpCtrState(i .  6 ) )  

=+ - 0 u t 0 f 0 r d e r f  

5.5.3 Existential Quantification 

Specifications employing certain uses of esistential quantification impose limitations 

on t h e  test class algori thm, TC. Even so. such specifications can be converted 

algorithmically into specifications From which the  TC algori thm can produce a test 

class normal form. 

The limitations are manifested in t h e  quantification rules of the  TC algorithm 

as follotvs. ForaIlln wiil n o t  be successful in moving the  universal quantifier in to  the  

conjunction if there is a n  esistentiat quantifier in the  way, 

where y is Free in a t  Ieast o n e  of SI and R i ,  and also in at least one of S2 and  Ra. 

T h i s  occurs when an  existential quantifier straddles two intermediate tes t  classes. 



:in esample of a specification similar t o  Eqriation (5.3) is: 

T h e  system shall ensure t hat  there is a t  ieast orle printer satisfying the  

following: 

1. if a job is printing on  the printer. i t  will be completed within ten 

minutes: and 

2. if there is a job abou t  to be printed on the  printer. it  will commence 

printing wit hin 1.5 minutes. 

T h e  intermediate expression encotrnterecl by t h e  TC algorithm would be: 

3 printer.(V job-job PrintingOn printer a COmpletecl Within T~n.llinute.5 job) A 

(V job-job First To Print For printer + Starts  CCïthin 1.5 Minutes  job) 

In a specification. one  wotrld e spec t  t h a t  t he  incliviclual. printer. would be 

named esplicitly. rat lier t han in~plicitly by iising a n  esistential. Specifications such 

as these can be  flagged by the  TC algorithm. Xlternatively. t h e  esistential variable 

can  be replaced by a Skolem constant. e.g.. in the  case of Equation (.5.3). j. a 

function of r. where f was not previousIy a free variable of t h e  specification. 

If desired. t lie esistential quantifier in Equation (5 .3)  c a n  be pushed inwards 

using the  theoreni 

However. the use of this theorem produces a set  of test classes t h a t  a re  implied by 

the original specification. ra t  her t han  a s e t  whose conjunction is logically equivalent 

t o  the original specification. Thus, this theorem cannot be used t o  produce a test 

class normal form of a specification. 



It is possible that this existential quantification issue can also be addressed 

by ot her means. 

5.5.4 Demonic Choice 

Some forrns of non-determinism. e.g.. S a ( R i  v R 2 ) .  are of no consequence to the 

test class algorithm. Dernonic choice is a forrn of non-determinism which allows the 

implementation to behave according to more than one specification. arbitrarily. The 

demonic specification 

does not force a n  implementation to produce R i  in response to SI, since it has the 

option of behaving Iike S2 + R2 and ignoring Si. :in implementation of th i s  spec- 

ification is not required to produce a response unless confronted with the stimulus 

S i ~ S 2 -  In this case. it may elect to produce either Ri. R2. or both. and still perform 

according to the specification. 

The following example itlustrates consequences of the demonic specification: 

The system shall arbitrarily perform at least one of the lollorving actions: 

1. Call the fire department, if there is a fire. 

2. Call the police. if there is an explosion. 

-4 formal version of this specification is: 

(fire Call fire-depl) V (explosion a Cal1 police). 

The specification requires the system to respond only when there is both a fire 

and a n  explosion. When the system responds, it is allowed to cal1 either the fire 



department or the police. The specification would be satisfied by a system that 

never catled the tire department. even when t here was a fire. 

The test class algorithm can be applied to a demonic specification. However. 

this type of specification can cause a combinatorially large test cIass normal forrn 

due to the definition of ReioriteOr. For esample. the interniediate expression (C;  A 

C2) v (C3n Cd) is converted tu (CI v C3) A (Ci V Cl) A (C>V Cs) A (C2V CI) before 

the disjunctions of test classes are cornbined using (5.2). 

The author's esperience suggests that this type of specification does not 

typically arise in system-level specifications. Each time a specification has been 

Ragged as demonic by the TC algorithm. it has turned out to be a specification 

error rather than an intendeci behaviour. 

5.6 Generating Test F'rames 

.As defined in Section 5.4. a test frarne from a given test class S R is an implication 

-4 + R, where .4 S, A is a conjunction of frame stimuli. and R is a response 

espression. Quantifiers ma- also bind variables occurring i n  both .-1 and R. 

-4 variety of different test frarne sets c m  be constructed from a test class. 

One possible set of test frames is the one derived from a disjunctive normal form 

(DNF) of the test c1ass antecedent. However, the test class antecedent may have 

more than one DNF, e.g.. the function (a A-c) V ( - b ~  c )  v ( i n  b)  and its alter ego 

(a A 4) V (-a A c) v ( b  A yc ) .  In the contest of the Delta Problem of Section -1.6. 

this raises an issue. If an esisting test set contains a valid test frame which does not 

correspond to a term in the DNF of the antecedent of the test class, it wi1l not be 

recognized as valid and wilt be replaced. This is not desirable? since tests should be 

replaced only wlien necessary. 



-4ssuming that the frame stimuli in the esisting test Frame set form a s u  bset 

of the frarne stimuli in  the test class antecedent, the problem of deterrnining a set 

of test frames that satisfy a given criteria is NP-hard. A solution to this problem 

would also solve what Garey and Johnson [;?5] refer to as "[Loi] SATTISFIABILITY 

OF BO0LE.W EXPRESSIONS-n The solution would be to use the given Boolean 

expression as a test class antecedent and a criteria that requires at least one test 

frame. if a n y  esist. the espression is satisfiable if and only if the set of test frames is 

non-empty. The binary decision diagram (BDD) [BI is a convenient tool for address 

ing this type of problem. The technique described here uses BDDs to perform test 

frarne construction and selection. The strategy for generating test frame antecedents 

is: 

1. =\sign BDD variables to each frame stimulus. 

2. Generate the set of prime implicants" for the antecedent of the test class. 

3. Gsing the heuristic to be described in Appendis C. attempt to ident i l  any 

esisting or mandated valid test frames t hat can contribute to the coverage of 

the current test class. This forms the initial set of test frames. 

4. Augment this set with other elements from the set of prime impiicants to 

construct a set satisfying the desired coverage criterion. 

5.6.1 name Stimuli 

BDDs encode unquantified Boolean expressions. Quantifiers wit hin the test class 

place a limit on the granularity of the terms which appear in test Frames. To 
- - -- 

".4n implicant of a formula is a conjunction of variables or negated variables which imply the 
formda. An implicant is prime if it implies no other irnplicant. For example, -4 and 1 B are prime 
implicants of -4 v 7 B. -4 A T B  is an implicant, but is not prime because it implies at least one other 
impiicant , e-g.. 1 B. 



obtain an unquantified expression From the test class antecedent. quantifiers are 

pushed inwards t o  be grouped as tightly as possible to the stimuli t hat they quantify. 

Esistential quantifiers which are not blocked by universal quantifiers are then moved 

outside the implication. where they becorne universal quantIZers. This minimizes 

the number of quantifiers in the test class antecedent. 

Thc theorems used for determining frame stimuli are: 

V x . P V  Q = ( V r . P )  V Q 3 x . P ~  Q = (3x-P)A Q 

V t . Q  V P = Q v ( V x . P )  3s .Q  r\ P = Q A  ( 3 r . P )  

(3t .P) 3 Q = V x . P  + Q 

where r is free in -11, x and y are free in P. and s is not free in Q. Although the 

rules for swapping quantifiers could cause a rewrite w t e m  to diverge, the- are only 

applied in a controlled manner. These rules are used to move quantifiers of specific 

variables to  positions within the expression where they can be pushed inwards. 

An illustration of this process is as foIlo~~~s: 



Applying this process to the steam boiler test classes results in: 

V n. m .  i -  

(V n.-( Leuel n ) )  V 

(Leuel n Lecel m A - ( n  = m ) )  V 

(V n . i ( S t e a m  n ) )  v 

(Steam n A Stenm m A ~ ( n  = r n ) )  V 

( (PumpSta te ( i .  T )  A PumpState(i .  l)) V 

(y( PumpState(i ,  T ) )  A -( PrtmpState(i. 1)))) V 

(V b.-(PumpClrState(i .  b ) ) )  

3 OutO/Orderf 

and 

V ni .  nz. 

(Leuel  n l )  A 

(V n .  m . - ( l eue l  n )  V -(Leuel m )  V ( n  = n i ) )  A 

(Steam n2)  A 

(V n .  m.-(Steam n )  V ~ ( S t e a m  m )  V ( n  = m)) A 

(V i . - (PumpState( i ,  T ) )  V -(PurnpStale(i ,  1))) A 

(V i .PurnpState(i,  T )  V PumpState(i? 1)) A 

(Y i. 3 6 . f  umyClrStutc( i .  6) j 

1OutOfOrder'.  

A BDD representation is constructed by substituting a variable for each 

quantified su bexpression and unquantified stimulus. The quantified su bexpressions 



and unquantified stimuli represented by BDD variables are referred to as  fmme 

stimuli. 

The antecedent of Equation (5.4) can be represented with the unquantified 

es  pression: 

where 

I/; = V n . l ( L e u e l n )  LVl = Vn. - (S team n )  

C.; = Leoel n Il/> = Steam n 

= Lecel m CF3 = Steam m 

S = PtrmpStnte( i ,T)  Z = V 6.-(PumpCtrStnte( i .  6 ) )  

I' = PumpState(i .  L) E = ( n = m )  

The set of prime implicants is t hen generated from the  BDD representation 

of this espression. For this particular specification. Implicant. DNF. and Term 

Coverage. defined in Section 5 - 6 2  below. result in the same test frames. Test frames 

are constructed around the prime implicants. which can be seen in the following test 

frame antecedents: 



(V n . l (  Lecel n ) )  

OutOfOderf  

(V n.-(Steam n ) )  

+ O u t 0 f 0 d e r r  

V n .  mStenrn n A 

Steam m A -7(n = m) 

3 Out0f0nlert  

Q i .  PttmpStnte(i. T )  A V i.-( PumpState ( i .  T ) )  A 

PumpStnte ( i. L) l( PumpStnte(i. Il) 

+ OutO/Ordert * Out 0fOrder' 

V i .(Q 6.-(PumpCtrState(i. b ) ) )  

3 OirtOfOrder' 

AIt hough  quantifiers were used Iiberally throughout the specification, rea- 

sonable test frames could still be generated automatically. It is Iess tedious and 

less error-prone to manually derive test steps from these test frames than from the 

original specification. 

5.6.2 Coverage Schemes 

This section introduces the basics of coverage schernes which are algorithms for 

selecting test frames to satisfy the corresponding coverage criteria. The topic of 

coverage is esamined in  greater detail in Chapter 6. 

A major concept of this thesis is that coverage of a test class by its test 

frames is described by relating the test frame antecedents to  the antecedent of the 

test class. 



.4 test frame is uniquely identified within a test class by its antecedent. [n  

generai, a coverage scheme is a function. C. from a set of possible test frarne an- 

tecedents. 1. to a subset. F. of 1 chosen by the coverage scheme. and a flag, r. which 

indicates wliether F satisfies the coverage criterion. The coverage scheme builds F 

ty repeatedly selecting test frame antecedents from the given set of possi bilities. I .  

untiI this set of selections. F. satisfies the corresponding coverage criterion. or no 

more selections from I can make a further contribution to satisfying the coverage 

criterion. 

A coverage scheme can be used to evaluate a given test frame set. T .  b_v 

emluating C'(=ln1 ( T)) = ( F. r). where .-!nt provides the set of antecedents of the 

given set of test frames. The redundant test frames are those represented in  T but 

not in F ,  The completenes of T is given by r. 

The auttior proposes the following ternis for some fundamental coverage 

schemes: 

L. Al1 points: This is similar to the D N F  of Dick and Faivre, where each test 

frarne specifies the truth or falsehood of each of the frame stimuli from the 

test class stimulus expression- 

2. Implicant: Test frames are produced for each prime implicant. 

:3. DNF: Test frames are produced for a su bset of prime implicants. The disjunc- 

tion of this subset corresponds to a DNF of the test class stimulus espression. 

4. Partition: -4 subset of prime implicants is used to determine an implicant 

set which is similar to DNF coverage, but the implicants are pair-wise contra- 

dictory- There is no test step that will satisfy any two test frames. 



$5. Term: Test frarnes are  produced for a s u  bset of prime impticants srich t hat 

each frame stimuli from the test class stimulus expression is present in a t  Ieast 

one of the selected prime implicants. .4 precise mathematical definition of 

Term Coverage is given in Section 6.8. 

The differences between t hese coverage schemes can be illust rated by consid- 

ering the nurnber of terms produced when applied to the espression in Figure 5.2- 

This figure shows the points where the expression is true (bIack dots). and compares 

the Iiarnaugh maps [-!O] corresponding to the  coverage schemes defined above. Each 

bubble represents the antecedent of a test frame. One antecedent may cover several 

points, This occurs when t h e  truth value of some variables is not specified, The 

coverage schemes produce 8, 5, 4. 4. and 3 test frames, respectiveiy. 

Cornparison of coverage schemes applied to 
( ~ I C ' A - S A - ) . ' ) V ( - C V A - Y A Z ) V ( S A  Y)v(LVn Y n l Z )  

0 0 0  
Al1 Points: @J @) Partition: 

O 
" ifl] 

O 

DNF: Le Tq 

Figure 5.2: Coverage Schemes 

Term coverage is of interest, since the size of the corresponding test frame 

set is linear wit h respect t o  the  size of t h e  test c l a s  rather t han cornbinatorial, as 



are the other coverage schernes- Terrn coverage does not produce test frames t hat 

cover two of the eight dl-points cases. CV A S A ).- A Z and -CV A S A Y /\ -2. 

This is the compromise made in order to produce fewer tests in situations wherc it 

is appropriate to do so. 

The steam boiler example used in this chapter focuses on issues of determin- 

ing frame stimuli. I n  this esample, t here are sevcral frame stimuli but few combi- 

nations of logical conjunction and disjunction (AND and OR). Hence. this example 

produces the samc nurn ber of tests for ei t her Term Coverage or D N F  Coverage. Sec- 

tion 7.8.1 notes that for a more cornplex version of the steam boiler esample. there 

are 22 test frames for Term Coverage. 47 for DNF Coverage. and 84 for [rnplicant 

Coverage. 

5.7 Conclusion 

This chapter has presented the fundamental algorithrns that form the foundation 

of the discipline presented in this dissertation. This foundation is based on math- 

ematical rules of logical manipulation w hich ensure t hat the algorithms are sound. 

The definitions of test classes. frame stimuli. and test frames form the basis of a 

nomenclature for naming coverage criteria. This nomenclature is estended in the 

nest chapter. 

Although rewrite rules are used i n  various contests to produce test frarnes, 

the entire set of these rewrite rules is not confluent5. This implies that test frame 

production is more comples than blindly rewriting the specification using a confluent 

set of rewrite rules. 

5-4 confluent set of rewrite d e s  is also Church-Rosser [9). 



Coverage Criteria 

This chapter defines a nomenclature for narning coverage cri teria wit h tu  ples of ar- 

guments to a test frame generation process. This process is an estension of the  basic 

algorithms of Chapter 5. The parameters of the process establish the nomenclature 

for defining a wide range of specification-based coverage criteria. 

6.1 Introduction 

l n  this discipline of specification-based testing. a coverage criterion is named by 

specifping arguments to the test frame generation process. .Uthough the coverage 

scheme is the fundamental component of a coverage criterion. there are additional 

parameters to test frame generation. These parameters are based on logically sound 

estensions to the algorithms presented in Chapter 5 .  

The first proup of estensions focuses on aspects of the test cfass normal form. 

Derivation of the test class normal form can be produced in any of three variations- 

Each of these can be achieved with minor adjustments to a portion of the TC 

algorithm. In certain situations, it is possible to specialize a test class to eliminate 



non-determinism caused by disjunctions in the response expression. This is referred 

to as response-response resolution. One parameter affecting test classes indicates 

whet her a "ctosed world" should be assumed or riot. This is a common assumption 

made in specifications. and can significantly reduce the size of a specification. 

Once the  set of test classes has been deterrnined, the granularity of frame 

stimuli can be addresseci. I n  special circumstances, universally quantified frame 

stimuli can be broken down into unquantifieci components. Frarne stimuli are the 

common components of both test classes and test frames. Coverage schemes, the 

algorit hms for selecting test frames. are defined based on frarne stimuli relationships. 

As esamples. mathematical definitions of two variations of Term Coverage are given. 

According to the basic algorithms. test frames are produced in their most 

general forms. However. they can also be specialized in orcier to differentiate when 

responses are due to particular stimuli. 

An objective coverage criterion is defined in terms of arguments to this es- 

tended process. Cornparisons of the effectiveness of these criteria are based o n  a 

partial order of coverage criteria. 

Section 6.2 gives a definition of objective coverage criteria and some es- 

amples. The relative effectiveness of coverage criteria is esamined i n  Section 6.3. 

Section 6.4 presents the test class variations. Response-response resolution is de- 

scribed in Section 6.5. Section 6.6 esarnines the effects of assuming a closed world. 

Section G.7 describes the simplification of quantified frame stimuli. Two examples 

of mathematical definitions of coverage criteria are given in Section 6.8. Test frame 

differentiation is esamined in Section 6.9. 



6.2 Objective Definitions of Coverage Criteria 

The extensions to  the test frarne generation process that support the nomenclature 

are descri bed in later sections. Using the nomenctat ure. several pararneters need to 

be specified to  identify a particular specification-based coverage criteria: 

Test class type: pure. detailed, or focused. 

Response-response resolu tion: none. em bellish, or elirninate. 

Closed worId or not. 

Frame stimuli simplification: none, single, all. pairs, power set. 

Selection scheme: AI1 points, Irnpiicant. DNF. Term. 

Test frame style: base. differentiated. 

It is likely t hat the above list will grow wit h the evolu tion of the discipline presented 

in this dissertation. .-Uthough the seiection scheme gcnerally has the most dramatic 

impact on test seIection. each of these elements must be specified in orcler to define 

a particular coverage criteria. 

This nomenclature can be used to specifically narne a large number of dif- 

ferent criteria. For esample. using this nomenclature. a relatively smaI1 set of test 

frames can be specified using the criteria (focused, elirninate. not closed, no simpli- 

fication, Term. base). +A much more extensive notion of coverage which corresponds 

to  a much larger set of test Frames, depending on the specification, is named by 

(pure, embellish, closed, power set, all points, differentiated). 



6.3 Relative Effectiveness 

The eflectiueness of a specification-based coverage criterion refers to its ability to 

produce a test set which uncovers discrepancies between the requirements and the 

implementation. Containment provides a simple means of corn paring coverage crite- 

ria effectiveness. By considering coverage criteria as relations between sperification 

expressions and sets of test frames, criterion -4 is more effective than criterion 13 

when test frames produced by .-I irnply those produced by B. Le., 

where .-t(S. t )  means that the set of test Frames t satisfis criterion .-I for specification 

S. The sets of test frames that satisfy criteria -4 and B are represented by t i  and 

t 2 .  respective! y. 

Using this means of cornparison, the Irnplicant. AH-points. and DNF Cov- 

erage criteria are equally effective. and each is more effective than Term Coverage. 

Another means of comparing coverage criteria is to compare the number of test 

frarnes produced. The principle advantage of Term Coverage is that it is less expen- 

sive. since it produces dramatically fewer tests while still including a test involving 

each frarne stimulus. 

Xpart from t his trivial definition of relative effectiveness. this thesis does 

not address the issue of determining which coverage criteria are more appropriate 

for specific testing objectives. Without a more satisfactory mathematical notion 

OF effectiveness, the relative merits of coverage criteria will need to be determined 

on the basis of ernpirical study, Et is likely that definitions of coverage criteria will 

include some domain specific elernents. 



6.4 Test Class Variations 

The TC algorit hm of Chapter 5 produces test classes in  what is referred to as their 

p i ~ r e  form. This pure test clcas normal form is logicatly equivalent to the original 

specification. This is due to  the  Fact that the TC' algcxithni is based on eqiiivalences. 

There are two additional variations on this algorithm ivhich involve slight changes 

to the ReicMte--tnd function. 

6.4.1 DetaiIed 

Some test engineers may require that the responses be as detailed as  possible. For 

esample. the pure test class normaI form of the specification. 

The test class Sr A 5'2 3 R2 m a l  be regarded by sonie as incornplete since Si 

~vill cause t h e  response RI in  addition to the response Rz. The desired test class, 

SI A 5 R1 A R2. is an esample of the deiaileci form of test classes. 

