

National Library 1*1 of Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 Wellington Street 395, nie Wellingtori
Ottawa ON K1A ON4 OttawaON K1AON4
Canada Canada

The author has granted a non- L'auteur a accordé une licence non
exclusive Licence allowing the exclusive permettant à la
National Library of Canada to Bbliothèque nationale du Canada de
reproduce, loan, distribute or sell reproduire, prêter, distriiuer ou
copies of this thesis in microform, vendre des copies de cette thèse sous
paper or electronic formats. la forme de microfichelfilm, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thése.
thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

Abstract

Systern-level requirements-based testing is an important ta& in software develop

ment. providing evidence that each requirement has been satisfied. There are two

major problems with how these tests are derived. First, the notion of coverage is

subjective. i.e.. there is a lack of objective definitions of coverage criteria. Second.

there is a surprising lack of automation in deriving system-level requirernents-based

tests. Research into solutions for these problems has led to the formulation of the

discipline of speci fication- based test derivation presented in t his dissertation.

This discipline. which is based on predicate logic. provides a scientific foun-

dation for objective definitions of coverage criteria and algorit hms for partially

automating test derivation. This dissertation defines some fundamental coverage

criteria as esamples. -A general test fmme generution process illustrates a general

application of the discipline to a broad range of forma1 specifications, which can

include existential and universal quantification. A refinement of the process can be

applied to system-level requirements- based testing.

The discipline leverages work invested in compiling the requirements speci-

fication. In addition to partially automating the task of verifying that the require-

ments have been satisfied, the refined process automates the traceability of require-

ments to test descriptions. Ot her applications of the discipline of specification- based

test derivation include requirements validation and objective measurements for re-

quirements complesity. The discipline can also be used t o predict the expected

number of tests t o be derived. which can then be used for process statistics. The

uses of this discipline as a basis For repeatable processes, definitions. and measure-

rnents imply tha t i t can form par t of software developrnent processes a t Capability

LtIaturity &[ode1 (CMM) Levels 2 through -5.

Contents

Abstract

Contents

List of Tables

List of Figures

Acknowledgements

Dedication

1 Introduction

. 1.1 Objective

1.2 Motivation .

. 1.3 Related Techniques

1.3 Approach .

. 1.5 Contributions

. 1.6 Outline

xii

xiv

2 The Problem

. Introduction 12

. Testing 14

. Coverage Criteria 1.5

. System-Level Requirements-Based Testing 16

. Manual Test Frame Derivation 19

. Coverage via Traceability 26

. Lack of Automation 27

. Towards a Solution :31

. Motivation for a Mat hematical Approach 33

3 Existing Solutions 37

. 3.1 Introdrrction 37

. 3.2 Systematic Approaches 38

. 3.3 Code-based Testing 40

. 3.3.1 Principles -IO

. 3.3.2 .An Objective Criterion 42

. 3 ..3 .3 .A utornation 4:3

. 3.4 Logic-Based Techniques 44

. 3.4.1 Finite State Machines 4.5

. 3.4.2 Logical Manipulation 48

. 3.4.3 Disadvantages of Modelling .5 O

. 3.4.4 Coverage Schemes -51

. 3.5 Conclusion .5L

4 Fundamental Challenges 53

. 4.1 Introduction 53

. 4.2 Specifications as Code 55

. 4.3 Structural Independence 59

. 4.4 Condition Dependence 60

. 4.5 Quantification 62

. 4 6 The Delta Problern 63

. 4.7 Sumrnary 64

5 A Foundation for the Discipline 66

. 5.1 Introduction 66

. 5.2 -4 Place to Start 68

. 5.3 Notation and Terminology 69

. 5.4 Overview 72

-- . 5.5 Test Class Normal Form i a

-- 5 . 1 TheTestClassAlgorithm 4 ;>

. 5 - 5 2 Example 79

. 5..5.3 Existential Quantification 53

. .3..3.4 Demonic Choice 85

. 5.6 GeneratingTest Frames 86

. 5.6.1 FrameStimuIi 87

. J.6.2 Coverage Schemes 91

- - . . i Condusion 94

6 Coverage Criteria 95

. 6.1 Introduction 9.5

. 6.2 Objective Definitions of Coverage Criteria 97

. 6.3 ReIative Effectiveness 98

. 6.4 Test Class variations 99

. 6.4.1 Detailed 99

. 6 . 4 Focused 100

. 6 Resolving Non-Deterministic Test Classes LOO

. 6.6 -4ssuming a Closed World LOI

. 6.7 Sirnplifying Quantifiers 102

. 6.8 Slathematical Definition of Term Coverage 10.5

. 6.9 Differentiated Test Frames 106

. 6.10 Surnmary LOS

7 Formal Specification-Based Test ing 110

. 7.1 Introduction 110

. 7.2 Process Overview 112

- . r -3 Tackling Corn ples Specifications 114

. 7.4 Formalizing Domain linoivledge 11.5

. 7.4.1 Elaboration 116

. 7.4.2 Simplification and Infeasibility 1 Li

- . 1 . Rewrite System 121

. 7.6 Distinguishing Stimuli and Responses L23

- - i . 1 Algorit hms for Coverage Schemes 124

- - . i . 1 . 1 Irnplicant Coverage 125

. 7 . 2 DNF Coverage 126

- - . . 3 Term Coverage 127

- - , . t 4 Infeasible Test Frames and Coverage Schernes 127

. 7.8 Examples 12s

. 7.8.1 Stearn Boiler 125

vii

. 7-82 North Atlantic Separation Minima 133

. 1.9 Conclusion 138

8 System-Level Requirements-Based Test ing 140

. 8.1 Introduction 140

. 8.2 Process Overview 142

. S.9 The Q Specification Language 14-1

. 3.3.1 Overview 1-44

. Y.3.2 Espressions 1-50

. 8 - 3 3 Predicate Definitions 1.51

. 5.3.4 Conjunctive and Disjunctive Lists 1.51

. 3.3.5 Argument-Based Conjunctions and Disjunctions 1.52

. 8.3.6 Espression Aliasing 1.53

. 8.3.; Argument Permutation 1.54

. 9.3.S Quantification 1-54

. 8.4 Traceabiiity 1.5.5

. 5 Examples 1-55

. S 5 . 1 C-LAT'S SRS 1.5.5

. S.52 IC.40 Flight Plan 1.33

. 8.6 Additional Benefits 161

. S.6.1 validation 161

. 8.6.2 Complexitj- and Progress Measurement 163

. 8.7 Summary 163

9 Conclusions 165

. 9.1 Research ResuIts 16.5

viii

9.2 Foundations for Future iVork - . - . . - 168
9.21 Test Frame Generation Process [mprovernents 168

9.22 Delta Heuristics . - . - 169

9.2.3 blethodology . 169

9.2.4 Xext Step for Q . l'il

9.2.5 Specification Projection . l'il

9.3 E p i l o g u e . . . Li2

Appendbc A Rules for Argument-Based Conjunctions and Disjunc-

t io ns 180

Appendbc B AutomaticaUy Generated Test Frames for t h e Steam

Boiler Control 182

B. L S Specification . 182

B.2 BaseTes t Frames - - . 18.5

B.:3 Differentiated Test Frames . 19 L

Appendk C A Heuristic for the Delta Problem

List of Tables

7.1 Sumbers of Prime Implicants and Test Frames 132

8.1 A n Automatically Generated Test Frarne 1.57

List of Figures

. 2 . I Table -4-7 from DO ZCSB 28

. 3.1 Esample Program 42

. 5.1 Entity Relationships 73

. 3.2 CoverageSchemes 93

. 7.1 Automated Test Frarne Generation LI2

. 7.2 YATS S Specification Fragment 133

- . r.3 -4 Y.\TS Test Frame 134

. 8.1 Integrating Automated Test Frame Ceneration 143

. 8.2 IC.40 Flight Plan Specification Fragment 1.59

. 8.3 An IC.40 Flight Plan Test Frame 1.59

Acknowledgements

,LIost of all. thanks to my supervisor. Dr- Jeffrey J . Joyce. for his encouragement

when the light a t the end of the tunnel was only a figment of niy imagination. 1

would like to thank my wife. Cindy Goundrey. for her understanding. support. and

encouragement. i would ais0 like to thank my fellow students and friends for their

-in-the-trenchesn camaraderie and inspiration, f am also deeply indebted to the

members of my cornmittee. Mark Greenstreet. Norm Hutchinson, Paul Ciilmore.

Philippe Kruchten. and Ka1 Toth. who have provided manÿ insights From tiieir

different perspectives of my work.

1 am proud of the condition of this dissertation. and owe a great deal of thanks

to those who have cont ributed many valuable comrnents on earlier drafts: Jeff Joyce.

m y thesis cornmittee. Tony Earnshaw, Christoph Kern. and Shauna Turner.

Comments from those in industry have had great influence on my work. 1

would especially like to thank Jim Ronback of Raytheon Systems Canada Ltd.. and

Phi1 Gray and Richard Yates of MacDonald Dettwiler for their questions. cornments.

cri ticisms. and irisights.

This work was supported by foimalWARE, a university-industry collabe

rative research project sponsored jointly by the BC Advanced Systems Institute,

Raytheon Systems Canada Ltd., MacDonald Det twiler, The University of British

xii

Columbia and The University of Victoria.

The [:ni-cersity of British Columbia

September 1998

xiii

I'm not shy - I did t h i s for me.

for Cindy. Brian, Sheila, Saorni. and Ross

to the memory of Amy. Richard, Ella, Robert, and John

Chapter 1

Introduction

This dissertation proposes a discipline of deriving test descriptions, which are called

test /rames, from system-level requirements specifications. The discipline includes

a nomencidure which consists of a collection of weII-defined names of specification

components and test frame properties. The nomenclature can be used to objec-

tively define the completeness of a set of test frames relative to the requirements.

Definitions of cornpleteness. called coverage criteria. can be used as a basis for au-

tomatically deriving test frames from a forma1 specification of requirements. The

discipline supports repeatability and definability, which facilitate its use in soft-

ware development processes aspiring to Capability Maturity Mode1 (CMM) Levels

2 through 5. In this dissertation, a formal speciJicntion is a specification rvritten in

a language t hat can be algori t h mically t ransformed into a set of mat hematical logic

formulae.

1.1 Objective

The objective of this research has been to provide a more scientific basis for systern-

level requirernentsbased testing in order to help t ransform t his activity from a craft

requiring considerable appren t iceship and esperience. into an engineering discipline.

A second objective has been the partial automation of this task to improve test

frame quality and to reduce the time and effort required for derivation and review,

t hereby reducing the overall costs of system-level requirements-baçed testing.

1.2 Motivation

The Focus of t his t hesis. system-level requirements-based testing. is an important

part of the disciplined development of large. software-based systems for which a

detailed set ofrequirements is specified. This type of Functional, or black-box. testing

typically appears in software development processes as portions of System-Level

Testing. -1cceptance Testing, and Independent Validation and Verification (IVkV).

The objective of system-leuel reguirements-based tesling is to provide evidence that

each behaviour specified in the requirements has been satisfied. Documentation that

a systern has passed each test step in a set of test procedures is commonly used as

sufficient evidence. The test steps are instances of test frames. which satisfy a given

coverage criteria. Test procedures are sequences of test steps. This t hesis add resses

the derivation of test frames. The derivation of test steps and other types of testing,

which may address properties such as robustness, performance. and availability. are

not within the scope of this thesis.

Two problems motivate this research. The first is lack of objective cover-

age criteria. This contributes to the second problem: lack of automated analysis

tools for test frame derivation. The lack of automated analysis is due partly to the

su bjectivity of many esisting guidelines for coverage criteria. These guidelines are

interpreted by specialists who decide which tests are appropriate. and how many

tests are required to satisfy the guidelines. This subjectivity can lead to different

opinions of what consti tu tes satisfaction of the guidelines. Furthermore. the com-

munication among individrials of coverage issues is difficult. This is due t o the lack

of a precise vocabulary. such as a nomenclature for espressing relations hips between

requirements and test specifications.

Some au tomated tools assist in bookkeeping tasks associated wit h system-

levet requirements-based testing. However, much of the analÿsis required for test

derivation is currently done manually. Reviews of test frames are necessary i n order

to ensure that they are logically consistent with the requirements, and that the

appropriate coverage has been achieved. The analysis is laborious, and the resuIts

are espensive to review,

.As this thesis shows, these two problems are intimately related. Atoniic

components of test frames are referred to in this dissertation as lmme stimuli. A

fundamental concept of this tliesis is that coverage criteria describe a relationship

between the frame stimuli of test frames and the frame stimuli that appear within

the original requirements.

1 -3 Relat ed Techniques

The related test derivation techniques can be categorized as systematic, code-based,

and logic-based techniques. Systematic techniques have the advantages t hat t hey

are relatively simple and typically evolve out of a rnanual approach. This evolution

provides a good fit between the automated tools and the current process, reducing

the costs for retraining. Unfortunately. systematic techniques iack the mat hematicai

soundness required to ensure that transformations involved in test frame derivation

do not compromise the rneaning of the requirernents. This is substantiated in Sec-

tion 3.2.

Code-based testing. traditionally applied at the unit level. is ive11 developed.

However. the circumstances and objectives of t h i s type of testing are f i r ndament ally

direrent from those of system-level requirernents-bas4 testing. One issue is t hat.

in the contest of system-level requirements-based testing, test frames should be

st ructurally independent from the requirements, Le.. the wording of a requiremen t

should be irrelevant provided that the appropriate meaning is conveyecl. Another

distinction is the importance of an expressive requirements language. such as one

allowing universal and existential quantification, which does not appear in a code-

based contest. Further issues retevant to system-levet requirements-based testing

include dependencies between conditions wit hi n the requirements specification. and

the need to rninimize the impact of requirements changes on previously generated

test frames.

While techniques based on mathernatical logic can provide a sound and es-

pressive basis. the- do not yet support the combination of automation and espres-

siveness that would allow them to be applied effectively to system-level requirements-

based testing. This is substantiated in Section 3.4.

1.4 Approach

Test generation techniques based on mathematical logic that appear in the literature

are based on restricted languages. The philosophy of t hese techniques is that certain

mathematical structures have the advantage that they support capabilities such

as the generation of test da ta for test steps, i.e.. instances of test frames. and

sequences of test steps. In contrast. code-based test generation techniques protiuce

whae tests they can. Rather than imposing a specification language designed for

test generation. code-based techniques are reqiiired to use program source code.

However. due to the iindecidability of loop invariants. t here are sit itations where

code-based techniques cannot generate test data.

The approach of this thesis is similar to code-based techniques in that as

few restrictions as possibte are placed on the content of a specification. However.

t his freedom for specification a u t hors has a cost. Logics permit ting undecidablel

forniuhe are used in specification languages such as Z [61] and VDM-SL [XI because

these logics are etpressive. i-e.. properties can be expressed precisely and concisely.

This dissertation demonstrates t hat specifications based on expressive mathematical

logics can be rnanipulated algorithmically in order to produce test frames, The cost

of using logics permitting undecidable formulae is that the instantiation of test

frames cannot be fully automated. -4s is the case with code-based techniques, the

approach described in this dissertation may faiI to produce test frames in certain

situations. Hoivever. t hese situations are well-defined and can be identified wit h in

O(n log n) time, where n is a rneasure of the size of the given specification,

A nomenclature is an important part of a scientific discipline. Names within

nomenciatures are often more than simple identifies. They niay also provide func-

tional information about the objects t hey identify. As an esample, a classification

of languages can be achieved using the nomenclature from the Chomsky Hierar-

chu which names the minimal type of machine needed to recognize a sentence from

the language. The nomenclature presented in this dissertation provides a basis For

'-4 formula is undecidable if a proof of the tmth or faisehood of the formula cannot be determined
by a mechanical procedure.

classifying test frame sets using coverage criteria that relate properties of a test

frame set to individual behaviours which follotv logicaily frorn the requirements.

The nomenclature is structured so that definitions of coverage criteria are parame-

ters to the algorithms of the discipline. Thus. coverage criteria define the automatic

production of the corresponding sets of test frames. The nomenclat tire allows test

engineers to communicate coverage criteria details more precisely than by using the

terminology in current systern-level requirements-based testing guidelines found in

standards documents such as DO178B, DOD-STD-'LL67A. ANSI/IEEE 829-1983.

and MIL-STD-498 [56. 60, 35, 151.

The aigorithms presented in this dissertation are based on strategies simi-

lar to those of Dick and Faivre [17], but with significant differences. However. the

process of system-level requirernents-based testing is not fully automated by em-

ploying the algorithms of the discipline presented in this dissertation. The original

requirements specification must be formalized before test frames can be generated.

Furthermore. as stated in Section 1.2, the selection of test da ta to satisfy a test frarne

is beyond the scope of this thesis. This is due to the use of espressive specification

languages.

1.5 Contributions

The thesis of this dissertation has two main ideas. First? objective criteria for test

coverage can be defined by embedding system-level requirements in mathematical

logic. Second, such criteria form a basis for the algorithmic translation from a forrnal

requirements specification to test frames, which can be used by test engineers to

produce test steps.

The following are the major contributions of this thesis.

A nomenclature for defining covemtje criteria relative to mquirements specifi-

cations.

The nomenciature is bas4 on three fundamental entities: test classes. frame

stimuli. and test frames. The terrn "test frame" is used by Ostrand and Bal-

cer [-161. The terms "test class" and Trame stimuli" are introduced in this

dissertation. .A test class is a behaviour estracted from the requirements. and

is bas4 on the required response. Frame stimuli express the elernentary con-

ditions used to determine when a response is required. Test frames prescribe

part,icular conjunctions of frame stimuli that require a particular response. A

set of test frames is derived from each test class. The frarne stimuliis is the

principal entity on which coverage criteria are defined. Coverage criteria relate

test frames to test ciasses.

=Ilgon'thrns for producing sets of test fmrnes that sntisfy couerage criterin de-

fined in t e rms of the nomenclntrrre.

The algorithms described in this dissertation produce test frames that have

the following important properties:

- Conseruatice

Each test frarne is a logical consequence of the requirements. The sound-

ness of the rules of logic used in the algorit hms of the discipline ensures

that a test frarne generator that correctly irnpiements the algorithnis will

produce only test frames that are irnplied by the requirements.

- Tractable

Test engineers can control the automatic derivation of test frames, tvhich

allows them to exercise engineering judgernent.

- Complete

The set of test frames is produced in cornpliance with a specified coverage

criterion that is an objective definition of completeness.

I t is possible to determine the original elements in the formal specification

from which a selccted test frame was derived.

Definitions of fundamental coverage criteria.

This t hesis presen ts a tem plate for detailed mat hematical de finitions of cover-

age criteria. The definitions of some fundamental coverage criteria. are given

as examples. I t is likely that more elaborate coverage criteria will be defined

according to the discipline of this thesis as it becomes more widely used.

Along with the above contributions. other results of this research are noted

below.

Logicai espressions can be partitioned based on whether or not test frames

can be algorit hmically produced from t hem. To alIow maximum espressiveness. the

input to the algorithms is allowed to be as arbitrary a predicate logic expression

as possible. However. certain restrictions are necessary to ensu re t hat test frame

generation can be achieved algorit hmically.

A specification language, Q, has been designed for specifying systern-level

requirements. This language contains features specifically designed to ease the task

of formalizing a natural language specification. Q specifications tend to be as concise

as natural language, but, of course, do not contain arnbiguities.

Requirements changes are inevitable during the course of software develop

ment. The Delta Problem is the problem of integrating existing test frames into new

test frarne sets produced from the new version of the requirements. The Delta P r o b

lem can be defined mathematically. In general. the Delta Probleni is undecidabte.

but partial solutions esist .

The value of the forma1 specification of systeni-level requirements is in-

creased. By providing a means of automating the generation of test frarnes. this

thesis altows more to be done with a forma1 specification of system-level reqiiire-

ments than simple type-checking. ft also provides a Iess espensive means than

t heorem-proving for deriving ot her artifacts from a specification.

The novetty of this thesis is that it provides a firm mathematical foundation

for the automation of system-level requirernents-based testing. While t here are many

excellent works devotecl to specification-based testing, t hey focus on techniques t hat

are applied to unit-level specifications or to simple models of selected aspects of

system-Ieve: requirements. These techniques are too restrictive to be successfuily

applied to the broad range of system-level requirements addressed by this thesis.

Chapters 2 through -4 establish ~ h e research problem and motivation for the disci-

pline. while Chapters 5 through 7 forrn the core of the discipline and its application.

Chapter 2 describes system-level requirements-based testing in greater detait, and

esarnines the associated problems. Chapter 3 describes esisting solutions. Chap

ter 4 identifies the issues of system-Ievel requirements-based testing t hat distinguish

this level of testing from others, such as code-based testing. Chapter 5 presents

a discipline of test derivation that provides a nomenclature that can be used for

defining coverage criteria. Chapter 5 represents the central contribution of this the-

sis. Chapter 6 defines coverage criteria using the nomenclature based on extensions

of the algorit hms from Chapter -5. This represents t lie fundamental application

of the discipline. Chapter 7 esamines an application of this discipline in its most

general setting. Chapter 8 presents one possible application of this discipline t o

system-Ievel requirementsbased testing. Concllisions and future work are presented

in Chapter 9.

Chapter 2

The Problem

The development of test frames is a key stage in system-level requirements-based

testing- This chapter identifies a set of Iirnitations and inefficiencies encountered

du ring t his stage of test derivation. A coverage criterion determines the -complete-

ness" of a set of test frames with respect to the requirements specification from

which they w r e derived. Subjective coverage standards and the maniial derivation

of systern-level requirements-based testing incur significant espense. Contributing

factors include: the labour required to anaIyze the requirements and derive the a p

propriate tests: revietvs ensuring the quality, correctness, and completeness of the

tests: and the impact of these activities on software development scheduIes. This the-

sis focuses on decreasing the subjectivity and increasing the accuracy of test frame

derivation by providing a mathematical foundation for defining coverage criteria and

calculating test Frames from specifications. T hese capabilities have the potential to

reduce the costs associated with systern-level requirements-based testing.

2.1 Introduction

Defective software can be frustrating, expensive. and. in the worst case. life t hreaten-

ing. However. for comples software systems. it is rarely possible to perform enoiigh

tests to guarantee that running yet another test is fruitless. For this reaTon. i t is

necessary to define a milestone that signals the end of testing and the point at ivhich

the software can be ÏnstalIed in the field. This milestone is defined as the successful

completion of a set of tests. For the milestone to be credible. this test set must

satisfy some pre-agreed criterion. .A central concept in testing. such cri teria define

test set completeness. inspire methods of test generation. and provide a mediuni for

cornmunicating issues relevant to ensuring that software is released in both a moral

and fiscally prudent fashion.

The focus of t h i s thesis is a discipline that can be applied to systern-level

requirements-based testing. This type of testing considers statements of the sys-

tem's required behaviour in terms of stimuli and responses. Xlthough the internal

mechanisms that irnplement that behaviour are not considered. an abstract view of

internal states of the system typically plays a role i n test derivation.

Traditionally. tests are derived manually by analyzing the natural language of

the requirernents. Ruies of t humb are used to determine the rneaning of standardized

phrases wit hin the requirements. Test engineers use cornmon sense transformations

of these phrases to derive test Frames. This derivation irnplicitly incIudes an under-

standing of a coverage criterion. However, the particular criterion and the derivation

methodology depend on the ski11 and esperience of the test engineers. :l goal of t his

t hesis is to standardize non-domain-specific aspects of test derivat ion met hodology,

thereby allowing the ski11 and experience of test engineers to be focused on domain

speci fic issues.

.issurance that a set of test frames satisfies a given criterion is achieved

through a review process. This review process relies on a rnechanism known as

tmceability. The t raceabili ty of requirements to test frames aIlows reviewers to

confirm that the test frames are consistent with the requirements. and that the set

of test frames satisfies the given criterion.

Jlithough the derivation of test frames from requirements incurs significant

cost. there is a surprising lack of automation of the analysis required for this task.

This is partIy due to the difficulties of autornaticaIly processing natural langage.

but a more important obstacle is the subjectivity of test derivation guidelines such as

those found in DOlÏSB. DOD-STD-2167.4. ANSI/IEEE 829-1983, and MIL-STD-

498. Any solution providing a means of automation, will also provide objective

definitions of criteria for sets of test frames. Additional characteristics of a solution

include: cont rols enabling test engineers to esercise engineering judgement . trace-

ability of requirements to test frames, and some degree of containment of the impact

of requirements changes.

Several qualities of system-level requirements-based testing point towards a

solution based on mathematical logic. The automation of Iogical transformations

and the requirements for test frarne correctness are both addressed by such a solu-

tion. and would also provide the required objectivity. The importarice of objective

criteria is a centra1 point of this chapter.

The importance of testing and the need for criteria signaling its completion

is given in Section 2.2. The significance of these general criteria is examined further

in Section 2.3. Section 2.4 describes the application domain of this thesis, system-

level requirernents-based testing, while Section 2.5 details the process of manual test

frame derivation. The notion of the traceability of requirements to test frames and

its current relevance to ensuring completeness is given in Section 2.6. Section 2.7

examines the lack of a process for automatically deriving test frames.

Based on the limitations and inefficiencies presented in Sections 2.2 t hrough

2.7. Section 2.8 details characteristics of a solution. Section 2.9 provides the irnpetus

for a solution based on machernatical logic. and gives a scientific perspective of the

essence of system-level requirernents- based testing.

2.2 Testing

.A simplified view of software development identifies four basic phases: requirements

specification, design. implementation, and testing. Requirements specification es-

tablishes the required behaviour of the sÿstem. The design phase determines how

these requirements will be achieved. Implementation is the building and assernbling

of corriponents according to the design. One of the purposes of testing is to provide

a degree of confidence that each of the required behaviours is eshibited by the im-

plementation. Testing is essential to ensuring software quality. yet it is a tâsk tha t

can rarely be cornpleted to the point where nothing can be gained by performing

more testing. X substantial problem in testing is deterrnining when enough testing

has been performed to ensure the desired quality with fiscal efficiency.

In general. a s u bstantial measure of professional and public confidence in the

design and irnplementation of a critical system is based on the assumption t hat the

system has been "completely tested." However, it is rarely practical to test every

conceivable situation in which such a system must perform flawlessly. This is partly

due to the immense size of the input domain tha t exists for a large system. To

exhaustively test the inputs For even a simple program that implements a function

of two 16-bit integers requires (. L ' ~) ~ = 4,294,967,296 tests.

Cleârly. t hen. a non-trivial software systern cannot be "completely tested" in

the sense that every possible situation has been accounted for. The classic "divide

and conquer" approach does not work. It is impractical to decompose a non-trivial

system to a level of granularity that coiild be completely tested and then integrate

the results for the whote systeni. Some criteria are needed to define an adequate set

of tests to be tised to determine when software can be installed in the field.

2.3 Coverage Crit eria

.-i program's prosirnity to being "completely tested" is determined by the properties

of the set of tests as a whole. Criteria describing desirable properties are used to

construct a test set which is both small. and also satisfies the chosen criteria. The

intention is that these corTerage criteria lead t o test sets which exercise a saniple

of the program's input domain that is likely to uncover faults. if they esist. The

-cornpletenessu of a test set is rneasured relative to a particular coverage criterion.

Use of the word coverage stems from the notion that the criterion implies

a categorization of the input domain. and tha t any test set satisfying the coverage

criteria covers. or esercises. one or more representatives of each of the categories.

The categorization is not necessarily a partition, i.e., the catepories are not required

to be disjoint subsets of the input domain.

Conclusions about the performance of a system are generalized from the

successfd completion of a test set. The validity of t hese conclusions depends on the

coverage criteria satisfied by the test set.

There are several different types of coverage criteria, which correspond to

different types of testing. Each type of organized testing focuses on a difFerent

objective and a different abstract view of t h e software. For example, unit testing

focuses on demonstrating the correctness and robustness of individual components of

the system. From this testing. conclusions may be drawn regarding each component

in isolation. This type of testing supports conclusions about system components.

but general concti~sions cannot be drawn regarding the operation of the systern as a

whole. or how rvell t h e system meets the original requirements specification. Ot her

coverage criteria focus on these latter concerns.

Coverage criteria serve a dual purpose: 1) as a definition of completeness

to guide the construction of test sets and evaluate their completeness. and 2) as a

description to others of the degree to which a program h a ç been tested.

2.4 System-Level Requirements-Based Testing

This t hesis addresses software development processes similar to t hose orttlined in

softwaresystern developrnent documents such as DOlï8B. DOD-STD-2167-4, AXSl/-

IEEE 829- LSS:3. and MIL-STD-498. In t hese processes. system-leuel. requirements-

based testing refers to a particular IeveI of software testing with the goal of verifying

through demonstration that each of the requirements wit hiri the specification has

been satisfied. This can be only a partial verification, due to the sizes of the input

and state spaces. Such a demonstration assists in signaling the completion of the

development cycle. I n some software development. processes. t his dernonst ration is

necessary for the legal completion of a contract between a customer and a software

manufacturer.

One method of achieving this demonstration is by performing a nurnber of

tests. Each test is defined by a test procedure. Each test procedure is a sequence

of test steps. Each test step contributes to the demonstration that a specified

requirement has indeed been satisfied. Each test step involves the application of

a stimulus to the software system, and a cornparison of the actual response of the

system wi th the espected response specified by the tequiremen ts.

This level of testing is "system-levet' in the sense that the internal structure

of the system is not visible: al1 testing must be perforrned by the application of

esternally generated stimuli and the observation of externally visible responses- It

is nrequirernents-based" in contrast to other kinds of system-Ievel testing which may.

for instance. be based on scenarios intended to approsimate the expected use of the

system for such purposes as determining system performance or reliability.

This thesis is oriented to a very general style of requirernents specification i n

which requirements are espressed by statements that express relationships between

esternally generated stimuli and externally visible responses. The requirements

may also contain references to an abstract representation of the internal state in the

form of pre-conditions and post-conditions. This style of requirements specification

s t rong1y discourages the description of internal processing. tt is distinguishable from

-model-oriented" approaches which involve the presentation of a n abstract mode1

as a means of describing the desired functionality of a system. in particular. the

style of specification addressed by t his t hesis is characterized by logically corn ples

statements of behaviour. relating system stimuli and responses rather than stating

simple transitions amongst a complex network of states.

in a typical large systern. each test procedure serves as a script for a test

session that would typically require no more than several hours of effort to esecute.

However. many months of effort rnay be required to develop the test procedure. The

manual development of a test procedure by a test engineer can be described in terms

of two main phases.

The first phase decomposes requirement statements into a set of test frames.

This involves lexical analysis of the syntactic structure of the requirements state-

ments guided by key words and phrases such as "and ." &or.' "not ." "if,- "unles."

%henever.- 'providecl that.' &on the condition thate7 and "except if one of the

following conditions is true."

The second phase of a tÿpical test procedure development process is to or-

ganize t tie test frames into sequences. The sequences must be arranged in order

to ensure that the pre-conditions of each test frame are satisfied by the preceding

sequence of test frames. The pre-condi t ions and post-conditions may be assertions

about the internat state of the software system, or they may be assertions about

parameters of the stimuli or responses.

This second phase of developing a test procedure also involves the instan-

tiation of sequenced test frarneç into test steps in a test procedure by replacing

data references. e.g.. &the current altitude of the aircraft." with actual values. e-g..

nlO.OOO feet..' The instantiation of test frames during this second phase may involve

the use of techniques siich as Boundary Analysis and Equivalence Partitioning [45]

to ensure that a suitable sample of act ual values is used i n the test procedure. .A

test step. an instantiated test frarne, is often referred to in the literature as a test

case.

As stated in Section 1.2, the scope of this thesis is limited to the first of

the two phases described above: the decomposition of requirements into a set of

test frarnes. The second phase of this process, both the instantiation of test frames

with actual data values and the ordering of test steps, is outside the scope of t his

dissertation.

'Other authors &O use "test case" to refer to an entire test procedure. Due to the multiple mean-
ings of this term, it is excluded from the vocabulary of this dissertation to avoid misinterpretations.

2.5 Manual Test F'rame Derivation

Esperienced test engineers use "rules of thumb" to decompose requirernent state-

ments into test Frames. For esample, the presence of the key word rior" i n the

antecedent of a requirement of the form.

iVhen Stimulus S occurs and Condition Cl or Condition C'2 is true. then

the systern shall produce Response R

indicates chat the requirernent must be decomposed into at least two separate test

frames - one for when Condition Cl is true. and another. separate test frame for

when Condition C2 is true. This would yield a pair of test frames,

1. S and C l and (not C2) a R. and

2. S and (not CL) and C2 3 R.

where the symbol separates the stimulus part (both the externally generated

stimuIus and the pre-conditions) from the response part (both the externally visible

response and the post-conditions). This symbol may be read informallÿ as -yieldsW

or -results in." Depending on the coverage criterion used by the test engineers.

additional test frames ma? also be generated to test For situations when the response

R should not be produced, i.e., "a not R."

It is often necessary to combine requirernent statements to generate test

frames. For instance, a statement of the forrn,

Unless Conditions C3 and Ca are bot h true, the system shall also produce

Response R1 whenever Response R.2 is producecl

needs to be paired with another statement such as,

When Stimulus S occurs. then the system shall produce Response R2

to obtain an "end-to-end" stimulus-response relationship between Stimulus S and

Response R1. The combination of these two statements can then be decornposed

in to a set of test frames.

While performing this ta&. test engineers manitally apply rules of logical

reasoning such as Deh[organ's Laws. e-g..

not (A and B) = (not A) or (not B).

This is illustrated by the above esample. which would Iikely involve substituting

(perhaps just menta1Iy) the phrase -unless Conditions C3 and C4 are both triie"

with the logically equivalent phrase "if Condition C3 is false or Condition C4 is

Fatse." The -or' in the resutt of tliis substitution could then be used to sptit this

requirement into two test frames. Another esaniple is the substitution of the phrase

-whenever Response R2 is produced" with the phrase -when stimulus S occurs,"

using a rule of logical reasoning sornetimes called -pre-condition st rengt hening."

Test engineers niay not be aware of the fact that they are using DeiLIorgan's L a w or

-pre-condition strengt hening.' but. reassuringiy. t here is a correspondence between

engineering intuition and format logic.

Thus. the decornposition of requirements into test frames can be viewed as a

series of lexical transformations based on rules of logical reasoning. in general, the

resulting test frames are logically implied by the requirernents. This makes sense

from a practical engineering point of view. Obviously. it would be undesirable to

test for stimulus-response relationships not irnplied by the requirements.

The work performed by a test engineer during this first phase is not entirely

a rnatter of routine logical deduction. Much effort is typically spent "disambiguat-

ing" naturaf language in order to expose the logical structure of the requirements

statements. Other considerations, such as domain knowledge, also contribute t o

this process. Knowledge of the application domain is needed t o understand depen-

dencies between various conditions referenced in the requirements. and t o avoid the

generation of irnpractical o r infeasible combinations of conditions in test irames. For

esample. the conditions "is airborne" and "has landed" rnay appear together as con-

ditions in a test frame which is logically derivable from the requirernents for an air

trafic control system - but which would be rejected by a test engineer on the basis

t hat it is infeasible. Nevert heless, reasoning about stimulus-response relationships

in a systematic manner is a central part of this ta&.

T h e effectiveness of these conventions is highly subject to the discipline of

requirements authors in avoiding words o r phrases which may be ambiguous o r

have shown a tendency t o be misinterpreted. For example. esperience shows that a

requirement of the form.

\Vhen Stimulus S2 occurs and Condition C.3 is true. then the system

shall produce Response R2 unless Condition C-l is false

is not necessarily arnbiguous. but it is more likely to be misinterpreted than the

following, logically equivalent. staternent of this requirement:

When Stimulus S2 occurs and Conditions C 3 and C-L are both true, then

the system shal1 produce Response R2.

The task of systernaticaIIy deriving test frames becomes niore cornples when the

interpretation of a particular requirement depends on other requirements. For ex-

ample, the interpretation of the requirement,

When Response R3 is produced and Condition C5 is true, then also

produce Response R4

depends on the set of requirements which specily conditions iinder which Response

R3 will be produced. When interpreting this requirement for the purpose of deriving

test frames. one possibility is to lexically replace the phrase -When Response R3

is produced- with one of the possible conditions under which Response R3 will be

produced. Another possibility is to lexically replace this phrase bp the logical dis-

junction of al1 of the possible conditions under ivhich Response R3 ivill be produced.

For esample. suppose that the conditions for producing Response R3 are espressecl

by the following two requirements:

When Stimulus S4 occurs. then produce Response R.3.

When Stimulus S5 occurs, then produce Response R3.

With the first approach, lexical replacement of the phrase "When Response R3 is

produced" ivill yield a re-statement of the original requirement in a form,

When Stimulus S-I occurs, then also produce Response R-4 if Condition

C.5 is true.

ivhich would then be decomposed into a single test frame. This is different Frorn the

result of following the second approach,

When Stimulus S4 or Stimulus S5 occurs, then aiso produce Response

R4 if Condition C S is true,

which would be decomposed into twodistinct test frames because OF the introduction

of the word -or" into the test of the requirement.

Yet anot her source of complexity in the process of deriving test frames from

requirements is illustrated by the following esample requirement:

When Stimulus S6 occurs. and ((Condition C6 is triie or Condition CT is

true) and (Condition C8 is true or Condition Cc) is true)). then produce

Response R5.

In t his esample. parent heses are rised to iinam bigitotisly state the requirernent by

clarifying the nesting of the logical connectives. -or' and -and." As an alternative to

parentheses. a decision table or an itemized list of conditions may be niore readable.

However. the formatting style of a requirernents specification is beyond the scope of

this thesis,

The nesting of disjunctions. i.e.. phrases containing the word -orn. [vit hin

a conjunction. i.e.. the phrase containirrg the word -and". is the source of a furi-

damental choice of coverage in the methodologv used to systematically cierive test

frames from a set of requirements. For the above esaniple. this choice is a matter of

deciding which subset of the following test frames are necessary to verify the above

requirement:

Franie

1

2

13

4

-
.3

6

-
1

S

9

10

11

12

1 3

Stimulus

S6

S6

S6

S6

S6

S6

S6

S6

S6

S6

S6

S6

S6

Conditions

C6, C i . C8, C9

C6, CI. CS, not CO

C6. CI. not CS, C 9

C6. not C7. Cs, C9

not C6, G, CS. C9

C6. not C7, L8, not C9

C6, not CI. not CS. C9

not C6. C i . CS, not C'9

not C6. C i . not C8, C9

C6, CS

ci. L9

C6. C9

Li', CS

Res ponse

Rb5

R .S

R5

R.5

R.5

R.5

R.5

R*5

R.5

R.5

R.5

R 5

R.5

Several notions of corn pleteness are possible. Those discussed here are given

narnes and definitions in Chapters -5 and 6. Under one notion of completeness. only

the first nine test frames are necessary to daim that the verification set for the

requirement is complete. Under anot her notion of compieteness, test frarnes 10- 13

are sufficient, The difference between these two test frame sets is t h e amount of

detail specified in the test frarnes. Under yet another notion of completeness, it

would be possible to reduce the verification set to just test frames 6-9. Ender le t

another notion of completeness, it would be possible to reduce the verification set

for this requirement to just test frames 6 and 9, or, alternatively, just test frames

ï and 8. Hence, depending on the notion of cornpleteness used in the methodology,

the minima1 size of the verification set for this requirernent would be nine, four or

two test frarnes. DiFerent situations may favour a farger number of test frames or

a smaller one. However. it is clear that these notions of cornpleteness need to be

distinguished in a standard way, and referred to using standard names.

The illustrative esamples given above are simplistic i n the sense that they

amount to relatively small differences in the number of test frames required to

completely verify a requirement. However. differences in the coverage criteria used to

derive test frames from requirements, when applied to large, comptes specifications

of requirements, have potentially large differences with respect to the niimber of test

frarnes required to satisfy a particular form of coverage.

Perhaps more importantly, the esarnples given above suggest that the deriva-

tion of test frames from a set of requirements is not necessarily a routine process

that always leads to the same result independently of the ski11 and esperience of

the individuals performing the work. Some skill and esperience will always be re-

quired to perform this task. However. this thesis is motiva.ted by a desire to focus

test engineer skill and esperience on less tedious aspects of the task. In addition

to improving the process by reducing the number of corrections that need to be

made du ring test procedure reviecvs. the precise description of coverage criteria for

systern-level requirements-based testing provides the basis for the development of

software tools to partially automate the derivation of test frames from requirements.

The estraction of test frarnes from a requirernents specification requires a

great deal of manual effort. The volume of the requirements, and the complesity

t hat can be present through the use of decisions wit hin the text referring to several

conditions and negating such decisions, make this task tedious, routine, and error

prone. Thus, additional effort must be spent in reviews to ensure that the set of

test frames satisfy certain properties. Reworking test procedures as a result o l

specification changes is costly not only due to the effort involved. but also due to

the impact on schedules.

The act of producing test frames often uncovers anomalies in the specifi-

cation. However. the loose connection between specification aut horing and test

planning causes this feedback to be delayed until late in the authoring stages.

2.6 Coverage via Traceability

In a disciplind approach to requirements-based testing, the -completeness" of a set

of test procedures is determined by inspecting the relationship between the require-

ments specification and the contents of stcps in test procedures. A traceability

mapping from reqiiirements to individuai test steps is used to demonstrate that

the set of test procedures is &complete9 in the sense that every functional require-

ment can be traced to an appropriate set of distinct steps in a test procedure [L6].

The size of this appropriate set is determined by the number of choices rvithin the

requirement.

Typicaily. each requirement h a s a unique identifier. and each step in a test

procedure is annotated with a list of requirement identifiers. Confirmation of the

implernentation of a requirement is demonstrated upon successful completion of

al1 steps associated with that requirement. The requirement identifiers provide a

met hod of maintaining t his association.

The completeness of a set of test procedures can be determined automatically

bÿ a software tool that parses out requirement identifiers listed in the test proce-

dure and compares this set of identifiers against a complete set of al! requirement

identifiers. The test set is not complete until every functional requirement has been

mapped to an appropriate number of specific test steps. In this case, coverage refers

to coverage of the requirernents.

Traceability is necessarÿ for providing an audit trait to support process mon-

itoring as well as assisting in evaluating completeness. Traceability between require-

ments and tests also assists in determining the scope of test set changes required

when requirements changes occur by providing a n index that can be used to facilitate

the appropriate review tasks.

However. traceability is only a partial solution to determining the complete-

ness of a test set. This type of tool assumes that the requirenient identifiers attached

to the test steps are correct. More importantly, it is aIso assumed that the appropri-

ate combination of tests that refer to any particular requirement has been procliiced.

The reality of human error necessitates the use of reviews to ensure that these re-

quirement identifiers are correct and that a suitable number of test steps has been

produced for each requirement.

2.7 Lack of Automation

It is possible that the proprietary state-of-the-art is more advanced than the doc-

uments quoted beIow. Hoivever, the quoted documents represent the pu blished

sources of coverage criteria upon which industry standards could be based.

Requirements-based testing guidelines contained in documents such as

D0178B. D O D - S T D - ~ ~ ~ T . ~ ~ . ANSI/IEEE 829-1953. and MIL-STD-498 do not con-

tain enough detail to objectively define algorithms for deriving test frames in the con-

test of logically complex requirements specifications. Of these documents, DOITSB

gives the most detaiied description. Paragraph 6.4.4.1 (a) states:

.Mt hough superseded by &l ILSTD-498, some software development projects stiU use DOD-
STD-2 167.4

Test cases esist for each software requirement.

Figure 2.1 is an image of Table -4-7 from DO 1XB. and indicates the differences

in the amount of detail given between requirements-based test coverage and code-

based test coverage: The descriptions for code-based coverage criteria given in Rows

.5 throiigh 8 refer t o specific. objective definitions. By corn parison. the description

of coverage in Row 3. for requirements-based testing. is not defined.

Table A-7

Veriflatbn Of VaiCkntiw Ptocus Resul~r

Output

and d ~ n d e s

achievd. f
Test CO-. d bw- 6.4.6.1 O 0 Ç o t m a ~ V d l c a m n Rmuks
Lovd roauK.m.crts a
othievob. I
Ton a w o r a g , al 6.6.4.2 1 Software Verilkation Rosukt

adlievod. I 1 1 1 1 1
Test coverage d 164.4.24 11) 10 1 1 ÇoRwan Vodkaibn Results

bchted. I
Test oovange ot 6.4.4.2~ 0 Sottwam V ~ ~ n Resuits
mu0 rtnrcturo (data
coupmg ud conhd
coupiing) ir r~hieved. 1 l l l l l

h

LEGEND: The oüpcîh should bs mdofkd wth indapondmco.

0 Tho objoafvo shouid bo saMid,

Bi& Saüdadion of oblreove is at applicuirs dkmion.

@ Daia Whfïai tm ckwxrvur of Cocrtro(Categoy 1 (CC1).

Figure 2.1: Table A-T from D O l X B

In paragraph 4.3.4 of DOD-STD-'LL67A. coverage is described by referring

to t raceability:

The contractor shall document the traceability of the requirements in

the Software Requirements Specifications (SRSs) and Interface Requi re-

ments Specification (IRS) that are satisfied or partially satisfied by each

test case identified in the Software Test Description (STD).

Paragraph 5.5 of IlIL-STD-498. the document tvhich supersedes DOD-STD-2167.A.

specifies only that the coverage criterion should be documented:

-3.5 Software requirernents analysis. The developer shall define and record

the software requirements to be met by each CSCl [Computer Software

Configuration Item]. the methods to be used to ensure that each require-

ment has been niet. and the traceability between the CSCl requirements

and system requirements. The result shall include a11 applicable items

in t h e Software Requirements Specification (SRS).

-4YSI/IEEE 829-1983 is the IEEE standard For software test documentation. Its

contribution is similar to that of MIL-STD--198, as it States that the approach must

be documented but does not specify a collection of possibIe approaches for system-

level requirements:

3 2 . 6 ... Identify the techniques which will be used to judge the compre-

tiensiveness of the testing effort ...

In addition to a lack of detail in the above guidelines, the definitions of cov-

erage criteria are determined by the subjective interpretation of these documents.

This subjective interpretation is the responsibility of esperienced test engineers.

To prevent this interpretation from becorning too ad hoc or unsystematic. well es-

tablished techniques impose discipline and formality. e.g., the use of requirement

identifiers for tracing requirements to test steps. While establistiecl techniques pro-

vide a disciplined approach to interpreting standard guidelines. certain problems

arise due to the lack of an objective definition of coverage.

-4s described in Section 2.5, to derive test frames from a set of requirements.

a test engineer is required to break up possibly IogicaIlÿ cornplex requirements into

a set of atomic stimulus-response reIationships. Addressing logicaI cornplexity to

the degree necessary to derive an appropriate set of systeni-level test frames has

not been addressed in software deveiopment Iiterature. The guidelines mention

data selection concepts such as -average." -boundary,' and -ou t-of- bou nds" values.

The? add only t hat there should esist a test for each software requirement, and

that different combinations of operations should be esercised. Cinfortunately. none

of this describes the analysis of logical complesity, nor does it define the level of

detail that should be reflected in the test steps produced.