DetaiIed test classes a re  produced by augmenting the processing of conjunc- 

tions in Rewrite-4nd by using the ec~uivalence: 

VP.S.R.(T* P ) A ( S +  R) = ( T a  P ) A ( S *  P A R ) .  (6.2) 

As with pure test classes, the conjunction of detailed test classes derived 

from a specification is IogicalIy equivalent to  the specification. 

The detaiied test class normal form of (6.1) is 



6.4.2 Focused 

In some testing situations. tests from the test class SI a Ri. above. may be deerned 

redundant, since RI can be observed in the test steps for the test frame SI A & + 
R1 A R2. A F O C U S ~ C ~  set of test classes which eliminates this  type of test class is 

produced b\; augmenting the processing of conjunctions in  Re wrile.4nd by using the 

in ference 

The conjtinction of focused test classes is implied by the specification, but is 

not eqtrivalent to it. This is due to the use of the inference (6.2), rather than the 

exclusive use of logical equivalences. 

The fociised test class normal form of (6.1) is 

6.5 Resolving Non-Determinkt ic Test Classes 

Response-response resolution refers to the process of eliminating certain kinds of 

non-determinism from test class response espressions where possible. Test class 

combinations of the form 

can be used to derive additional test cIasses as follows: 



A s  indicated bÿ the laçt two steps of the derivation above. the additional test 

classes can be iised to embellish the original set. or the non-deterministic test classes 

can be eliminated. The eliniination of non-deterministic test classes is simiIar to the 

production of focuseà test classes in that the resulting test classes are implied by the 

specification. rather tlian equivalent to it. Some test engineers may deem the test 

frames derived from the omitted test classes to be of no real value. For esaniple. 

sonie test engineers rnay require tests that specify dcterrninistic responses. Thtis. 

t.here is no significant consequence in the loss of logical equalitÿ of the conjunction 

of the set of remaining test classes to the original specification. 

6.6 Assuming a Closed World 

A closed world. or complete knoivvledge. assumption [.5 11 is comrnon in many specifi- 

cations. The assurnption is t hat a given response can be produced only in those cases 

prescribed in the specification, and in no others. For esample. assuming a closed 

world. 7-4 A 1 B 1 R is valid if the specification (-4 a R) ( B  =+ R) is valid. This 

can be achieved by augmenting the test class normal form of a specification with 

the appropriate test classes, prior to test frame generation. 

.A closed world assumption can have a dramatic effect on the  number of test 

frames produced from a specification. For example. the specification ((-4 A B )  V (C'A 

D) v ( E  A F)) =. R has three DNF test frames. Hoivever, the same specification in 

a closed world has 11 DNF test frames. 



The simplification of quantified frame stimuli is perforrned during the determination 

of frame stimuli. Removing quantifiers produces sim pler frame stimuli, rvhich are 

easier to instantiate manually into test steps. This simplification assumes that the 

domain of the quantified variable is a set. and requires that this set be icientified 

as either static or dynamic. Any element of the specification is dynnmic if it can 

be different in different contests of the specification. Any element is static if it is 

not dynamic. e-g.. the set of natural numbers is a static element. For esarnple. the 

espression V x . P  r. where r has the type corresponding to the set of aircraft within 

an airspace. -4. is interpreted as V x  :1.P z. Since there can be different numbers 

of aircraft within an airspace a t  any given time, .-I is dynamic- 

The test class and test frame algorithms process specifications which may 

include quantification. Quant ifiers in the specification often appear in  test frame 

stimuli espressions. as illustrated in  the esarnple of Section .5.:3. Wit hou t furt her 

processing. quantified franie stimuli would normally be addressed during the manual 

instantiation of test frames into test steps. To reduce the labour required for this 

task. it is beneficial to automatically process quantified frame stimuli where possible. 

The following esample illustrates w here quantifies can be simplified. The 

espression (3!x.S x)  A w < 2 o R ,  where R is the only response, produces the 

following term coverage test frames: 

Vx.(S  L A  (Vx? y.-S t V-S y V (x = y) )  A w < 2 + R ) ,  

(V X-TS  x) =+ 1 R, 

w 2 2 + -R,and 

V z 7  y.(S L A S y A x # y + 7 R ) .  



[nstantiating a test frame into a test step is the process of deterrnining an 

instance of input variables which satisfies each frarne stimulus. For an unquantified 

frarne stimulus, siich as w > 2, instantiation is sirnply a rnatter oc selecting a p  

propriate data values for the variables. e.g., w = '2. However, satisfying quantified 

frarne stimuli. such as V x ,  y.-& x V -S y V (z = y)  and Vz.+ r above, can be 

quite corn ples. since the stimuli expression can be undecidable. 

The test frarne generation algorithms girarantee that the first quantifier of a 

quantified frame stimulus is universal.' -4 quantified variable is associated with a 

set of d u e s .  This set is either dynamic or static. Thus, there are three categories 

of quantified frame stimuli: 

L. the quantified variable is associated with a static set and the frame stimulus 

con tains n o  free variables t hat represent the system environment: 

2. the quantified variable is associated with a static set and the frame stimulus 

contains a free environ nient variable: or 

3. the quantified variable is associated with a dynarnic set. 

In  the first category. the environment has no effect on the truth value of the 

frame stimulus which is eit her true or false. e-g., V n.n2 > n. It is suspicious that a 

sustem would be required to produce a response depending on the truth or faisehood 

of a stated theorem. In such cases, it is likely that the source of the frarne stimulus 

is incorrectly specified. 

Frame stimuli frorn the second category espress a property of the free vari- 

able. This is illustrated by the frame stimulus V y.r mod y # O V  y = LV y = x, which 

espresses t h e  property that 1: is a prime number. When the static set associated 

' If it were existentid, it could be rnoved outside the antecedent of the test c l a s  to universally 
quant ify the test class. 



with the quantified variable is infinite, instances of frame stimuli for this category 

miist be determined manually. When the static set associated with the quantified 

variable is finite. a frame stimulus of the form V x  E {xi 1 1 < i < n}.P x can be 

simplified using the t heorem. 

V X  E {xi 1 1  < i <  n ) . P x = A { P x i  11 < i &  n } .  

mhere I\({J} u il) = x A (A -4) and A0  = T. 

The third category is particularly interesting from a coverage point of view. 

in this case. the set associated with the quantified variable contains an arbitrary 

number of eIements. For example. in the frame stimuIus V x -4ircraft.t~-Taxiing~v 

IsJ3oardingx. the set Aircraft represents al1 the aircraft within the operating envi- 

ronnient of the systern. In  the contest of an air trafic control system. the contents 

of this set are constantly changing. For these frame stimuli, the question is: Wltat 

instances of this set. e.g.. Aircraft. should be used in test frames to ensure adeqiiate 

coverage:' 

The frame stimulus 

can be satisfied by the singleton instance S = { c ) .  where c has one of the properties 

P i .  1 < i $ n. This is certainly a light notion of coverage. -4 more reasonable notion 

of coverage might be to conduct n tests, each one addressing a different Pi. Another 

alternative is to set S = {xi 1 Pi xi. L 5 i 5 n}, a single set of n elements. each of 

which satisfies at least one Pi .  This would require one test. 

The soundness of the above substitutions is assured by the theorems 

(-Y = { x ) )  A P i x v  ... v P,t * V x  E X . P i t v  ... v P,,r (6-4) 



where r .  x i .  .. ..xn are constants that have not yet been introcluced into the speci- 

fication. and reflect a particular instance of the type of the quantified variabIe. In 

terms of the test frame generation process. qilantified frame stimulus simplification 

can be performed in  a t  least t hree modes: none. single. or  all. where single and al1 

refer to the use of inferences (6.4) and (6.5). respectively. Another alternative is to 

n 
combine these techniques and conduct ( ) tests where each test involves a pair 

2 

n 
of elements that satisfy distinct properties. Le., the ( ) instances of S such that 

2 

.Y = ((1. y ) }  and 3 i. j.1 4 i. j < .Ai # j~ Pirr\  P, y. -1 further. perhaps ertrerne. 

alternative is to conduct 2" tests based on the power set of the Pios. 

6.8 Mathematical Definition of Term Coverage 

The definition of Term Coverage expresses a reIationship between frame stimuli 

within test frames and the frame stimuli of a test class normal form of the specifi- 

cation. The mathematical definition of Term Coverage follows. 

The following definitions are made: 

Let Ci. L < i < n. represent the n test classes of specification Q, i.e.. Q = 

Ci A ... A C,,. 

Let ci represent the test class antecedent of Ci- 

Let Conj(E) represent the set of conjuncts in  an expression E. 



Notv, let S ( E )  represent the set of Frame stimuli in the test class normal form 

of an espression. E. Le-. 

where TC is the test class algorit hm from Section 5.5 and F S ( c )  represents the set 

of frame stimuli obtained from the test class antecedent. c. as  determined by the 

procetl u r e  from Section 5.6. 

Let j;* represent the antecedent of the k t  test frarne Fik derived from Ci. 

1.e.. 

V fi.& ci) A V e . (e  3 c i )  Conj(e) < Conj(hk). (6-6) 

Equation (6.6) states that Fik is a mlid test frarne of test class Ci and hk is a prime 

implicant. The Fik test franies satisfy Term Coverage of a specification. E. when: 

An alternative variation of Term Coverage is where the coverage of the Fik test 

frames is measured relative to each individual test class. rat her than to the specifi- 

cation as a whole: 

V i.C; E Conj( TC'( E ) )  + V s E S ( C j ) .  3 k - s  E Conj(hk). 

6.9 Different iat ed Test Frames 

The test frames generated using the basic algorithm of Chapter 5 are referred to as 

basestyle test frames. This style of test frame specifies the most general constraints 

on test frame stimulus expressions, For various reasons, it may be desirable to 

produce more specific test frames, such as the pair below from Section 2.5. 



1. S and Cl and (not C2)  + R 

2. S and (not Cl)  and C2 * R 

This section examines a method of producing test frames in a different style. 

Differentiated test frames include additional constraints to ensure that there 

does not esist a test step which is an instance of more than one test frame for a test 

class. Differentiated test frames rnay be required to ensure that frame stimuli are 

tested in isolation. 

For example. the test class (.-1 v B) 3 R tias base test fcarnes .-\ 3 R and 

B * R. The test step (-4 A B) + R is an instance of both test frames, and it may 

not be clear which stimulus was actually being tested. 

Definition 5 -4 set of tes t  fmmes is differentiated [chen the antecedents of the test 

f m m e s .  h, 1 6 i 6 n .  are pair-wise contradictory. i.e.. 

Differentiation is performed after the coverage scheme has selected a set of 

test Irames. A differentiated test frame. F ~ .  c m  be cornputed from the corresponding 

base test frame. Fk. To correctly compute differentiated test frames when quantifiers 

are present requires the use of adjusted test frames. An adjusted test fmme is a test 

frame where universal quantifiers exterior to the implication have been pushed into 

t h e  antecedent. if possible. The antecedent, jk, for the differentiated test frame. 

Fk, can be computed from the test frame antecedent and the n - I adjusted test 

frame antecedents, J;:? 1 < i < n and i # k, using the formula 



where ArbPI(e) represents an arbit rary feasible prime implicant of frame stimuli 

from espression e. 

While this technique ensures that frame stimuli can be tested in isolation. 

there are two disadvantages to differentiated test frames. Since this method of dif- 

ferentiation involves an arbitrary choice from a set of alternatives. it is possible that 

a test frame generator may make a choice other than that desired by a test engi- 

neer. In addition. differentiation involves corn pu ting prime implicants and selecting 

a feasible one. Thus, ivhen selecting the representative differentiated test frame. 

simplification and infeasibility checking ivill also need to be performed and may be 

a prohibitively expensive computation. Simplification and infeasibili ty are esamined 

further in Section 1.4.2. 

Differentiated test frames are similar to Ammann  and Offtitt's base-choice 

coverage r2]. Amniann and Offuttts each-choice-used coverage is similar to Term 

Coverage (6.7). with the difference that the tests are based on a partitioning of 

the input domain alone. rather than on test classes which partition the stiniulus- 

response be haviou rs of the system. Base-choice cowrage requires specifying a base 

input i n  addition to a system behaviour. Test inputs are selected by negating one 

predicate that describes the base input. 

A test class approach has the advantage that test classes correspond to base 

behaviours associated with the base inputs of Amrnann and Offutt. Although dif- 

ferentiated test frames are based on a single behaviour, they produce tests similar 

to those satisfying basechoice coverage. Thus, a base behaviour does not need to 

be specified in order to produce base-choice-li ke tests. 

For example, the differentiated test frames of -4 A B A C w R are: 



The test frames with response 1 R correspond to those obtained by base-choice 

coverage that uses the antecedent .A A B A C as the base input. With differentiated 

test frames. however. the latter three test frames follow directly from the test ctass 

7.4 v Y B  V 1 C  R. and are not based o n  any other behaviour. 

The differentiated version of the test frame 

from Section 5.6.1 is: 

V i. nl .  n2. 

PumpSlate  (i. T) A P u m p S t n t e  ( i .  i) A 

Stearn n2 A 

( V p .  3 b .  P u m p C t r S t a t e ( p .  6)) A 

( V p . P u m p S t a t e ( p .  T) V PunipS tn te (p .  1)) A 

( V I . - ( L e r e l  x )  v V y . - (Leue l  y) V (x = y ) )  A 

(V r .  V y.(x = y) V ~ ( S t e n r n  x) V - ( S t e o m  y)) A 

Leuel nt 

OutOfOrder'  

6.10 Summary 

This chapter has defined estensions to the  test class and test Irame algorithms 

of Chapter 5. Parameters to these estensions form the nomenclature for naming 

coverage criteria For sets of test Irames. 



Chapter 7 

Forma1 Specification-Based 

Testing 

This chapter describes an application of the discipline of Chapters 5 and 6 to general 

forma1 specification-based testing. It defines a general test Frarne generation process 

that can be apptied to a wide range of formal specifications. It also provicfes details 

of the design of a particular implemen tation of t his process. 

7.1 Introduction 

-4lthough the discipline presented in this dissertation is designed to be applied to 

systeni-level requiremen ts speci fications, the generality of t h i s  discipline allows it to 

be applied to a wide variety of forma1 specifications. Applying this discipline to a 

forma1 specification assumes: 

0 that stimuli can be distinguisheci from responses by some means, and 

the specification language can be founded on a logic that is consistent with 



the IogicaI inferences used in the algorithrns of Chapter 5. 

The geneml test fmme genemtion pmcess is based on a test frame generator 

t hat implements the algorit hms of Chapters 5 and 6. The test frame generator takes 

a forma1 specification. a coverage criterion as defined in Chapter 6. user-mantlated 

tests. esisting test frames. and specified domain knowiedge. and produces a set of 

test frames that satisfies the given criterion. 

SIany of the details reqiiired to implement such a test frame generator were 

$\.en in Chapters .5 and 6. This chapter provides process details for: 

the iterative application of the general test frame generation process which 

allotvs test frames to be generated For a specification that cannot be processed 

tvithin available memory or time limits. and 

O the types of domain knowledge applicable to t his process. how domain knowl- 

edge can be formalized. and a general decision procedure for applying t h i s  

knowledge. 

This chapter also provides the FoIIowing details of one possible implementation: 

O a reivrite system used in  order to increase the assurance that logical manipu- 

lations carried out by the the test frame generator are sound, 

techniques for distinguishing bettveen stimuli and responses, and 

algorit hrns  for t hree of the  coverage schemes defined in Section 5.6.2. 

Section 7.2 provides an overview of the general test frame generation process. 

A method for processing large and logically complex specifications is described in 

Section 7.3. Section 7.4 describes how this process makes use of domain knowledge. 



The remainder of t h is  chapter focuses on aspects of one possible implementation of 

a test frame generator. The rewrite system is described in  Section 7.5. Techniques 

for distinguishing stimuli from responses are described in Section 7.6. Section 7.7 

outlines three algorithms For implementing coverage schemes. Examples of the a p  

plication of a general test frame generation tool to a portion of a formal specification 

from the literature [5S] and to another specification with a complex logical structure 

are esamined in Section 7.8. 

7.2 Process Overv-iew 

- - * Opiioml inputs 

* Bcyond thc scopc 
of Lhis thes~s 1 Test Fnmcs 

Figure 7.1: Automated Test Frame Generation 

Figure 7.1 illust rates a process based on the discipline of specification- based 

test frame derivation presented in this dissertation- This process automatically 

generates test frames from a forma1 specification. The required inputs are the forma1 

specification and the coverage criteria. Optional inputs are domain knowledge, user 



mandated tests. and esisting test frames. As stated in Section 1.2. the seiection of 

test data to derive test steps from test frames is outside the scope of this thesis. 

The forma1 specification is assiimed to be a Iogical expression relating stimuli 

and responses. Uses of esistential quantification in  the form of Equation (.5.:3) and 

demonic specifications are Ragged and rejected during test clws generation. These 

must be corrected by the specification author. The seIected coverage criterion de- 

termines the precise relationship between the test frames to be produced and the 

given specification. 

The in  put labeled "Domain Knowledge" in Figure 7.1 describes logical rela- 

tionships amongst stimuli and amongst responses separately This clomain knowl- 

edge can be selectively provided by the user to control three aspects of test frame 

production: 

1. the level of abstraction espressed in  the test frames: 

2. the elimination of infeasibte test frames: and 

3. the simplification of t hose test frames that are feasible. 

-L7ser hlandated Tests" provide the test engineer with the option of directly 

specifying some of the test frames to be induded in the output. User-rnandated 

tests are specified as test frames that are either fully or partially instantiated- User- 

mandated tests are not simply appended to the automatically generated test frarnes. 

Ratlier. the test frame generator integrates the user-rnandated tests to reduce the 

generation of redundant. or partiaily redundant, test frames. 

Software requirements often change during the development of a system. 

When requirements change, it is highly desirable to limit the impact of the changes 

on existing sets of test frames. For this reason, the user may optionally provide the 



set of "esisting test frarnes7 as input to  the test frame generator. The test frame 

generator attempts to limit the number of arbitrary differences between the new and 

esisting sets of test frames. It witl also flag test frames in the previous set which 

are no Ionger impiied by the specification. 

The integration of user mandated tests and existing test frames is an in- 

stance of the Delta ProbIem presented in Section 4.6. This capability has not been 

implemented. but a heuristic algorithm for this intractable problern is given in Ap- 

pendis C, 

7.3 Tackling Cornplex Specincations 

AutomaticaIly generating test frames For large specifications can be impractical. 

typically due to the amount of time required for the cornputation. In situations 

where Iimits on tinie and rnernory resources are esceeded. the specification can be 

processed iteratively as  follows: 

1. Limit the amount of detail in the specification in  order to provide a more 

abstract view of the specification. This can be accomplished by instructing 

the test Frame generator not to espand specific terms in  the specification by 

their definitions during the derivation of test classes. In some situations. it may 

be necessary to limit detail by defining comples portions of the requirements 

as  abstract terms. t hen suppressing the espansion of these abstract terms. 

2. Generate test frarnes From the abstract view of the specification. 

3. Use each test framecontaining a n  abstract term combined with the definition 

of the abstract term as the specification for the next input to the test frame 



generator, When using the Term Coverage scherne, only a single test frame 

for each abstract term is required. 

4. Repeat steps 1 to :3 until test frames no longer contain abstract terms. 

-5. During data selection, when instantiating an abstract terrn, choose one in- 

stance for that terni. 

This iterative approach was used in preparing the esamples presented in 

Sections 7.8.2. 8.5.1. and 8 - 5 2 .  

In many situations it may be desirable to use the iterative approach above. 

but use different coverage criteria at the various levels of abstraction. This provides 

test engineers with another means of control. 

7.4 Formalizing Domain Knowledge 

Domain knowledge encornpasses a number of facts that can be used for different pur- 

poses in  the test frame derivation process. Sorne of this domain knowledge expresses 

the interaction between the environment and the system by defining translations be- 

tween the conditions used to describe the environment, and those used to specify 

the system requirements. In this dissertation, this type oldomain knowledge can be 

espressed via eiczbomtion. Elaboration can be used to ensure t hat test frames are 

composed of terrns a t  the appropriate level of abstraction for testing purposes. 

Ot her domain knowledge expresses condition dependencies t hat must be 

taken into account to disregard infeasible test frames and simplify those feasible 

test frames that are selected by the coverage scheme. This domain knowledge is 

expressed as theorems about mutually exclusive conditions, those forming partial 

orders, and those t hat represent states. 