While documents such as DO l X B , DOD-STD-2 167-4. ANSI/IEEE 529-1983.

and BIIL-STD-498 provide some general guidelines for requiremen ts- based testing,

they do not provide the specific detail required to objectively decide if a particular

test frame is missing from the test set, or if a particular elernent of the test set

is redundant. Different esperiences arnongst senior test engineers, combined with

subjective guidelines. almost guarantee t hat disagreements will arise. Resolutions of

these disagreements can only be arbitrary, and are in danger of being inconsistent.

Therefore, the lack of an objective definition becornes a management issue because

it places too much dependence on engineering judgrnent and experience.

Communications with the customer regarding the thoroughness of the testing

performed are sornetimes in terms of statistics based on the amount OF resources

spent. rather t han an objective account of the coverage achieved. This forces the

customer to place a great deal of faith in the developer. or to incur additional espense

to review the test process in order to becorne farniliar with the level of testing being

applied to their product.

The lack of objective definitions of coverage has resulted in a lack of auto-

mated tools for the anaiysis of requirements. There are commercial tools for deriv-

ing tests From esecu table models of requiremen ts. The disadvantages of esecu table

models are presented in Section 3.4. The disciplirie presented in this dissertation

advocates the use of forma1 translation rat her t han modelling.

2.8 Towards a Solution

Any solution to the limitations and inefficiencies presented in this chapter should

eshibit the following characteristics:

1. -4 means of defining objective coverage criteria is provided.

2. Test frame derivation is, a t least partially, automated.

3 . Test engineers can control the automated portions of test frame generation in

order to esercise engineering judgment when necessary.

4. Traceability is supported.

5- The impact of requirements changes on previously derived test frames can be

containedo to some degree. This capability requires analysis beyoiid traceabil-

i ty.

Characteristic 1). objective definitions of coverage criteria. is the most im-

portant. The existence of such definitions would:

(a) eliminate the su bjectivity of current coverage guidelines upon w hich disagree-

ments of interpretation are based:

(b) reduce the impact of esperience on the performance of test engineers. allowing

junior test engineers to perform more like senior test engineers earlier:

(c) allow completeness to be measured objectively and. per haps. algorit hmically:

(d) provide a means of partially autornating the construction of test sets: and

(e) allow communications to the customer to be based on progress relative to

pre-agreed coverage criteria. t h u s refiecting act ua l achievemen t.

Furthetmore. objective definitions of coverage. standardized across the software cle-

velopment industry. wotild provide a ctearer picture of the degree to which products

had been tested.

Characteristic 2) corild potentially reduce testing costs and increase the con-

sistency and accuracy of the tests produced. Characteristic 3) is essential to any

software development process applied to a non-t rivial project . Test engineers must

be able to control the test frame generation process in order to deaI with special

circumstances which may arise. It is also important that the test frame generator be

able to buiId test sets around test engineer guidance, rather than simply tolerating

it. Characteristic -4) provides an audit trail for various purposes. Traceability not

only provides a means of reviewing the test frarne sets produced by the test frame

generator, but also provides a means of tracking down errors in the requirements

flagged by a n incorrect test frame. Characteristic 5) is important for reducing costs,

but will be limited since the iinderlying logic ailows undecidable fornlulae in order

to be expressive.

2.9 Motivation for a Mat hematical Approach

Mathematics provides the rneans of achieving the accuracy required to accomplish

great feats. AS long as 4.500 ÿears ago. Khtifu's Great Pyramid a t Giza tvas con-

structed so accurately that the perimeter of the base divided by twice the height is

q u a 1 to Pi t o 5 decimal places. The Pont du Gard. built before the first century

-4.D.. is an architectural masterpiece that belies the accuracy of the aqueduct it

supports. This Roman aqueduct had the capacity to deliver 120.000 rn3 of water

per day along a 50 km run and a mere I i metre drop (34 cm/km) into a "castellurn

divisorium" with the capacity to distribute L25,000 m3 per day. Today. mathemat-

ics provides the means of piloting spacecraft on gravity-assisted t rajectories taking

them close to the inner pianets to steal mornentum in order to hasten the spacecraft

towards Jupiter and Satu rn.

In the field of computer science. the construction of parsers for higher level

programrning languages in the Iate 1950's and early 1960's was a craft. not a science.

It was not until Xoam Chomsky proposed a mathematical hierarchy of languages,

originally for classifying natural languages? that parsing became well understood.

In addition. the Chomsky Hierarchy has had a profound influence on the syntactic

structure of modern program ming languages. This is one exam ple of the use of mat h-

ematics to change a labour-intensive, error-prone process, e.g., parser construction.

into one that is automatic and Bawless.

It is reasonable to expect a similar benefit by applying a mathematical so-

lution to automating test frame generation. The logical complexity within require-

ments speci fications forces test engineers to perform logical reasoning (informallÿ)

during their manual deritation of test frames. This reasoning process is an escellent

candidate For the appIication of mathematical logic.

These considerations motivate the use of rules of mathematical logic to ma-

nipulate a formai expression of the requirements specification for the purpose of

calculating test frames. The idea of usirig iogic as a medium for calculation is not

new. e-g.. Prolog [-Il and Binary Decision Diagrams (BDDs) [SI. Using a set of

mathematically sound rules guarantees that the algorithmically cierived test frames

are logical consequences of the specification. It is possible that an incorrect im-

plementation of these algorit hrns may introduce errorç into the test frames derived.

However. the centralization of expression manipulation employed i n theorem provers

such as HOL ['28]. PVS [JT]. and Isabelle [50, -18. -171, can provide a high degree of

confidence that the risk of such errors is negligible.

A scientific perspective of system-levet requirements-based testing can be

espressed by the following questions:

Hou? can test frarnes be derired from an nrbitrarg formuln expressing a reln-

t ionship between st imuli and responses?

Currentlÿt requirements specification aut hors are free to express the mquire-

ments in any way they find appropriate to accurately and eficiently convey

the meaning of a requirement. Although a mathematical logic approach wilt

impose some restrictions on authors' styles, this must be minimized in order

to make the implementation of such an approach practical in a n industrial

setting. To achieve t his, any algorithm must assume that the input format of

the formal version of the requirements is as general as possible.

CVhnt con-sstitirtes a test fmme?

It is Iikely that a test frame will consist of a list of stimuli and a list of espected

responses. However. to satisfy au t hors' needs for expressiveness. it is l i kely

that the underlying logic will allow quantification. The effect of quantifiers on

these lists of stiniuli and responses must be understoocl. Also. it is likely that

test engineers will require some control of the amount of detail contained in

the test frames.

f Vhrt restrictions on the stimulus-response formula are necessnry in order to

crllow automatic processing?

Since the elernents of the logic that allow undecidable formulae cannot be re-

moved without reducing expressiveness, it is Iikely that there must be some

other restrictions on the use of these elements in order to allow for an algo-

rithmic transformation From a definable class of input specifications to test

frarnes.

a Hou? can the relrtionship bettoeen tes t /rames and the originalstimulus-response

/orm ula be descn'bed?

Some means of relating test frames to the stimulus-response Formula supplied

by the requirements au thors rnust be possible in order to provide some measu re

of completeness.

-A mathematical logic foundation for the definition of coverage criteria for

system-IeveI requirements-based testing should provide a depth of understanding

similar to that of language syntax. Mathematics is both a method of definition and

a means of calculation. Both of these aspects are present in the goals of defining

objective coverage criteria and automating test frame generation. The nomenclature

of coveragecriteria definitions is motivated by the goal of caicufating test frames

from specifications.

Chapter 3

Existing Solut ions

This chapter presents esisting solutions which might be applied to system-level

requirements-based testing. Although each approach has advantages in deriving

different types of tests, certain shortcomings remain. Esamining these techniques

introduces the background for underlying issues which are examined furt her in C h a p

ter 1.

3.1 Introduction

The techniques examined in this chapter can be categorized as systematic. code-

based. and logic-based. Some of the techniques referenced in this chapter produce

test frames, whik others produce test steps and test procedures. In this dissertation,

when it is not necessary to distinguish the differences between these products, t hey

are referred to simply as tests.

Perhaps the most obvious approach to automating the analysis aspects of

system-level requirements-based testing is to simply define standard phrases and the

systematic transformation of these phrases into test frames. Sÿstematic approaches

have the potential to be successful within the environment for which they were

developed. However. the fact that they are not based on a mathematical foundation

will hamper t heir applicability in a general set ting.

Discrepancies between the circumstances and objectives of unit-level testing

and t hose of system-levet testing lead to the conclusion t hat system-level require-

ments-based testing and code-based testing are fundarnentally different. T hus. al-

though code-based testing is tvell understood. it does not provide a direct solution

for system-levei requirements-based testing. This is esamineci further i n Section 3-3.

Techniques based on mat hematical logic solve some of the problems of the

systematic and code-based techniques. However. the prirnary difficulty wit h current

techniques based on mathematical logic is the lack of a combination of both a u -

tomation and the espressiveness to specify u:hat is required wit hou t specifying hou?

it is achieved,

Section 3.2 examines the sÿstematic approach of using mechanized transfor-

mations to produce test frames from requirements. The possibility of exploiting the

success of code-based techniques from unit-level testing is exploreci in Section 3.5.

Section 3.1 examines curren t approaches based on mat hematical logic.

3.2 Systematic Approaches

One possible approach to automating the derivation of test franies from system-Ievel

requirements is to restrict the requirernents language to a standard set of phrase

styles. This avoids the problems associated with parsing the ambiguities of natu rai

Ianguage. The information within the restricted phrases could then be extracted

by a parser designed for this language, and rearranged into test frarnes by a set

of standardized transformations. The distinction between this approach and those

described in Section 3.4 is that there is no mathematical basis for the soundness of

t hese transformations. This means that situations rnay exist w here appIications of

these transformations do not preserve the true meaning of a specification. Therefore.

reviews are required to ensure test frame quality.

This approach would be finely tuned to the process for which it was designed.

and would probably be reasonabiy successful. However. there are fundamental lim-

itations to this approach. The first is that this would be a solution only for spec-

ifications that can be written using the particular set of phrases. There is also no

guarantee t hat a subsequent specification aiithor would not use the specification

phrases in an un foreseen rnanner. Thus, improvernents to the specification style

rvould require changes to the test frarne derivation algorithms.

A second limitation is that there is no rvell-founded assurance of test frame

correctness. Therefore. it would be necessary to maintain a strict review process in

order to monitor the test frames produced by this approach. This task may prove

to be more difficult than in the manual approach of Section 2.5. For esample, if an

incorrect test Frame is produced. there are two possibilities: 1) the error occurred in

the derivation. or 2) there is an error in the specification- Since the test frame was

produced automaticaIly. there is no test engineer to justify the derivation of the test

frame. as there would be in the manual process.

-4 further limitation is t tiat coverage criteria defined in terms of this approach

would be basecl on one set of phrases. Coverage criteria based on another set of

phrases could potentially refer to Fundamentally different entities, thereby creating

confusion.

This approach might be successful in mechanizing a current process, such as

the one described in Section 2.5, but would not be able to assist in improving and

evolving that process beyond mechanization. This is due to the Iack of a sound basis

from which general conclusions about the process can be made. Such generalizations

are critical for process improvernent.

It is likely that esamples of these techniques esist in industry. However. it is

unlikely that piiblished accounts are available for two reasons. First, t hey rnay be

too specific to be of general interest. Second. they may be regtiarded as a proprictary

advantage.

Code-based Test ing

Coverage criteria for unit and module testing are well known. These types of testing

fit into a category referred to as code-based testing. Objective code-based coverage

criteria are founded on a nomenclature provided by the inherent precision of code.

This advantage is absent from the type of system-level requirements-based testing

addressed by t his t hesis. This section descri bes code-based techniques. but also

illustrates t h e importance of a nomenclature for defining coverage criteria.

L~nfortunately. code-based techniques cannot be directly applied to system-

level requirernents-based testing because of differences between t hese Levels of test-

ing. These differences are esarnined in greater detail in Chapter 4.

Code-based testing techniques attempt to find faults in an implementation by using

tests constructed from information ext racted primarily from details wit hin the pro-

gram source code itself, or from design specifications of system components. These

tests provide a means of evaluating the implementation components. Tests based

on component design specifications are referred to as black-box, or functional, tests,

while those based on source code are referred to as glass-box.L or structural, tests.

One class of glass-bos testing derives its tests from branch and loop structures

within the code. Attributes of these code structures are used to construct tests. For

branches. tests are constructed to expose the difference between the true and false

cases. The ttvo tests distinguish betrvecn two different execution paths through the

code. Similar tests are derived from loops. JL typical set of tests for a loop wiIl resrilt

in zero. one. and some number of iterations of the loop that reflects a -typica19 use

of the component.

The esistence of esecution paths Ieacls to the notion of code coverage. A

test set satisfying code coverage esercises each program statement at Ieast once. A

more rigorous code-based coverage criterion is path coverage in tvhich each feasible

path is esecuted at Ieast once. Path coverage is rarely achieved for non-trivial

components due to the large number of tests required and the Fact that some paths.

although feasible. may prove estremely dificult to reach due to the sequence of

stimu1i required.

Code-based coverage criteria need not refer onlÿ to execution paths wit hin a

prograrn, but can refer atso to equivalence classes in the input domain, the assign-

ment and use of variables. or various other aspects of the implementation. Beizer [5]

mentions over a dozen types of coverage. Lode-based coverage criteria are founded

on a nomencIature which is standardized by the constructs of programming lan-

guages. Programs contain a number of useful artifacts. such as branches, loops,

variables, blocks, and interfaces. Coverage criteria are defined in terrns of these

artifacts, which are common to al1 programming languages.

' ~ i s o referred to as dear-box or white-box test ing.

3.3.2 An Objective Criterion

Block A
if (x > 3)

Block B
e l s e

Block C
if (y > 10)

Block D

Figure 3.1: Esampte Prograni

The esample program in Figure 3.L illustrates code-based testing principies

and the value of an objective coverage criterion. Such a criterion. Block Coverage.

is defined. simply for the pirrposes of t h i s esample. as:

There esists a t least one test which esercises each block of code in the

program.

.-1 block is defined as a seqiience of statements containing no branches. Code-

based tests can be described by a set of input settings. The test set { {r = 4). { r =

2 .9 = 1 l}} satisfies the esample Block Coverage criterion. The test { r = -1)

esercises blocks A and B while {x = 2. y = 11 } esercises blocks A, C and D. This

test set is complete because it satisfies the stated criterion. It can also be shown to

be a minimal test set. since removing either of the tests results in a test set that

fails to satisfy the example Block Coverage criterion.

This esample provides an opportunity to show the value of an objective

coverage criterion. The precision of a well defined coverage criterion promotes test

team agreement of the level of confidence attained by unit and module testing.

A member of a test team might argue that the test set in this esample does not

adequatety test this program, and that the addition of {x = 2. g = 5 } would result

in an adequate test set. This is a n argument that the chosen coverage criterion

is inadequate. not that the test set was produced incorrectly. The team member

is espressing their concern that perhaps a higher Ievel of confidence is required

for this piece of software. This concern should be addressed and a decision made

as to whether a different coverage criterion should be chosen. The precision of

the coverage criterion focuses discussion on the issue of deterrnining the proper

trade-off between confidence and resources. There can be no argument about the

completeness of the test set, since the definition of the coverage criterion provides a

simple means of evaluation.

The nonienclature provided by the precise structure of programming lan-

guages makes it possible to determine the completeness of a test set objectively.

The nomenclature also provides a forum For defining and evaluating different cov-

erage criteria. This activity also supports confidence in software by leveraging the

confidence in well established code-based coverage criteria. These standards p r e

vide sufficient precision that the test steps can be derived automatically, or at least

in a much more rigorous and systematic way than system-level requirements-based

testing.

3.3.3 Automation

SeveraI techniques esist for deriving some tests from code automatically. toops p r e

vide the biggest obstacle to fully automatic code-based test generation, due to the

undecidability of loop invariants. Chilenski and Newcornb's Ada Testing Workbench

(ATW} [12] generates test specifications frorn an Ada subset and conducts coverage

analysis for 21 structural coverage criteria. ATW employs a theorem prover to elim-

inate infeasible pat hs. It uses abst ract syntax trees to extract structural elements

from the Ada code. but does not construct test specifications for code with loops.

Ferguson and Iiorel [24] describe a chaining approach that uses data dependencies

within code to generate test data. The technique can produce test data for some

simple types of loops. Voas. Payne. and Miller [65] use a simplified form of mutation

testing to automate the generation of unit level tests for coverage criteria mentioned

in D0178B.

Code-based techniques focus on a distinctly different level of testing from

systern-level requiremen ts- based testing. One distinction between t hese levels of

testing is that quantification appears in system-level requirements. Another dis-

tinction is that code-based tests are tightly coupled to the structure of the code

from which they were derived. This means that changes in the code are likely to

cause changes in the test set. This is quite desirable for unit-level testing, since the

structure of the code is closely related to the machine code which is fundamental

to systern behaviour, Any change i n the machine code warrants re-testing a t the

unit level. However, this is not the case for changes to system-level requirernents. -1

change i n requirements does not necessarily require re-testing. Chapter 4 addresses

these differences in more detail.

3.4 Logic-Based Techniques

A nurnber of test generation techniques make use of various types of mat hematical

logic specifications. T hese techniques have two significant advantages. The first

is that they are based on logical systems that have been rnathematically proven

to be sound. This ensures that derivations correctly maintain the meaning of the

specification. The second advantage is that many of these logics are more expressive

t han program source code.

Here. an exec-utable language is a specification language cornbined with a def-

inition of state such that transitions between States are decidable. For specifications

built on primitives within an esecutable Ianguage. the primary advantage is that the

resulting specifications can be simulated at sorne level of detaii. Simulation allows

requirements authors to interact wit h t heir specifications in order to vaiidate t hat

the specification implies what the author intended. Some of these techniques also

provide partial code generation.

Format specifications based on mathematicai semantics provide a basis for

au tornatic test-generation techniques. This ma t heniatical structure allows formal

specifications to be manipulated mechanically so that information contained within

the specification can be isolated, transformed, assembled, and repackaged. Vsing

rules of transformation in this rnanner. test frames for a sÿstem can be derived

from its formai specification. if the specification is esecutable. test steps can also be

derived. The soundness of the transformation rules and the mathematical semantics

of the specification language guarantee that the tests are logical consequences of the

specification. This provides a high degree of assurance in the correctness of the tests

produced by test generators based on these techniques.

3.4.1 Finite State Machines

RichardsonS work [22, 10, 64. 54. 53: 521 is based o n specifications that are ese-

cutable models. The advantages of this approach include the foilowing:

1. the specification provides test oracles allowing testing to be fuily automated

once the executable mode1 has been constructed, and

2. the specification can be sirnulated.

Some of the disadvantages of this approach are:

1. that test oracles assume that the portions of the specification to be tested

actrially terminate, and

2. that it might be quite costly to produce an executable mode1 from a given

specification that contains a similar level of detail as the original specification.

Eickelmann and Richardson's etduation of software test environment archi-

tectures [10] takes the position that testing should be fully automated. Horvever.

the techniques addressed in their evaluation are typically appIied at the unit level.

Richardson and Wolf [55] argue the importance of testing at the architectural

level. They suggest t hat this can be accomplished by applying current techniques

to an esecutable mode1 of the architecture. The template for this mode1 is called

-CHAhI," Chemical Abst ract Machine. This machine provides the structural basis

for a nomenclature for coverage criteria. The test process can be used to assess the

validity and testability of the architecture and the conformity of the implementation

to the architecture.

The T-VEC system by Blackburn and Busser [7] generates test vectors from

hierarchical. esecu table requirements speci fications. d test vector includes bot h the

input data and the espected output. This allons the automation of test execution

by producing a report of the success or failure for each test. However, it also requires

that the specification contain a mechanism which details precisely how the desired

output might be achieved. This r u n s counter to the philosophy of many system-level

specification paradigms, which encourage specifying what is desired while refraining

From specifying how it is achieved.

T-VEC specializes in dealing wit h non-linear inequalities. T-VEC also per-

forms coverage analysis. test driver generation, and test results analysis. The cover-

age anaiysis is a matching of t he feasible generated test vectors and the requirements

from which they were generated. Any mismatches indicate anomalies in the require-

nients. T-VEC does not deal with quantification over infinite dornains. nor condition

dependencies beyond inequalities. T herefore. any specificat ion containing stich de-

pendencies must be modeled in a way that expresses these dependencies in terms of

inequalities.

The primary disadvantage of T-VEC is that it requires a n executable speci-

fication. This requires that requirements be reformulated to match this model. The

limited espressiveness. e.g.. lack of quantification over infinite sets. of the T-VEC

specification Ianguage. makes this a non-trivial and espensive task when applied to

the type of specifications addressed in this dissertation.

Various techniques esist for deriving tests and test sequences from variations

on finite state machines [3 3] . e.g., those based on specification languages such as

Statecharts [6ï]. SDL [43], LOTOS [11]. .Y-machines [42], and that of the Valida-

tor/Req [:3] test generation tool. The test sequencing provided by t hese techniques is

important for testing protocols in communication systems, e.g., specifications with

simple transitions but a cornples state space. In contrast, this thesis focuses o n

specifications t hat do not necessarily refer to states. but whose complesity lies in

the logical retationships between stimuli and responses of the system.

These techniques have similar limitations of expression. Constructing an

executable model is often a complex and expensive ta&. This effort is well spent if

it adds value by proving certain properties of the model. However, t h is is a separate

issue and is not the purpose of system-level requirements-based testing.

3.4.2 Logical Manipulation

Laycock [.Il] applied the category-partition method of Ostrand and Balcer '161 to a

Z specification. The work demonstrated the feasibility of automating test generation

from a formai specification.

tnspired by the work of Bernot. Gaudel. and Marre [6], Dick and Faivre

[li] describe a technique for deriving test steps based on a disjunctive normal form

(DNF) of a formal specification expressed as a s tate relation in first-order predicate

calculus. The technique is based on a procedure for transforrning a formai spec-

ification into a disjunctive normal form that represents the possible states of the

system. Test steps are inferred from the disjuncts by determining the pre-condition

for the corresponding state. A means of sequencing test steps is also given by Dick

and Faivre. Their technique can produce a combinatorially large nurnber of tests.

since it produces everÿ possible corn bination of choices provided by disjunctions in

the specification.

First-order predicate calculris is lirnited for general use in specifications at

the system level. Forrnal specification ianguages such as Z [61] and VDM-SL [3ï] are

more suitabie a t the system level since they are more expressive. e.g,. by allowing

quantification. ?Vork based on Z that is sirnilar to the approach used by Dick and

Faivre has been done by Horcher [34]. Helke. Neustupny, and Santen [32] have

re-implernented this technique using a n ernbedding of Z in the Isabelle theorem

prover [Xj. This latter work demonstrates the feasibility of applying theorem-

proving technology to test generation. This provides a standardized mechanism

for ensuring test correctness. The underlying logic of the specification languages

for these techniques is expressive enough for use in system-level requirements-based

testing. However, the derivation algorithrns do not deal with quantification.

Stocks and Carrington [62] have presented a framework for specification-

baseci testing tha t addresses such issues as test oracles and test suite maintenance.

The use of test oracles assumes t hat, for a given specification, the output can be

computed from a given input. This assurnption iniplies that the forma1 specifica-

tion must be esecutable. The approach presented in this dissertation allows non-

executable specifications, but does not produce test oracles. The importance of

non-executable specifications is argued by Hayes and Jones [30].

Gaudel [6. 261 describes a theory of testing based on algebraic specifications

that are characterized by the use of functions to denote operations. -4 set of asioms.

typically espressed as universally quantified equations. defines a class of algebras.

Each algebra is a mode1 of the specification, In contrast. predicate logic specifica-

tions typically use relations between states to denote operations, and hoth universal

and esistential quantification are often present.

Hayes [31] argues that algebraic techniques are best suited to testing prirni-

tive data types and that. for more comples abstract da t a types. model-based spec-

ification is simpler. Hayes describes a manual technique for appIying model-based

specifications to module testing.

-4s noted by Gaudel, predicate logic specifications are more general than

algebraic specifications. However, the price of this generality is the restriction that.

i n general, only test frames can be generated automatically. Algebraic techniques

such as the one by Bernot. Gaudei, and Marre [6] can generate test data. This test

da ta corresponds to what this thesis refers to as test steps. Test steps are instances

of test frames.

3.4.3 Disadvantages of Modelling

The techniques described in the previous section are based on mathematical rnod-

elling. -4 disadvantage of the above techniques. in the context of system-level require-

ments-based testing For large projects. is that determining the underlying primitives

for the model is often a non-trivial task. which is outside the bounds of typical

requirements aut horing. Constructing a model that supports the appropriate de-

pendencies between conditions wit hin the requirements is a Fundarnentatly different

ski11 from the presentation of system-level requirements. This is because the model

contains technical detail particular to the model. or modelling language. that is

not readable by typica[requirements aut hors. Thus, specifications based on math-

ematical logic often require the maintenance of two specifications: one readable by

requirements aut hors for cont ract purposes. and the forma1 version iised to generate

tests. Thus, mathematical logic approaches usually incur additional costs associated

wit h t his second specification.

This approach also requires a review process to ensu re t hat the two specifica-

tions rernain synchronized as changes are niade. This tends to delay the derivation

of the formal specification in order to ensure that changes are minimized. However.

the process of generating tests often uncovers inaccuracies wit hin the requirements

specification. This feedback is criticaI for requirements authors. The result is that a

possibly lengthy delay for testing-to-requirements-author feedback is built into the

process.

For specifications where a Large number of requirements can be based on

a small number of primitives with relative ease, these modelling costs are usually

repaid in ensuring consistency within the specification. This is due to the high

degree of interdependence between requirements. However, for specifications with a

large number of independent requirenients. the costs of rnodelling are less fruitfui.

sirnpIy because there are fewer possibilities for inconsistencies. in such cases. a

manual review is likely to be less expensive and just as effective in discovering them.

3.4.4 Coverage Schemes

Some work has esplored issues of coverage schemes. A coverage scheme is an algo-

rithrn for constructing a test set that satisfies a given coverage criterion. MacColl.

Carrington. and Stocks [44] describe a mechanized but not automated approach to

deriving test steps from forma1 specifications. They provide for a variety of deriva-

tion s t rategies which could embody different coverage schemes. Arnmann and Offu t t

['LI descri be each-choice-used and base-choice coverage. T hese coverage cri te ria d ra-

rnatically reduce the number of test steps produced. These criteria are different

from code-based criteria, since they describe coverage in terms of a relationship be-

tween two behaviours of the system. These coverage criteria are examined Further

in Chapter 6.

T tie author has introduced a frarnework for several coverage criteria based on

prime implicants of a partitioning of the specification referred to as test classes [HI.

The same paper presents details of generating test frames frorn a forma1 specification

containing universal and existential quantification. This thesis is the fruition of this

earlier work.

3 -5 Conclusion

This chapter has described three categories of techniques that might serve as a basis

for a solution to the problem described in Chapter 2. Systematic techniques Iack

the mat hematical soundness required to ensure test frames correctness. Code- based

techniques. while providing rvell developed notions of coverage. do not address fea-

t ures foiind in more expressive specification languages t hat are suitable for system-

level requirements. Current logic-based techniques lack a combination of automation

and espressiveness.

Chapter 4

Fundament al Challenges

-4 central conclusion of th i s research is that the problem of generating test frarnes

algorit hrnically from a set of requirements for the purpose of systern-level testing is

significantly different from the probleni of generating test frarnes from code for the

purpose of unit level testing. This chapter examines the challenges that illustrate

t his difference.

4.1 Introduction

There are four fundamental challenges to sÿstem-level requirements-based testing:

structural independence. condition dependence, quantification, and the Delta Prob-

lem. Code-based techniques provide a rich vocabulary for describing coverage cri-

teria. the means of evaluating the coverage achieved by a given test set, and. t o

some degree. a means of automatically generating tests. However. techniques for

code-based testing do not need t o address the fundamental challenges oCsystem-level

requirernentsbased testing.

At the system level, the readability of the requirements specification is of pri-

mary concern. The purpose of t h i s specification is to communicate what is required

of the system so that the appropriate stakeholders, cg.. customers. requirements

authors. software designers. governrnent regulators. can comprehend and discuss

requirements issues as easily as possible. To ensure that previousty generated test

frarnes are not made obsolete by simple changes in presentation to address readabil-

ity issues. it is essential that the derivation of test frarnes be structurally independent

of how the requirements are stated.

Recognizing dependencies between conditions within the requirements is nec-

essary to avoid generating infeasible test franies. Depending on the way i n which

requirements are specified, different strategies For recognizing condition dependen-

cies may be more or less appropriate. For example, properties of well understood

primitives can be used to compute dependencies between conditions defined in terrns

of these primitives. However. in more abstract specifications. other techniques maÿ

be more appropriate.

Esistential and universal quantification are logic rnechanisms that reflect

phraseology cornmonly found in natural Ianguage. These rnechanisms provide a

means of describing what is required. rather than how it is achieved. For esample.

it is easier to state universalIy that -al[men are mortal," than to enumerate the

fact for each and every man. Thus. quantification is an important quality of a

systern-level specification langage.

The impact of specification changes on previously generated test frarnes is

an important ccnsideration when applying any au tomated test frame derivat ion

technique to large projects. When generating new test frames. it is expensive to

ignore test results based on existing test frames that are still valid. .A valid test

frame is one that is logically imptied by the specification, The Delta Problem is to

integrate esisting valid test frames into new test frame sets. Structural independence

is mandators but additional capability is required to solve the Delta Problern.

Section -1.2 examines an application of a code-based approach to system-level

requirements. This leads to the issue of struct lirai independence. which is etaborated

furt her in Section 4.3. Section 4.4 examines the impact of specification type on the

choice of condition recognition strategy. Section 4.5 presents the importance of

universal and existential quantification to system-level requirements-based testing.

This is followed by Section 4-6. a description of the Delta Problem.

4.2 Specifications as Code

The systematic derivation of tests based on the structure of code for the purpose of

testing software coniponents is well-established. It is sensible, t herefore. to consider

the possibility of sirnply tifting this idea up to the level of requirements-based testing

for the purpose of generating test frames.

tt is relatively easy to translate stimulus-response statements. provideci t hey

do not require quantification. into a logical representation using simple code-Iike con-

st ructs such as if-t hen-endif. if-t hen-else-endif, and, or, and not. For esam ple.

the requirement.

When Stimulus S occurs and Condition C l or Condition L 2 is true. then

the system shall produce Response R

could be translated into the following code-like representation:

if S and (Cl or C2) then R endif.

This simple approach takes into account only the toplevel logical structure.

The phrases represented symbolically by S, Cl, C2 and R would correspond to

phrases such as "the aircraft is airb0rne.l which are left unformdized. Such phrases

could be represented Formally in a parseable notation such as S [31)1! which allows

test strings such as "the aircraft is airborne- to be introduced as uninterpreted

constants.

This simple approach would yield a code-like representation. in the sense t hat

it would have a logical structure espressed by standard logical operators of common

programrning languages. This logical structure serves as the b a i s for generating

tests from code using well-known techniques.

For esample. the following code-like statement.

if (Si and S.3)

or ((not S1) and S2)

or ((not Si) and (not SB)) then

R

endif

could be used as input to a test franie generation tool based on the condition/decision

coverage criterion defined by Chilenski and Newcomb [l'LI. Their definition of con-

dition/decision coverage is:

Every possible decision and condition has taken al1 possibIe outcomes a t

least once.

For the above esample, the decision is,

(S1 and S3) or ((not SI) and S2) or ((not S I) and (not S3))

and t h e conditions are: S 1, S2, and S3.

-4 test frame generation tool based on condition/decision coverage must gen-

erate a set of test frames that includes a t least one test frame in which the decision

evaliiates to true, and at least one test frame in which the decision evaluates to false.

Also, for each condition, SI, S'2 and S3. there must be a t Ieast one test [rame in

which the condition is true. and another test frarne in which t h e condition is false.

A minimal set of test frames satisfying condition/decision coverage is.

L. SI and (not S2) and (not 53) not R. and

2. (not SI) and 52 and S3 + R

where. a s before. the symbol "=+' is iised to separate the stimuli part of the test

frame from the response part.

The first test specifies that when SL is true and S2 and S3 are false in the

environment, the system should respond in a manner consistent wit h -not R." Under

the truth values specified by t h e first test, the decision in t h e specification evaluates

to false. In the second test. the decision evaluates to trtre and the appropriate

response is R. Since each of the conditions takes on the values true and false in at

least one test. these two tests satisfy the condition/decision coverage criterion. The

set is minimal because there must be a t least two tests: one in which the decision

evaluates to true, and a second in which the decision evaluates to false.

So it may appear that the met hods previousiy developed for algorithmically

generating tests from code can simply be re-used. These methods are based exclu-

sively on structure. which. in this example, is expressed by code-like constructs, e.g.,

if-t hen-endif, if-t hen-else-endif, and, or and not .

Hotvever. a limitation of this simple approach is illustrated by the fact that

the statement,

of the code directly affects compilation in terrns of which instructions are executed,

and the order in which they are esecuted, For unit testing, the test se t must be

structuralIy tied to the irnplementation, since a change in implementation source

code actiially changes the iinderlying system.

The situation is very different for system-level, reqriirernents-based testing.

where it is likely to be highly undesirable for two semantically equivalent. but struc-

turally different. statements to yield a different set of tests. Hence. the above es-

ample suggests t hat the usefulness of techniques based purely on code-li ke structure

rnay be limited as the basis for automating the task of generating test frames from

forrnalized requirements for the purpose of verifying requirements.

4.3 Structural Independence

The term struclurnl dependence refers to the coupling bettveen the structure of the

input of a test frame generation process. and the test frames produced. Ideally test

frames should be structurally independent from the specification from which they

were deriveci. The out put of a test frame generation process should be affected by

requirements changes only to the estent t hat the revised requirements differ seman-

tically from the original requirernents. Tivo s t ruct urally differen t, bu t seman tically

equivalent. versions of t h e requirements should ideally produce the same set of test

frames.

This conjecture is based on the observation that , for a variety of reasons,

requirements may be organized structurally in a manner that is not conducive t o

generating tests. [t would be undesirable for redundant test frames t o be generated

simply because of the structure of the requirements. Mso, for a variety of reasons,

a significant change to the structure of the requirements may be made with little

or no semantic change. i.e., no irnplernentation changes are required. It wouid be

undesirable for such changes to yield a significantly different set of test frames if this

entails re-working existing test procedures. and/or repeating previously e'cecuted

tests.

One approach to addressing structural dependence may be to impose con-

straints on the formal representation of requirements so that there is only one rvay

espress the requirements. However. it is doubtful that it is possible to devise an

effective set of constraints that would gain wide acceptance. Instead. the strategy

adoptai in Chapter .5 is based on the transformation of sets of requirements irito a

normal form using rules of iogical reasoning.

Unfortunately. com piete structural independence cannot be achieved. A con-

dition espression can be rephrased such that the new form cannot be recognized as

being equivalent to the originai by automatic means. in mathematical logic terms.

complete structural independence cannot be achieved because the truth of a conjec-

ture of the equivalence of two general formulae may be undecidable.

Condition Dependence

The term condition dependence refers to logical relationships between conditions

wit hin a requirements specification. it is often the case that these dependencies are

not explicitly documented in the requirements. t hough t hey impact the derivat ion

of test frames.

For instance, the requirements specification for an air traffic control system

may use ph rases such as "is airborne,' "has landed," and "is cleared for departure,"

as primitive terms. The choice of these phrases as primitives rests upon the assump

tion that the users of the specification have enough common domain knowledge to

recognize dependencies between these primitives. For example, an aircraft cannot

simultaneously satisfy the condition "is airborne" and "has landed."

The set of primitive terms used in a natural language requirements speci-

fication of a system constitutes the level of abstraction used by the requirements

authors. One approach to addressing condition dependence is to recfuce the number

of primitive terms to a very smalI number of purely mathematical primitives. Deci-

sion procedures cari then be used to search for dependencies at this standard level.

In eff't. this lowers the level of abstraction in a manner analogous to the refine-

ment of a reqiiirements specification into esecutable code. Whereas the primitives

in code are operations on bits. the primitives in this unrestrained style of formal-

ization are. for instance. operations on mathematical sets. In both cases. the result

is a much niore detailed description that blurs the distinction between -whatY and

-howM in the specification of the required functionality. In more practical terms,

the refinement of hundreds or thousands of primitives down to the level of abstract

mathematics. though it may be intellectually chailenging, is an indirect and costly

way to address condition dependence.

The strategy presented in Chapter 7 allows the level of abstraction used by

the domain experts to be maintained by introducing the primitive terms of the nat-

ural langiiage specification as uninterpreted elernents of the forma1 representation.

Many forma1 specification notations allow elements such as types. constants, fu nc-

tions and predicates to be introduced as uninterpreted elements. In simple terms.

this means that names for these elernents may be dectared as part of the working vo-

cabulary of the formal representation without providing a definition of the element

in terrns of some previously introduced or built-in element. Condition dependence is

addressed in this dissertation by alfowing the user to selectik-ely provide some forms

of dornain knowledge as input to the test franie generator. This doniain knowledge

takes the form of axiom schemata that define mutually esclusive conditions and con-

ditions forming partial orders and states. This provides the required information i n

order to determine dependencies between conditions. This approach is describer1 i n

further detail in Chapter 7.

4.5 Quantification

Finite forms of quantification are. of course. espressi ble in any program ming lan-

guage. Universal quantification over a finite set of values can be espanded into a

conjunction of conditions. Similarly. esistential quantification over a finite set of

values can be espanded into a disjunction of conditions. However. forma1 specifica-

tions often involve quantification over sets of values t hat are not necessarily finite.

or whose members are left unspecified, Even in the case of quantifying over some

finite sets. it may not be practical to espand the quantification into a conjunction

or disjunction if the finite set is large, e.g.. the set of al1 32-bit integers.

Section 4.3 outIined how a modest level of formalization could be achieved

using only simple code-like structures, such as if-then-endif. if-then-else-endif.

and. or. and not, However. ttiis propositional logic style of formal specification

may not be adequate in al1 cases. Circiimstances may require more expressive kinds

of formal specification, based. for instance. on predicate logic wit h quanti fiers.

The ability to quantify universally, i.e.. -for all," or esistentially. i-e., -there

esists," over a set of values often allows the expression of requirements in the forma1

representation to more closely correspond to their expression in natural language.

This is often a matter of being able to express what functionality is required. rat her

than how the function is to be realized. Quantifiers are also useful when specifying

global constraints that influence the interpretation of other requirement statements.

For this reason. quantification is also a fiindamental challenge which must

be addresseci by any practical approach to generating test frames from formalized

requirements. Obviously, esisting techniques for generating test frames from code

are not equipped to accept input containing quantifiers. since prograrnrning lan-

guages do not include general quantifiers as operators.

4.6 The Delta Problem

The Delta Problem. which is the integration of existing tests with new ones. requires

analysis and is different from structural independence. Striict ural independence

provides a degree of latitude that allows the test generator to produce tests to fit

certain criteria. This also allows the test generator to integrate existing tests with

new ones.

IVhen specification changes occur. it is necessary to minimize their impact

on esisting test sets previously constructed. Although generating a completely new

test set is possible. t h i s is undesirable if testing has already begun. Assurning that

the requirements changes do not require any iniplementation changes. it is less ex-

pensive to perform a few new tests to augment positive results already obtained than

to disrniss previous positive results and perform a larger number of different tests.

For example, il a portion of the requirements is re-worded for clarity or contractual

reasons, but no implementation changes are necessary and the test generator pro-

duced different tests based on the re-wording, then unnecessary and perhaps costly

testing would be performeci. Thus , existing tests must be integrated with any new

tests by the test generator.

This capability is not necessary in the context of code-based testing. .A rear-

rangement of conditions wit hin coded decisions rarely results in a situation where the

implementation does not need to be re-tested. This is because such a change usually

resutts in a change to the implernentation. For example. in a C program. sirnply

changing i f (a I I b) to if (b 1 I a) changes the order of evaluation. Since the

implementation has changed. it must be te-tested: therefore. generating new tests

is not wasteful.

In order to minimize test set impact due to specification changes. a test frame

generator shouid accept two inputs: the specification for which test frames are to be

derived. and the previous set of test frames. To the extcnt possible, the test frame

generator should attempt to use the previously generated test frames as a starting

point for constructing a test set that satisfies the given coverage criterion. This

should be the case whether the specification or the coverage criterion is changed.

Estending this idea, it is desirable to allow test engineers to specify the -previous

tests." This would provide a means of allowing test engineers to mandate certain

tests. and to use the test frame generator to comptete the test set according to a

chosen coverage scheme.

This chapter has examined the possibility of writing requirements like program code

to take adkxntage of well-known, esisting code-based techniques. This has led to the

identification of certain challenges to be overcome by a technique that can be applied

to requirements-based testing. The challenges, structural independence. condition

dependence, quantification, and the Delta Problem, distinguish requirements-based

testing from code-based testing.

The first challenge is that requirements-based tests should be structurally

independent of the way in which the requirements are written. This is not required

of code-bwed test generation techniques which produce tests that are structurally

dependent. Un fort unately, complete structural independence can not be achieved for

al1 specification languages.

The second challenge is to capture condition clependencies amongst condi-

tions that may not be defined in terms of primitives. as is the case in code. These

dependencies are necessary in order to avoid generating infeasible tests and to sirn-

plify those that are feasible.

Quantification provides a n espressiveness that is useiul for describing require-

ments at the system level. This challenge dues not exist in the domain of code-based

techniques. but must be addressed in a discipline of requirements-based testing.

The fourth challenge is the Delta Problem. Wasteful rework can be avoided

with the ability to integrate e'cisting tests into new test sets wheri requirernents

changes occur. This challenge is specific to requirements-based testing, because a

substantial re-wording of the requirements does not necessitate the obsolescence of

ail esisting tests.

Chapter 5

A Foundation for the Discipline

This chapter presents a discipline of test derivation which incliides algorithms for

generating test frames from formal specifications containing universal and esistential

quantification. .A nomenclature for defining specification-based coverage criteria is

based on the parameters of these algorithms. The foundation of this technique on

formal rules of logical derivation ensures that the test frames produced are logical

consequences of the specification. Since this technique deals with quantification. it

can be appIied to more expressive specifications than previous approaches. This also

makes the technique appIicable to specifications wïitten at the system requirernents

levet .

5.1 Introduction

It is well recognized that there is an important distinction between specifying what a

system should do, and how this goal is to be achieved. In particular, when specifying

system-level requirements it is important to focus o n "what." while specifying as

little "how" as possible. Mathematical logic provides a means of describing "what"

withoiit describing "hoiv.- Conversel~r, code is well suited to describing "how,' but is

more difficult to use when trying to describe 9vhat" without "how." For this reason.

along with the issues raised in the previous chapter. logic-based approaches seeni

to be better suited as a foundation for automating system-level requirements-based

testing.

The most appropriate esisting test-generation technique for the type of spec-

ifications addressed by this thesis is the DNF approach, which arose from the work

of Dick and Faivre [LT]. However. this approach has certain limitations. An alter-

native to the D X F approach forms the basis of the discipline of specification-based

test derivation presented in t his dissertation.

There are t hree fundarnental entities t hat highlight the intermediate stages

to generating test frames: test classes, frame stimuli, and test frames. These entities

form the basis of the nomenclature which will be used in Chapter 6 to define coverage

criteria. During the production of test classes, certain fornis of specifications can be

flagged as possibie specification errors. Test class normal form is the key mechanism

by which system behaviours are grouped- The production of test frames introduces

the notion of specification coverage. The terms test class, test frame. a d frame

stimuli form the foundation for the nomenclature t hat will be used to define coverage

criteria. The basic coverage concepts introduced in this chapter are estended further

in Chapter 6.

Section 5.2 begins this chapter by detailing some of the limitations of test

generation techniques based on the ivork of Dick and Faivre [17]. Section 5.3 intro-

duces the notation and fundarnental terminology for the discipline. This is followed

by Section 5.4, which defines test classes, test frames, and test steps and provides a n

overview of the relationships between them. Section 5.5 presents one of the funda-

mental ideas of t h is t hesis: Test CIass Normal Form. Section 5.6 deaIs wit h coverage

schemes and the actuat generation of test frames from test classes.

5.2 A Place to Start

The DNF approach is based on a procedure for transforming a forma1 specification

into a clisjunctive normal form that represents the possible states of the system.

Test steps are inferred from the disjuncts by cietermining t h e pre-condition for the

corresponding state. Specifications are transformed using logical manipulations such

as

-4 a B =-.-iv (A A B), and

.4 V B = (-4 A T B) V (7:1 A B) V (-4 A B).

An esample from Dick and Faivre's original paper [l i } illustrates their pro-

c e s . The specification (ma2 = n v ma+ = 6) A maz 2 a A maz 2 b is transformed

and simplified into the set of state descriptions:

{ m a l = a A mar = b. max = a A max > 6 , max = b A mar > a} .

Each element of the above set represents a possible state of the system.

-4 limitation of this approach is that disjunction and implication are treated

differently This implies that if an author wrote B v 7.4 or Y B + 7.4 rather than

-4 B, different tests woutd result. The limitations of this type of structural

dependence were presented in Section -4.3.

Care must be taken when dealing with non-determinism in the contest of

the DNF approach. This thesis does not consider the merits or problems associated

wit h non-deterrninistic specifications, but acknowledges their existence. Hayes and

Jones [3O] describe situations where non-deterrninistic specifications are particularly

useful. The non-deterministic specification S A (R i V R2) leads to three possible

states:

However. these three s tates do not directly correspond to three valid tests. i-e., tests

that will not reject a correct program. This is different from the first esample.

where each state corresponds to a valid test. Clearly, it would be more appropriate

not to split the original disjunction in this case. This problem hints that there is a

fundamental difference betweeii stimuli and responses. which needs to be addressed

when generating tests.

A further limitation of this approach is that it does not esplicitly address

the presence of universal and esistential quanti fiers \vit hin the specification. Along

with addressing quantification issues, the discipline presented in this dissertation

takes a siightly different approach to test derivation. Rather than producing a

disjunction of al1 possible states, a conjunction of the stimulus-response behaviours

of the system is produced. In the specification of possible states produced by the

D X F approach, stimuli. responses. and non-determinism are not obvious. Tests can

be more readily derived from stimulus-response descriptions, since the stimuli and

responses are espIicitly separated.

5.3 Notation and Terminology

The technique presented in this dissertation is based on the logical relationships

between elements within the specification. Since it is not tied to a particular speci-

fication language such as S [39] or Z [61], standard logical expressions shall be used

in the test below. The technique is cornposed of ttvo algorithms, which are foundecl

on the following definitions:

1. -4 predicate represents a pararneterised truth va l~ ie .~ The symbols T and I

represent the Boolean values true and false.

2 . A n atom is either a predicate or a negated predicate.

3 . -4 stimulus is an atom that only refers to the state of the system before an

operation is perfornied,

4. .A stirnuIus expression is a predicate logic expression where each atom is a

stiniulus.

5 . .A fmme stimulus is a restricted form of stimulus espression. The exact defini-

tion of a frame stimulus for a particular test class is provided algorithmicaliy

in Section 5.6.1. A frame stimulus has one of the following forms:

(a) an atom.

(b) a universaily quantified atorn.