In this dissertation. elaboration refers to a mechanism for expanding stimuli and 

responses in  the requirements into other combinations of stimuli and responses. re- 

spectivel. This addresses some of the specification forms introcluced in  Section 2.5. 

These relationships may be part of the domain knowledge supplementing the re- 

quirements specification. They may also be parts of the requirements t hat express 

relationships between different levels of abstraction of the stimuli and responses. 

Elaboration allows test engineers to use a more detailed ievel of abstraction to de- 

scribe tests. if necessary. 

For example. tests rnay need to be expressed in terms of the Cornputer- 

Hiiman Interface, which may be specified separatelÿ frorn the system requirernents. 

The advantage of this type of elaboration is t hat it uses a supplement to the require- 

ments specification. This ensures t hat constraints on the terminology used in  testing 

do not affect the level of abstraction espressed in the system requirernents. 

There are two mechanisrns for elaboration: definition and implication. Defi- 

nitions correspond to rewrite asiorns of the form: 

where .-1 is either a stimulus or response predicate, and E is any predicate logic 

espression. As the TC algorit h m  corn pu tes test classes, defined terms are espanded 

according to t heir definitions. 

Implication relationships arnongst stimuli that do not involve a response, and 

similar relationships amongst responses that do not involve stimuli, are espressed 

as axioms of the following forms: 



where S ( x )  is a stimulus. E s ( r )  is a stimulus espression. R ( x )  is a response. and 

ER(x) is a response espression. 

Implications fornled during the production of test classes are referred to as 

intermediate test classes. When a stimulus is first forrned into an intermediate 

test class by the test class algorithm. it lias the form S(a) L. as describetl in  

Section 5.5. Lt'hen this intermediate test class is formed. any r4evant elaboration 

asioms are used to form the equivalent intermediate test class. S ( n )  v Es(a) 1. 

The original stimulus. S ( n ) ,  is retained in the antecedent to ensure that the test 

class normal form is logically equivalent to the original specification. Similarly. an 

intermediate test class for a response. T R ( a ) .  is replaced wi th  the equivalent 

interniediate test class. T R ( a )  A E R ( n ) .  

7.4.2 Simplification and Infeasibility 

Domain knowledge involving condition dependencies can be provided as a supple- 

ment to the requirernents. These are used during test frarne selection to disregard 

infeasible test frames, and to simplify the antecedents of selected test frames. For 

the purpose of identifying infeasibte test frames. it is necessary to identify the logic 

dependencies between conditions. The system-level specifications esarnined during 

the research for this thesis contain relatively few dependencies of ttiis sort between 

coriditions. It is likely that this is due to the system-level descriptions of stim- 

uli, which are more abstract than the detailed descriptions that might be found in 

unit-level specifications. This motivates the use of axiom schemata to define de- 

pendencies, rat her t han requiring some underlying formai mode1 to support these 



schemata as t heorems. 

In the general test frarne generation process, known dependencies between 

conditions are specified using any of three axiom schemata: 

2. Vx.G 3 s Ù b s r n [ ~ ~  r: P2 2: . . - Pn x], and 

These provide a means of defining condition dependencies. The MutEx form is 

used to define dependencies between mutually exclusive conditions. Conditions t hat 

form partial orders can be defined using Subsm. The States form defines conditions 

that represent a set of system States. The symbol G represents a n  optional guard 

which can reler to  any of the qiiantified variables from the vector r. The guard 

provides a nieans of converting the dependency into a standard domain for which 

the test frame generator has a decision procedure. -4s an example of defining a 

partial order. wsuming a decision procedure For simple arithrnetic. theoreni schema 

Y x. g.x > y + Subsm[Pr: Py] allows the test frarne generator to simplify P 1 A  P2 

to P 1. 

The asioms defined by these schemata are given below: 



Dependencies between predicates. such as -1s Jn-Canada." can be specified as 

V r.Su bsm[Is_ln-Canada r: I d n - B C  r: 1s-Over-Vancouver r ] ,  

and 

V r.States[Is-In-Canada r: 1s-OutsideXanada r ] .  

The theorerns are applied to the conjunctions of Frame stimuli found in prime im- 

plicants corresponding to potential test frarnes. 

In addition to condition dependencies, a confluent set of rewrite rules can 

also be specified as axioms. .As an example of these techniques, reasoning about 

conjunctions of linear inequalities can be specified using the foliotving rewrite rules: 

V a ,  6.-(a < 6) = b 6 a 

V a ,  b.-(a > b )  = a 6 b 



V a .  b.-(n < 6) = b < a 

V a ,  b.-(n 2 b )  = a < 6 

toget her wit h the  following dependencies: 

V r .  y.Subsrn[x 4 y: r < y] (7.1) 

V x .  y. -.(y < z )  + Subsm[r < r: r < z :  x 6 y: r < y] (7.2) 

V x .  y. r.(z < y) + Subsm[z 9 x: z < x: y ( r: y < x] ( Z 3 )  

V  r. y. z.(g ( z )  3 MutEs[x < y; z < r] (7.4) 

VI. y. :.(y < z )  3 !vIutEx[r < y: z < c] (7.5) 

V r .  y. -.(y < z )  3 MutEs[x Q y: z < r ]  (7.6) 

V x. y, _.(y ) r) MutEx[y $ z: x < z] (7.7) 

As a simple esample. the conjunction r $ O A ~  > L is found to  be infeasibie as 

f o l l o ~ s .  Since rewrite asioms are  applied during the  determination of the  tes t  class 

normal form. r > L will be rewritten to  1 < r before s coverage scheme subjec ts  the  

conjunction t o  feasi bility analysis. Theorem schema (1.6) prod uces a rnatc h w here 

the instantiation of the  guard is O < 1. which is resolved t o  T by a built-in decision 

procedure for simple arithmetic. Thus, it  can be concluded tha t  x $ O A x > 1 = I 

and the  corresponding test frame is infeasible. Similarly, r < 3 A x $ 4 produces 

a match in theorem schema (7.2) in t h e  first and fourth positions of the  list with 

guard 3 < 4. Matches a t  o t  her list positions do not allow the  guard t o  be  reduced 



to T by the decision procedure. Thus, this conjunction is sirnplified to 1: < 3. 

This approach has certain limitations. To handle situations where the con- 

dition dependencies within test frarnes can be comples, it may be more efficient to 

provide a domain-specific decision procedure similar to the built-in decision proce- 

dure for arithmetic. For example. atthough the complex contradiction a < 6 A 6 < 

c A c < a could be deduced by matching the guard of theorem schema (T-4) with 

c < n in theorem scherna (7.1). this type of reasoning is espensive to compute within 

the framework presented here. However. this research suggests that condition de- 

pendencies at  the system-level typicaIly involve pairs of conditions. rat her t han an 

interaction between three or more conditions. 

In situations w here t here are relatively Few de pendencies between conditions. 

such as system-level requirernents. condition dependencies can be addressed by spec- 

ifying the theorems that an underlying mode1 should support. 'f he t heorem schema 

forms 1IutE.u. Subsm. and States ailow a reasonably concise means of specifying 

these theorerns, This approach tends to work well in the contest of the system-level 

requirements specifications addressed by t his t hesis, since the dependencies between 

conditions can be espressed with relatively few asiom schemata. It is not riecessary 

to document dependencies between every pair of conditions within the specification. 

It is necessary only to  document t hose dependencies for frame stimuli which appear 

wit hin the same test class antecedent. 

7.5 Rewrite System 

To increase the reliability of the test frarne generator, a rewrite system is used to 

perforrn Iogical manipulations. The rewrite system described in this section differs 

from some well-known rewrite systems, such as the one found in HOL ['2S]. For 



performance reasons. the prototype test frame generator does not use the rewrite 

system during portions of simplification and infeasibility processing. The rewrite 

system assumes the correctness of each of the rewrite rules provided. To increase 

the assurance of correctness of the rewrite rules used in this dissertation. a HOL 

version of each rule was proved to be a theorem using the HOL system. 

Rewrite rules are stated as  univetçally quantified equalities. e.g., V x. El(t) = 

&(z)! where x is a vector of variables. For rules specifyirig rewrites involving 

quantifiers. the system assumes the folIowing rules: 

1. txriable capture is avoided us ing  alpha conversion: and 

2. if variable release occurs. the rewrite fails. 

The concept of cariable relense is the opposite of variable capture. During rewriting. 

if a variable is qiiantified in an expression matching the left-hand side of the rewrite 

rule and is unquantified in the corresponding instance of the right-hand side. variable 

release has occurred, For esample. applying V P. Q . ( V x . P  V Q)  = ((Vx-P) V Q) to 

V z./ x v y is valid. Hoivever. applying the same rule to  V x . f  cvg c is invalid because 

the 1: of g L is released, i.e.. z has become unquantified because it was free in Q. 

Rewrite rules requiring conditions o n  free variables can often be stated in terms of 

variable release. 

By failing rewrites in tvhich variable reiease occurs, the rewrite system allows 

the specification of rewrite ruks such as: 



The last rule specifies tliat a universal quantifier can be removed if the quantified 

kwiabte is not free in the expression. P. 

This type of quantifier manipulation is not performed in HOL by general 

theorems used as rewrite rules. as above. Instead. it is performed using f'iinctions 

called conoersions. which proditce a theorem for the specific conte'ct only if such a 

theorem esists. The rewrite systern described in this section is a sirnpler approach 

to rewriting. which does not require the specification of converters. 

The rewrite system also recognizes alpha equimlence. e.g.. ( A  r.  E ( t ) )  = 

X a .E(c l ) .  These capabitities allow most of the Iogical manipulation done by the test 

frarne generator to be performed by the rewrite sÿstem. 

7.6 Distinguishing Stimuli and Responses 

The algorithms i n  Chapter 5 rely on the distinction of stimuli from responses. but 

preciseIÿ how this is done has not yet been presented, There are two primary means 

of distinguishing stimuli and responses. The first is through the literal used to name 

the predicate. The prototype test frame generator descri bed i n  t his  dissertation uses 

this approach. and assumes that a literal beginning with a lower case letter indicates 

a response predicate. unless a directive specifically labels a literal as referring to 

either a stimulus or a response. This technique has been found to be adequate 

for system-level requirements- based testing, because the vocabulary used to specify 

responses is usually different from that of specifying stimuli. 

A n  alternative is to base the distinction on whether variables within predicate 



arguments refer to the state of the systern at the time the stimulus occurs. or whet her 

they refer to the state a t  the tirne the system responds. For esample. in Z a prime 

('1 is used to distinguish post-operation values from pre-operation values. Thiis. 

the specification ( z  f g ( r . 5 ) )  V (zr = g(x. 10)) has the test class normal form 

( z  = g(x, 5 ) )  ( z f  = g ( x ,  10)). In t h i s  exampIe. : = g ( x .  5) is a stimulus because it 

does not refer to the state of the system at the tirne of the  response. The presence OF 

2' indicates that zr = g(r. 10) is a response. In  this system of distinguishing stimuli 

and responses. the same predicate can appear as eit her a stimulus or a response. 

e.g.. the predicate X n. 6. c.c = g(n. 6). 

This latter approacli may prove quite usefuI in situations where the same 

predicate is used to express different relationships within a specification. For esam- 

ple. assurning CnrrectForm is clefined. the specification 

ComctForm (i. f') 

can be rised to generate test Franies for filling out a Form correct15 tvhite 

can be used to generate test Frames for flagging errors mhen a given form is filled 

out incorrectiy. 

7.7 Algorithms for Coverage Schemes 

This section describes algorithms to implement the Implicant, DNF, and Term cov- 

erage test frame selection schemes and examines the effect of infeasible test frames 

on these algorithms. Each of these algorit hms selects members of a set of prime 

implicants which correspond to the antecedents of test frames. A test frame is 



constructed From a prime implicant and its corresponding test class. Thus, it is 

suffiçien t to  descri be coverage scheme aigori t hms in terms of selecting certain prime 

implicants of a Boolean expression. The problem of finding a minimal set of prime 

implicants t hat satisties the given coverage is XP-hard i n  each case. A solution t o  

this problem rvould also solve what Garey and Johnson refer to as  -[SP.i] LIINIiLICM 

COVER- ['25]. To select a set of test frames wit h the desired coverage in polynomial 

time. each algorithm abandons the minimal set but attempts to keep the selected 

set as smalt as possible. 

-4 set of prime impiicants can be generated by constructing a disjunctive 

normal form of the Boolean expression and using Stnemecki's algorithm [63] for 

producing the prime implicants. 

7.7.1 Implicant Coverage 

One algorithm for an implicant coverage scheme simply uses the general decision 

procedure of Section 7-42 to eliminate any infeasible test frames. then simplifies 

those that remain. 

-1lthough infeasible test frames are t heorerns of the specification. t he -  have 

no value as  descriptions of tests because the stimulus can never be achieved. For 

esample. one test frameof the test ciass x E ( 1 . 2 ) ~ ~  < 2 3 r is (s = 2 ) ~ r  < 2 + r. 

This is an infeasible test frame: it does not describe a test where the specified system 

can be forced to  produce r t o  be consistent with its specification. lnfeasible test 

frames are cornmon in non-trivial specifications, and do not necessarily indicate the 

presence of specification errors. 



7.7.2 DNF Coverage 

This selection scheme selects a set of prime irnplicants that represents a disjunctive 

normal form of the original logical expression. Since it is possible for a logical 

expression to have more than one disjunctive normal form. the algorithm for this 

selection scheme attempts to minimize the set by avoiding disjuncts that overlap 

N- here possible. 

The algorithm proceeds as foilows: 

1. Select a most general prime implicant that does not overIap the set alreaciy 

selected. Le.. VS A p = 1 for a set S of aIready selected prime implicants and 

unselected prime implicant p. -4 most general prime implicant is one with the  

fewest frarne stimuli. i-e.. the shortest conjunction. 

2. The selected prime implicant is tested to ensure that it is feasible in the con- 

test of specified condition dependencies. Any infeasible prime implicants a re  

discarded from the selected set. 

3 .  Repeat steps I and 2 until the disjunction represented by the set is logically 

equivaient to the original logical expression. or  no more prime irnplicants are 

available that  fit the description in step 1. 

1. To fil1 in a n y  gaps. repeatedly select feasible most general prime implicants 

not implied by those already selected, Le.. -(VS + p), until logical equality 

with the origical expression is achieved, or n o  other such prime implicant. p ,  

rernains. 

5. Sirnplify the selected set of prime implicants. This step involves the use of 

decision procedures, such as one for simple arithmetic, together with defined 



condition dependencies. 

7.7.3 Term Coverage 

The algorit hm for Terni Coverage selects prime implicants t ha t  cover as rnany f rame 

stimuli as possible. T h e  algorit hm is as follows: 

1. Select a prime implicant t h a t  contains t h e  most  frame stimuli t ha t  a re  not  yet 

represented in t h e  selection set.  

2. T h e  seIected prime implicant is tested t o  ensure tha t  it  is feasible. Any infea- 

sible prime irnplicants a r e  discarded from t h e  selected se t -  

3. Repeat  s teps 1 a n d  2 until no other prime implicants contain frame st imuli  

t h a t  a r e  not represented in t h e  selected se t .  o r  no unselected prime impIicants 

remain. 

4. Simplify the selected se t  of prime implicants. 

7.7.4 Infeasible Test Frames and Coverage Schemes 

The determination of a n  infeasible prime implicant raises an  interest ing issue. S hould 

the fact t h a t  a prime implicant is infeasible be incorporated in to  t h e  original logical 

espression'? In other  words, when a n  infeasible prime implicant, p. is found in a 

logical expression, E. should t h e  selection algorithm be restarted with the  new se t  

of prime irnpiicants of t h e  logical expression E' = E A -p.? 

This  would ensure  t ha t ,  based on the  given condition dependencies, n o  in- 

feasible tes t  s teps  could be derived from the  test  frames procluced. This  is certainly 

a desirable property. However, prime implicants a re  costly t o  compute,  hence this  



is not generally a feasible approach, Ftirthermore, it is assunied that the given do- 

main knowledge espresses the common sense of the test engineers. [f an infeasible 

instance of a test frame dict esist. the test engineer would not choose this instance 

b -  iising their conimon sense. Thus. it is not critical for the test frame generator to 

do more wit h infeasible pririie implicants than discard them- 

[t is also possible that a selection algorithm cannot satisfy the correspond- 

ing coverage schenie due to discarded infeasible prime implicants. 'This is a valid 

situation. and does not imply that the selected set is deficient. 

7.8 Examples 

This section presents esamples of applying the general process described in this 

chapter to specifications written by ot her au t hors. The specification notation and 

the test frame generator descri bed in this section are niereiy examples of a parseable 

notation and a particiilar inlpfenientation, respectively. 

7.8.1 Steam Boiler 

The folloiring esaniple is a more detailed S [393 translation of a portion of Schiriagl's 

VDbl [XI style RSL ['Z] steam boiler control specification [.XI. This esample illus- 

t rates the application of the general test frame generation process to a specification 

from the literature. The specification probleni is to formally specify requirements 

for a control system responsible for maintaining the correct level of water in  a boiler 

attached to a steam-driven turbine. One of the requirernents of the sustem is to 

identify whether or not any inconsistencies esist i n  the sensor readings. 

The specification below is interleaved with descriptions of points of inter- 

est. Since S is a n  ASCII-based specification language, the words Exists-unique, 
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exists , foralï. and In replace the symbols 3 !. 3. V, and E. respectively. The S 

expression \x .E is the ASCII version of the lambda calciilus abstraction X r. E. 

(:t) Exists-unique (P:t -> bool) := 

(exists v.P v) 

/\ (fora11 vl.fora.11 v2.P v1 /\ P v2 ==> (VI = v2))  ; 

inmess-ok : bool; 

The variable inmess-ok is the message consistency indicator. Since predicate 

names beginning wit h a lower case letter indicate responses. th i s  is the only response 

predicate in t his specification. 

: PUMP ; 

: STATE ; 

:message := 

PumpState :(PUMP # STATE) 

I PumpCtrState :(PUnP # STATE) 

I Level :num 

1 Steam :num 

1 SteamBoilerWaiting 

I PhysicalUnitsReady 

I PumpRep :PUHP 

1 PumpCtrRep :PWP 

1 PumpFlrAck :PWP 

1 PumpCtrFlrAck :PUHP 

1 LevelRep 



The type message represents the various messages that can be received by 

the boiler cont ro1 unit. Idfess represents the set of messages received. 

Wait ing , Ready : bool ; 

States [Waiting; Readyl ; 

: MODE ; 

Working,Repairing,Broken : MODE; 

fora11 P .S ta tes  CP Working; P Repairing; P Broken] ; 

The above portion of the specification defines domain knowledge for the 

States Waiting and Reading along !vit h Working, Broken, and Repairing. 

Hst,Pst : PüMP -> MODE -> bool; 

Qst,Vst : MODE -> bool; 

Mst p m indicates that the boiler control believes that the control unit for 

pump p is in mode m. Pst p m indicates that the boiler control believes that pump 

p is in  mode m.' Qst m indicates that the boiler control believes that the water level 

indicator is in  mode m. Vst m indicates that the boiler control believes that the 

steam indicator is in mode m. 

'The originai specification used the condition Pump .pst (p) = Pump. repairing to express the 
same semantics as P s t  p Repairing. This translation was perfarmed to demonstrate the use of 
state information. 



SetInMessOK := 

inmess-ok <=> 

(forall p. 

(Exists-unique (\s .PumpState(p, s) In InMess)) /\ 

(Exists-unique (\s .PumpCtrState(p, s) In InHess) ) ) /\ 

(Exists-unique (\1. Level 1 In InHess) ) /\ 

(select 1 .Level 1 In Iniiess) <= HaxWater /\ 

(Exists-unique (\l.Steam 1 In InMess)) /\ 

(select 1.Steam 1 In InMess) <= HaxSteam /\ 

(SteamBoilerWaiting In InHess => Wait ing) /\ 

(PhysicalUnitsReady In InMess ==> Ready) /\ 

(forall p. 

(PumpRep p In InMess ==> Pst p Repairing) /\ 

(PumpCtrRep p In InMess => Mst p Repairing) /\ 

(PumpFlrAck p In InMess ==> Pst p Broken) /\ 

(PumpCtrFlrAck p In InHess ==> Mst p Broken)) /\ 

(LevelRep In InHess => Qst Repairing) /\ 

(SteamRep In InMess ==> Vst Repairing) /\ 

(LevelFlrAck In InMess ==> Qst Broken) /\ 

(SteamFlrAck In InHess ==> Vst Broken); 

SetInMessOK specifies how the input message consistency Rag is set. The 

specification for SetInMessOk is not in test ciass normal form, but is still a relation- 



ship between stimuli and responses. 