(c) a universally quantified disjunction of stimulus expressions. or

(d) a u niversally quan tified stimulus espression w hich is itself esistentially

quantified, e.g., Vx. 3 y . E (x , y) , where E is a stimulus expression.

6 . .A response is an atom that contains a t least one reference to the state of the

sÿstem after the operation has completed, and may also rekr to the previous

state, Le., anÿ atom which is not a stimuIus is a response.

'In this dissertation, the term predicate refers to the predicate symbol and its parameters.

-
i . A response espression is a predicate logic expression where each atom is a

response.

A specification of a system is a logical expression relating t h e s ta te of the

system a t the time a stimulus occurs. to the state of the system at the time the

response is produced. The expression is const ructed from predicates. the logical

connectives conjunction. disjunction. implication. and negation. along with universal

and esistential quantification (the standard logic symbols are v. A, *. 1 . V . and 3.

respectively). .A systern specification may be of the form:

(SI * R I) A (Sz R2) A . . -

rvhere the Si are stimulus expressions and the Ri are response expressions. This

specifies a system that will satisfy Ri when given the stimulus Si- In this spec-

ification. each implication describes a class of behaviour to be eshibited by the

systeni. However. a specification is not restricted to this form. The restrictions on

specification form are given in Sections 5.5.3 and 5.5-4.

The following example illustrates the above definitions. The specification

used in this esample is a Z adaptation of a portion of the VDhI-SL style RSL solution

by Schinagl [S] to Abrial's steam boiler specification problem [LI. hlodificat ions

were made to construct a concise esample. but these changes do not affect its logical

compIexity. Test frames generated from a larger portion of Schinagl's specification

are given in -4ppendi.u B.

Abrial's specification problem is to formally specify requirements for a control

system responsible for maintaining the correct Ievel of water in a boiler attached

to a stearn, driven turbine. One of the requirements of this system is to identify

whether or not any inconsistencies esist in the sensor readings.

1 OutOfOrd~r'

(3!n : Ne Leuel n) A

(3!n : N o Steam n) A

(V i : PL;.\lP a PumpStnte(i. T) e 1 (PumpStnte(i , 1))) A

(V i : PCiJIP a 3 b : bool a PumpCtrState(i. 6))

-4 w B is defined as (-4 s B) A (B .4). Exists unique. 3!. is defined as.

3!x.S L. = 3 x . S r A (V r . y.S 1 A S y * (r = y))

T h i s specification requires tha t the "out of order- indicator. OutOfOrrler. is

true if a n d only if there is a detected malfunction. T h e predicates Leuel, Stecrm.

PilmpState. and PumpCtrState represent t h e presence of various messages just re-

ceived from t h e sensors. Leuel indicates t h e quanti ty of wa te r in t lie boiler. Stenm

indicates t h e quanti ty of s t e a m coming frorn the boiler. PumpState indicates whether

the given pump. i. is turned o n (T) or off (1). PumpCtrState indicates whether o r

not water is circulating from t h e purnp, i. t o t h e boiier. Prirned variables are ref-

erences t o the after s tate. t h u s -0utOfOrder' is a response. -411 t h e o ther atoms.

such a s PumpState(i. T) . a r e stimuli.

T h i s specification is a relationship between the response a n d various stimuli.

Atthough it is not written direct ly in the form of (5.1). i t can be translated into tha t

form as pa r t of test frame generation.

5.4 Overview

Requirements specifications a r e written to be understood at particular levels of

abstraction. For this reason, many details a r e hidden within definitions of more

abstract concepts. Issues of darity are left to the discretion of the specification

authors. Hence, it must be assumed that the specification is a n arbitrary logical

expression and t,here is some means of distinguishing stimuli from responses.

Test classes are the intermediate step bettveen the specification and test

frames. The derivation of test classes requires a rneans of distinguishing stimuli

from responses. -4 test class isolates one behaviour from the specification. The test

cl- can be considered as a standard format for writing requirements. However. for

practical reasons. it is unlikely that al1 specifications would be written as a simple

conjunction of test classes as in (5.1).

Specification

Test Classes

Test Frames

Test Steps

Figure 5.1: Entity Relationships

Figure .5.1 illustrates the relationships between the specification, test dasses.

test frames. and test steps.

Definition 1 -4 test class is ari implication S 3 R. uthich naay be quantifie$. where

S is n stimulus etpression and R is n response expression. Quantifiers may appear

nnywhere in the test clnss. and may also bind tlnn'ables occurrincj in both S and R.

The purpose of the test class is to isolate a class of behaviour based on the response.

The first step of the test franie generation process is to transform the specification

into its test cfass normal form such a s (5.1). Details of this transformation are

presented i n Section 5.5.

A set of test frames is produced from each test class.

Definition 2 -4 test frame is an implication -4 + R. uhich may 66 qunntified.

wherr -4 is a conjunction of fmme stimuli and R is tire response expression from the

corresponding test class. Quantifiers may also bind cariables occurring in both :1

and R. .-I test fmme -4 3 R generated /rom the test class S a R has the properfy

that -4 + S.

The generation of test frames is presented in Section 5.6.

Definition 3 -4 test step is an implication t a R. luhere t is a conjunction of

atorns and R is a response erpression. Quantljïers can only occur in R .

Although it is desirable to derive test steps, these cannot, in general? be gener-

ated automaticaIly from the type of specifications considered in t his dissertation.

However. much of the effort required to generate a test step can be performed au-

tomatically by producing a test frame. -4s stated in Section L.2. the instantiation

of test frames into test steps is beyond the scope OF this thesis.

The computation of test frames from a specification can be performed rvithin

any Iogic consistent with the manipulations used in this chapter. The algorithms

do not diverge. due to the use of convergent subsets of logical inferences when

transforming portions of the specification.

5.5 Test Class Normal Form

This section presents the underlying algorit hm for producing test classes. Variations

of t his algorit hm are presented Iater in Section 6.4. This algorit hm has the following

important properties:

1. For non-demonic2 formal specifications. test class normal form can be corn-

puted in O (n log n) time in the size of the specification.

2. tt is founded on rules of mathematical logic, which ensures that the algorithm

is logically sou nd.

Definition 4 Test class normal form is n conjunction 01 t e s t classes with distinct

respo nses.

It can be achieved by applying the test class algorithm to a specification which is

a logical relation with restrictions (Sections .5.S.S, 5.5.4). Test class normal form is

no t canon ical.

5.5.1 The Test Class Algorithm

The test ctass algorithm can be described as a function on logical espressions. The

result of applying this function to an espression, E, is a conjunction of test classes

'~emonic specifications are deçnibed in Section 5.5.4.

which is logically quivalent to E. The test class algorithm rewrites the specification

into its test class normal form. This does not alter its logical content.

Assuming R is a response and S is a stimulus. a definition lor the recursive

test c l a s algorithm. TC. is:

TC(.4 A B) = Reui.rite.-lnd(TC(.-!) A TC(B)) conjunction

TC(+4 v B) = Relurite&(TC(. -1) V TC'(B)) disjunction

T C (Q x . P) = Fornllln(tlc. TC(P)) quantification

T C (3 x . P) = E x i s t s l n (3 ~ . T C (P)) quantification

TC(.-1 =+ B) = TC(-.-1 V B) implication

T C (R) = T a R response

TC(S) = -S + 1 stimulus

S and R can refer to negated predicates. Xegated expressions are dealt rvith by

applying Dehlorgan's laws and double negation to move the negation inrvards and

proceedi ng.

7j.4 V B) = 1.4 A - B

In the descriptions below, it is assumed that the TC' algorit hm is operating

on an expression that has a test class normal form. Expressions that do not have a

test class normal form are addressed in Sections 5.5.3 and 5.5.4, below.

The algorithm R e u ~ i t e . 4 n d operates on a conjunction of test classes and

corn bines any iike antecedents and consequents using the equivalences:

Combining response expressions is preferred over combing stimuli expressions. Ap-

plications of these equivalences may require a rearrangement of the two implications

to be combined. For example. a conjunction such as.

tvouid be rewritten to:

((Steam x V Leuel y) * L) A C

The algorit hm Re uriteOr operates on a disjiinction of two conjunctions of

test classes and first reduces any XND/OR connectives above these test classes to

conjunctive normal form. Xest. any universal and existential quantifiers are movecl

outside the disjunctions. This is done using the equivalences:

where r is alpha converted if necessary to avoid capturing any free occurrence of r

in P. Finally. the test classes are OR'd together using the equivalence

The Re wriieOr algorit hm is illust rated wit h the follocving exam ple. When

manipulating the expression,

((Steam x + -0utOfOrder') A (T + OutOfOrder')) v (V t .Leve1 r * L)

the first step is to produce the conjunctive normal form:

((Steam r 3 ~Out0fOnIer ') V (Vx-Leuel x =. 1)) A

((T OutOfOnler') V (V r.Leve1 x 1))

Xest. the universal quantifiers are moved outside the disjunctions, Here. the variable

XI is introduced to avoid capturing the 1 of Stearn r.

The last step in the Rewriteor aIgorithrn is to use Equation I.5.2) to remove the

disjunctions between the implications.

(V q . (S t e a m I A Lecel q) =+ -OutOfOrdert) A (Vx.Lece1 r Out0fOn1ert)

For non-demonic specifications. the Re writeOr algorithm is O(n Iog n) since

a t least one of TC'(.J) and T C (B) in Rewriteor(TC(-4) v T C (B)) produces a single

in termediate test c ~ a s s . ~

The algorithm Fomflln operates on a conjunction of test classes and moves

the universal quantifier into the conjunction, if possible, using the equivalences:

trnpiications formed during the production of test classes are referred to as intermediale test
clauuea.

where x is free in P and M. and x is not free in Q.

The algorithm EzistsIn operates on a conjunction of test ciasses and moves

the existential quantifier. if possible. into the test class using the equidences:

where r is free in P and JI. and x is not free in Q,

Some expressions do not have a test class normal form due to the arrangement

of quantifiers. It is also possible for the conjunctive normal form produced by

ReiariteOr to be combinatoriaI1y large. These types of specifications are esamined

in Sections .7..5.:3 and 5.5.4.

This esample illustrates the derivation of the test class normal form of the specifi-

cation given in Section 5.3 above. The derivation is the evaluation of

TC(-.OutOfOrderr o

(3 ! n . Leuel n)

(g!n.Stearn n) A

(V i. PurnpStateIi, T) w -(PurnpState (i , I))) A

(V i . 3 b-PumpCtrState (i. b))

As a preliminary step in the derivation. the definition of 3! is expanded &O obtain:

TC(~OutOfOrder t o E)

where E is:

((3 n-Lecel n) A

(V n . m.(Leoel n) A (Leoel m) + (n = m)) A

(3 n.Stenm n) A

(V n . ni.(Steam n) A (Stean m) 3 (n = m)) A

(V i. PumpStcrte(i. T) e 1 PumpStnte(i. 1)) A

(V i. 3 b.PumpCtrState(i. 6))))

Xest. the definition of H is used to derive:

TC((-OutOfOrder' =+ E) A (E 10utOfOrderr))

Following t his. the application of the TC' algorit hm's conjunction rule yields:

The nest operation is to rewrite the implication of the first TC terrn and then use

the rule for disjunction (the . . . represent unaffected subespressions):

The double negation is removed and the response rule is then applied:

= R e ~ ~ t e A n d (R e w r i t e O r ((T 3 OulO/Orderf) V TC(. . .)) A TC(. . .))

Lïsing the rule for conjiinction on the nest TC term produces:

The quantification rule followed by the stimulus rule gives:

= R~utrite.-lnd(Retcri teOr((T OutOf ln fe r ') V

Rewrite .- lnd(Erists ln(3 n . l (Leaef n E i ~ r n e s s) 1) A TC'(. . .))

A TC(. . .)))

.AppIyi ng Ezists ln yields:

= Reuvite.-lnd(RerüriteOr((T OutOfOrder') v

Rewrite.-lnd(((V n.-(Leçel n)) 1) TC(. . .)) A TC(. . .)))

-4 full application of the algorithm to t h e nest TC term produces:

= RetrriteAnd (Reu:r i leOr((T OutOfOrrler') V

Reu?rite,-lnd(((V n.-(Level n)) + 1) A

(((3 n . rn.(Lecel n) A (Lecel n) A -(n = ni)) V

(V n.-(Stcam n)) v

(3 n . m . (S team n) A (Sterrm n) A - (n = m)) V

(3 i . (PurnpSta te(i . T) A PumpState(i l 1)) V

(- (PurnpSta te(i . T)) A -.(PumpStute(i, I)))) V

(3 i. 'd b. - (PumpCtrSta te(i , 6) E inmess)))

* u A

TC(- - -Hl

Since the consequents of the two inner-most implications are identical (1). applying

the inner-most Rerorite.4 nd produces:

= R e l u r i t e . - L n d (R e ~ , ~ i t e O r ((T a OutOfOrder') v

(((Y n. l (Lece1 n)) v

(3 2 . m.(Lecel n) A (Leoel n E inmess) A - (n = m)) v

(V n.-t(Stearn n)) V

(3 n . m.(Steam n) A (Steam n E inmess) A - (n = m)) V

(3 i .(PumpState(i , T) A PumpStnte(i . I)) v

(-(PurnpState(i . Tj) A -(PurnpState(i , 1)))) V

(3 i. V 6.-(PumpC'trState(i. 6) E inmess)))

=> L) A

ru* 4)

.-ippluing ReuriteOr combines the response and stimuli to produce the first test

class:

= Reu~ite,-lnd(

(((Y n.- (leael n)) v

(3 n , m.(Leuel n) A (Leoel n é inmessj A -(n = m)) V

(V n . ~ (S t e a r n n)) V

(3 n , m.(Steam n) A (Steam n C inmess) A - (n = m)) V

(3 i.(PurnpState (i , T) A PumpState(i , I)) V

(- (PumpSta te (i , T)) A l (P u m p S t a t e (i , 1)))) V

(3 i. V b.-i(PumpCtrState(i, b) E inmess)))

Continuing with t h e remaining TC term produces the second tes t class:

(3 n.Lece1 n) A

(V n . n i . ~ (L e c e l n) V ~ (L e r e l m E inntess) V (n = m)) A

(3 n.Steam n) A

(V n. m . l (S t e a m n) V ~ (S t e a m m E inmess) V (n = m)) A

(V i.(-(PumpState(i . T)) V -(PumyState(i . L))) A

(PirmpState(i , T) V PumpState(i . I)) A

(V i. 3 b . PumpCtrState(i . 6))

=+ - 0 u t 0 f 0 r d e r f

5.5.3 Existential Quantification

Specifications employing certain uses of esistential quantification impose limitations

on t h e test class algori thm, TC. Even so. such specifications can be converted

algorithmically into specifications From which the TC algori thm can produce a test

class normal form.

The limitations are manifested in t h e quantification rules of the TC algorithm

as follotvs. ForaIlln wiil n o t be successful in moving the universal quantifier in to the

conjunction if there is a n esistentiat quantifier in the way,

where y is Free in a t Ieast o n e of SI and R i , and also in at least one of S2 and Ra.

T h i s occurs when an existential quantifier straddles two intermediate tes t classes.

:in esample of a specification similar t o Eqriation (5.3) is:

T h e system shall ensure t hat there is a t ieast orle printer satisfying the

following:

1. if a job is printing on the printer. i t will be completed within ten

minutes: and

2. if there is a job abou t to be printed on the printer. it will commence

printing wit hin 1.5 minutes.

T h e intermediate expression encotrnterecl by t h e TC algorithm would be:

3 printer.(V job-job PrintingOn printer a COmpletecl Within T~n.llinute.5 job) A

(V job-job First To Print For printer + Starts CCïthin 1.5 Minutes job)

In a specification. one wotrld e spec t t h a t t he incliviclual. printer. would be

named esplicitly. rat lier t han in~plicitly by iising a n esistential. Specifications such

as these can be flagged by the TC algorithm. Xlternatively. t h e esistential variable

can be replaced by a Skolem constant. e.g.. in the case of Equation (.5.3). j. a

function of r. where f was not previousIy a free variable of t h e specification.

If desired. t lie esistential quantifier in Equation (5 .3) c a n be pushed inwards

using the theoreni

However. the use of this theorem produces a set of test classes t h a t a re implied by

the original specification. ra t her t han a s e t whose conjunction is logically equivalent

t o the original specification. Thus, this theorem cannot be used t o produce a test

class normal form of a specification.

It is possible that this existential quantification issue can also be addressed

by ot her means.

5.5.4 Demonic Choice

Some forrns of non-determinism. e.g.. S a (R i v R 2) . are of no consequence to the

test class algorithm. Dernonic choice is a forrn of non-determinism which allows the

implementation to behave according to more than one specification. arbitrarily. The

demonic specification

does not force a n implementation to produce R i in response to SI, since it has the

option of behaving Iike S2 + R2 and ignoring Si. :in implementation of th i s spec-

ification is not required to produce a response unless confronted with the stimulus

S i ~ S 2 - In this case. it may elect to produce either Ri. R2. or both. and still perform

according to the specification.

The following example itlustrates consequences of the demonic specification:

The system shall arbitrarily perform at least one of the lollorving actions:

1. Call the fire department, if there is a fire.

2. Call the police. if there is an explosion.

-4 formal version of this specification is:

(fire Call fire-depl) V (explosion a Cal1 police).

The specification requires the system to respond only when there is both a fire

and a n explosion. When the system responds, it is allowed to cal1 either the fire

department or the police. The specification would be satisfied by a system that

never catled the tire department. even when t here was a fire.

The test class algorithm can be applied to a demonic specification. However.

this type of specification can cause a combinatorially large test cIass normal forrn

due to the definition of ReioriteOr. For esample. the interniediate expression (C; A

C2) v (C3n Cd) is converted tu (CI v C3) A (Ci V Cl) A (C>V Cs) A (C2V CI) before

the disjunctions of test classes are cornbined using (5.2).

The author's esperience suggests that this type of specification does not

typically arise in system-level specifications. Each time a specification has been

Ragged as demonic by the TC algorithm. it has turned out to be a specification

error rather than an intendeci behaviour.

5.6 Generating Test F'rames

.As defined in Section 5.4. a test frarne from a given test class S R is an implication

-4 + R, where .4 S, A is a conjunction of frame stimuli. and R is a response

espression. Quantifiers ma- also bind variables occurring i n both .-1 and R.

-4 variety of different test frarne sets c m be constructed from a test class.

One possible set of test frames is the one derived from a disjunctive normal form

(DNF) of the test c1ass antecedent. However, the test class antecedent may have

more than one DNF, e.g.. the function (a A-c) V (- b ~ c) v (i n b) and its alter ego

(a A 4) V (-a A c) v (b A yc) . In the contest of the Delta Problem of Section -1.6.

this raises an issue. If an esisting test set contains a valid test frame which does not

correspond to a term in the DNF of the antecedent of the test class, it wi1l not be

recognized as valid and wilt be replaced. This is not desirable? since tests should be

replaced only wlien necessary.

-4ssuming that the frame stimuli in the esisting test Frame set form a s u bset

of the frarne stimuli in the test class antecedent, the problem of deterrnining a set

of test frames that satisfy a given criteria is NP-hard. A solution to this problem

would also solve what Garey and Johnson [;?5] refer to as "[Loi] SATTISFIABILITY

OF BO0LE.W EXPRESSIONS-n The solution would be to use the given Boolean

expression as a test class antecedent and a criteria that requires at least one test

frame. if a n y esist. the espression is satisfiable if and only if the set of test frames is

non-empty. The binary decision diagram (BDD) [BI is a convenient tool for address

ing this type of problem. The technique described here uses BDDs to perform test

frarne construction and selection. The strategy for generating test frame antecedents

is:

1. =\sign BDD variables to each frame stimulus.

2. Generate the set of prime implicants" for the antecedent of the test class.

3. Gsing the heuristic to be described in Appendis C. attempt to ident i l any

esisting or mandated valid test frames t hat can contribute to the coverage of

the current test class. This forms the initial set of test frames.

4. Augment this set with other elements from the set of prime impiicants to

construct a set satisfying the desired coverage criterion.

5.6.1 name Stimuli

BDDs encode unquantified Boolean expressions. Quantifiers wit hin the test class

place a limit on the granularity of the terms which appear in test Frames. To
- - --

".4n implicant of a formula is a conjunction of variables or negated variables which imply the
formda. An implicant is prime if it implies no other irnplicant. For example, -4 and 1 B are prime
implicants of -4 v 7 B. -4 A T B is an implicant, but is not prime because it implies at least one other
impiicant , e-g.. 1 B.

obtain an unquantified expression From the test class antecedent. quantifiers are

pushed inwards t o be grouped as tightly as possible to the stimuli t hat they quantify.

Esistential quantifiers which are not blocked by universal quantifiers are then moved

outside the implication. where they becorne universal quantIZers. This minimizes

the number of quantifiers in the test class antecedent.

Thc theorems used for determining frame stimuli are:

V x . P V Q = (V r . P) V Q 3 x . P ~ Q = (3x-P)A Q

V t . Q V P = Q v (V x . P) 3s .Q r\ P = Q A (3 r . P)

(3t .P) 3 Q = V x . P + Q

where r is free in -11, x and y are free in P. and s is not free in Q. Although the

rules for swapping quantifiers could cause a rewrite w t e m to diverge, the- are only

applied in a controlled manner. These rules are used to move quantifiers of specific

variables to positions within the expression where they can be pushed inwards.

An illustration of this process is as foIlo~~~s:

Applying this process to the steam boiler test classes results in:

V n. m . i -

(V n.-(Leuel n)) V

(Leuel n Lecel m A - (n = m)) V

(V n . i (S t e a m n)) v

(Steam n A Stenm m A ~ (n = r n)) V

((PumpSta te (i . T) A PumpState(i . l)) V

(y(PumpState(i , T)) A -(PrtmpState(i. 1)))) V

(V b.-(PumpClrState(i . b)))

3 OutO/Orderf

and

V ni . nz.

(Leuel n l) A

(V n . m . - (l eue l n) V -(Leuel m) V (n = n i)) A

(Steam n2) A

(V n . m.-(Steam n) V ~ (S t e a m m) V (n = m)) A

(V i . - (PumpState(i , T)) V -(PurnpStale(i , 1))) A

(V i .PurnpState(i, T) V PumpState(i? 1)) A

(Y i. 3 6 . f umyClrStutc(i . 6) j

1OutOfOrder'.

A BDD representation is constructed by substituting a variable for each

quantified su bexpression and unquantified stimulus. The quantified su bexpressions

and unquantified stimuli represented by BDD variables are referred to as fmme

stimuli.

The antecedent of Equation (5.4) can be represented with the unquantified

es pression:

where

I/; = V n . l (L e u e l n) LVl = Vn. - (S team n)

C.; = Leoel n Il/> = Steam n

= Lecel m CF3 = Steam m

S = PtrmpStnte(i ,T) Z = V 6.-(PumpCtrStnte(i . 6))

I' = PumpState(i . L) E = (n = m)

The set of prime implicants is t hen generated from the BDD representation

of this espression. For this particular specification. Implicant. DNF. and Term

Coverage. defined in Section 5 - 6 2 below. result in the same test frames. Test frames

are constructed around the prime implicants. which can be seen in the following test

frame antecedents:

(V n . l (Lecel n))

OutOfOderf

(V n.-(Steam n))

+ O u t 0 f 0 d e r r

V n . mStenrn n A

Steam m A -7(n = m)

3 Out0f0nlert

Q i . PttmpStnte(i. T) A V i.-(PumpState (i . T)) A

PumpStnte (i. L) l(PumpStnte(i. Il)

+ OutO/Ordert * Out 0fOrder'

V i .(Q 6.-(PumpCtrState(i. b)))

3 OirtOfOrder'

AIt hough quantifiers were used Iiberally throughout the specification, rea-

sonable test frames could still be generated automatically. It is Iess tedious and

less error-prone to manually derive test steps from these test frames than from the

original specification.