The  directive %no-expand In suppresses the expansion of the definition of 

In. The directive %tcg -t -S SetInMessOk directs the prototype test frarne gen- 

erator to produce test frames using the criterion (pure test classes. n o  response- 

response resolii tion. not a closed worid. no frame st imul i  simplification. Terrn Cov- 

erage. base test frarnes). The -t flag indicates that Term Coverage is to be used 

rather tlian the default DNF Coverage. The -S flag indicates that the output should 

be in the form of S espressions. 

The condition dependency information regarding the states of the system, 

e.g. Repairing, Broken. is valuable. Without t his information. it is possible t hat 

a test frame coiild include 

. . .A  Pst p Repairing A Pst p Broken A . .  . 

within a test frame. [f the Term Coverage scheme were to  select such a prime im- 

plicant. the decision procedure would determine a niatch with P = (Pst p ) .  Thus. 

such infeasi ble test frames are  avoided. 

The  test classes and associated test frames produced from this specification 

are listed in Appendis B. The number of test classes. prime implicants, and test 

frames for DNF and Term Coverage for this esample are detailed in Table 7-1. 

Table 7.1: Xumbers of Prime Irnplicants and Test Frames 

Test Class 
1 
2 

Prime Implicants DNF Coverage Term Coverage 
20 20 20 
64 21 2 



7.8.2 North Atlantic Separation Minima 

This example. described in a separate technical report ['LOI, demonstrates the serni- 

automatic generation of a set of 169 test frames from a forma1 specification of aircraft 

separation minima for the North Atlantic. The test Frames were automatically gener- 

ated by the prototype test frame generator from an S specification of the separation 

minima. Figure 7.2 provides a sample of the S specification. The specification is a p  

prosimately 6.50 lines of S. Figure 7.3 provides a sample of one of the automatically 

generated test frames. The combined set of 169 test frames provides complete cov- 

erage of al1 conditions contained i n  the separation minima specifcation. 125 of the 

160 test frames are instances of the -separation exists" condition. The remaining 

44 test frames are instances of the -separation does not esist" condition. 

LongitudinallySeparated(A, B) : = 
if (AngularDifferenceGreaterThan9ODegrees 

(RouteSegment A, RouteSegment BI) 
then /* opposite direction */ 

NOT (WithinOppDirNoLongSepPeriod(A,B)) 
else /* same direction */ 

ABS(TimeAtPosit ion A - TimeAtPosit ion B) 
> LongSameDirSepRequired(A , B) ; 

Figure 7.2: N.4TS S Specification Fragment. 

This esampIe demonstrates the capability of this test generation approach 

to produce test Frames for a logicaily comptes specification. It is espected that the 

169 test frames could be used directly by test engineers in the development of test 

procedures for systems that monitor air trafic over the North Atlantic. 

The separation minima were originaliy written in a formal table notation [l-l]. 

This specificat.ion was not authored with the intention ofgenerating test frames. The 

forma1 specification of this separation minima is based on a description provided in 



2 .  AngularDifferenceG reaterThan9ODegrees 
(RouteSegment A , RouteSegment B) 

2. 1 (IsSupersonic B) 

3. tsTu r bo jet -4 

4. CsTurbojet B 

5.  7 (IswestOf60W B) 

6- -, (InLV.-lTRS-Airspace B) 

7. ReportedOverCornmonPoint (-4 . B) 

8. ept (.4 . B) + 10 < -separation check 
tirne- 

1. %are separated" 
(A  . B) 

Figure 7.3: A NATS Test Frame. 

a source document entitled --4pplication of Separation Minima for the X-AT Region- 

(13rd edition. effective December 199'2). pu blishcd by Transport Canada on behalf of 

t h e  IC-40 North Atlantic Systems Planning Croup. The table-based specification 

was algorithmically converted into an S specification by 3. Day. 

Although the S specification simply stated the conditions for separation 

and did not specifi requirements for a system, it was easily transformeci into the 

stimulus-response style system requirements speci fication 

fora11 A B .AreSeparated (A ,B)  e "are separated" (A,B)  

for the purpose of generating test frames. This specification requires t hat the systern 

indicate that two aircraft are separated preciseIy when they are separated according 

to  t he  requirements specified by AreSeparated(A ,B)  . 
The Following example provides a cornparison between base and differentiated 

test frames. One of the base test frames is: 



Stimuli Res ponse 

1. AngularDifferenceCreaterThan90Degrees 

(RouteSegrnent A , RouteSegrnent B) 

2. 1 (IsSupersonic B) 

3. IsTurbojet A 

4. IsTurbojet B 

*5. (IsLVe~tOf60\V B) 

6. 7 (InWATRSAirspace B) 

7. ReportedOverComrnonPoint ( A  . B )  

8. ept ( A  . B )  + 10 < "separation check cime" 

L. 'are separated" ( A  , 

B 

The differentiated version of the sanie test frame is: 



Stimuli Response 
pp- 

1. XngularDifferenceGreaterThan90 Degrees 

(RouteSegment :\ . RouteSegment B) 

2. 1 ( IsSuperjonic B) 

3. IsTurbojet -4 

4. IsTurbojet B 

S. 7 (IsWestOfGOW B) 

6. 1 (InWATRSAirspace B) 

7. ReportedOverCommonPoint ( A  , B) 

8 .  ept ( A  . B) + 10 < -separation check time" 

(3. 7 (Verticallyseparated (X  . B ) )  

10. 1 (LaterallySeparated ( A  . B))  

L 1. EnterCV.lTRS,lirspace.4tSomeTinie .A 

12. EnterlV.4TRSXirspaceAtSorneTime B 

13. IsCVestOf60W -4 

14. MachTechniqueL~sed .A 

1.5. MachTechniqueCised B 

16. OnPublishedRoute .4 

17. OnPublishedRoute B 

18. -Sameor Diverging Tracks" (-4 , B) 

19. ept (JL , B) + 10 < EndTime ("WATRSOp 

pDir NoLongSepPeriod" (-4 , B}) 

1. -are separated" ( A  . 
6 )  



Using an iterative approach, computing the base test frames required a total 

of three hours2 on an Ultra-Sparc 60. Computing the differentiatecl test frames 

required five and a haIf hours on the sanie machine. Constructing an initial set of 

scripts for generating test frames took approximately one hour. 

Since the S specification is large and cornples. the particular test frame gen- 

erator used in this esample. TCG, does not have the capacity t o  process it in ful l  

detail. An iterative approach was used to overcome this problern. 

in the first iteration. only the predicate AreSeparated was expandeci. :il1 

ot  her predicates and functions wit hin  the specification were t reated ns primitives. 

This resuited in the foIlowing espanded specification: 

forall A. 

forall B. 

(- 

(~erticallyseparated (A , B) \/ 

Laterallyseparated (A , B) \/ 

Longitudinallyseparated (A , B) ) \/ 

"are separated" (A , B)) /\ 

(" ("are separated" (A , BI) \/ 

VerticailySeparated (A , B) \/ 

LaterallySeparated (A , B) \/ 

Longitudinallyseparated (A , B) ) 

From t his espansion, two test classes were generated: one for each of the re- 

sponses "are separated" (A , B) and 7 ("are separated" (A , B) ). An ini- 

tial set of test frarnes was generated along with the test classes. 

Additional condition dependencies were added when infeasi ble test frames 

2The cimes given are the elapsed time reported by the unix time utiiity. 
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were found in  the TCG output. or when the TCG tool found no feasible test frames 

in a particular iteration. (Finding no feasible test frrarnes implies that the input 

specification for that iteration was also infeasibie.) This added a few days to the 

tirne required for the construction of scripts for generating feasible test frarnes. This 

was due to condition dependencies which exist between different levels of abstraction 

wit hin the specification. This suggests t hat. alt hough t h is  iterative approach is 

capable of processing large. com plex formal specifications. more work is required 

to  allow this particiilar type of condition dependencies to be determined with less 

effort. 

For t h i s  specification. the differentiated test frames are only slightly different 

frorn the base test frames. This is due to the table structure from which the S 

specification was generated. 

In some iterations. sorne of the test frames were found to be redundant. This 

occurs Lvhen the stimuli for two or more test frames subsume the stimuli of another. 

There are 161 differentiated test frames compared with 169 base test frames. This 

demonstrates the value of differentiation in eiiminating redundant test frarnes. 

7.9 Conclusion 

This chapter has defined the general test lrarne generation process. and has presented 

aspects of one possible implementation of a test frarne generator for this process. 

Alt hough t his chapter presents esam pies using a specific notation, S, and a particular 

implementation of a test frame generator. TCG, these are only examples of the 

possible notations and tools. The generality of this process allows it to be appiied 

to  specifications based on logics that are consistent with the logical manipulations 

described in Chapter 5. The next chapter presents a refinement of this general test 



frame generation proces t hat can be applieci to system-level requirernentçbased 

testing. 



Chapter 8 

System-Level 

Requirements-Based Test ing 

This ctiapter illustrates how the discipline of specification-based test derivation pre- 

sented in this  dissertation can be applied to system-level requirements-based testing. 

.A practical approach to automating portions of system-level requirements-based 

testing requires special attention to issues of process integration. .A primary issue 

is the choice of l angage  to be used by requirements authors. Other issues include 

support for traceability. requirements validation, and measurernents. This chapter 

esamines these issues and presents a refinement of the general test frame genera- 

tion process described in Chapter 7, which accounts for these issues. The resulting 

process provides a solution to the problems described in chapters 2 and -4. 

8.1 Introduction 

In the field of system-level requirements-based testing, a distinction is often made 

betiveen those stimuli and responses tha t  are esternally visible, and those that  only 



refcr to  the internal state of the system. In  this chapter. pre-conditions are stimuli 

that either: 

are not esternally visible. i.e.. they refer t o  the internal s ta te  of the system 

and not the environment. or  

specify conditions on parameters to esternally visible stimuli. 

Similady. post-conditions are responses t hat refer eit her to: 

the internal state of the system. or 

to parameters of esternally visible responses. 

In the remainder of this chapter, the terms stimulus and response refer to atorns 

that are not pre- or  post-conditions. 

The general test frame generation process of Chapter ï requires an arnount of 

forrnal structure in  the specification. Integrating an automated test frame generator 

into a current systeni-level requirements-based test derivation process requires the 

use of a formal language for requirements specification that is readable by non- 

specialists. Specification ianguage features were developed as part of this research in 

order to en hance readability by non-specialists. whiie providing the Cor nia1 structure 

required for automated test frarne generation. T h e  Q specification language is the 

au t hor's collection of t hese featu res. 

A n  automated approach to  test frame generation does not eliminate the need 

for traceability. For auditing purposes, it is necessary to be able to  determine which 

requirements are represented in each of the test frames. This capability is provided 

by augmenting the rewrite system of Section 7.5. 

In addition to generating test frames, this partially automated process pro- 

vides additional benefits to software development processes. Test frames can be used 



by requirements authors for validating the requirements t hey have written. Also. 

the nomenclature from this thesis can be used for detailing how much system-level 

requirements-based testing is required, and how much has been completed. 

Section 8.2 provides an overview of the test frame generation process refined 

for systeni-level requirernents-based testing. Section 8.3 describes the Q require- 

ments specification language. Section Y .-1 descri bes how t raceability iç achieved. 

Section 8.5 describes esamples of the application of this process to rea1 world spec- 

ifications. Section 8.6 describes additional benefits of this testing discipline. 

8.2 Process Overview 

Figure 8.1 iIlustrates a refinernent of the general test frame generation process ap 

plicable to system-Ievel requirements-based testing. The requirements are written 

in  Q by requirements aut  hors, It is likely that the restrlting Q specification is eas- 

il?. read by other individuats for various other requirements-based processes. These 

ot her individuals can include ot her requirements authors and test engineers. clomain 

esperts. software designers. custorners, and government regulators, Test engineers 

define the coverage criterion and any user mandated tests. Domain knowledge can 

corne from several sources. such as the requirements authors. domain esperts, and 

test engineers. Once the  test frnrnes have been generated, test engineers select the 

appropriate da t a  to produce test steps. Requirements authors can also use the test 

frame generator to  validate their requirernents in a manner siniilar t o  that recom- 

mended by Somerviile and Sawyer [59]. 

While the general test frame process accepts a forma1 specification in a gen- 

eraI form, requirements au t hors and t hose w ho would typically read system-level 

requirernents specifications are insufficiently familiar with the notation. The Q 
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Figure 8.1: Integrating Automated Test Frame Generation 



specification language is an attempt at solving this problem. Q provides a means of 

annotating requirements test so that the logical relationships relevant to test frame 

generation are made esplicit and precise. while preserving readability. 

The following process accom plishes system-level rquirernents-based testing. 

1. The testable requirernents, i . e .  those that can be verified through testing. are 

specified in Q. 

2. Xny dornain knowledge and user-defined tests are specified. 

3. :ln appropriate coverage criterion is selected. Since rnost documents on system- 

level requirements-based testing specify t hat "t here is at  least one test For each 

reqiiirement." this criterion will most commonly include a Term Coverage se- 

lection scheme. 

4. Test frames are generated automatically from the Q specification. 

-5. Test engineers perform manuai data selection to produce test steps and test 

proced u res. 

The use of a test frame generator for requirements validation is described in  

Section 8.6. 

8.3 The Q Specifkation Language 

This section describes the motivation for Q and defines the Q specification language. 

8.3.1 Overview 

The successful integration of an automated test frame generation process requires 

that the forma1 language for specifying requirements be accepted by the require- 



ments aut hors. Traditional format specification languages such as Z [6 L] and VDM- 

SL [ :) i l  impose formality. together with an amount of symbology that crestes a 

language very f'oreign to requirements authors. in contrast. Q imposes as  littie 

syrnbologv as possible, and allows the authors to use plirases of their own design. 

The formal aspect of t h e  Q language is required by the test frame generator. 

A formal specification that is also reaclable relieves the need for maintaining two 

specifications: one formal for input to the test frame generator. and another for 

non-specialists. 

A specification written in a traditional formal language. in  this case S [39]. 

may appear as: 

: f l i g h t  ; 

leader,  follower : f l i g h t ;  

Supersonic : f l i g h t  -> bool; 

Spec := Supersonic leader \/ Supersonic follower; 

in Q. the specification may appear as: 

: f l i g h t ;  

"the leading aircraft", "the fol louing aircraft" : f l i g h t ;  

" * is supersonic" : f l i g h t  -> bool;  

" * or * " X y := X \/ y; 

BEGIN-Q 

(Spec) is true i f f  

<<<the leading aircraft)  is supersonic) or 

<<the following aircraft)  is supersonic)). 



In the  Q specification, it is likely that  the  definition of Spec is more readable by 

n o n - ~ ~ e c i a l i s t s . ~  T h e  pre-amble above the keyword BECiIN-Q would normally be 

contained in the  infrastructure for supporting a Q specification of the requirements. 

The Q specification language provides a syntax for concisely denoting the  

logical relationships and alternatives tvit hin t h e  requirements. while a b o  providing 

a natural language style. For esample. the requirement fragment. 

Either the leading nircraft or the trailing aircraft i.5 supersonic 

is specified as 

{any of {the leading aircraft,  the t ra i l ing  aircraft)) is supersonic. 

The braces impose a parseable s t ructure  on the  requirements. The seniantics 

of the  language constructsl such as "any of ,' allows the test frarne generator t o  

calculate the  logically equivalent espression. which in t his case is: 

{{the leading aircraft) is supersonic} or {{the trai l ing aircraft) 

i s  supersonic) . 

Once these constructs are expanded into their  logical equivalents, test frames can 

be calculated as in Chapter 7. 

Q is imptemented as an estension of the  S specification language, and is 

used t o  formalize nat ural language stimulus-response style specifications for the 

purpose of requirements-based testing. Q can be used to define predicates within a 

requirements specification, but relies on S syn tax  for defining constants. types. and 

functions. Q staternents are contained within t h e  keywords B E G I N 4  and END-Q. 

' Although rnuiti-word variable names are supported by S, this style is rarely used in specification 
styles sirnilar to S, 2, or VDM-SL. However, the use of multi-word variables is encouraged and is 
more naturd in Q due to the flex-fix notation. 



The lightweight simplicity OF the Q language helps to preserve the readability 

and conciseness of the specification. The mathematical semantics of Q ensure that 

each statement has an unambiguous meaning. With these qualities. Q provides the 

mathematical link between a requirements specification and the test Rame genera- 

tion tool introduced in the previous chapter. 

There are t hree essential Features of Q. The first is the use of braces. {}. rvhich 

delimit pli rases and parameters within the specification. Injecting t hese braces into 

the specification effectively transforms the phrases OF naturai language into forma1 

functions and arguments. This technique rvas first used by .Joyce i n  his Test Case 

Element Language (TCEL) [:38]. 

LVhen formalizing the natural language phrase 

the leading aircmft i.5 supersonic o r  the fil lowing nircrajt is superwnic  

for the  pu rpose of system-level requirements- based testing, only the choices need 

to be made esplicit. Thus. the appropriate forrnalization for testing is to choose 

-or." as the predicate and the two adjoining phrases are conditions. The resulting 

Q version of the above phrase is: 

{the leading a i r c r a f t  is supersonic} o r  {the following a i r c r a f t  

is supersonic} . 

I n  this Q espression, - * o r  * ' is the function, and -the leading a i r c r a f t  i s  

supersonic- and -the f ollowing a i r c r a f t  is supersonic" are its arguments. 

The predicate logic equivalent, where function application is espressed by the jus- 

taposition of Iiterals, is: 

* or * " "the leading aircraft is supersonic" "the following aircraft 

is supersonic" 



The predicate " * or * has the type bool + bool + bool, as expected. 

The "*" in the function name denotes positions in the test where arguments 

are placed. This type of notation is referred to as a Res-fil notation [13]. Flex-fix. 

the second Q feature, allows arguments to be distribtited within a function name. 

This helps preserve readability. For example, the Q expression 

{aircraft A )  and {aircraft  B )  are separated by at least {1000 feet )  

corresponds to the following predicate logic representation: 

- * and * are separated by at least * " "aircraft A" "aircraft B" -1000 

feet ." 

The Q espression is more readable to requirements specification aut hors t han. Say. 

an. S. Z or VDM-SL espression, such as 

The third feature of Q. due to the aiithor. is the use of keywords that define 

multiple arguments For a Fitnction's parameter. These keywords are motiiated by 

natural language phraseology such as -bath aircraft are..' and "either h or B is." 

For esample. the requirement 

~ i l h e r  the leading aircraft or the foilowing nircmjl is supersonic 

can be formalized in Q as 

{any of {the leading aircraft, the following aircraft)} is supersonic. 

-4 predicate containing an %ny of" argument is equimlent to a disjunction of t hat 

predicate evaluated at each of the values in the '-any of" set. In  this case, the 

equivaien t expression is 



({the leading aircraft) is supersonic) or {{the following a ircraf t )  

is supersonic) . 

This esample contains more formal detail than the espression 

{ t h e  leading aircraft  is supersonic) or ( the  fol lowing aircraft is 

supersonic) . 

the former espression. there are forma1 references to two aircraft. In the lat 

espression. there are only two conditions. The fact that these conditions were based 

on two aircraft was not made esplicit in the latter espression. This latest example 

is referred to as a deeper specification. because it contains more forma1 detail, Test 

engineers decide how deep a specification should be by determining the conditions 

they wish to reveal to the test frame generator. 

--lnot her parameter mechanism is the distinct choices- keyword. This key- 

word is used in encoding phrase structrires such as: 

ail of the follorüing are true: 

I .  aircmft -4 is dumping fuel. 