5.6.2 Coverage Schemes

This section introduces the basics of coverage schernes which are algorithms for

selecting test frames to satisfy the corresponding coverage criteria. The topic of

coverage is esamined in greater detail in Chapter 6.

A major concept of this thesis is that coverage of a test class by its test

frames is described by relating the test frame antecedents to the antecedent of the

test class.

.4 test frame is uniquely identified within a test class by its antecedent. [n

generai, a coverage scheme is a function. C. from a set of possible test frarne an-

tecedents. 1. to a subset. F. of 1 chosen by the coverage scheme. and a flag, r. which

indicates wliether F satisfies the coverage criterion. The coverage scheme builds F

ty repeatedly selecting test frame antecedents from the given set of possi bilities. I .

untiI this set of selections. F. satisfies the corresponding coverage criterion. or no

more selections from I can make a further contribution to satisfying the coverage

criterion.

A coverage scheme can be used to evaluate a given test frame set. T . b_v

emluating C'(=ln1 (T)) = (F. r). where .-!nt provides the set of antecedents of the

given set of test frames. The redundant test frames are those represented in T but

not in F , The completenes of T is given by r.

The auttior proposes the following ternis for some fundamental coverage

schemes:

L. Al1 points: This is similar to the D N F of Dick and Faivre, where each test

frarne specifies the truth or falsehood of each of the frame stimuli from the

test class stimulus expression-

2. Implicant: Test frames are produced for each prime implicant.

:3. DNF: Test frames are produced for a su bset of prime implicants. The disjunc-

tion of this subset corresponds to a DNF of the test class stimulus espression.

4. Partition: -4 subset of prime implicants is used to determine an implicant

set which is similar to DNF coverage, but the implicants are pair-wise contra-

dictory- There is no test step that will satisfy any two test frames.

$5. Term: Test frarnes are produced for a s u bset of prime impticants srich t hat

each frame stimuli from the test class stimulus expression is present in a t Ieast

one of the selected prime implicants. .4 precise mathematical definition of

Term Coverage is given in Section 6.8.

The differences between t hese coverage schemes can be illust rated by consid-

ering the nurnber of terms produced when applied to the espression in Figure 5.2-

This figure shows the points where the expression is true (bIack dots). and compares

the Iiarnaugh maps [-!O] corresponding to the coverage schemes defined above. Each

bubble represents the antecedent of a test frame. One antecedent may cover several

points, This occurs when t h e truth value of some variables is not specified, The

coverage schemes produce 8, 5, 4. 4. and 3 test frames, respectiveiy.

Cornparison of coverage schemes applied to
(~ I C ' A - S A -) . ') V (- C V A - Y A Z) V (S A Y)v(LVn Y n l Z)

0 0 0
Al1 Points: @J @) Partition:

O
" ifl]

O

DNF: Le Tq

Figure 5.2: Coverage Schemes

Term coverage is of interest, since the size of the corresponding test frame

set is linear wit h respect t o the size of t h e test c l a s rather t han cornbinatorial, as

are the other coverage schernes- Terrn coverage does not produce test frames t hat

cover two of the eight dl-points cases. CV A S A).- A Z and -CV A S A Y /\ -2.

This is the compromise made in order to produce fewer tests in situations wherc it

is appropriate to do so.

The steam boiler example used in this chapter focuses on issues of determin-

ing frame stimuli. I n this esample, t here are sevcral frame stimuli but few combi-

nations of logical conjunction and disjunction (AND and OR). Hence. this example

produces the samc nurn ber of tests for ei t her Term Coverage or D N F Coverage. Sec-

tion 7.8.1 notes that for a more cornplex version of the steam boiler esample. there

are 22 test frames for Term Coverage. 47 for DNF Coverage. and 84 for [rnplicant

Coverage.

5.7 Conclusion

This chapter has presented the fundamental algorithrns that form the foundation

of the discipline presented in this dissertation. This foundation is based on math-

ematical rules of logical manipulation w hich ensure t hat the algorithms are sound.

The definitions of test classes. frame stimuli. and test frames form the basis of a

nomenclature for naming coverage criteria. This nomenclature is estended in the

nest chapter.

Although rewrite rules are used i n various contests to produce test frarnes,

the entire set of these rewrite rules is not confluent5. This implies that test frame

production is more comples than blindly rewriting the specification using a confluent

set of rewrite rules.

5-4 confluent set of rewrite d e s is also Church-Rosser [9).

Coverage Criteria

This chapter defines a nomenclature for narning coverage cri teria wit h tu ples of ar-

guments to a test frame generation process. This process is an estension of the basic

algorithms of Chapter 5. The parameters of the process establish the nomenclature

for defining a wide range of specification-based coverage criteria.

6.1 Introduction

l n this discipline of specification-based testing. a coverage criterion is named by

specifping arguments to the test frame generation process. .Uthough the coverage

scheme is the fundamental component of a coverage criterion. there are additional

parameters to test frame generation. These parameters are based on logically sound

estensions to the algorithms presented in Chapter 5 .

The first proup of estensions focuses on aspects of the test cfass normal form.

Derivation of the test class normal form can be produced in any of three variations-

Each of these can be achieved with minor adjustments to a portion of the TC

algorithm. In certain situations, it is possible to specialize a test class to eliminate

non-determinism caused by disjunctions in the response expression. This is referred

to as response-response resolution. One parameter affecting test classes indicates

whet her a "ctosed world" should be assumed or riot. This is a common assumption

made in specifications. and can significantly reduce the size of a specification.

Once the set of test classes has been deterrnined, the granularity of frame

stimuli can be addresseci. I n special circumstances, universally quantified frame

stimuli can be broken down into unquantifieci components. Frarne stimuli are the

common components of both test classes and test frames. Coverage schemes, the

algorit hms for selecting test frames. are defined based on frarne stimuli relationships.

As esamples. mathematical definitions of two variations of Term Coverage are given.

According to the basic algorithms. test frames are produced in their most

general forms. However. they can also be specialized in orcier to differentiate when

responses are due to particular stimuli.

An objective coverage criterion is defined in terms of arguments to this es-

tended process. Cornparisons of the effectiveness of these criteria are based o n a

partial order of coverage criteria.

Section 6.2 gives a definition of objective coverage criteria and some es-

amples. The relative effectiveness of coverage criteria is esamined i n Section 6.3.

Section 6.4 presents the test class variations. Response-response resolution is de-

scribed in Section 6.5. Section 6.6 esarnines the effects of assuming a closed world.

Section G.7 describes the simplification of quantified frame stimuli. Two examples

of mathematical definitions of coverage criteria are given in Section 6.8. Test frame

differentiation is esamined in Section 6.9.

6.2 Objective Definitions of Coverage Criteria

The extensions to the test frarne generation process that support the nomenclature

are descri bed in later sections. Using the nomenctat ure. several pararneters need to

be specified to identify a particular specification-based coverage criteria:

Test class type: pure. detailed, or focused.

Response-response resolu tion: none. em bellish, or elirninate.

Closed worId or not.

Frame stimuli simplification: none, single, all. pairs, power set.

Selection scheme: AI1 points, Irnpiicant. DNF. Term.

Test frame style: base. differentiated.

It is likely t hat the above list will grow wit h the evolu tion of the discipline presented

in this dissertation. .-Uthough the seiection scheme gcnerally has the most dramatic

impact on test seIection. each of these elements must be specified in orcler to define

a particular coverage criteria.

This nomenclature can be used to specifically narne a large number of dif-

ferent criteria. For esample. using this nomenclature. a relatively smaI1 set of test

frames can be specified using the criteria (focused, elirninate. not closed, no simpli-

fication, Term. base). +A much more extensive notion of coverage which corresponds

to a much larger set of test Frames, depending on the specification, is named by

(pure, embellish, closed, power set, all points, differentiated).

6.3 Relative Effectiveness

The eflectiueness of a specification-based coverage criterion refers to its ability to

produce a test set which uncovers discrepancies between the requirements and the

implementation. Containment provides a simple means of corn paring coverage crite-

ria effectiveness. By considering coverage criteria as relations between sperification

expressions and sets of test frames, criterion -4 is more effective than criterion 13

when test frames produced by .-I irnply those produced by B. Le.,

where .-t(S. t) means that the set of test Frames t satisfis criterion .-I for specification

S. The sets of test frames that satisfy criteria -4 and B are represented by t i and

t 2 . respective! y.

Using this means of cornparison, the Irnplicant. AH-points. and DNF Cov-

erage criteria are equally effective. and each is more effective than Term Coverage.

Another means of comparing coverage criteria is to compare the number of test

frarnes produced. The principle advantage of Term Coverage is that it is less expen-

sive. since it produces dramatically fewer tests while still including a test involving

each frarne stimulus.

Xpart from t his trivial definition of relative effectiveness. this thesis does

not address the issue of determining which coverage criteria are more appropriate

for specific testing objectives. Without a more satisfactory mathematical notion

OF effectiveness, the relative merits of coverage criteria will need to be determined

on the basis of ernpirical study, Et is likely that definitions of coverage criteria will

include some domain specific elernents.

6.4 Test Class Variations

The TC algorit hm of Chapter 5 produces test classes in what is referred to as their

p i ~ r e form. This pure test clcas normal form is logicatly equivalent to the original

specification. This is due to the Fact that the TC' algcxithni is based on eqiiivalences.

There are two additional variations on this algorithm ivhich involve slight changes

to the ReicMte--tnd function.

6.4.1 DetaiIed

Some test engineers may require that the responses be as detailed as possible. For

esample. the pure test class normaI form of the specification.

The test class Sr A 5'2 3 R2 m a l be regarded by sonie as incornplete since Si

~vill cause t h e response RI in addition to the response Rz. The desired test class,

SI A 5 R1 A R2. is an esample of the deiaileci form of test classes.

DetaiIed test classes a re produced by augmenting the processing of conjunc-

tions in Rewrite-4nd by using the ec~uivalence:

VP.S.R.(T* P) A (S + R) = (T a P) A (S * P A R) . (6.2)

As with pure test classes, the conjunction of detailed test classes derived

from a specification is IogicalIy equivalent to the specification.

The detaiied test class normal form of (6.1) is

6.4.2 Focused

In some testing situations. tests from the test class SI a Ri. above. may be deerned

redundant, since RI can be observed in the test steps for the test frame SI A & +
R1 A R2. A F O C U S ~ C ~ set of test classes which eliminates this type of test class is

produced b\; augmenting the processing of conjunctions in Re wrile.4nd by using the

in ference

The conjtinction of focused test classes is implied by the specification, but is

not eqtrivalent to it. This is due to the use of the inference (6.2), rather than the

exclusive use of logical equivalences.

The fociised test class normal form of (6.1) is

6.5 Resolving Non-Determinkt ic Test Classes

Response-response resolution refers to the process of eliminating certain kinds of

non-determinism from test class response espressions where possible. Test class

combinations of the form

can be used to derive additional test cIasses as follows:

A s indicated bÿ the laçt two steps of the derivation above. the additional test

classes can be iised to embellish the original set. or the non-deterministic test classes

can be eliminated. The eliniination of non-deterministic test classes is simiIar to the

production of focuseà test classes in that the resulting test classes are implied by the

specification. rather tlian equivalent to it. Some test engineers may deem the test

frames derived from the omitted test classes to be of no real value. For esaniple.

sonie test engineers rnay require tests that specify dcterrninistic responses. Thtis.

t.here is no significant consequence in the loss of logical equalitÿ of the conjunction

of the set of remaining test classes to the original specification.

6.6 Assuming a Closed World

A closed world. or complete knoivvledge. assumption [.5 11 is comrnon in many specifi-

cations. The assurnption is t hat a given response can be produced only in those cases

prescribed in the specification, and in no others. For esample. assuming a closed

world. 7-4 A 1 B 1 R is valid if the specification (-4 a R) (B =+ R) is valid. This

can be achieved by augmenting the test class normal form of a specification with

the appropriate test classes, prior to test frame generation.

.A closed world assumption can have a dramatic effect on the number of test

frames produced from a specification. For example. the specification ((-4 A B) V (C'A

D) v (E A F)) =. R has three DNF test frames. Hoivever, the same specification in

a closed world has 11 DNF test frames.

The simplification of quantified frame stimuli is perforrned during the determination

of frame stimuli. Removing quantifiers produces sim pler frame stimuli, rvhich are

easier to instantiate manually into test steps. This simplification assumes that the

domain of the quantified variable is a set. and requires that this set be icientified

as either static or dynamic. Any element of the specification is dynnmic if it can

be different in different contests of the specification. Any element is static if it is

not dynamic. e-g.. the set of natural numbers is a static element. For esarnple. the

espression V x . P r. where r has the type corresponding to the set of aircraft within

an airspace. -4. is interpreted as V x :1.P z. Since there can be different numbers

of aircraft within an airspace a t any given time, .-I is dynamic-

The test class and test frame algorithms process specifications which may

include quantification. Quant ifiers in the specification often appear in test frame

stimuli espressions. as illustrated in the esarnple of Section .5.:3. Wit hou t furt her

processing. quantified franie stimuli would normally be addressed during the manual

instantiation of test frames into test steps. To reduce the labour required for this

task. it is beneficial to automatically process quantified frame stimuli where possible.

The following esample illustrates w here quantifies can be simplified. The

espression (3!x.S x) A w < 2 o R , where R is the only response, produces the

following term coverage test frames:

Vx.(S L A (Vx? y.-S t V-S y V (x = y)) A w < 2 + R) ,

(V X-TS x) =+ 1 R,

w 2 2 + -R,and

V z 7 y.(S L A S y A x # y + 7 R) .

[nstantiating a test frame into a test step is the process of deterrnining an

instance of input variables which satisfies each frarne stimulus. For an unquantified

frarne stimulus, siich as w > 2, instantiation is sirnply a rnatter oc selecting a p

propriate data values for the variables. e.g., w = '2. However, satisfying quantified

frarne stimuli. such as V x , y.-& x V -S y V (z = y) and Vz.+ r above, can be

quite corn ples. since the stimuli expression can be undecidable.

The test frarne generation algorithms girarantee that the first quantifier of a

quantified frame stimulus is universal.' -4 quantified variable is associated with a

set of d u e s . This set is either dynamic or static. Thus, there are three categories

of quantified frame stimuli:

L. the quantified variable is associated with a static set and the frame stimulus

con tains n o free variables t hat represent the system environment:

2. the quantified variable is associated with a static set and the frame stimulus

contains a free environ nient variable: or

3. the quantified variable is associated with a dynarnic set.

In the first category. the environment has no effect on the truth value of the

frame stimulus which is eit her true or false. e-g., V n.n2 > n. It is suspicious that a

sustem would be required to produce a response depending on the truth or faisehood

of a stated theorem. In such cases, it is likely that the source of the frarne stimulus

is incorrectly specified.

Frame stimuli frorn the second category espress a property of the free vari-

able. This is illustrated by the frame stimulus V y.r mod y # O V y = LV y = x, which

espresses t h e property that 1: is a prime number. When the static set associated

' If it were existentid, it could be rnoved outside the antecedent of the test c l a s to universally
quant ify the test class.

with the quantified variable is infinite, instances of frame stimuli for this category

miist be determined manually. When the static set associated with the quantified

variable is finite. a frame stimulus of the form V x E {xi 1 1 < i < n}.P x can be

simplified using the t heorem.

V X E {xi 1 1 < i < n) . P x = A { P x i 11 < i & n } .

mhere I\({J} u il) = x A (A -4) and A0 = T.

The third category is particularly interesting from a coverage point of view.

in this case. the set associated with the quantified variable contains an arbitrary

number of eIements. For example. in the frame stimuIus V x -4ircraft.t~-Taxiing~v

IsJ3oardingx. the set Aircraft represents al1 the aircraft within the operating envi-

ronnient of the systern. In the contest of an air trafic control system. the contents

of this set are constantly changing. For these frame stimuli, the question is: Wltat

instances of this set. e.g.. Aircraft. should be used in test frames to ensure adeqiiate

coverage:'

The frame stimulus

can be satisfied by the singleton instance S = { c) . where c has one of the properties

P i . 1 < i $ n. This is certainly a light notion of coverage. -4 more reasonable notion

of coverage might be to conduct n tests, each one addressing a different Pi. Another

alternative is to set S = {xi 1 Pi xi. L 5 i 5 n}, a single set of n elements. each of

which satisfies at least one Pi . This would require one test.

The soundness of the above substitutions is assured by the theorems

(-Y = { x)) A P i x v ... v P,t * V x E X . P i t v ... v P,,r (6-4)

where r . x ixn are constants that have not yet been introcluced into the speci-

fication. and reflect a particular instance of the type of the quantified variabIe. In

terms of the test frame generation process. qilantified frame stimulus simplification

can be performed in a t least t hree modes: none. single. or all. where single and al1

refer to the use of inferences (6.4) and (6.5). respectively. Another alternative is to

n
combine these techniques and conduct () tests where each test involves a pair

2

n
of elements that satisfy distinct properties. Le., the () instances of S such that

2

.Y = ((1. y) } and 3 i. j.1 4 i. j < .Ai # j~ Pirr\ P, y. -1 further. perhaps ertrerne.

alternative is to conduct 2" tests based on the power set of the Pios.

6.8 Mathematical Definition of Term Coverage

The definition of Term Coverage expresses a reIationship between frame stimuli

within test frames and the frame stimuli of a test class normal form of the specifi-

cation. The mathematical definition of Term Coverage follows.

The following definitions are made:

Let Ci. L < i < n. represent the n test classes of specification Q, i.e.. Q =

Ci A ... A C,,.

Let ci represent the test class antecedent of Ci-

Let Conj(E) represent the set of conjuncts in an expression E.

Notv, let S (E) represent the set of Frame stimuli in the test class normal form

of an espression. E. Le-.

where TC is the test class algorit hm from Section 5.5 and F S (c) represents the set

of frame stimuli obtained from the test class antecedent. c. as determined by the

procetl u r e from Section 5.6.

Let j;* represent the antecedent of the k t test frarne Fik derived from Ci.

1.e..

V fi.& ci) A V e . (e 3 c i) Conj(e) < Conj(hk). (6-6)

Equation (6.6) states that Fik is a mlid test frarne of test class Ci and hk is a prime

implicant. The Fik test franies satisfy Term Coverage of a specification. E. when:

An alternative variation of Term Coverage is where the coverage of the Fik test

frames is measured relative to each individual test class. rat her than to the specifi-

cation as a whole:

V i.C; E Conj(TC'(E)) + V s E S (C j) . 3 k - s E Conj(hk).

6.9 Different iat ed Test Frames

The test frames generated using the basic algorithm of Chapter 5 are referred to as

basestyle test frames. This style of test frame specifies the most general constraints

on test frame stimulus expressions, For various reasons, it may be desirable to

produce more specific test frames, such as the pair below from Section 2.5.

1. S and Cl and (not C2) + R

2. S and (not Cl) and C2 * R

This section examines a method of producing test frames in a different style.

Differentiated test frames include additional constraints to ensure that there

does not esist a test step which is an instance of more than one test frame for a test

class. Differentiated test frames rnay be required to ensure that frame stimuli are

tested in isolation.

For example. the test class (.-1 v B) 3 R tias base test fcarnes .-\ 3 R and

B * R. The test step (-4 A B) + R is an instance of both test frames, and it may

not be clear which stimulus was actually being tested.

Definition 5 -4 set of tes t fmmes is differentiated [chen the antecedents of the test

f m m e s . h, 1 6 i 6 n . are pair-wise contradictory. i.e..

Differentiation is performed after the coverage scheme has selected a set of

test Irames. A differentiated test frame. F ~ . c m be cornputed from the corresponding

base test frame. Fk. To correctly compute differentiated test frames when quantifiers

are present requires the use of adjusted test frames. An adjusted test fmme is a test

frame where universal quantifiers exterior to the implication have been pushed into

t h e antecedent. if possible. The antecedent, jk, for the differentiated test frame.

Fk, can be computed from the test frame antecedent and the n - I adjusted test

frame antecedents, J;:? 1 < i < n and i # k, using the formula

where ArbPI(e) represents an arbit rary feasible prime implicant of frame stimuli

from espression e.

While this technique ensures that frame stimuli can be tested in isolation.

there are two disadvantages to differentiated test frames. Since this method of dif-

ferentiation involves an arbitrary choice from a set of alternatives. it is possible that

a test frame generator may make a choice other than that desired by a test engi-

neer. In addition. differentiation involves corn pu ting prime implicants and selecting

a feasible one. Thus, ivhen selecting the representative differentiated test frame.

simplification and infeasibility checking ivill also need to be performed and may be

a prohibitively expensive computation. Simplification and infeasibili ty are esamined

further in Section 1.4.2.

Differentiated test frames are similar to Ammann and Offtitt's base-choice

coverage r2]. Amniann and Offuttts each-choice-used coverage is similar to Term

Coverage (6.7). with the difference that the tests are based on a partitioning of

the input domain alone. rather than on test classes which partition the stiniulus-

response be haviou rs of the system. Base-choice cowrage requires specifying a base

input i n addition to a system behaviour. Test inputs are selected by negating one

predicate that describes the base input.

A test class approach has the advantage that test classes correspond to base

behaviours associated with the base inputs of Amrnann and Offutt. Although dif-

ferentiated test frames are based on a single behaviour, they produce tests similar

to those satisfying basechoice coverage. Thus, a base behaviour does not need to

be specified in order to produce base-choice-li ke tests.

For example, the differentiated test frames of -4 A B A C w R are:

The test frames with response 1 R correspond to those obtained by base-choice

coverage that uses the antecedent .A A B A C as the base input. With differentiated

test frames. however. the latter three test frames follow directly from the test ctass

7.4 v Y B V 1 C R. and are not based o n any other behaviour.

The differentiated version of the test frame

from Section 5.6.1 is:

V i. nl . n2.

PumpSlate (i. T) A P u m p S t n t e (i . i) A

Stearn n2 A

(V p . 3 b . P u m p C t r S t a t e (p . 6)) A

(V p . P u m p S t a t e (p . T) V PunipS tn te (p . 1)) A

(V I . - (L e r e l x) v V y . - (Leue l y) V (x = y)) A

(V r . V y.(x = y) V ~ (S t e n r n x) V - (S t e o m y)) A

Leuel nt

OutOfOrder'

6.10 Summary

This chapter has defined estensions to the test class and test Irame algorithms

of Chapter 5. Parameters to these estensions form the nomenclature for naming

coverage criteria For sets of test Irames.

Chapter 7

Forma1 Specification-Based

Testing

This chapter describes an application of the discipline of Chapters 5 and 6 to general

forma1 specification-based testing. It defines a general test Frarne generation process

that can be apptied to a wide range of formal specifications. It also provicfes details

of the design of a particular implemen tation of t his process.

7.1 Introduction

-4lthough the discipline presented in this dissertation is designed to be applied to

systeni-level requiremen ts speci fications, the generality of t h i s discipline allows it to

be applied to a wide variety of forma1 specifications. Applying this discipline to a

forma1 specification assumes:

0 that stimuli can be distinguisheci from responses by some means, and

the specification language can be founded on a logic that is consistent with

the IogicaI inferences used in the algorithrns of Chapter 5.

The geneml test fmme genemtion pmcess is based on a test frame generator

t hat implements the algorit hms of Chapters 5 and 6. The test frame generator takes

a forma1 specification. a coverage criterion as defined in Chapter 6. user-mantlated

tests. esisting test frames. and specified domain knowiedge. and produces a set of

test frames that satisfies the given criterion.