2. aircraft B is using standard nltimeter setting, 

.Y. one aircraft is supersonic and the other is not then further con- 

ditions 

In  this esample. -one aircraft" and '-the other" refer to either "aircrait A7 or -air- 

craft B." interchangeably. T hey represent distinct choices of the two aircraft. The 

Q version is: 



1. { a i r c r a f t  A) is dumping f u e l ,  

2. ( a i r c r a f t  B) is using standard a l t ime t e r  s e t t i ng ,  

3. i f  {{one a i r c r a f t ,  t h e  other} are any d i s t i n c t  choices of { a i r c r a f t  

A ,  a i r c r a f t  B )  in 

{{{one a i r c r a f t )  is  supersonic) and { i t  is not t h e  case t ha t  ({the 

o the r )  is supersonic) ) )) then { fu r t he r  conditions) 

The -distinct choices' phrase in this example is necessary in order t o  forrnally define 

the references -one aircraft" and -the o t  her." However. t his construction is still more 

concise and more readable than t h e  full espansion of the distinct choice. which is: 

{{{a i rc ra f t  A)  is supersonic) and 

{ i t  is not t he  case t h a t  {{a i r c r a f t  8) i s  supersonic}}} o r  

({{a i rc ra f t  8)  i s  supersonic) and 

{ i t  is not t h e  case  t ha t  {{a i r c r a f t  A }  is supersonic)}} 

The fornial semantics of -any of.' i t s  counterpart. *each of." and other  

parameter mechanisms are defined niore precisely in later sections. 

8.3.2 Expressions 

-4 Q expression is a string of a t  least one word and any number of arguments 

separated by white-space characten.  Arguments are expressions contained within 

a comma-delimited list surrounded by braces. in the following grammar,  * and + 
refer to zero o r  more and one o r  more of the preceding symbol, respectively. 



expression .- - word+ "." primitive-expression 

1   ri mit ivesspression 

primitivesxpression := ( "{" expression ( "," expression)* "1" )+ primitivemxpressionS- 

1 primitivesspressionf ( -{*' expression ( -." expression)' -}")+ 

1 word+ 

The optional prefix. word+ &.-. for each expression a1Iows specification a u -  

thors to tag expressions for traceability purposes. These tags have no semantic value 

witli respect to the logical meaning of the specification. 

8.3.3 Predicate Definitions 

-4 Q specification is a collection of predicate definitions. Predicates are defined using 

the -* is true i f f  * * statement. 

definition .- . "{" parm-expression "1- is triie 

parmmspression := (&(" word+ ( -." tvord+)* ‘-)" )+ 

ff -1" expression "1- -." 

parniaspression+ 

8.3.4 Conjunctive and Disjunctive Lists 

Requirements specifications often provide Iists of conditions which represent logical 

conjunction, e-g.. &al1 of the following," or disjunction. e.g., 'at least one of the 

following.' Such a list format is provided by the predicates "al1 of" and "any 

of .- The Q expression a i l  of {s), where S is a comma-separated list of predicates. 

is semantically equivalent to A S, where A ( { x }  U A)  = x A (A -A),  and A{} = T. 



Similarly. any of {s} is semantically equivalent to V S .  where V ( ( r )  u A )  = r v 

(A .4). and V{}  = l. 

8.3.5 Argument-Based Conjunctions and Disjunctions 

.. The keywords "each of * " and "any of * are used to constriict conjunctions 

and disjunctions. respectively. of a predicate over different arguments. These key- 

words both appear as functions having the type (t)list + t .  The semantics of these 

functions is defined in terms of predicates. i.e.. predicate logic expressions that do 

not contain logical connectives (see Section 5-13). The equivalent logic espression is 

determined by evaluating the predicate logic espression -4 E-lia P for -any of* or 

.4 E-I.Ïe P for "each of' using the ruIes of Xppendiic A. These two functions map 

the application of a predicate to a list of arguments into a disjunction or conjunction. 

respectively. of the  predicate applied to each argument of the k t .  separately. 

.-Uthough multiple uses of one of these keywords can be used within a pred- 

icate. rnistures of -any of" and "each of' within arguments to a single reference 

of a predicate are problematic. This is because it is unclear whether the espres- 

sion containing argument keywords represents a conjunction of disjunctions. or vice 

versa, 

For esample, the expression 

{the {each of {apple,  tomato}) is a (any of {vegetable, fruit)))  

may have b e n  intended to mean either 

{{{the {apple} i ç  a {vegetable}) o r  {the (comato) is a {vegetable))) 

and {{the {apple) is a { f r u i t ) )  or ( the  {tomato) is a { f r u i t ) ) } )  

or, alternatively, 



{{{the {apple) is a (vegetable))  and {the  (tomato) is a {vegetable) ) )  

or ({ the  {apple) is a { f r u i t ) )  and {the {tomato) is a ( f r u i t ) ) ) ) .  

ClearIy, these two semantic evaluations are logically different. 

:Ut hough the rules of Appendix A disambiguate such a construction. t h i s  

ride woiild need to be Iearned and would not be obvious to a non-specialist from 

the test alone. Since this is counter to the objective of Q, mixtures of -any of- 

and "each of- are not allowed within arguments to the sarne predicate. The order 

of semantic ecaluation in these situations can be made more clear using espression 

aliasing. 

8.3.6 Expression Aliasing 

An expression alias is the same as the let statement found in functional programming 

ianguages such as .LiL [49]. The purpose of the alias is to assign a short narne to a 

comples espression in order to make a portion of test more readable. 

The Q expression { {x}  is {y) i n  {E}} is sernantically equiialent to {E}. 

with y substituted for x. To encourage simpler specifications. the espression E must 

be a predicate logic espression rather than an arbitrary espression that might rep- 

resent a non-Boolean value. The predicate {{x} is {y} in {E}} is syntactic sugar 

for the lambda calculus espression (A  x.E)y. Similarly. the tuple form {(x ,y} are 

{a, b} i n  {El} is syntactic sugar for the Iambda calculus expression (A  x. y.E) (a, b). 

Using espression aliasing, the earlier "any of" / "each of'' esampIe can be 

disam biguated as 

{ { i t e m )  is {each of {apple ,  tomato}) in  

{the {item) is a {any of { v e g e t a b l e ,  fruit}}}} 

which results in  a conjunction of disjunctions. 



8.3.7 Argument Permutation 

Thepredicates "* are al1 dis t inc t  choices of * in  * ' and "* are any d i s t i nc t  

v 
choices of * in * are used to construct conjunctions and disjunctions involv- 

ing permutations of arguments. A n  example of the use of this keyword was given 

earlier in Section 8.3. 

{(z} are al1 d i s t i nc t  choices of {A) in {E}} 

is sernantically e q u i d e n t  to 

{ { z )  are {each of {P(A))} i n  { E ) )  , 

where z is a tuple and P(A) is a list of a11 the permutations of tuples the  same size 

as z uses elements of A. Sirnilarly. 

{{z) are any d i s t i n c t  choices of { A )  i n  {E}) 

is sernantically equivalent to 

{ { z )  are {any of ( P ( A ) ) }  in  {E)). 

8.3.8 Quantification 

Cniversal and esistential quantification are provided by the syntas {for  any {x} 

{E)}. which is equivalent to  Vx.$ and {there exists {x} such that  {E}}, which 

is equivalent to 3 x.E. Higher-order quantification is allowed. An esample is: 

{ f o r  any {separation o f  * and * rules) (separation of {target} and 

{intruder) rules)}. 



-4s described i n  Section 2.6. traceabili ty provides a rneans of mapping requirements 

to the tests that verify those requirements [16]. The traceability of test frarnes to 

requirernents is autornated in the following way by an augmented rewrite system. 

Authors tag the requirernents in the Q specification with an identifier. When the Q 

specification is parsed. these tags are embedded in the atoms and arguments i n  the 

corresponding Iogical espressions. During test frarne generation. the rewrite system 

maintains t hese tags. .As logical espressions are rewri t ten atoms and argu nien ts 

from various pIaces in the specification are brought together while the tags identify 

t heir origin. 

Xlthoi~gh this traceability mapping is generated i n  a test-frarnes-to-requirements 

manner. the  desired inverse mapping can be easily computed. 

8.5 Examples 

This section describes esamples of the application of the process described in this 

chapter. 

8.5.1 CAATS SRS 

To assess t h e  practical usefulness OF this process. the partially automated p r s  

c e s  described in this chapter was esperirnentally appiied to a portion of the Soft- 

ware Requirements Specification for the Canadian Automated Air Trafic System 

(C-LATS) being developed by Raytheon Systems of Canada Ltd. This esample. 

presented in a conference paper r21], is taken from a portion of the C..\t\TS software 

requirernents which refers to separation rules. The separation rules form a set of 



corn ples conditions under which certain responses occu r. The specification of the 

separation riiles is composed of several subsections dealing with different aspects 

of separation. The portion of the specification used in t h is  esample contained 177' 

requirements designated as testable requirements'. 

When evaluating this process, it was decided that a test set with DNF Cov- 

erage would not be produced for this specification due to the large number of test 

frames which would have resulted. The specification refers to the separation rdes 

in  both a negative (the aircraft are not separated). and a positive (the aircraft are 

separated). context. This results in two corresponding test classes. The numbers of 

test frarnes constituting DNF Coverage are estimated to be approsimately 1.000 for 

the positive case. and roughly IO*'' for the negative case. 

Test frames were generated using a Term Coverage scheme. This resulted 

in approsimately 130 test irames for the positive case and approsirnately Z30 test 

frames for the negative case. 

Table S. 1 gives one of the test frames generated by our automated process. 

ROlDs are requiremen t object identifiers used to tag requirements statements. 

It is important to note that the success of this esaniple was dile to the 

following essential qualities: 

1. The consistency of the test frames, the assurance of proper coverage. and the 

accuracy of the tracing iriformation are due to the mathematical underpinnings 

of the algorit hrns used. 

2. The formal version of the software requirernents fragment contained enough 

mathematical structure to facilitate test frame generation while still being 

'In addition to requirements that can he verified through tescing, requirernents specifications 
often  contai^ requirements that cannot be verified through a test program and must be addressed 
by other means, which are beyond the scope of this dissertation. 



Stimulus 
( ACC 
ope ra to r )  
reques t  s 
planned 
c learance  

Condit i o n s  

1. {planned c l ea rance )  e x i s t s  
f o r  t h e  f l i g h t  

2. t h e  source  of t h e  {planned 
c learance)  is an  aerodrome 
c o n t r o l  tower wi th  a tower 
method of ope ra t ion  of 
complex 

3. the  a i r c r a f t  state is not  
AIRBORNE 

4. { i n t r u d e r )  is us ing  
{ a l t i m e t e r  s e t t i n g )  

5. {planned c l ea rance )  is us ing  
{ a l t i m e t e r  s e t t i n g )  

6. t he  lowest  a l t i t u d e  in t h e  
p ro tec ted  a l t i t u d e  band f o r  
( i n t r u d e r )  is at o r  below {FL 
290) 

7. t h e  lowest  a l t i t u d e  i n  t h e  
p ro tec ted  a l t i t u d e  band f o r  
{planned c l ea rance )  is at  o r  
below {FL 290) 

8. the  p r o t e c t e d  a l t i t u d e  band 
f o r  { i n t r u d e r )  i s  v e r t i c a l l y  
sepa ra t ed  from t h e  p r o t e c t e d  
a l t i t u d e  band f o r  {planned 
clearance) by {1000) f e e t  o r  
more 

9. (NOT {planned c l ea rance )  is 
dumping f u e l )  

10. (NOT { i n t r u d e r )  is dumping 
f u e l )  

Responses 
1. {ATA) 
s h a l l  
commit 
{planned 
c learance)  

NOTE: This is only  a n  example. T h i s  test frame w s  generated from a representation of only 
a portion of the  CAATS software requirements which was used to  evaluate the usehlness 
of this process. Any errors or  omissions in this test frame are d u e  to  the  way in which this 
portion was est racted by the author.  

Table 8.1: A n  Automatically Generated Test Frame 



reada ble. 

3. Conditions were relatively independen t. which allotved for a simple encoding 

of the esisting condition dependencies. 

8.5.2 ICAO Flight Plan 

This esample. described in a separate technical report [L9], involved the semi- 

automatic generation of a set of 2.52 test frames from a portion of the ICA0 in- 

structions for filling out a flight plan as specified in Appertdix 2. Subsection 2 of 

IC-40's Rules of the Air and Air Traffic Services [36]. The 252 test frames were 

automatically generated by the QTCG prototype tool from a Q representation of 

testable requirements. Figure 5.2 presents a portion of the 526 line Q specification. 

Figure S.3 provides a sample of one of these automatically generated test frames. 

Two distinct sets of test frames were generated through different uses of the same 

requiretnen ts speci fication. Each set of test frames provides comptete coverage of 

al1 the testable requirements relative to the contest in which the requirements were 

used. 122 of the test frames are schemas for testing a system that automatically fills 

out a flight plan. The remaining 130 test frames are schemas for testing a system 

t hat validates a given flight plan. 

I t  is espected that the 252 test frames could be used directly by test engineers 

in  the development of test procedures for software that produces a fitled-ou t flight 

plan and for software validating fiiled-out flight plans. 

The ten pages of testable requirements were manually translated into a 

parseable representation of similar size. To prod uce the for mal specificat ion, test 

was translated directly from the ICAO flight plan instructions into a Q specification. 

Cornputing the base test Frames for filling out a flight plan required a total 



1 lgES4. 
if {not {Dinghies are carried)) then { 
cross out (Item 19 D) - (each of (D, C))) 

else (al1 of { 
insert {Item 19 D) - {number of dinghies carried), 

insert {Item 19 D) - 
{total capacity in persons of al1 dinghies carried), 

if {not {Dinghies are covered)) then { 
cross out {Item 19 D) - {C)), 

insert {Item 19 D) - (colour of dinghies) 
)3 

Figure 8.2: IC.40 Flight Plan Specification Fragment. 

R O I D s :  I19ES4 
- 

Stimuli 

1. Dinghies are 
carried 

1. insert  { ~ t e m  19 D} - 
{number of dinghies 
carried) 

2. insert {Item 19 D} - 
{total capacity in persons 
of al1 dinghies carried} 

3. insert {Item 19 D} - 
{colour of dinghies} 

Figure 8.3: An ICA0 Flight Plan Test Frame. 



of one minute and 42 seconds3 on an Ultra-Sparc 60. The base test frames for 

checking a filled-out flight plan rquired a total of two minutes and 39 seconds. 

Computing the differentiated versions of this latter set of test frames had to be 

done in  pieces. and required approsimately fifty minutes. Constructing the set of 

scripts for generating test frames took approximately haIf an hour- 

From the aut hor's esposure to indust ry practice. a very conservative estimate 

of the effort requirecl to derive. review. and document a traceability map for a 

single test frame. on average. would be one hoiir." By this estimate. the base test 

frames t hat were au tomatically generated in iinder t hree minutes would recluire 

approximateIy t hree person-weeks to prepare maniially. This corn parison does not 

include the translation time. since it is espected that requirements authors would 

produce original specifications in  Q. 

During the construction of the test c l a s  normal form. two potential specifi- 

cation anomalies were reported by the QTCG tool. Two of the test classes espress 

facts implied by the specification. 

Test class 59 is analogous to the test frame: 

t h e  appropriate ATS authority 

Stimuli 

1. NOT The flight 1s along a designated ATS 

route 

2 .  ATS f light track points are required by 
, 

3. NOT Use ATS style track points  

Response 

false 

Since the response is false, t h i s  implies that the specification asserts t hat the stimuli 

can never occur. This poses a question to be answered by the requirements author. 
- - - -- . 

'The times given are the eIapsed time reported by the unix time utility. 
'In rnany cases. a more conservative, and realistic estimate, is one day. 



e-g.. is it true that this combination of stimuli can never occur? An inconsistency 

would indicate an error in  the specification. 

Test class 57 is analogous to the test frarne: 

Stimuli 

t r u e  

Response 

1. insert {Item 19 E) - {the four digit f u e l  

endurance in  hours and minutes) 

2 .  insert {Item 19 A) - {colour of aircraft 

and signif icant markings) 

3 .  in se^ { ~ t e m  19 C) - (name of p i lo t  in 

This test frame indicates that the response will always occur. Thus, these response 

conditions can be appended to each of the other test frarnes, if desired. Again. th i s  

seems consistent with the importance of the information i n  these Fields of the Right 

ptan. 

8.6 Additional Benefits 

This section describes the use of test frames for requirements validation. and the 

use of the nomenclature of t his discipline for describing rneasurernents of com plexi ty 

and progres of system-level requirements-based testing. 

8.6.1 Validation 

The process presented in Section 8.2 has the potential to improve requirernents val- 

idation. The purpose of validation is to ensure that the requirements reflect what 

is act ually intended. Alt hough revieivs are commonly used in software development 



processes to  ensure that requirements are valid. a certain amount of requirernents 

validation occurs during test development. This is because the activity of construct- 

ing tests from specifications provides an alternative perspective of the implications 

of the specification. 

Un fort unately. test construction is performed after requirernents ail t horing, 

and is typically perforrned by different individuals. Sommerville and Sawyer [59] 

recomrnend tha t  requirements authors derive test steps as a means of validating 

the requirenients they write. .A test frarne generator provides an automated means 

for requirements authors to  leverage the gain of this testing perspective white they 

are writing the specification. = h y  anomalous test frames foiind during a review of 

those produced by the test frame generator, can be traced back to the offending 

requirements. This occurred during reviews of test frames produced for both the 

C-LITS and IC-A0 Flight Plan examples. 

Another benefit is that other non-specialists. such as domain esperts. can 

participate in vaiidating a formal requirements specification. This is difficult to 

achieve with traditional formai specification languages. tvhich typically require a 

high degree of training to attain proficiency. s u c h  as with Z or  VDhI-SL. 

The participation of a domain espert  was illust rated during the au t horing 

of a Q specification For Notices To Airmen [23]. A review of the Q specification by 

an individual with no training in Q realized that  there were many assiimptions held 

by the industry that were not made esplicit in the specification. The ability of t his 

individual to identify this problem shows tha t  he was able to read and comprehend 

significant portions of the Q specification. 



8.6.2 Complexity and Progress Measurement 

The non~enclature of the discipline presented in this dissertation can be used as the 

b a i s  for measurements. These measurements can provide an accurate picture of 

t hc progress of system-level requirernents-based testing. 

An iipper bound on the number of test frames for Term Coverage can be 

computed in O(n log n )  time. This is because test classes and frame stimuli can be 

determined in an amount of time t hat is O(n log n )  in the length of t he specification. 

and a Terni Coveragescheme produces no more test frames than the number of frarne 

stimuli i n  a test class. 

.A crude measure of the  complesity of the system can be obtained from a n  

approximation of the number of test frarnes- The  number of test classes provides a 

measure of the number of operations required of a system, while the number of test 

frames per test class provides a crude measure of the complesity of each operation. 

A possible refinement is to assign weights to each franie stimulus. intlicating the 

espected relative complesity of its detection. 

The bound on the number of test frarnes can be used to estimate the progress 

of system-level requirements-based testing. As  test frames and test steps are pro- 

duced and t heir corresponding test procedures execu ted, the relationship between 

'TesS. t hose completed and those not yet produced helps provide an assessrnent of pro, 

This chapter has illustrated the application of the discipline of specification-based 

test derivation to system-level requirements-based testing. A particular refinement 

of the general test frame generation process from Chapter ï was presented that  



addresses specific issues of system-level requirements-based testing. Ot her possi b[e 

benefits of the discipline were also presented. 



Chapter 9 

Conclusions 

This chapter reviews the results of t h is  research, and outlines some possible avenues 

for fur t  her research. 

9.1 Research Results 

This dissertation has identified two major problems in the field of systeni-levet 

requirernents-based testing: 

1. the lack of objective definitions of coverage criteria; and 

2. the lack of automation. 

This dissertation has also identified four challenges in autoniating the generation of 

test frames: 

1. the structural independence of test frames from the specification; 

2, dependencies between conditions wit hin test Frarnes: 

3. existential and universal quantification within the specification; and 

165 



4. the delta problem. 

This dissertation has presented a discipline ~Fspecification-based test deriva- 

tion. It has also demonstrated that this discipline provides a scientific Founda- 

tion for irnproving portions of software development processes, srich as system- 

level requirements-based testing. This dissertation has defined a nomenclature Tor 

specification-based testing that forms a basis for objective specification-based cov- 

erage criteria definitions and test irame generation algorithms. T hese contributions 

sat isfy the goals of t his researc h . 

Furthermore, the use of t h i s  discipline has several benefits. The discipline 

strongly encourages the development of a testable requirements specification. At the 

same time. the automation of test frame generation increases the value of prodiicing 

a forma1 specification. Perhaps most importantly, the nomenclat u te can be used 

in future revisions of standards documents such as DO LXB, DOD-STD-'LI67.4. 

ASSI/[EEE 829-1983. and LIIL-STD-498. to  state objective testing requirements 

a t  the system levei. 

hloreover. sÿstem-level requirenients-based testing is not the only application 

of the discipline OF specification-based test derivation. For the purposes of test 

frame generation. t his discipline can be applied to any stimulus-response style formal 

specification founded on a logic consistent with the algorithms given in  Chapter 5. 

,AS illustrated in Section 8.6. automated test frame generation can contribute to the 

validation of the specification. This discipline can also be used for other purposes. 

such as complexity and progress measurements. 

The application of this discipline to a broad range of specifications has been 

illustrated in four esamples: one from the Iiterature, one authored for purposes 

other than testing, one translated irorn an international public domain air traffic 



control authority, and one translated from a proprietary specification owned by a 

prominent Company in the air trafic control industry. 

Section 2.8 lists five characteristics for any solution to the problems of system- 

level requirements-based testing addressed by this thesis. The discipline presented 

in this dissertation satisfies each of these characteristics: 

1. objective definitions of coverage criteria are based on the nonienclature: 

2. test frame derivation is partiallyi automated: 

3. test engineers have the cont rol t hey require t o  exercise engineering judgement: 

4. traceability is supported: and 

ri. the Delta Problem has been s h o w  to be intractable (Appendis C). but heuris- 

tic solutions appear to be possible. 

The algorithms presented in  t his dissertation produce test frarnes wit h the Following 

properties. 

1. Consercatice: Each test frame is a logical corisequence of the reqiiirements. 

2- Tmctable: Test engineers have the control to  esercise engineering judgement. 

3. Complete: The  set of test frames is produced according to a specified coverage 

criterion. 

4. Traceable: The original eiements can be determined from which a selected test 

frame was derived. 

'The formalization of the requirements cannot be automated, in general. 



Demonic specifications and those that do not have a test class normal form can be 

identified by the algorithms. These specification forrns are suspect. and typicâlly 

indicate specification errors. 

9.2 Foundatious for Future Work 

The work presented in this dissertation can be extended in  several areas. This 

research includes improvements to  the test frame generation process: heuristics for 

the Delta Problem: incorporating the general test frame generation process into a 

testing methodology: a more mature language e'cpioiting the niain Q featiires: and 

the projection of test frames ont0 a design specification. 

9.2.1 Test Frame Generation Process Improvements 

There are opportunities for research in refining the process itself. A n  iterative ap- 

plication of a test frame generator allows the processing of Large specifications. The 

application of this technique in situations where infeasible test frames are numerous 

requires furt her research. 

Other research would focus on coverage criteria. While defining coverage 

criteria. Chapter 6 introduced several variations of test frame generation based on 

test classes, test frames. and frame stimuli. Xlthough these terms form the core 

of the nomenclature for defining coverage criteria, it would be naive to  espect that 

the criteria of Chapter 6 form an eshaustive list. In particular. the range between 

DNF and Term Coverages should be explored. It is quite probable that certain 

situations will require test engineers to  develop other variations to suit their needs. 

However, these new variations will, in al1 likelihood, be described in terms of the 

basic nornenciature laid forth by this thesis. 



9.2.2 Delta Heuristics 

Although the Delta Problem is undecidable. in general, a process capable of inte- 

grating existing test frames with new test frames could potentially avoid wastefiil 

rework. Appendis C shows that the Delta Problem is undeciciable and outlines one 

possible heu ristic solution to this problem- 

9.2.3 Methodology 

This section describes the estent to which the discipline of specification-based test ing 

presented in this dissertation defines a methodology for systern-level requirements- 

b a s 4  testing. The following is a description of the basic contents of such a method- 

ology. The met hodology woulcl specif'y: 

the  required properties of the specification language used to state the require- 

rnents: 

precise definitions of test procedure and the contents of a test procedure. e.g. 

test steps: 

what amount of detail is required in each test step; 

algorithms for deriving and sequencing the contents of test procedures from 

the specified requirements; 

how t raceability is achieved; 

what requirernents coverage means and how to  satisfy given coverage criteria: 

under what circurnstances particular coverage criteria should and should not 

be used; and 



8. procedures to  be performed when requirements changes occur after a set of 

test procedures has alreadÿ been derived. 

The discipline presented in this dissertation provides a basis for most of the 

above aspects of a methodology. The  minimal required properties of the specification 

language. for the  purpose of test frame gpneration, are given in Chapter 5 .  This 

discipline defines test procedures in terms of test frarnes and test steps. While it 

provides a forma1 definition of a test frame and a test step. this discipline does not 

prescribe precisely how to choose da ta  values for test steps. Nor does it prescribe 

how to niethodicatly sequence test frames within a test procedure. The discipline 

does provide some alternatives as  t o  the amount of detail to be found in  test frames. 

e.g.. base us. differentiated. 

This discipline provides a precise mat hematical definition of requiremen ts 

coverage. and of how coverage criteria relate test frames to requirements. Algorithms 

that  support traceability are provided for deriving a set or test frames to satisfy 

specific coverage criteria. However. no details are given as to when one coverage 

criterion should be used over another. 

Regarding the effects of requirements changes. this dissertation h a ç  identified 

the Delta Probtem and hasshown that it is. in  the worst case? undecidabte. Althoirgh 

a heuristic partial solution is described, there is no evidence as to the applicability 

of this solution. 

To summarize, the discipline presented in t his dissertation provides a mat  h- 

emat ical basis for a met hodology for system-level requirements- based test ing, and 

provides research opportunities for furt her development of a met hodology. 



9.2.4 Next Step for Q 

The examples in Chapter 8 demonstrate tliat certain features of Q have been useful 

for formalking nat ural language, stim ulus-response req uiremen ts speci fications for 

the purpose of system-level requirements-basecl testing. However, establishing that 

these features result in a language that can be easily learneci and read by non- 

specialists wili require furt her and controlled study. 

The current imptementation of Qy its reliance on S for underlying capabilities 

s u c h  as t h e  definition of types, constraints, and functions other than predicates, 

makes it usable. but not terribly appealing, for general specification, Autornating the 

declaration of predicates would improve the usefulness of this type of specification 

language. However, there rnust also be some mechanism to  warn of situations where 

an author may have mis-spelled or mis-worded a predicate nanie. Future work 

should incorporate the concepts demonstrated in Q into a more generally applicable 

language. 

9.2.5 Specification Projection 

Watanabe and Sakamura [66] describe a manual test case generation strategy based 

on Z specifications t hat incorporates information about the  irnplementation t hroiigh 

a structure grêph provideci by programmers. Work such as this combines information 

from a specification, wit h information from the implemen tation. This is valuable for 

testing, since the cornbination aIlows the determination of additional input domain 

partitions. (The antecedent of a test frame is an exam ple of such a partition.) 

-4 similar idea is to project test frames from a formal requirements specifi- 

cation ont0 a forma1 design specification. This could serve to validate the design 

from a requirements perspective. Any test frames that  did not fit ont0 the design 



indicate a deficiency in t h e  design or an invalid test frame. which indicates an error 

in  the requirements. Traceability would also provide a rneans of mewuring progress 

during the design phase. 

9.3 Epilogue 

In an article published in the April 1996 issue of IEEE Cornputer. Hall [29] pprposed 

the question: *What can forma1 methods contribute to iniprove the quality and 

decrease the cost of our systemse?- This dissertation contributes part of an answer 

to t his question. The discipline presented i n  t his dissertation. which draws heavily 

from many aspects of formal methods. can irnprove the quality of our systerns by 

ensu ring t hat test procedures are developed according to ob jectively de fi ned coverage 

criteria. The cost of developing our systems can be reduced in a variety of ways 

described in this dissertation including, but not Iimited to, the automation of some 

aspects of the task of deriving test procedures from requirements. 
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Appendix A 

Rules for Argument-Based 

Conjunct ions and Disjunct ions 

The asioms below define the semantics of the Q phrases ' ' each of ' ' and ' ' any 

of." 

V x .  I. fn..Lfap (COILIS1: 1) fn = CONS (fn x) ( M a p  f fn) 

V fn..Uap !VIL fn = :VIL 



.-1E-CTe : t + ( t ) l i s t  

V P.1.,4E-Ue ( P  (E.4CH-OF 1 ) )  = . - t E A I x  (rlE-lie P )  1 

V P. Q.A E-I;é ( P  Q )  = -4 E-Mx ( . L I  E-Lie P )  (-4 E-Ue Q) 

b' P.A E-Cie P = [ P l .  where P is an atom 

.-t E-C'a : t -+ ( t ) l i s t  

V P. Z.-4E-Ua (P (.4:VY-OF [)) = -4 E-Vx (.4 E-t!?(t P )  2 

V P. Q..-lE-(ra ( P  Q) = .4E_Mx (4E-lra P )  (-4 E-Ua Q) 

V P..-tE-(;a P = [ P l ,  where P is an a tom 



Appendix B 

Automatically Generated Test 

Frames for the Steam Boiler 

Control 

The test frarnes presented in t h i s  appendis were automatically generated froni an 

S specification of a portion of Schinagl0s VDXI style RSL specification for Abrial's 

steani boiler specification problem. 

(:t) Exists-unique (P:t -> bool) := 

(exists v.P v) 

/\ (fora11 vl-forall v2.P vl /\ P v2 => (vl = ~ 2 ) ) ;  

inmess-ok : bool ; 



:PUMP; 

: STATE : 

:message := 

PumpState :(PüMP # STATE) 

I PumpCtrState : (PUP1P # STATE) 

I Level :num 

1 Steam :num 

I SteamBoilerWait ing 

I PhysicalUnitsReady 

I PumpRep :PUnP 

I PumpCtrRep :PmP 

I PumpFlrAck :PüMP 

I PumpCt rFlrAck : PUMP 

I LevelRep 

1 SteamRep 

1 LevelFlrAck 

1 SteamFlrAck: 

InMess : (message) set ; 

Vait ing . Fteady : bool : 
st at es CVait ing ; Readyl : 

:MODE; 

Uorking , Repairing, Broken : MODE; 

fora11 P.States [P Working; P Repairing: P Broken]; 

% Hst = software opinion of the state of the control unit 

% Pst = software opinion of the state of the p u p  



Mst ,Pst : PUMP -> MODE -> bool; 

% qst = software opinion of the state of the water level indicator 

% Vst = software opinion of the state of the steam indicator 

qst,Vst : MODE -> bool; 

MaxUater : num; 

MaxSteam : n u ;  

SetInPIessOK := 

inmess-ok <=> 

(f oral1 p. 

(Exists-unique (\s.PumpState(p, s) In InMess)) /\ 

(Exists-unique (\s.PiimpCtrState(p, s) In InHess))) /\ 

(Exists-unique (\l.Level I In InMess)) /\ 

(select 1.Level 1 In InHess) <= MaxWater /\ 

(Exists-unique (\lesteam 1 In InHess)) /\ 

(select 1.Steam 1 In InHess) <= MaxSteam /\ 

(SteamBoilerWait ing In InHess ==> Wait ing) /\ 

(PhysicalUnitsReady In InMess ==> Ready) /\ 

(fora11 p. 

(PumpRep p In InMess => Pst p Repairing) /\ 

(PumpCtrRep p In InMess ==> Mst p Repairing) /\ 

(PumpFlrAck p In Irûless -> Pst p Broken) /\ 

(PumpCtrFlrAck p In InKess => Ust p Broken)) /\ 

(LevelRep In InHess => Qst Repairing) /\ 

(SteamRep In InNess --> Vst Repairing) /\ 

(LevelFlrAck In InHess => Qst Broken) /\ 

(SteamFlrAck Ic InKess => Vst Broken); 



B.2 Base Test Rames 

-Test Frame 1.1 : 

Stimuli Response 

1. 7 inmess-ok 

-Test Frame 1 .t : 
r 

Stimuli 

L. PumpStnte ( p  . v l - )  E InhIess 

2. PumpState ( p  . vl") E [nhIess 

3. 1 ( v l '  = v2') 

-Test Frarne 1.5: 

Respome 

1. 1 inmess-ok 

-Test Frarne 1.4: 

Stimuli 

1. LevelFlr.4ck E InXless 

2.  1 (Qst Broken) 

-Test Frame 1.3: 

Response 

1. - inmess-ok 

Stirnuii 

r 

Stimuli 

Response 

Res ponse 

1.  StearnFIr-Ack InMess 

2. 1 (\'SC Broken) 

L. -. inmess-ok 



-Test Frame 1.6: 

Stimuli 

1. LevelRep E InMess 

2.  7 (Qst Repairing) 

-Test Frame L -9: 

-Test Frame 1.7: 

Response 

1. 7 inmess-ok 

Stimuli 

1 .  PumpCtrFlrr\ck p' E IniLIess 

2 .  7 (Mst p' Broken) 

-Test Frame 1-10: 

~ 

Response 

1. 7 inmess-ok 

Stimuli Response 

1. PumpRep p' E IniLIess 

2. -. (Pst p' Repairing) 

-Test Frame 1.8: 

1. PumpCtrRep p' E InMess 1 1. 7 inmess-ok 

Stimuli 

Stimuli 

1. PiimpFlr-Ack p. InhIess 

2 .  7 (Pst p' Broken) 

Response 

Response 

1. 7 inmess-ok 

I 

-Test Frame 1.1 1: 

Stimuli 

1. PhysicalUnitsReady E IniLIess 

Response 

1. 7 inmess-ok 



-Test Frame 1.12: 

-Test Frame 1.13: 

Stimuii 

1. SteamBoilerkVaiting f InNess 

Response 

1. 7 inmess-ok 

-Test Frame 1-14: 

Stimuli 

1. 1 ( v l  = v2)  

2. Steam v l  E IniLIess 

3. Steam v l  f InhIess 

Stimuli 

Response 

1. 7 inmess-ok 

1- 1 ( V I -  = v2') 

'1. PumpCtrState ( p  . vL') E Inhless 

3. PumpCtrState ( p  . v?') f InMess 

-Test Frame 1-15: 

Response 

1. 7 inmess-ok 

-Test Frame 1.16: 

Stimuli 

1. V v . 7  (PumpState ( p  . v) E inhless) 

Response 

1. 1 inmess-ok 

Stimuli 

1. V v . 1  (PumpCtrState (p  , v )  E InilIess) 

Response 

1. 1 inmess-ok 

-Test Frarne 1. L i :  

Stimuli 

1. V v . 1  (Level v f InMess) 

Response 

1. 7 inmes-ok 

-Test Frame L. 18: 

Stimuli 

1. V v . 1  (Steam v E InMess) 

Response 

1. 7 inmess-ok 



-Test Frame 1.19: 

1 1. -. ((select tSteam 1 E [niCIess) < iL[axStearn) L. 1 inmess-ok 

-Test Frame 1-20: 

1 Stimuli 

1. 7 ((select 1-Level I E 1nlLIes.s) < MmWater) 

Response 

1. 1 inmess-ok 



-Test Frame 2.1: 
-- 

Stimuli 
- - - - 

1. V p.3 v-PumpState (p  . v) E IniL[es 

2. V vl. V v'l. (V p. 7 (PtrrnpState ( p  . v l )  E Inhless) V 7 

( PumpState ( p  . v2) E Inh[ess)) V ( v l  = v2) 

3. V p.3 v-PumpCtrState ( p  . v) € InMtss 

4. V VI. V v.). (V  p. 7 (PurnpCtrState (p . v l )  E Inhrfess) 

V -, (PumpCtrState ( p  . v2) E I n M e s ) )  V ( v l  = v2) 

5. Level v f InMess 

6. V el. V v2. 7 (Level v l  f Inhless) V 7 (Level v2 € 

InBIess) v (vL = v2)  

7 .  (select 1.Level 1 E [nhiess) < MaxWater 

S .  Stearn v' E 1nMcss 

9. V v l .  V v2. 7 (Steam v l  E 1niLles.s) V 1 (Stearn v2 E 

InLIess) V ( v l  = v2) 

10. (select 1-Steam 1 E InhIess) < .ClixuStearn 

11. Waïting 

12. 7 (PhysicalLnitsReady E [nhIess) 

13. V p.- ( PumpRep p E InMess) v Pst  p Repairing 

14. V p.7 (PurnpCtrRep p f lnhfess) V Mst p Repairing 

15. V p.-. (PumpFlr-Ack p E inMess) v Pst p Broken 

16. V p.- (PumpCtrFlr-4ck p E InMess 

17. Qst Repairing 

18. Vst Repairing 

19. 7 (LevelFirAck E Inhiiess) 

20.  -, (StearnFirAck E Inhless) 

) v hlst p Broken 

- 

Response 



Stimuli 

1. V p.3 v.PumpState ( p  , v) E inMess 

2.  V v l .  V v2. ( V  p. 7 (PumpState ( p  , v l )  E [nhiess) V 7 

( PurnpState ( p  . v2)  E IniLIess)) V (v 1 = v2) 

3. V p.3 v,PumpCtrState f p  . v)  E IniCIess 

4. V vl. V v2. (V  p. - (PumpCtrState ( p  . vl )  f lnhfess) 

V -. (PumpCtrState ( p  . vi?) f inhleçs)) V ( v l  = vZ) 

5.  Level v f Inhfess 

6. V v 1. V v.). -.I (Level v l  f Inhless) V - ( Level v:! E 

inMess) V ( v l  = vi?) 

7. (seIect LLevel 1 f InhIess) < MaxbVater 

S. Steam v' E InMess 

9. V vl.  V v2. 7 (Steam vl E in&iess) V -, (Steam v:! E 

InSIes) ii ( v l  = v2) 

10. (select 1.Steam 1 E inkless) 6 blaxSteam 

11. - (SteamB~iler~C'aiting E InMess) 

12. Ready 

13. V p.- (PurnpRep p E InMess) v Pst p RepAnng 

1-1. V p.-, (PurnpCtrRep p E Inhless) V Slst p Repairing 

15. V p - l  (PumpFlrAck p E InMess) v Pst p Broken 

16. V p.- (PumpCtrFlrAck p E InMesç) v Mst p Broken 

If. 7 (LevelRep f inMess) 

18. 7 (SteamRep E Inkless) 

19. Qst Broken 

20. Vst Broken 

Response 

1. inmess-ok 



B.3 Differentiated Test Frames 

-Test Frame 1.1: 

1. Level v'' E Inh ies  

2. Level v"' E [nhless 

:3. 7 (VI' = \+'" ) 

4. (select 1.Level 1 E Inhless) 6 MaxWater 

5.  (select 1.Steam I E inhless) < MaiStearn 

6 .  Waiting 

7. 1 (PhysicdVnitsReady E Inhless) 

P. Qst Repairing 

9. Vst Repairing 

10. -, (LevelFlr,\ck f tnhless) 

11. 7 (SteamFLr-4ck E Inhless) 

1.). V p. V vl'. 1 ( PumpState ( p  , vl') E IniCIess) V ( V  v.". 

7 (PumpState ( p  . v2') E Inh ies )  v (vl'  = v2')) 

13. V p'.- (PurnpCtrF1r:ick p' E InMess) v hlst p' Broken 

14. V (PumpFlrAck p' E InSIess) v Pst Broken 

1.5. V (PumpCtrRep p' E Inhless) V Mst p' Repuring 

16. V pf.- (PumpRep p' E InMess) V Pst p' Repairing 

17. V vl. V v2. ( v l  = v2) V -) (Steam v l  E InhIess) V 1 

(Steam v2 E Inbless) 

18. V vl'. V vl'. (vl '  = v2') V (V p. 7 (PumpCtrState (p  . 
v i f )  E InMess) v -i (PumpCtrState (p . v2') E Inilless)) 

19. V p.3 v.PumpState ( p  , v )  E Inhless 

20. V p.3 v.PumpCtrState (p , v) E inh'iess 

21. Level v"" f Inhless 

22. Steam v' E In~Mess 19 1 

Res ponse 



-Test Frame 1.2: 

1. PurnpState (p"' . vl" )  E InMess 

2 .  PurnpState (p"' . v2") E InlLless 

3. 1 (VI" = v?") 