SIany of the details reqiiired to implement such a test frame generator were

$\.en in Chapters .5 and 6. This chapter provides process details for:

the iterative application of the general test frame generation process which

allotvs test frames to be generated For a specification that cannot be processed

tvithin available memory or time limits. and

O the types of domain knowledge applicable to t his process. how domain knowl-

edge can be formalized. and a general decision procedure for applying t h i s

knowledge.

This chapter also provides the FoIIowing details of one possible implementation:

O a reivrite system used in order to increase the assurance that logical manipu-

lations carried out by the the test frame generator are sound,

techniques for distinguishing bettveen stimuli and responses, and

algorit hrns for t hree of the coverage schemes defined in Section 5.6.2.

Section 7.2 provides an overview of the general test frame generation process.

A method for processing large and logically complex specifications is described in

Section 7.3. Section 7.4 describes how this process makes use of domain knowledge.

The remainder of t h is chapter focuses on aspects of one possible implementation of

a test frame generator. The rewrite system is described in Section 7.5. Techniques

for distinguishing stimuli from responses are described in Section 7.6. Section 7.7

outlines three algorithms For implementing coverage schemes. Examples of the a p

plication of a general test frame generation tool to a portion of a formal specification

from the literature [5S] and to another specification with a complex logical structure

are esamined in Section 7.8.

7.2 Process Overv-iew

- - * Opiioml inputs

* Bcyond thc scopc
of Lhis thes~s 1 Test Fnmcs

Figure 7.1: Automated Test Frame Generation

Figure 7.1 illust rates a process based on the discipline of specification- based

test frame derivation presented in this dissertation- This process automatically

generates test frames from a forma1 specification. The required inputs are the forma1

specification and the coverage criteria. Optional inputs are domain knowledge, user

mandated tests. and esisting test frames. As stated in Section 1.2. the seiection of

test data to derive test steps from test frames is outside the scope of this thesis.

The forma1 specification is assiimed to be a Iogical expression relating stimuli

and responses. Uses of esistential quantification in the form of Equation (.5.:3) and

demonic specifications are Ragged and rejected during test clws generation. These

must be corrected by the specification author. The seIected coverage criterion de-

termines the precise relationship between the test frames to be produced and the

given specification.

The in put labeled "Domain Knowledge" in Figure 7.1 describes logical rela-

tionships amongst stimuli and amongst responses separately This clomain knowl-

edge can be selectively provided by the user to control three aspects of test frame

production:

1. the level of abstraction espressed in the test frames:

2. the elimination of infeasibte test frames: and

3. the simplification of t hose test frames that are feasible.

-L7ser hlandated Tests" provide the test engineer with the option of directly

specifying some of the test frames to be induded in the output. User-rnandated

tests are specified as test frames that are either fully or partially instantiated- User-

mandated tests are not simply appended to the automatically generated test frarnes.

Ratlier. the test frame generator integrates the user-rnandated tests to reduce the

generation of redundant. or partiaily redundant, test frames.

Software requirements often change during the development of a system.

When requirements change, it is highly desirable to limit the impact of the changes

on existing sets of test frames. For this reason, the user may optionally provide the

set of "esisting test frarnes7 as input to the test frame generator. The test frame

generator attempts to limit the number of arbitrary differences between the new and

esisting sets of test frames. It witl also flag test frames in the previous set which

are no Ionger impiied by the specification.

The integration of user mandated tests and existing test frames is an in-

stance of the Delta ProbIem presented in Section 4.6. This capability has not been

implemented. but a heuristic algorithm for this intractable problern is given in Ap-

pendis C,

7.3 Tackling Cornplex Specincations

AutomaticaIly generating test frames For large specifications can be impractical.

typically due to the amount of time required for the cornputation. In situations

where Iimits on tinie and rnernory resources are esceeded. the specification can be

processed iteratively as follows:

1. Limit the amount of detail in the specification in order to provide a more

abstract view of the specification. This can be accomplished by instructing

the test Frame generator not to espand specific terms in the specification by

their definitions during the derivation of test classes. In some situations. it may

be necessary to limit detail by defining comples portions of the requirements

as abstract terms. t hen suppressing the espansion of these abstract terms.

2. Generate test frarnes From the abstract view of the specification.

3. Use each test framecontaining a n abstract term combined with the definition

of the abstract term as the specification for the next input to the test frame

generator, When using the Term Coverage scherne, only a single test frame

for each abstract term is required.

4. Repeat steps 1 to :3 until test frames no longer contain abstract terms.

-5. During data selection, when instantiating an abstract terrn, choose one in-

stance for that terni.

This iterative approach was used in preparing the esamples presented in

Sections 7.8.2. 8.5.1. and 8 - 5 2 .

In many situations it may be desirable to use the iterative approach above.

but use different coverage criteria at the various levels of abstraction. This provides

test engineers with another means of control.

7.4 Formalizing Domain Knowledge

Domain knowledge encornpasses a number of facts that can be used for different pur-

poses in the test frame derivation process. Sorne of this domain knowledge expresses

the interaction between the environment and the system by defining translations be-

tween the conditions used to describe the environment, and those used to specify

the system requirements. In this dissertation, this type oldomain knowledge can be

espressed via eiczbomtion. Elaboration can be used to ensure t hat test frames are

composed of terrns a t the appropriate level of abstraction for testing purposes.

Ot her domain knowledge expresses condition dependencies t hat must be

taken into account to disregard infeasible test frames and simplify those feasible

test frames that are selected by the coverage scheme. This domain knowledge is

expressed as theorems about mutually exclusive conditions, those forming partial

orders, and those t hat represent states.

In this dissertation. elaboration refers to a mechanism for expanding stimuli and

responses in the requirements into other combinations of stimuli and responses. re-

spectivel. This addresses some of the specification forms introcluced in Section 2.5.

These relationships may be part of the domain knowledge supplementing the re-

quirements specification. They may also be parts of the requirements t hat express

relationships between different levels of abstraction of the stimuli and responses.

Elaboration allows test engineers to use a more detailed ievel of abstraction to de-

scribe tests. if necessary.

For example. tests rnay need to be expressed in terms of the Cornputer-

Hiiman Interface, which may be specified separatelÿ frorn the system requirernents.

The advantage of this type of elaboration is t hat it uses a supplement to the require-

ments specification. This ensures t hat constraints on the terminology used in testing

do not affect the level of abstraction espressed in the system requirernents.

There are two mechanisrns for elaboration: definition and implication. Defi-

nitions correspond to rewrite asiorns of the form:

where .-1 is either a stimulus or response predicate, and E is any predicate logic

espression. As the TC algorit h m corn pu tes test classes, defined terms are espanded

according to t heir definitions.

Implication relationships arnongst stimuli that do not involve a response, and

similar relationships amongst responses that do not involve stimuli, are espressed

as axioms of the following forms:

where S (x) is a stimulus. E s (r) is a stimulus espression. R (x) is a response. and

ER(x) is a response espression.

Implications fornled during the production of test classes are referred to as

intermediate test classes. When a stimulus is first forrned into an intermediate

test class by the test class algorithm. it lias the form S(a) L. as describetl in

Section 5.5. Lt'hen this intermediate test class is formed. any r4evant elaboration

asioms are used to form the equivalent intermediate test class. S (n) v Es(a) 1.

The original stimulus. S (n) , is retained in the antecedent to ensure that the test

class normal form is logically equivalent to the original specification. Similarly. an

intermediate test class for a response. T R (a) . is replaced wi th the equivalent

interniediate test class. T R (a) A E R (n) .

7.4.2 Simplification and Infeasibility

Domain knowledge involving condition dependencies can be provided as a supple-

ment to the requirernents. These are used during test frarne selection to disregard

infeasible test frames, and to simplify the antecedents of selected test frames. For

the purpose of identifying infeasibte test frames. it is necessary to identify the logic

dependencies between conditions. The system-level specifications esarnined during

the research for this thesis contain relatively few dependencies of ttiis sort between

coriditions. It is likely that this is due to the system-level descriptions of stim-

uli, which are more abstract than the detailed descriptions that might be found in

unit-level specifications. This motivates the use of axiom schemata to define de-

pendencies, rat her t han requiring some underlying formai mode1 to support these

schemata as t heorems.

In the general test frarne generation process, known dependencies between

conditions are specified using any of three axiom schemata:

2. Vx.G 3 s Ù b s r n [~ ~ r: P2 2: . . - Pn x], and

These provide a means of defining condition dependencies. The MutEx form is

used to define dependencies between mutually exclusive conditions. Conditions t hat

form partial orders can be defined using Subsm. The States form defines conditions

that represent a set of system States. The symbol G represents a n optional guard

which can reler to any of the qiiantified variables from the vector r. The guard

provides a nieans of converting the dependency into a standard domain for which

the test frame generator has a decision procedure. -4s an example of defining a

partial order. wsuming a decision procedure For simple arithrnetic. theoreni schema

Y x. g.x > y + Subsm[Pr: Py] allows the test frarne generator to simplify P 1 A P2

to P 1.

The asioms defined by these schemata are given below:

Dependencies between predicates. such as -1s Jn-Canada." can be specified as

V r.Su bsm[Is_ln-Canada r: I d n - B C r: 1s-Over-Vancouver r] ,

and

V r.States[Is-In-Canada r: 1s-OutsideXanada r] .

The theorerns are applied to the conjunctions of Frame stimuli found in prime im-

plicants corresponding to potential test frarnes.

In addition to condition dependencies, a confluent set of rewrite rules can

also be specified as axioms. .As an example of these techniques, reasoning about

conjunctions of linear inequalities can be specified using the foliotving rewrite rules:

V a , 6.-(a < 6) = b 6 a

V a , b.-(a > b) = a 6 b

V a . b.-(n < 6) = b < a

V a , b.-(n 2 b) = a < 6

toget her wit h the following dependencies:

V r . y.Subsrn[x 4 y: r < y] (7.1)

V x . y. -.(y < z) + Subsm[r < r: r < z : x 6 y: r < y] (7.2)

V x . y. r.(z < y) + Subsm[z 9 x: z < x: y (r: y < x] (Z 3)

V r. y. z.(g (z) 3 MutEs[x < y; z < r] (7.4)

VI. y. :.(y < z) 3 !vIutEx[r < y: z < c] (7.5)

V r . y. -.(y < z) 3 MutEs[x Q y: z < r] (7.6)

V x. y, _.(y) r) MutEx[y $ z: x < z] (7.7)

As a simple esample. the conjunction r $ O A ~ > L is found to be infeasibie as

f o l l o ~ s . Since rewrite asioms are applied during the determination of the tes t class

normal form. r > L will be rewritten to 1 < r before s coverage scheme subjec ts the

conjunction t o feasi bility analysis. Theorem schema (1.6) prod uces a rnatc h w here

the instantiation of the guard is O < 1. which is resolved t o T by a built-in decision

procedure for simple arithmetic. Thus, it can be concluded tha t x $ O A x > 1 = I

and the corresponding test frame is infeasible. Similarly, r < 3 A x $ 4 produces

a match in theorem schema (7.2) in t h e first and fourth positions of the list with

guard 3 < 4. Matches a t o t her list positions do not allow the guard t o be reduced

to T by the decision procedure. Thus, this conjunction is sirnplified to 1: < 3.

This approach has certain limitations. To handle situations where the con-

dition dependencies within test frarnes can be comples, it may be more efficient to

provide a domain-specific decision procedure similar to the built-in decision proce-

dure for arithmetic. For example. atthough the complex contradiction a < 6 A 6 <

c A c < a could be deduced by matching the guard of theorem schema (T-4) with

c < n in theorem scherna (7.1). this type of reasoning is espensive to compute within

the framework presented here. However. this research suggests that condition de-

pendencies at the system-level typicaIly involve pairs of conditions. rat her t han an

interaction between three or more conditions.

In situations w here t here are relatively Few de pendencies between conditions.

such as system-level requirernents. condition dependencies can be addressed by spec-

ifying the theorems that an underlying mode1 should support. 'f he t heorem schema

forms 1IutE.u. Subsm. and States ailow a reasonably concise means of specifying

these theorerns, This approach tends to work well in the contest of the system-level

requirements specifications addressed by t his t hesis, since the dependencies between

conditions can be espressed with relatively few asiom schemata. It is not riecessary

to document dependencies between every pair of conditions within the specification.

It is necessary only to document t hose dependencies for frame stimuli which appear

wit hin the same test class antecedent.

7.5 Rewrite System

To increase the reliability of the test frarne generator, a rewrite system is used to

perforrn Iogical manipulations. The rewrite system described in this section differs

from some well-known rewrite systems, such as the one found in HOL ['2S]. For

performance reasons. the prototype test frame generator does not use the rewrite

system during portions of simplification and infeasibility processing. The rewrite

system assumes the correctness of each of the rewrite rules provided. To increase

the assurance of correctness of the rewrite rules used in this dissertation. a HOL

version of each rule was proved to be a theorem using the HOL system.

Rewrite rules are stated as univetçally quantified equalities. e.g., V x. El(t) =

&(z)! where x is a vector of variables. For rules specifyirig rewrites involving

quantifiers. the system assumes the folIowing rules:

1. txriable capture is avoided us ing alpha conversion: and

2. if variable release occurs. the rewrite fails.

The concept of cariable relense is the opposite of variable capture. During rewriting.

if a variable is qiiantified in an expression matching the left-hand side of the rewrite

rule and is unquantified in the corresponding instance of the right-hand side. variable

release has occurred, For esample. applying V P. Q . (V x . P V Q) = ((Vx-P) V Q) to

V z./ x v y is valid. Hoivever. applying the same rule to V x . f cvg c is invalid because

the 1: of g L is released, i.e.. z has become unquantified because it was free in Q.

Rewrite rules requiring conditions o n free variables can often be stated in terms of

variable release.

By failing rewrites in tvhich variable reiease occurs, the rewrite system allows

the specification of rewrite ruks such as:

The last rule specifies tliat a universal quantifier can be removed if the quantified

kwiabte is not free in the expression. P.

This type of quantifier manipulation is not performed in HOL by general

theorems used as rewrite rules. as above. Instead. it is performed using f'iinctions

called conoersions. which proditce a theorem for the specific conte'ct only if such a

theorem esists. The rewrite systern described in this section is a sirnpler approach

to rewriting. which does not require the specification of converters.

The rewrite system also recognizes alpha equimlence. e.g.. (A r. E (t)) =

X a .E(c l) . These capabitities allow most of the Iogical manipulation done by the test

frarne generator to be performed by the rewrite sÿstem.

7.6 Distinguishing Stimuli and Responses

The algorithms i n Chapter 5 rely on the distinction of stimuli from responses. but

preciseIÿ how this is done has not yet been presented, There are two primary means

of distinguishing stimuli and responses. The first is through the literal used to name

the predicate. The prototype test frame generator descri bed i n t his dissertation uses

this approach. and assumes that a literal beginning with a lower case letter indicates

a response predicate. unless a directive specifically labels a literal as referring to

either a stimulus or a response. This technique has been found to be adequate

for system-level requirements- based testing, because the vocabulary used to specify

responses is usually different from that of specifying stimuli.

A n alternative is to base the distinction on whether variables within predicate

arguments refer to the state of the systern at the time the stimulus occurs. or whet her

they refer to the state a t the tirne the system responds. For esample. in Z a prime

('1 is used to distinguish post-operation values from pre-operation values. Thiis.

the specification (z f g (r . 5)) V (zr = g(x. 10)) has the test class normal form

(z = g(x, 5)) (z f = g (x , 10)). In t h i s exampIe. : = g (x . 5) is a stimulus because it

does not refer to the state of the system at the tirne of the response. The presence OF

2' indicates that zr = g(r. 10) is a response. In this system of distinguishing stimuli

and responses. the same predicate can appear as eit her a stimulus or a response.

e.g.. the predicate X n. 6. c.c = g(n. 6).

This latter approacli may prove quite usefuI in situations where the same

predicate is used to express different relationships within a specification. For esam-

ple. assurning CnrrectForm is clefined. the specification

ComctForm (i. f')

can be rised to generate test Franies for filling out a Form correct15 tvhite

can be used to generate test Frames for flagging errors mhen a given form is filled

out incorrectiy.

7.7 Algorithms for Coverage Schemes

This section describes algorithms to implement the Implicant, DNF, and Term cov-

erage test frame selection schemes and examines the effect of infeasible test frames

on these algorithms. Each of these algorit hms selects members of a set of prime

implicants which correspond to the antecedents of test frames. A test frame is

constructed From a prime implicant and its corresponding test class. Thus, it is

suffiçien t to descri be coverage scheme aigori t hms in terms of selecting certain prime

implicants of a Boolean expression. The problem of finding a minimal set of prime

implicants t hat satisties the given coverage is XP-hard i n each case. A solution t o

this problem rvould also solve what Garey and Johnson refer to as -[SP.i] LIINIiLICM

COVER- ['25]. To select a set of test frames wit h the desired coverage in polynomial

time. each algorithm abandons the minimal set but attempts to keep the selected

set as smalt as possible.

-4 set of prime impiicants can be generated by constructing a disjunctive

normal form of the Boolean expression and using Stnemecki's algorithm [63] for

producing the prime implicants.

7.7.1 Implicant Coverage

One algorithm for an implicant coverage scheme simply uses the general decision

procedure of Section 7-42 to eliminate any infeasible test frames. then simplifies

those that remain.

-1lthough infeasible test frames are t heorerns of the specification. t he - have

no value as descriptions of tests because the stimulus can never be achieved. For

esample. one test frameof the test ciass x E (1 . 2) ~ ~ < 2 3 r is (s = 2) ~ r < 2 + r.

This is an infeasible test frame: it does not describe a test where the specified system

can be forced to produce r t o be consistent with its specification. lnfeasible test

frames are cornmon in non-trivial specifications, and do not necessarily indicate the

presence of specification errors.

7.7.2 DNF Coverage

This selection scheme selects a set of prime irnplicants that represents a disjunctive

normal form of the original logical expression. Since it is possible for a logical

expression to have more than one disjunctive normal form. the algorithm for this

selection scheme attempts to minimize the set by avoiding disjuncts that overlap

N- here possible.

The algorithm proceeds as foilows:

1. Select a most general prime implicant that does not overIap the set alreaciy

selected. Le.. VS A p = 1 for a set S of aIready selected prime implicants and

unselected prime implicant p. -4 most general prime implicant is one with the

fewest frarne stimuli. i-e.. the shortest conjunction.

2. The selected prime implicant is tested to ensure that it is feasible in the con-

test of specified condition dependencies. Any infeasible prime implicants a re

discarded from the selected set.

3 . Repeat steps I and 2 until the disjunction represented by the set is logically

equivaient to the original logical expression. or no more prime irnplicants are

available that fit the description in step 1.

1. To fil1 in a n y gaps. repeatedly select feasible most general prime implicants

not implied by those already selected, Le.. -(VS + p), until logical equality

with the origical expression is achieved, or n o other such prime implicant. p ,

rernains.

5. Sirnplify the selected set of prime implicants. This step involves the use of

decision procedures, such as one for simple arithmetic, together with defined

condition dependencies.

7.7.3 Term Coverage

The algorit hm for Terni Coverage selects prime implicants t ha t cover as rnany f rame

stimuli as possible. T h e algorit hm is as follows:

1. Select a prime implicant t h a t contains t h e most frame stimuli t ha t a re not yet

represented in t h e selection set.

2. T h e seIected prime implicant is tested t o ensure tha t it is feasible. Any infea-

sible prime irnplicants a r e discarded from t h e selected se t -

3. Repeat s teps 1 a n d 2 until no other prime implicants contain frame st imuli

t h a t a r e not represented in t h e selected se t . o r no unselected prime impIicants

remain.

4. Simplify the selected se t of prime implicants.

7.7.4 Infeasible Test Frames and Coverage Schemes

The determination of a n infeasible prime implicant raises an interest ing issue. S hould

the fact t h a t a prime implicant is infeasible be incorporated in to t h e original logical

espression'? In other words, when a n infeasible prime implicant, p. is found in a

logical expression, E. should t h e selection algorithm be restarted with the new se t

of prime irnpiicants of t h e logical expression E' = E A -p.?

This would ensure t ha t , based on the given condition dependencies, n o in-

feasible tes t s teps could be derived from the test frames procluced. This is certainly

a desirable property. However, prime implicants a re costly t o compute, hence this

is not generally a feasible approach, Ftirthermore, it is assunied that the given do-

main knowledge espresses the common sense of the test engineers. [f an infeasible

instance of a test frame dict esist. the test engineer would not choose this instance

b - iising their conimon sense. Thus. it is not critical for the test frame generator to

do more wit h infeasible pririie implicants than discard them-

[t is also possible that a selection algorithm cannot satisfy the correspond-

ing coverage schenie due to discarded infeasible prime implicants. 'This is a valid

situation. and does not imply that the selected set is deficient.

7.8 Examples

This section presents esamples of applying the general process described in this

chapter to specifications written by ot her au t hors. The specification notation and

the test frame generator descri bed in this section are niereiy examples of a parseable

notation and a particiilar inlpfenientation, respectively.

7.8.1 Steam Boiler

The folloiring esaniple is a more detailed S [393 translation of a portion of Schiriagl's

VDbl [XI style RSL ['Z] steam boiler control specification [.XI. This esample illus-

t rates the application of the general test frame generation process to a specification

from the literature. The specification probleni is to formally specify requirements

for a control system responsible for maintaining the correct level of water in a boiler

attached to a steam-driven turbine. One of the requirernents of the sustem is to

identify whether or not any inconsistencies esist i n the sensor readings.

The specification below is interleaved with descriptions of points of inter-

est. Since S is a n ASCII-based specification language, the words Exists-unique,

128

exists , foralï. and In replace the symbols 3 !. 3. V, and E. respectively. The S

expression \x .E is the ASCII version of the lambda calciilus abstraction X r. E.

(:t) Exists-unique (P:t -> bool) :=

(exists v.P v)

/\ (fora11 vl.fora.11 v2.P v1 /\ P v2 ==> (VI = v2)) ;

inmess-ok : bool;

The variable inmess-ok is the message consistency indicator. Since predicate

names beginning wit h a lower case letter indicate responses. th i s is the only response

predicate in t his specification.

: PUMP ;

: STATE ;

:message :=

PumpState :(PUMP # STATE)

I PumpCtrState :(PUnP # STATE)

I Level :num

1 Steam :num

1 SteamBoilerWaiting

I PhysicalUnitsReady

I PumpRep :PUHP

1 PumpCtrRep :PWP

1 PumpFlrAck :PWP

1 PumpCtrFlrAck :PUHP

1 LevelRep

The type message represents the various messages that can be received by

the boiler cont ro1 unit. Idfess represents the set of messages received.

Wait ing , Ready : bool ;

States [Waiting; Readyl ;

: MODE ;

Working,Repairing,Broken : MODE;

fora11 P .S ta tes CP Working; P Repairing; P Broken] ;

The above portion of the specification defines domain knowledge for the

States Waiting and Reading along !vit h Working, Broken, and Repairing.

Hst,Pst : PüMP -> MODE -> bool;

Qst,Vst : MODE -> bool;

Mst p m indicates that the boiler control believes that the control unit for

pump p is in mode m. Pst p m indicates that the boiler control believes that pump

p is in mode m.' Qst m indicates that the boiler control believes that the water level

indicator is in mode m. Vst m indicates that the boiler control believes that the

steam indicator is in mode m.

'The originai specification used the condition Pump .pst (p) = Pump. repairing to express the
same semantics as P s t p Repairing. This translation was perfarmed to demonstrate the use of
state information.

SetInMessOK :=

inmess-ok <=>

(forall p.

(Exists-unique (\s .PumpState(p, s) In InMess)) /\

(Exists-unique (\s .PumpCtrState(p, s) In InHess))) /\

(Exists-unique (\1. Level 1 In InHess)) /\

(select 1 .Level 1 In Iniiess) <= HaxWater /\

(Exists-unique (\l.Steam 1 In InMess)) /\

(select 1.Steam 1 In InMess) <= HaxSteam /\

(SteamBoilerWaiting In InHess => Wait ing) /\

(PhysicalUnitsReady In InMess ==> Ready) /\

(forall p.