-4. (select I.Level 1 InhIess) < h1axWater 

5.  (select I.Steam I E InhIess) < MaxSteam 

6.  Waiting 

7 .  7 (PhysicalUnitsReady E InlLIess) 

5. Qst Repairing 

9. i'st Repairing 

10. 7 ( LevelFlrAck E Inhless) 

i l .  7 (SteamFlrhck E InMess) 

12. V pl.-. (PumpCtrFlrAck E Inhiesç) v hlst Broken 

1.3. V (PurnpF1r:kk p' E InMess) v Pst p' Broken 

14. V (PurnpCtrRep E InbIess) v Mst p' Repairing 

1.5. V p'.- (PumpRep p' E In%Iess) v Psc p' Repétiring 

16. V v l .  V v2. ( v l  = v2)  V 7 (Stearn v l  E [nh!ess) V 7 

(Steam v2 E InBIess) 

17. V VI'. V v2'. (vl '  = v2') V (V p. 7 (PurnpCtrState (p  , 

vl') E InhIess) V 1 (PurnpCtrState ( p  . v3') E InhIess)) 

18. V p.3 v.PurnpState ( p  , v) E InMess 

19. V p.3 v-PurnpCtrState (p  , v) E InbIess 

20. Level v"" E InMess 

21. Steam v' E IniCIess 

I I .  V vl.  -. (Level v l  Inbless) v (V v2 .1  (Level v3 E 

In-Mess) V ( v l  = v?)) 

192 

Response 



Stimuli 

1. StearnFlrAclc E tnMess 

2. (select 1.Level 1 E InilIess) < MauWater 

3. (select I.Steam 1 E InMess) < hIaxSteam 

4. Waiting 

.5. 1 (PhysicaiUnitsReady f InMess) 

6 .  Qst Repztiring 

7. Vst Repairing 

S. 7 (LevelFir-Ack E IniCIess) 

9. V p. V vl'. -t (PumpSta te  ( p  , v 

7 (PiimpState ( p  . d) f InSIess) V (vl '  = ~ 2 ' ) )  

LO. V pl.- (PumpCt rF l rhck  p' E InMeçs) v Mst Broken 

I l .  V p'.- (PumpFlrAck p' f InhIess) v Pst p' Broken 

1.'. V (PumpCt rRep  E InMess) v Mst p' Repairing 

L3. V p ' . ~  (PurnpRep f inBIess) v Pst p' Repairing 

L-1, V vl. V v2. ( v l  = v2) V 7 (Stearn v l  E in&fess) V 

(Steam v-l E InhIess) 

15. V vl'. V v2'. ( v l '  = v?') V (V p. 1 (PumpCtrSta te  ( p  . 
vl ' )  E In31ess) v 7 (PumpCtrSta te  ( p .  v.)') E 1niLIes.s)) 

16. V p.3 v.PumpState ( p  . v )  E InhIess 

LC. V p.3 v.PumpCtrState  (p , v )  f Inbkss  

LS. Level v" E InMess 

L9. Steam v"' E Inhless 

.'O. V vl .  7 (Level v l  E Im\[ess) v (V v2.7 (Levei v'2 E 

InMess) V (vl = v2) )  

Response 



Stimuli 

1. LevelFlrjlck E IniCIess 

2 ,  (setect 1.Levek 1 E InMess) < MauWater 

3. (select IStearn 1 E Inhless) < MïxuSteam 

4. Waiting 

3. 7 ( PhysicalUnits Ready f InhIess) 

6. Qst Repairing 

7 .  C'st Repairing 

S. 7 (SteamFlr-4ck E InBies) 

9. V p. V VI'. 7 (PurnpState ( p  . VI') E fnhfess) V (V  vZ'. 

7 (PurnpState ( p  . v2') E InXless) v (VI '  = v l ' ) )  

10. V p'.l (PumpCtrFIr.4ck f InMess) v Mst P' Broken 

i l .  V p'.- (PumpFlrJlck p' E InMess) v Pst p' Broken 

1'1. V p'.- (PumpCtrRep p' E InlLiess) v >Ist p' Repairing 

13. V p'.- (PumpRep p' f InMess) V Pst p' Repairing 

14. V v l .  V v2. ( v l  = v2) V 1 (Steam v 1  E [nhfess) V 7 

(Steam v2 E inMess) 

1.5, V vl'. V v2'. ( v l '  = v2') V (V p. 7 (PumpCtrSta te  ( p  . 
VI') E InhIess) v 1 (PumpCtrSta te  (p  . v2') f inMess)) 

18. Level v" E [nhIess 

19. Steam v"' E inkless 

'>O. V v l .  7 (Level v l  E InMess) V (V v2.7 (Level v.2 € 

Inhless) V ( v l  = v 2 ) )  



-Test Frame 1.5: 

Stimuli 

1. SteamRep E InMess 

2. (select 1.Levcl I E InibIess) < MavPVater 

3. (select IStearn 1 f Inhless) < bIavStearn 

1. Fvaiting 

5. -, ( PhysicaiUnitsReady E InhIess) 

6. Qst Repairing 

7. 7 (LevelFlr.4ck E InMess) 

8. \.SC Broken 

9. V p. V vl'. 7 (PumpState ( p  . vl ' )  E InhIess) V (V v'l'. 

7 (PumpState ( p  . v2') E InMess) V ( v l '  = v2')) 

10. V (PumpCtrFlr.4ck p' E InhIess) v Mst Broken 

I l .  V (PumpFlr-4ck P' E InMess) v Pst P' Broken 

12. V (PumpCtrRep p' E InMess) v Mst Repairing 

13. tJ pf.- (PumpRep p' f Inhless) v Pst p' Repairing 

14. V VI. V v'l. ( v l  = v2) V -, (Steam v l  E InhIess) V 1 

(Steam v? E InhIess) 

15, V vl'. V v'l'. ( v l '  = v2') V (V p. -. (Piimpctrstace ( p  . 

v l ' )  E InMess) V 7 (PumpCtrState ( p  , v2') E Inhfess)) 

16. V p.3 v.PumpState ( p  , v) E [nhkss  

17. V p-3 v.PumpCtrState ( p  . v )  E Inhies  

18. Level v" E InlCIess 

19. Steam vu' E Inbless 

20. V vl.  -, (Level v l  E InMess) V (V v2.7 (Level v2 € 

InMess) V ( v l  = v2) )  

1. 1 inmess-ok 



Stimuli 

4-  Fc'aiting 

.S. 7 (PhysicalUnitsReady f InAIess) 

6. C'st Repairing 

7. Qst Broken 

8. 1 (SteamFlr.4ck E in i l les)  

9. V p. V vl'. 7 ( PumpState ( p  , vl') E Inhless) V ( V  v2'. 

-. (PumpState ( p  . v2') E InMess) v ( v l '  = v2')) 

10. V p'.- (PurnpCtrFlr.4ck E Inbless) v Mst p' Broken 

11. V pl.- (PumpFlrAck p' E inhless) v Pst  p' Broken 

1.). V pl.- (PumpCtrRep p' InBless) v BIst Repairing 

13. V pl.- (PumpRep p' E InMess) v Pst Repairing 

1-1. V v l .  V v2. ( v l  = v2) V 1 (Steam v l  E [nhless) V 

(Steam v.' E Inhless) 

1.5. V vl'. V v2'. (v l '  = v2') V (V p. 7 (PumpCtrSta te  (p . 
vl ' )  E inhless) v -, (PurnpCtrState ( p  , v2') E InMess)) 

18. Level v" E Inhless 

19. Steam vu' E Inhfess 

20. V v i .  1 (Level v t  E Inh ie s )  v (V v2.- (Level v2 E 

Inbless) v ( v l  = v2)) 



- - 

1. PumpCtrFlrAck pu' E InhIess 

2. 7 (Mst Broken) 

3. (select 1.Level I E InhIess) 6 Ma?cW.ater 

4. (select 1.Steam 1 f InMess) 6 'claxStearn 

.5. LVaiting 

6. 7 (PhysicalCinitsReady f InhIess) 

7. Qst Repairing 

S. C'st Repairing 

9. 7 (Leve1Flr:lck E Inhtess) 

10. -. (SteamFlr.4ck f InXIess) 

11. V p. V vl'. ? ( PumpState ( p  , vl') f InhIess) V ( V  v2'. 

7 (PurnpState ( p .  v.") E Inhless) V ( v l '  = ~ 2 ' ) )  

12. V p'.- (PumpFIrAck p' E InMess) v Pst p' Broken 

13. V (PumpCtrRep P' E InbIesç) v Stst p' Repairing 

14. V pl.- (PurnpRep p' E Inhiess) v Pst p' Repairing 

1.5. V vl .  V v'l. ( v l  = v2) v 7 (Steam v l  f inhtesç) v 

(Steam v2 E InMess) 

16. V vl'. V v2'. (v l '  = v2') v (V p. 7 (PumpCtrState ( p  . 
v i t )  E ldless) v 7 (PumpCtrState ( p  , v.)') E InhIess)) 

L i .  V p.3 v.PurnpState ( p  . v) f IniCIess 

LB. V p.3 v.PurnpCtrState ( p  , v) E InhIess 

19. Level v" E InBfess 

20. Stearn v"' E InMess 

21. V vl. -V (Level v l  E IniCless) V (V vL.7 (Level v2 E 

inMess) v ( v i  = v2)) 

-- 

Response 



-Test Frame 1.8: 

1. PiimpFlrhck p"' E InBIess 

2.  -, (Pst Broken) 

3. (select 1.Level I E InBIess) < Max\ICrater 

4. (select IS team 1 f InhIess) < >Ia..Steam 

5. Waiting 

6 .  -, (PhysicdGnitsReady E inhless) 

1. Qst Repairing 

S. Vst Repairing 

9. 1 (LevelFlr-4ck E InhIess) 

10. 7 (SteamFlr-4ck f inMess) 

11. V p. V vl'. 7 (PumpStnte ( p  . V I ' )  E InMess) v (V v2'. 

7 (PumpState ( p  . ~ 2 ' )  E InMess) V (v l '  = ~2')) 

12. V p ' . ~  (PumpCtrFlr-\CL p' E tnMess) v Mst p' Broken 

13. V pI.1 (PurnpCtrRep p' E InlCIess) v Mst p' Repairing 

14. V pl.- (PurnpRep p' f tn4Iess) v Pst p' Repairing 

1.5. V vl .  V v l .  ( v l  = v2) V 7 (Steam v l  E InBIess) V 1 

(Stearn v2  E InhIess) 

16. V vl'. V v2'. ( v l '  = v2') V (V p. 7 (Pumpc t r s t a t e  ( p  , 

vl ' )  f InhIess) V 7 (PumpCtrState ( p  , v2') E Inhless)) 

18. V p.3 v,PumpCtrState ( p  , v) E InhIeçs 

19. Level v" E Inbfess 

20. Steam v'" E 1nh.les.s 

21. V vl. (Level v l  E [nkIesç) v (V v2.7 (Level v2 E 

inhfess) V ( v l  = v:')) 

Response 

1. 7 inmess-ok 



Stimuli 

1- PumpCtrRep p"' E InMess 

2- - (blst  p"' Repairing) 

3. (select 1-Level 1 E InhIesç) 6 MaxPVater 

1. (select I-Stearn 1 f Ink[ess) 6 hIciuSteam 

5 .  PVaiting 

6 .  7 ( PhysicalLTnitsReady E 1nMes.s) 

7. Qst Repiring 

8. Vst Repairing 

9. -t (Leve1FIr:kk f InMess) 

10. 9 (SteamFlr.4ck f InMess) 

11. V p. V vl'. 7 (PumpState (p , vl') E IniCIess) V (V v2'. 

7 (PumpState ( p  . v.)') f InhIess) V (VI '  = ~ 2 ' ) )  

12. V pl.- (PumpCtrFLr.4ck p' E InMess) v 51st p' Broken 

13. V p'-7 (PumpFLr=\ck p' E InMess) v Pst P' Broken 

14. V pf.- (PurnpRep E Inhless) v Pst Repairing 

1.5. V vl.  V v2. ( v l  = v2)  V 7 (Steam v l  f [nAIess) V - 
(Steam v2 E InMess) 

16. V vl'. V Y?'. (VI' = v2') V (V p. 1 (Pumpctrs tace  (p , 

v l ' )  E InMess) v - (PumpCtrState ( p  . VZ') E InhIess)) 

II. V p.3 v.PumpState ( p  . v) f Inhless 

18. V p.3 v-PumpCtrState ( p  , v) E InhIess 

19. Level v" € InhIess 

20.  Steam v"' E IniLIess 

21. V v l .  7 (Level v l  E InMess) v (V v2.7 (Level v2 E 

InMess) v ( v l  = v2) )  

1. 1 inmess-ok 



-Test Frame 1-10: 

Stimuli 

1. PumpRep p"' E tnhless 

2. 7 (Pst  Repairing) 

3. (select 1.Level 1 E tnhless) < SIa~LVater 

4. (select 1.Steam 1 E [niCl-) S hlaustearn 

ri. Waiting 

6. 7 (PhysicalUnitsReady E InlCless) 

7. Qst Repairing 

S. Vst Repairing 

9. -. ( LevelFlrrIck E tnbless) 

10. 7 (StearnFLr:\ck E InMess) 

LL, V p. V vl'. -t (PumpState ( p  . vl 
7 (PumpState (p . v2') E InMess 

L.). V pr.- (PumpCtrFlr-4ck p' E Inhless) v Mst p' Broken 

13. V pl.- (PumpFlr.L\ck p' E tnMess) v Pst p' Broken 

14. V pl.- (PumpCtrRep f tnhless) v Mst Repairing 

L5. V vl.  V v2. ( v l  = v2) v 1 (Steam v l  E [nhIess) V 7 

(Steam v2 E Inilless) 

16. V vl'. V v2'. ( v l '  = v2') V (V p. -. (Pumpct r s ta te  ( p  . 
v l ' j  € InMess) V 1 (PumpCtrState ( p  , VZ') E InSiess)) 

17. V p.3 v.PumpState ( p  . v) E InMesç 

18. V p.3 v.PurnpCtrState ( p  , v) E [nhkss 

20. Steam v'" E Inhless 

21. V vl. 1 (Level vL E Inhiess) V (V v2.7 (Level v2 E 

inMess) V ( v l  = v2)) 

Response 



-Test Frame 1.1 1 : 

Stirntdi 

1. PhysicaiUnitsReady f InMess 

2. (select 1-Level 1 E Inhless) 6 hfa..Water 

3. (select 1.Stearn 1 E InMess) < hlauSteam 

.5. Qst Repairing 

6. Vst Repairing 

8. 7 (SteamFlr-4ck f InMess) 

9. V p. V vl'. -, (PiirnpState ( p  . vl') E InhIess) V (V v2'. 

7 (PurnpState ( p  , v2') E InMess) ii (v t '  = ~ 2 ' ) )  

10. V (PumpCtrFlrAck P' f InhIess) v Mst p' Broken 

11. V pl.- (PumpFirAck p' E InMess) v Pst Broken 

12. V (PumpCtrRep p' f InhIess) V XIst Repairing 

13. V (PiirnpRep p' E InlCIess) v Pst P' Repairing 

14. V vl .  V v2. ( v l  = v2)  V 7 (Stearn v l  E Inhless) V -t 

(Steam v'l f InMess) 

15. V VI'. V v2'. (v l '  = v'l') V (V  p. -, (PumpCtrState ( p  , 

vl ' )  E InhIess) v - (PurnpCtrState (p  . v2') E InXIess)) 

16. V p.3 v.PumpState ( p  , v) E Inhless 

17. V p.3 v.PurnpCtrState ( p  . v) E InhIess 

18. LeveI v" E 1nMes 

19. Stearn v"' f Inhles  

20.  V vl.  7 (Level v l  E ImLless) v (V v2.1 (Level v2 E 

InMes)  v ( v l  = v2)) 

Response 



-Test Frame 1.12: 

Stimuli 

t. SteamBoilerWaiting E InhI- 

2. (select I.Level 1 E InMess) < hlau\'Vczter 

3. (select I.Steam t E Inh le s )  6 MaxSteam 

4. Ready 

5.  Qst Repairing 

6. Vst Repairing 

7. 7 (LevelFlr.4ck E InMess) 

8. 7 (SteamFIrAck E InJIess) 

9. V p. V vif .  7 (PurnpState ( p  . vl') E InMess) V (V Y?'. 

-, (PiimpState (p  . v2') E InMess) V ( v l f  = ~ 2 ' ) )  

10. V (PumpCtrFlrAck pf f Inltless) v Mst P' Broken 

L i .  V p'.- (PumpFlrAck p' E inlCIess) v Pst p' Broken 

1.). V (PumpCtrRep p' f InMess) v Xlst Repairing 

13. V pf.- (PumpRep P' InhIess) v Pst Repainng 

1-1. V vl. V vZ. (vL = v2) V - (Steam v l  E IniC[es) V - 
(Stearn vl' f InMess) 

15. V VI', V v2'. (vl '  = v2') V (V p. 7 (PurnpCtrstate ( p  . 
v l f )  E InMess) v 7 (PumpCtrState ( p  , v2') E Inh le s ) )  

16, V p.3 v.PumpState ( p  . v} E [nhkss 

17- V p.3 v.PumpCtrState ( p  , v) E InMess 

18. Level v" E [nhleçç 

19. Stearn v"' E InhIess 

30- V v l .  1 (Level v l  E Inbless) V (V  v2.7 (Level v2 E 

InlvIess) V (vL = v2)) 

Response 



-Test Frame 1-13: 

Stimuli 
-. . 

1. 7 ( d l  = VI)') 

2, Steam v" E InilIess 

3. Steam v"' E InMeçs 

4. (select 1.Level I E IniLIess) < b[ax\lVater 

5 .  (select 1-Steam 1 f InMes)  < hIa~Steam 

6. Waiting 

7. (PhysicdUnitsReady f InhIess) 

8. Qst Repairing 

9. Vst Repairing 

10. - (LevetFlrAck f InMess) 

11. 1 (SteamF1r:kk f InMess) 

12. V p. V vl'. 7 (PumpState ( p  . vl') E Inhless) v (V v2'. 

7 (PumpState ( p  . v.)') E InlLIess) V ( V I '  = v'l')) 

13. V p'.- (PumpCtrFlr-Ack E InMess) v Mst p' Broken 

14. V pf.-. (PumpFLr.4ck p' E [ n h l e s )  v Pst Broken 

15. V (PurnpCtrRep P' E 1nhIes.s) v Mst Repairing 

16. V pf.- (PumpRep E IntCIess) V Pst p' Repairing 

17. V VI'. V v2'. (vl'  = vl')  v (V p. 7 (PumpCtrState ( p  , 

vl ')  E 1nMes.s) v - (PumpCtrState (p  , v2') E Inhless)) 

18. V p.3 v.PumpState ( p  , v) E [nh.[ess 

19. V p.3 v-PumpCtrState ( p  , v )  E inbfess 

20. Level v"" E InMess 

21. Stearn v' E IntCless 

22. V VI. 7 (Level vl E Inbless) V (V v2.- (LeveI v2 E 

InMess) v ( v i  = v2))  

203 

Response 



-Test Frame 1-14: 

Stimuli 

1. -7 (vl" = V.)f ') 

2. PumpCtrState (p" . vl") E InhIess 

3. PiimpCtrState (p" . d') E Inhless 

4. (select 1.Level 1 E InhIess) < hIauWater 

5.  (select 1.Steam 1 E InhIess) < S[auSteam 

6. Waiting 

7. i ( PhysicalUnitsReady E IniLIess) 

8. Qst Repairing 

9. Ç'st Repairing 

IO. -7 (LevelFlr.~ck E Inhies) 

I l .  7 (SteamFlr,4ck E InMess) 

12. V p. V v l ' .  7 (PumpState ( p  . vl') € inSIes) v (V Y?'. 

7 (PumpState (p , v2') f (n3kj.s) v (vl '  = v2')) 

13. V (PumpCtrFlr.4ck p' E inilIess) v Mst p' Broken 

1-1. V pf.- (PiimpFlrrIck P' f InXless) v Pst p' Broken 

i5. V p'.-, ( PumpCtrRep f InXiess) V Mst Repairing 

16. V pf.- (PumpRep p' E Inkless) v Pst Repairing 

17. V vl. V v2. ( v l  = v2) V 7 (Steam vl  f [nhless) V 

(Steam v2 f [nhless) 

18. V p.3 v.PumpState ( p  . v )  E InhIess 

19. V p.3 v-PumpCtrState (p , v )  f InhIess 

20. Level v"" InMess 

2 1. Steam v' € IniLIess 

22. V v l .  7 (Level v l  E I&Iess) V (V v2.7 (Level v2 E 

In%Iess) V (vL = v2)) 

Response 

1. -, inmess-ok 



-Test Frame 1-15: 

Stimuli 

1. V v.7 ( PumpState (pl1' . v )  E Inhless) 

2.  (select 1.Level 1 f InMess) < b[a..kVater 

:3. (select 1.Steam I E Inhless) < hIicuSteam 

4. kVaiting 

5.  1 ( PhysicalünitsReady E InMess) 

6. Qst Repairing 

r. Vst Repairing 

8, -, (LevelFlr.4ck E h5Iess)  

9. 7 (SteamFlr-4ck E InhIess) 

10. V p. V vl'. 7 ( PumpState ( p  . vl ' )  E fnhIess) v (V v?'. 

7 (PumpState ( p  . v?') E InhIess) v (v i t  = ~ 2 ' ) )  

I I .  V p'.- (PrimpCtrFLr-Ack p' E Inhless) v Mst p' Broken 

12. V p'.- (PumpFlr.4ck p' E inhIess) v Pst p' Broken 

13. tl p'.- (PumpCtrRep p' E InMess) v . C h  Repairing 

14. V pl.- (PumpRep p' f InhIess) V Pst p' Repairing 

15. V vl .  V v2. ( v l  = Y%) V - fstearn v l  f [nhfess) V -i 

(Stearn v.' E IrihIess) 

16. V vl'. V vl'. (v l '  = v2') V (V p. 7 (Purnpctrstate ( p  . 
v i l )  € InMess) V 7 (PumpCtrState ( p  , vl') E InMess)) 

L i .  V p.3 v.PumpCtrState ( p  . v )  € Inhless 

18. Level v"" E Inhless 

19. Stearn v' E Inhkss 

20. V vl .  7 (Level v l  E Inhless) V (V vl .1  (Level v2 E 

InMess) v ( v l  = v2))  

Response 

C. -. inmess-ok 



-Test Frame 1.16: 

Stimuli 

1. V v . 1  (PumpCtrState (p'" . v l  € InMess) 

2. (select 1.Level 1 E InMess) < MaxWater 

3. (select 1.Steam 1 E InMess) < SIzLxStearn 

4.  Waiting 

5 .  7 (PhysicaIUnitsReady E inhless) 

6. Qst Repairing 

6 .  Vst Repairing 

S. 7 ( LevelFlrAck E inbIess) 

9. 7 (SteamFir.4ck € InSless) 

10. V p. V vl'. 7 (PumpSta te  ( p  . vl') E IniLIess) V (V v2'. 

7 (PumpState ( p  . vl ) ' )  E InMess) v (VI' = d ) )  

11. V p'.- (PurnpCtrFtrAck p' E inhiess) v hlst p' Broken 

12. V p'.- (PurnpFir.4ck p' f InMess) v Pst pr  Broken 

13. V pI.7 (PumpCtrRep p' E InMess) v hlst p' Repairing 

14. V p'.- (PumpRep p' E Inhless) v Pst Repairing 

15. V v l .  V v2. ( v l  = v2) V -9 (Steam vl E [nhless) V -, 

(Steam v2 E Inhless) 

16. V vl'. V vzr. (vl '  = v2') V (V p. 7 (PurnpCtrState ( p  , 

vl') E InhIess) v 7 (PumpCtrState ( p  , vl') E Inhless)) 

17. V p.3 v-PumpState (p , v)  € Inhless 

18. Level v''" E IniLIess 

19. Steam v' E 1nhIess 

20. V vl. 7 (Level v l  E Inhless) V (V v2 .7  (Level v2 E 

InMess) v ( v l  = v3) )  

Response 



-Test Frame 1.17: 

1. V v.7 (Level v E InhIess) 

2. (seiect LLevel 1 E IniLIess) < Ma.xWater 

:3. (select 1.Steam 1 f lnilIess) < Mausteam 

4. Waiting 

.5. 1 (PhysicalUnitsReady f [nMess) 

6. Qst Repairing 

7. i'st Repairing 

S. 7 (LevelF1r:kk f Inh Ies )  

9. 1 (StearnFlrJlck f InMess) 

10. V p. V vl'. 7 (PumpState ( p  . v i f )  E InhIess) v (V v2'. 

7 (PumpStnte ( p  . vl ' )  f 1nrCIess) v (v l '  = v2')) 

11. V p'.- (PumpCtrFlr.4ck E InhIess) v Mst P' Broken 

12. V p'.- (PurnpFlr.4ck p' f Inhless) v Pst P' Broken 

13. V pr.- (PumpCtrRep p' IniCIess) v SIst p' Repairing 

14. V pr.- (PumpRep f In5Iess) v Pst  p' Repairing 

15. V v l .  V v2. ( v l  = v2) V 7 (Steam vL € InJIess) V 

(Steam v2 E Inhless) 

16. V VI'. V v2'. (v l '  = v2') V (V p. - (PumpCtrState ( p  . 
vl') f InXIess) v 7 (PumpCtrState ( p  . v2') E Inhl-1) 

17. V p.3 v,PurnpState ( p  , v) f InlLIess 

18. V p.3 v.PumpCtrState ( p  , vj E InMess 

19. V vl. 7 (Level v l  E InhIess) V (V  v2.7 (Level v2 E 

Inhless) v ( v l  = v2)) 

10. Steam v' E InivIess 

Response 

1. 7 inmess-ok 



Stimuli 

1. V v . 7  (Steam v E InMess) 

2. (select 1.Level 1 E [nlCIcss) < IClauWater 

3. (select 1.Steam 1 f InMess) < Ma..Stearn 

4. Waiting 

.S. 1 ( P hysicalCTnitsReady E InMess) 

6. Qst Repainng 

7 .  Vst Repniring 

S. 1 (LevelFlrtkk E InMess) 

9. 7 (StearnFlr-Ack E InMes)  

10. V p. V vl'. 7 (PurnpState ( p  . vl') f InMess) V (V v2'. 

7 (PiirnpState ( p  . v l ' )  E InlCIess) V (vl '  = v?'))  

11, V (PumpCtrFIr-Ack p' E InMess) v Mst p' Broken 

12. V (PumpFlr=\ck p' E InhIess) v Pst Broken 

13. V (PurnpCtrRep f Inbkss) v Mst P' Repairing 

14. V p'.- (PurnpRep P' E In&[ess) v Pst Repairing 

15. V vl. V v2. ( v l  = v2) V 7 (Steam vl  f inh'[ess) V 

(Steam v:! f InMess) 

16. V vl'. V v2'. (vl '  = v2') V (V p. -, (Purnpctrçtate ( p  . 
VI') E InMess) v 7 (PumpCtrState ( p  , v2') E InhIess)) 

17. V p.3 v.PurnpState (p  . v) f InSIes 

18. V p.3 v.PurnpCtrState ( p  , v) E InhIess 

19. Level vr E [nhless 

20. V vl. 7 (Level v l  f Lru\Iess) V (V v2.7 (Level v2 f 

InSless) V ( v l  = v2)) 

- -  

Response 

1. -, inmess-ok 



Stimuli 

1. -, ((select 1.Steam 1 E inhtess) < Ma~Steam)  

2. (select 1.Level 1 f InMess) < SlaukVater 

3 .  Waiting 

4. -, (PhysicdUnitsReady E InMess) 

5. Qst Repairing 

6. Vst Repairing 

7. 7 (LevelFLr-Ack E InMess) 

S. 7 (SteamFlr-Ack E InMess) 

9. V p. V vl'. 7 (PurnpState ( p  . vl') E [nhless) V (V  v1'. 

7 (PurnpState ( p  . v.)') E InMeçs) v (vl' = v2')) 

IO. V (PumpCtrFlr.4ck p' E InMess) v Mst p' Broken 

II. V p'.- ( PumpFir-4ck p' E [nMess) v Pst p' Broken 

11. V pl.- (PumpCtrRep p' E in.l[ess) v hist Repairing 

13. V p'.- (PumpRep p' E 1nhIess) V Pst p' Repairing 

14. V v i .  V v?. ( v l  = v2) v 7 (Steam v l  E InMess) v 7 

(Stearn v2 E InMess) 

15. V vl'. V v2'. (vl '  = v2') V (V  p. - (Purnpctrstate ( p  , 

vL') E InMess) v (PumpCtrState ( p  , v1') E Inkless)) 

16. V p.3 v-Pumpstate ( p  , v )  € ~ n h k s s  

17. V p.3 v.PumpCtrState ( p  , v) f [nhkss 

19. Steam vu' E Inbless 

10. V vl. -, (Level v l  f [nhless) V (V v2.7 (Level v:! E 

InMess) V ( v l  = v2)) 

Response 



Stimuli 

1. 7 ((select 1.Level 1 E [nhiess) < hIzcxkVater) 

2 .  (select I.Stearn I E Ini\iIess) < MaxSteam 

13. Waiting 

-1. 7 ( PhysicalL~nitsReady E I nhtess) 

5. Qst Repairing 

6. Vst Repairing 

7. 7 (LeveIFlrAck E InhIess) 

S. 7 (SteamFlrAck E inhless) 

9. V p. V vt'. 7 (PumpState ( p  . v1') E InlLless) V (V v5'. 

1 ( PumpState ( p  . v.") E InMess) V (v l '  = v2')) 

10. V p'.- (PumpCtrFlrhck E In,Cless) v Mst p' Broken 

11. V p'.- (PiirnpFlrAck p' E Inhtess) v Pst p' Broken 

12. V p ' . ~  (PumpCtrRep E InMess) V Nst p' Repainng 

13. V p ' . ~  (PumpRep E InMess) v Pst p' Repairing 

14. V vi.  V v?. ( v i  = v2) v -. (Stearn vl f In81es.s) v 7 

(Steam v2 E InhIesç) 

15. V vl'. V v2'. (vl '  = v l ' )  V (V  p. - (PumpCtrState (p  . 
V L ' )  E Inhless) v 7 (PumpCtrState ( p  , v2') € InMess)) 

17. V p.3 v.PumpCtrState ( p  , v)  E Inhless 

18. Level v" f Inhless 

19. Steam vu' E inMess 

20. V v1. -, (Level v l  f InMess) V (V v2.7 (Level v2 E 

InMess) V (vl = v2))  

Response 



-Test Frame 2.1: 

Stimuli 

1. V p.3 v.PumpState ( p  , v )  E inrLIess 

2 .  V vl. V v2. (V  p. - (PumpState (p . v l )  E InhIess) V 1 

(PumpState (p , v?) f 1nMes.s)) v ( v l  = v2) 

3. V p.3 v.PumpCtrState ( p  . v) E Inbless 

4. V vl. V v l .  (V p. 7 (PurnpCtrState ( p  . v l )  E Inhless) 

V - (PumpCtrState (p . v2) E InrCIess)) V ( v l  = v2) 

.5. Level v E lnhless 

6. V vl.  V v'l. 7 (Level v l  E InhIess) V 1 (Level v l  E 

InkIess) V ( v l  = v:') 

7 .  (seIect 1-Level 1 E [nhless) 6 hIaxWater 

S. Steam v' E Inhiess 

9. V vl.  V v2. 1 (Steam v l  E InXIess) V -( (Steam v'l f 

InXIess) V ( v l  = v2) 

10. (select I.Steam i E InhIess) < -lia?cSteam 

I l .  kt'aiting 

12. 7 ( PhysicalLrnitsReady E Inhless) 

13. V p.- (PumpRep p E Inhless) v Pst p Repairing 

14. V p.- (PumpCtrRep p E In&ss) v Mst p Repairing 

15. V p.- (PumpFLr-kk p E InhIess) v Pst p Broken 

16. V p.- (PumpCtrFlr-4ck p E InbIess) v &Est p Broken 

17. Qst Repairïng 

18. Vst Repairing 

19. 1 (LevelFLrAck E Inhless) 

10. - (SteamFirAck E InbIess) 

21. SteamBoilerWaiting E InMess 

Response 



-Test Frarne 2.2: 

Stimuli 
- 

1. V p.3 v.PurnpState ( p  . v) E Inhfess 

2. V vl .  V v:'. (V p. -. ( PumpState ( p  . v l )  € InhIess) V 

(PumpState ( p  . v2) E inhiess)) V ( v l  = v2) 

3. V p.3 v.Pum1 CtrState ( p  . v) f inhies  

4. tl vl. V v2. (V p. (PumpCtrState ( p  . v l )  E [nh[ess) 

V - (PumpCtrState ( p  . v2) E IniLIess)) ii (vl = v2) 

.5, Level v E Inhies  

6 .  V vl ,  V v2, 7 (Level v l  E inh[ess) V 7 (Level v2 E 

[nh,Iess) V (v 1 = vZ) 

7. (select 1.Level 1 E inhiess) 6 MauCVater 

P. Stearn v' f [nhless 

9. V vl. V v'>. 7 (Scearn vl E InhIess) v 7 (Steam v1' E 

Inh[ess) V ( v l  = v2) 

10. (select 1.Steam 1 E InJIess) < SIaxScearn 

11. 7 (SteamBoilerLL'aiting E Inhies) 

11'. Ready 

(PumpRep p € InMess) v Pst p Repairing 

(PumpCtrRep p E Inhless) v hlst p Repairing 

(PumpFlrAck p f Inhiess) v Pst p Broken 

16. V p.- (PumpCtrFlr-4ck p f inhIess 

17. 7 ( LevelRep E Inhless) 

18. 1 (SteamRep E inMess) 

19. Qst Broken 

10. Vst Broken 

31. PhysicalUnitsReady f inhless 

) v Mst p Broken 



Appendix C 

A Heuristic for the Delta 

Problem 

This appendis presents a mathematical definition of the Delta Problern from Sec- 

tion -4.6 and outlines a proposed heuristic test frame delta algorit hm. The proposed 

partiai solution to the Delta Problem also allows the test frame generation process 

to accept user mandated tests. thereby providing further controi by test engineers. 

A n  additional capability of this algorithm is the identification of sorne test frames 

which span multiple test classes while allowing for appropriate coverage. 

As described in Section 4.6, the Delta Problem is to integrate test frames 

previously generated from a specification with new test frames generated from a 

changed version of the  same specification while satisfying the specified coverage cri- 

terion. The original motivation for this problem is the reuse of esisting test frames 

after specification changes have occurred. However. if the structural difference be- 

tween the two versions of the specification is ignored, t hen whether the existing test 

frames were generated automatically or specified manually is of little consequence. 



Thus. the integration of user mandated test frames with those test frames prodiiced 

irom a specification is an instance of the Delta Problem. 

In the context of test frame generation, the Delta Problern is defined as 

follows. A prime (') is used to distinguish n e w  literals resulting from a requirernents 

change from litetals corresponding to the previous version of the requirements. 

Let Q.j R be an esisting test frame deriveci from requirements spec- 

ification -4. and let Pf.Sf + Rf be a test class of . - I f .  where Q and Pt 

represent the outer quantifiers of the test frame and test class. respec- 

tivel. The antecedent of the existing test irame is represented by f .  R 

represents the consequent of the esisting test frame. S' represents the 

antecedent of the test class to which the esisting test frame might be- 

long. R' represents the consequent of this test class. The Delta Problem 

can be espresseci as the following two questions: 

1. IS Q.f R still a valid test? i-e.. Does .-If imply Q./ * R'T 

2. C'an Q-f R be incorporated into a new set of test frames? hJore 

precisely, if Q.1 3 R is implied by the test class Pf .Sf  =+ R'. which 

of the prime implicants oi S' is represented by f'I 

Since test class normal form is not canonical, it is possible that the esisting 

test frame is valid. but is not implied by any one test class. In  this situation, 

Question 2 above is irrelevant and the existing test frame cannot be incorporated into 

the new set of test frames. Thus. although confirmation of Question L is valuable. 

it does not assist in integrating an esisting test frame with a new test franie set. 

The first part of Question 2 is represented formally as the conjecture: 

(P 'S '  + R') + (QJ =. R )  



If Conjecture (C.1) is a theorem. then the test frarne is still valid and stiould be addecl 

to the initial set used by the coverage scheme. This conjecture is unclecidable. in  

general. However. if a reasonable proportion of the instances of this conjecture that 

are triie cotild be proven aiitomatically. t hen this woiild provide a partial solution 

to the Delta ProbIem. 

The following theoreni hirits at a partid solution. 

w here P and Q are seqiiences of quanti fiers and P' is the logical diial of quantification 

P t .  i-P.. P'.S = - ( P t . - 1 ) .  

Thus. a proof of Conjecture (C. 1)  can be achieved by proving the ïollorving 

-4 heuristic algorithm for attempting a proof of (C.3)  is based on the assump 

t i o n  that most changes are small and that variables quantified by Q are sirnilady 

quantified by P f .  The heuristic is suggested by esamining a particular proof by 

contradiction of the trivial theorem (Vr, 3 y.E(x, y)) + (Vr. 3 y.E(t. y)). 

-(Vz. 3y.E(r. y)) + (Vx. 3 y.E(x. y)) 

= (Vz.3y.E(r. y)) A -(Vr.3~.E(c. y)) 

= (Vx.  3 y-E(x. y)) A (3 x.V y-- E(r. y)) - 



This illustrates that when the expressions within the quantifiers, represented by 

E above. are sirnilar. an appropriate rnatching of e.uistentially quantified variables 

against universally quantified variables can resuIt in a proof. This matching is 

referred to below as  a n  appropriate set of bindings. Assuming the Frame stimuli of 

Sr and f are replaced by variables, this heuristic transforrns a conjecture involving 

quantifiers into a conjecture in predicate caIcuIus, which is decidable. 

This approach is guaranteed to End a proof if the antececient is a test cl- 

and the consequent is a test frarne derived frorn that test class. There are also 

situations where srnall differences between the antecedent and consequent which 

do not affect the validity of the conjecture will still result in the heuristic being 

successful. Therefore. this heuristic will provide a partial solution to the Delta 

Problem. 

The above analysis Ieads to  the following test frame delta algorithm: 

1. Find the set of bindings suggested by Q. l>'.rr 3 R. 

2. Fail if n o  viable binding results in a proof. 

3 .  Further constrain the set of bindings by cornparing the frarne stimuli off to  

the frame stimuli wit hin S'. 

4. Fail if n o  viable bindings remain. 

5 .  Scan the set of prime implicants of Sr for those which match f. 

This heuristic algorithm h a  the useFu1 property that i t  will be able t o  prove 

conjectures such as 



This means that mandated test frames do not need to be specified in thcir most 

general form for them to be matched to the corresponding test class. 

So what does it mean to match f and a prime implicant, s', of SI? As an 

esample. let -5' = -4 /\ B. There are t hree cases: 

1. f = s': The test frame matches perfectly. 

2. f =+ s': f is more specific. e-g. f = -4 A B A C'. 

3. s' f:  f is too vague. e.g. f = -4. and the corresponding esisting test frame 

is no longer \idid. 

Case L) is the normal case. The change in specification .-LI has not affected 

Q.f + R .  Case 2): if f is more specific than required. the esisting test frarne is 

still ralid. but malr be too restrictive. This should be reported so test enbineers can 

adjust the esisting test frame as desired. Case :3) :  if t h i s  is the most specific match 

for f (i.e.. for al1 prime implicants. p l .  from al1 test classes which have a matching 

response. ( p l  * f )  =+ (s' 3 p')), t hen s' is included in  the new test set. This allows 

a test engineer to mandate a vague test frame and have the test frarne generator 

determine the most general test class and -flesh out' the test frame. I n  al1 cases. 

Q.1 a R is tagged as being matched to this test class. -An- esisting test frames 

which are not matched should be reported. 

These new test frame sets form the initial setections from the test class. 

Once the eristing frames have been processed, the selected coverage scheme aug- 

ments these sets as necessary, marking any redundant test frames as described in 

Section 5.6.2. This allows user mandated tests and existing tests to guide test frarne 

selection. This approach also allows user mandated and existing test frame sets to 

be evaluated according to a selected coverage scheme. 



Regarding case 2) above, it may be the case that / implies several different 

implicants from one or more test ctasses. In t his case. the corresponding test classes 

should be used in combination to ensure that the given frame follows logically from 

the specification. For example. assuming f =. sil A s;* A s;. the theorem i- .-If s 

(Q.1 3 R )  foI1on.s from the t heorerns: 

and 

where si 1 Si. s i 2  S[. si 3 S;, Theorem (C.5) is produced by the test class 

algorith ni. and Theorem (C.6) is produced by the test frarne delta algorith m. It also 

follows t hat the use of prime implicants 4, and from S( and irnplicant -5; £'rom 

Si are siibsumed by iising 1. This allows one user mandated test frarne to account 

for partial coverage of more than one test class. 

Although the Delta Problern is iindecidable. in the worst case, it may be 

possible to solve this probtem for many of the small changes that are made to a 

requirements specification during the course of system developrnent. By treating 

these case automatically when it is possible to do so would result in reducing the 

amount of involvement required by test engineers to make the necessary adjustments 

to esisting test infrastructure. 
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