(PumpRep p In InMess ==> Pst p Repairing) /\

(PumpCtrRep p In InMess => Mst p Repairing) /\

(PumpFlrAck p In InMess ==> Pst p Broken) /\

(PumpCtrFlrAck p In InHess ==> Mst p Broken)) /\

(LevelRep In InHess => Qst Repairing) /\

(SteamRep In InMess ==> Vst Repairing) /\

(LevelFlrAck In InMess ==> Qst Broken) /\

(SteamFlrAck In InHess ==> Vst Broken);

SetInMessOK specifies how the input message consistency Rag is set. The

specification for SetInMessOk is not in test ciass normal form, but is still a relation-

ship between stimuli and responses.

The directive %no-expand In suppresses the expansion of the definition of

In. The directive %tcg -t -S SetInMessOk directs the prototype test frarne gen-

erator to produce test frames using the criterion (pure test classes. n o response-

response resolii tion. not a closed worid. no frame st imul i simplification. Terrn Cov-

erage. base test frarnes). The -t flag indicates that Term Coverage is to be used

rather tlian the default DNF Coverage. The -S flag indicates that the output should

be in the form of S espressions.

The condition dependency information regarding the states of the system,

e.g. Repairing, Broken. is valuable. Without t his information. it is possible t hat

a test frame coiild include

. . .A Pst p Repairing A Pst p Broken A . . .

within a test frame. [f the Term Coverage scheme were to select such a prime im-

plicant. the decision procedure would determine a niatch with P = (Pst p) . Thus.

such infeasi ble test frames are avoided.

The test classes and associated test frames produced from this specification

are listed in Appendis B. The number of test classes. prime implicants, and test

frames for DNF and Term Coverage for this esample are detailed in Table 7-1.

Table 7.1: Xumbers of Prime Irnplicants and Test Frames

Test Class
1
2

Prime Implicants DNF Coverage Term Coverage
20 20 20
64 21 2

7.8.2 North Atlantic Separation Minima

This example. described in a separate technical report ['LOI, demonstrates the serni-

automatic generation of a set of 169 test frames from a forma1 specification of aircraft

separation minima for the North Atlantic. The test Frames were automatically gener-

ated by the prototype test frame generator from an S specification of the separation

minima. Figure 7.2 provides a sample of the S specification. The specification is a p

prosimately 6.50 lines of S. Figure 7.3 provides a sample of one of the automatically

generated test frames. The combined set of 169 test frames provides complete cov-

erage of al1 conditions contained i n the separation minima specifcation. 125 of the

160 test frames are instances of the -separation exists" condition. The remaining

44 test frames are instances of the -separation does not esist" condition.

LongitudinallySeparated(A, B) : =
if (AngularDifferenceGreaterThan9ODegrees

(RouteSegment A, RouteSegment BI)
then /* opposite direction */

NOT (WithinOppDirNoLongSepPeriod(A,B))
else /* same direction */

ABS(TimeAtPosit ion A - TimeAtPosit ion B)
> LongSameDirSepRequired(A , B) ;

Figure 7.2: N.4TS S Specification Fragment.

This esampIe demonstrates the capability of this test generation approach

to produce test Frames for a logicaily comptes specification. It is espected that the

169 test frames could be used directly by test engineers in the development of test

procedures for systems that monitor air trafic over the North Atlantic.

The separation minima were originaliy written in a formal table notation [l-l].

This specificat.ion was not authored with the intention ofgenerating test frames. The

forma1 specification of this separation minima is based on a description provided in

2 . AngularDifferenceG reaterThan9ODegrees
(RouteSegment A , RouteSegment B)

2. 1 (IsSupersonic B)

3. tsTu r bo jet -4

4. CsTurbojet B

5. 7 (IswestOf60W B)

6- -, (InLV.-lTRS-Airspace B)

7. ReportedOverCornmonPoint (-4 . B)

8. ept (.4 . B) + 10 < -separation check
tirne-

1. %are separated"
(A . B)

Figure 7.3: A NATS Test Frame.

a source document entitled --4pplication of Separation Minima for the X-AT Region-

(13rd edition. effective December 199'2). pu blishcd by Transport Canada on behalf of

t h e IC-40 North Atlantic Systems Planning Croup. The table-based specification

was algorithmically converted into an S specification by 3. Day.

Although the S specification simply stated the conditions for separation

and did not specifi requirements for a system, it was easily transformeci into the

stimulus-response style system requirements speci fication

fora11 A B .AreSeparated (A ,B) e "are separated" (A,B)

for the purpose of generating test frames. This specification requires t hat the systern

indicate that two aircraft are separated preciseIy when they are separated according

to t he requirements specified by AreSeparated(A ,B) .
The Following example provides a cornparison between base and differentiated

test frames. One of the base test frames is:

Stimuli Res ponse

1. AngularDifferenceCreaterThan90Degrees

(RouteSegrnent A , RouteSegrnent B)

2. 1 (IsSupersonic B)

3. IsTurbojet A

4. IsTurbojet B

*5. (IsLVe~tOf60\V B)

6. 7 (InWATRSAirspace B)

7. ReportedOverComrnonPoint (A . B)

8. ept (A . B) + 10 < "separation check cime"

L. 'are separated" (A ,

B

The differentiated version of the sanie test frame is:

Stimuli Response
pp-

1. XngularDifferenceGreaterThan90 Degrees

(RouteSegment :\ . RouteSegment B)

2. 1 (IsSuperjonic B)

3. IsTurbojet -4

4. IsTurbojet B

S. 7 (IsWestOfGOW B)

6. 1 (InWATRSAirspace B)

7. ReportedOverCommonPoint (A , B)

8 . ept (A . B) + 10 < -separation check time"

(3. 7 (Verticallyseparated (X . B))

10. 1 (LaterallySeparated (A . B))

L 1. EnterCV.lTRS,lirspace.4tSomeTinie .A

12. EnterlV.4TRSXirspaceAtSorneTime B

13. IsCVestOf60W -4

14. MachTechniqueL~sed .A

1.5. MachTechniqueCised B

16. OnPublishedRoute .4

17. OnPublishedRoute B

18. -Sameor Diverging Tracks" (-4 , B)

19. ept (JL , B) + 10 < EndTime ("WATRSOp

pDir NoLongSepPeriod" (-4 , B})

1. -are separated" (A .
6)

Using an iterative approach, computing the base test frames required a total

of three hours2 on an Ultra-Sparc 60. Computing the differentiatecl test frames

required five and a haIf hours on the sanie machine. Constructing an initial set of

scripts for generating test frames took approximately one hour.

Since the S specification is large and cornples. the particular test frame gen-

erator used in this esample. TCG, does not have the capacity t o process it in ful l

detail. An iterative approach was used to overcome this problern.

in the first iteration. only the predicate AreSeparated was expandeci. :il1

ot her predicates and functions wit hin the specification were t reated ns primitives.

This resuited in the foIlowing espanded specification:

forall A.

forall B.

(-

(~erticallyseparated (A , B) \/

Laterallyseparated (A , B) \/

Longitudinallyseparated (A , B)) \/

"are separated" (A , B)) /\

(" ("are separated" (A , BI) \/

VerticailySeparated (A , B) \/

LaterallySeparated (A , B) \/

Longitudinallyseparated (A , B))

From t his espansion, two test classes were generated: one for each of the re-

sponses "are separated" (A , B) and 7 ("are separated" (A , B)). An ini-

tial set of test frarnes was generated along with the test classes.

Additional condition dependencies were added when infeasi ble test frames

2The cimes given are the elapsed time reported by the unix time utiiity.

137

were found in the TCG output. or when the TCG tool found no feasible test frames

in a particular iteration. (Finding no feasible test frrarnes implies that the input

specification for that iteration was also infeasibie.) This added a few days to the

tirne required for the construction of scripts for generating feasible test frarnes. This

was due to condition dependencies which exist between different levels of abstraction

wit hin the specification. This suggests t hat. alt hough t h is iterative approach is

capable of processing large. com plex formal specifications. more work is required

to allow this particiilar type of condition dependencies to be determined with less

effort.

For t h i s specification. the differentiated test frames are only slightly different

frorn the base test frames. This is due to the table structure from which the S

specification was generated.

In some iterations. sorne of the test frames were found to be redundant. This

occurs Lvhen the stimuli for two or more test frames subsume the stimuli of another.

There are 161 differentiated test frames compared with 169 base test frames. This

demonstrates the value of differentiation in eiiminating redundant test frarnes.

7.9 Conclusion

This chapter has defined the general test lrarne generation process. and has presented

aspects of one possible implementation of a test frarne generator for this process.

Alt hough t his chapter presents esam pies using a specific notation, S, and a particular

implementation of a test frame generator. TCG, these are only examples of the

possible notations and tools. The generality of this process allows it to be appiied

to specifications based on logics that are consistent with the logical manipulations

described in Chapter 5. The next chapter presents a refinement of this general test

frame generation proces t hat can be applieci to system-level requirernentçbased

testing.

Chapter 8

System-Level

Requirements-Based Test ing

This ctiapter illustrates how the discipline of specification-based test derivation pre-

sented in this dissertation can be applied to system-level requirements-based testing.

.A practical approach to automating portions of system-level requirements-based

testing requires special attention to issues of process integration. .A primary issue

is the choice of l angage to be used by requirements authors. Other issues include

support for traceability. requirements validation, and measurernents. This chapter

esamines these issues and presents a refinement of the general test frame genera-

tion process described in Chapter 7, which accounts for these issues. The resulting

process provides a solution to the problems described in chapters 2 and -4.

8.1 Introduction

In the field of system-level requirements-based testing, a distinction is often made

betiveen those stimuli and responses tha t are esternally visible, and those that only

refcr to the internal state of the system. In this chapter. pre-conditions are stimuli

that either:

are not esternally visible. i.e.. they refer t o the internal s ta te of the system

and not the environment. or

specify conditions on parameters to esternally visible stimuli.

Similady. post-conditions are responses t hat refer eit her to:

the internal state of the system. or

to parameters of esternally visible responses.

In the remainder of this chapter, the terms stimulus and response refer to atorns

that are not pre- or post-conditions.

The general test frame generation process of Chapter ï requires an arnount of

forrnal structure in the specification. Integrating an automated test frame generator

into a current systeni-level requirements-based test derivation process requires the

use of a formal language for requirements specification that is readable by non-

specialists. Specification ianguage features were developed as part of this research in

order to en hance readability by non-specialists. whiie providing the Cor nia1 structure

required for automated test frarne generation. T h e Q specification language is the

au t hor's collection of t hese featu res.

A n automated approach to test frame generation does not eliminate the need

for traceability. For auditing purposes, it is necessary to be able to determine which

requirements are represented in each of the test frames. This capability is provided

by augmenting the rewrite system of Section 7.5.

In addition to generating test frames, this partially automated process pro-

vides additional benefits to software development processes. Test frames can be used

by requirements authors for validating the requirements t hey have written. Also.

the nomenclature from this thesis can be used for detailing how much system-level

requirements-based testing is required, and how much has been completed.

Section 8.2 provides an overview of the test frame generation process refined

for systeni-level requirernents-based testing. Section 8.3 describes the Q require-

ments specification language. Section Y .-1 descri bes how t raceability iç achieved.

Section 8.5 describes esamples of the application of this process to rea1 world spec-

ifications. Section 8.6 describes additional benefits of this testing discipline.

8.2 Process Overview

Figure 8.1 iIlustrates a refinernent of the general test frame generation process ap

plicable to system-Ievel requirements-based testing. The requirements are written

in Q by requirements aut hors, It is likely that the restrlting Q specification is eas-

il?. read by other individuats for various other requirements-based processes. These

ot her individuals can include ot her requirements authors and test engineers. clomain

esperts. software designers. custorners, and government regulators, Test engineers

define the coverage criterion and any user mandated tests. Domain knowledge can

corne from several sources. such as the requirements authors. domain esperts, and

test engineers. Once the test frnrnes have been generated, test engineers select the

appropriate da t a to produce test steps. Requirements authors can also use the test

frame generator to validate their requirernents in a manner siniilar t o that recom-

mended by Somerviile and Sawyer [59].

While the general test frame process accepts a forma1 specification in a gen-

eraI form, requirements au t hors and t hose w ho would typically read system-level

requirernents specifications are insufficiently familiar with the notation. The Q

Rquircments Authon
Domain Ex-
Test Engincm Test Enginects

Beyond the xope
of rhis rhcsis

-d P) Rquircments Authoa

.. Rquircments Authors
Domain Expens
Test Engin-
Software D a i g n m
Custorners
Certification Authonlies

User Mandated / Y I

Test Frame *~~~-=-==---

Test Engineers

Figure 8.1: Integrating Automated Test Frame Generation

specification language is an attempt at solving this problem. Q provides a means of

annotating requirements test so that the logical relationships relevant to test frame

generation are made esplicit and precise. while preserving readability.

The following process accom plishes system-level rquirernents-based testing.

1. The testable requirernents, i . e . those that can be verified through testing. are

specified in Q.

2. Xny dornain knowledge and user-defined tests are specified.

3. :ln appropriate coverage criterion is selected. Since rnost documents on system-

level requirements-based testing specify t hat "t here is at least one test For each

reqiiirement." this criterion will most commonly include a Term Coverage se-

lection scheme.

4. Test frames are generated automatically from the Q specification.

-5. Test engineers perform manuai data selection to produce test steps and test

proced u res.

The use of a test frame generator for requirements validation is described in

Section 8.6.

8.3 The Q Specifkation Language

This section describes the motivation for Q and defines the Q specification language.

8.3.1 Overview

The successful integration of an automated test frame generation process requires

that the forma1 language for specifying requirements be accepted by the require-

ments aut hors. Traditional format specification languages such as Z [6 L] and VDM-

SL [:) i l impose formality. together with an amount of symbology that crestes a

language very f'oreign to requirements authors. in contrast. Q imposes as littie

syrnbologv as possible, and allows the authors to use plirases of their own design.

The formal aspect of t h e Q language is required by the test frame generator.

A formal specification that is also reaclable relieves the need for maintaining two

specifications: one formal for input to the test frame generator. and another for

non-specialists.

A specification written in a traditional formal language. in this case S [39].

may appear as:

: f l i g h t ;

leader, follower : f l i g h t ;

Supersonic : f l i g h t -> bool;

Spec := Supersonic leader \/ Supersonic follower;

in Q. the specification may appear as:

: f l i g h t ;

"the leading aircraft", "the fol louing aircraft" : f l i g h t ;

" * is supersonic" : f l i g h t -> bool;

" * or * " X y := X \/ y;

BEGIN-Q

(Spec) is true i f f

<<<the leading aircraft) is supersonic) or

<<the following aircraft) is supersonic)).

In the Q specification, it is likely that the definition of Spec is more readable by

n o n - ~ ~ e c i a l i s t s . ~ T h e pre-amble above the keyword BECiIN-Q would normally be

contained in the infrastructure for supporting a Q specification of the requirements.

The Q specification language provides a syntax for concisely denoting the

logical relationships and alternatives tvit hin t h e requirements. while a b o providing

a natural language style. For esample. the requirement fragment.

Either the leading nircraft or the trailing aircraft i.5 supersonic

is specified as

{any of {the leading aircraft, the t ra i l ing aircraft)) is supersonic.

The braces impose a parseable s t ructure on the requirements. The seniantics

of the language constructsl such as "any of ,' allows the test frarne generator t o

calculate the logically equivalent espression. which in t his case is:

{{the leading aircraft) is supersonic} or {{the trai l ing aircraft)

i s supersonic) .

Once these constructs are expanded into their logical equivalents, test frames can

be calculated as in Chapter 7.

Q is imptemented as an estension of the S specification language, and is

used t o formalize nat ural language stimulus-response style specifications for the

purpose of requirements-based testing. Q can be used to define predicates within a

requirements specification, but relies on S syn tax for defining constants. types. and

functions. Q staternents are contained within t h e keywords B E G I N 4 and END-Q.

' Although rnuiti-word variable names are supported by S, this style is rarely used in specification
styles sirnilar to S, 2, or VDM-SL. However, the use of multi-word variables is encouraged and is
more naturd in Q due to the flex-fix notation.

The lightweight simplicity OF the Q language helps to preserve the readability

and conciseness of the specification. The mathematical semantics of Q ensure that

each statement has an unambiguous meaning. With these qualities. Q provides the

mathematical link between a requirements specification and the test Rame genera-

tion tool introduced in the previous chapter.

There are t hree essential Features of Q. The first is the use of braces. {}. rvhich

delimit pli rases and parameters within the specification. Injecting t hese braces into

the specification effectively transforms the phrases OF naturai language into forma1

functions and arguments. This technique rvas first used by .Joyce i n his Test Case

Element Language (TCEL) [:38].

LVhen formalizing the natural language phrase

the leading aircmft i.5 supersonic o r the fil lowing nircrajt is superwnic

for the pu rpose of system-level requirements- based testing, only the choices need

to be made esplicit. Thus. the appropriate forrnalization for testing is to choose

-or." as the predicate and the two adjoining phrases are conditions. The resulting

Q version of the above phrase is:

{the leading a i r c r a f t is supersonic} o r {the following a i r c r a f t

is supersonic} .

I n this Q espression, - * o r * ' is the function, and -the leading a i r c r a f t i s

supersonic- and -the f ollowing a i r c r a f t is supersonic" are its arguments.

The predicate logic equivalent, where function application is espressed by the jus-

taposition of Iiterals, is:

* or * " "the leading aircraft is supersonic" "the following aircraft

is supersonic"

The predicate " * or * has the type bool + bool + bool, as expected.

The "*" in the function name denotes positions in the test where arguments

are placed. This type of notation is referred to as a Res-fil notation [13]. Flex-fix.

the second Q feature, allows arguments to be distribtited within a function name.

This helps preserve readability. For example, the Q expression

{aircraft A) and {aircraft B) are separated by at least {1000 feet)

corresponds to the following predicate logic representation:

- * and * are separated by at least * " "aircraft A" "aircraft B" -1000

feet ."

The Q espression is more readable to requirements specification aut hors t han. Say.

an. S. Z or VDM-SL espression, such as

The third feature of Q. due to the aiithor. is the use of keywords that define

multiple arguments For a Fitnction's parameter. These keywords are motiiated by

natural language phraseology such as -bath aircraft are..' and "either h or B is."

For esample. the requirement

~ i l h e r the leading aircraft or the foilowing nircmjl is supersonic

can be formalized in Q as

{any of {the leading aircraft, the following aircraft)} is supersonic.

-4 predicate containing an %ny of" argument is equimlent to a disjunction of t hat

predicate evaluated at each of the values in the '-any of" set. In this case, the

equivaien t expression is

({the leading aircraft) is supersonic) or {{the following a ircraf t)

is supersonic) .

This esample contains more formal detail than the espression

{ t h e leading aircraft is supersonic) or (the fol lowing aircraft is

supersonic) .

the former espression. there are forma1 references to two aircraft. In the lat

espression. there are only two conditions. The fact that these conditions were based

on two aircraft was not made esplicit in the latter espression. This latest example

is referred to as a deeper specification. because it contains more forma1 detail, Test

engineers decide how deep a specification should be by determining the conditions

they wish to reveal to the test frame generator.

--lnot her parameter mechanism is the distinct choices- keyword. This key-

word is used in encoding phrase structrires such as:

ail of the follorüing are true:

I . aircmft -4 is dumping fuel.

2. aircraft B is using standard nltimeter setting,

.Y. one aircraft is supersonic and the other is not then further con-

ditions

In this esample. -one aircraft" and '-the other" refer to either "aircrait A7 or -air-

craft B." interchangeably. T hey represent distinct choices of the two aircraft. The

Q version is:

1. { a i r c r a f t A) is dumping f u e l ,

2. (a i r c r a f t B) is using standard a l t ime t e r s e t t i ng ,

3. i f {{one a i r c r a f t , t h e other} are any d i s t i n c t choices of { a i r c r a f t

A , a i r c r a f t B) in

{{{one a i r c r a f t) is supersonic) and { i t is not t h e case t ha t ({the

o the r) is supersonic)))) then { fu r t he r conditions)

The -distinct choices' phrase in this example is necessary in order t o forrnally define

the references -one aircraft" and -the o t her." However. t his construction is still more

concise and more readable than t h e full espansion of the distinct choice. which is:

{{{a i rc ra f t A) is supersonic) and

{ i t is not t he case t h a t {{a i r c r a f t 8) i s supersonic}}} o r

({{a i rc ra f t 8) i s supersonic) and

{ i t is not t h e case t ha t {{a i r c r a f t A } is supersonic)}}

The fornial semantics of -any of.' i t s counterpart. *each of." and other

parameter mechanisms are defined niore precisely in later sections.

8.3.2 Expressions

-4 Q expression is a string of a t least one word and any number of arguments

separated by white-space characten. Arguments are expressions contained within

a comma-delimited list surrounded by braces. in the following grammar, * and +
refer to zero o r more and one o r more of the preceding symbol, respectively.

expression .- - word+ "." primitive-expression

1 ri mit ivesspression

primitivesxpression := ("{" expression ("," expression)* "1")+ primitivemxpressionS-

1 primitivesspressionf (-{*' expression (-." expression)' -}")+

1 word+

The optional prefix. word+ &.-. for each expression a1Iows specification a u -

thors to tag expressions for traceability purposes. These tags have no semantic value

witli respect to the logical meaning of the specification.

8.3.3 Predicate Definitions

-4 Q specification is a collection of predicate definitions. Predicates are defined using

the -* is true i f f * * statement.

definition .- . "{" parm-expression "1- is triie

parmmspression := (&(" word+ (-." tvord+)* ‘-)")+

ff -1" expression "1- -."

parniaspression+

8.3.4 Conjunctive and Disjunctive Lists

Requirements specifications often provide Iists of conditions which represent logical

conjunction, e-g.. &al1 of the following," or disjunction. e.g., 'at least one of the

following.' Such a list format is provided by the predicates "al1 of" and "any

of .- The Q expression a i l of {s), where S is a comma-separated list of predicates.

is semantically equivalent to A S, where A ({ x } U A) = x A (A -A), and A{} = T.

Similarly. any of {s} is semantically equivalent to V S . where V ((r) u A) = r v

(A .4). and V{} = l.

8.3.5 Argument-Based Conjunctions and Disjunctions

.. The keywords "each of * " and "any of * are used to constriict conjunctions

and disjunctions. respectively. of a predicate over different arguments. These key-

words both appear as functions having the type (t)list + t . The semantics of these

functions is defined in terms of predicates. i.e.. predicate logic expressions that do

not contain logical connectives (see Section 5-13). The equivalent logic espression is

determined by evaluating the predicate logic espression -4 E-lia P for -any of* or

.4 E-I.Ïe P for "each of' using the ruIes of Xppendiic A. These two functions map

the application of a predicate to a list of arguments into a disjunction or conjunction.

respectively. of the predicate applied to each argument of the k t . separately.

.-Uthough multiple uses of one of these keywords can be used within a pred-

icate. rnistures of -any of" and "each of' within arguments to a single reference

of a predicate are problematic. This is because it is unclear whether the espres-

sion containing argument keywords represents a conjunction of disjunctions. or vice

versa,

For esample, the expression

{the {each of {apple, tomato}) is a (any of {vegetable, fruit)))

may have b e n intended to mean either

{{{the {apple} i ç a {vegetable}) o r {the (comato) is a {vegetable)))

and {{the {apple) is a { f r u i t)) or (the {tomato) is a { f r u i t)) })

or, alternatively,

{{{the {apple) is a (vegetable)) and {the (tomato) is a {vegetable)))

or ({ the {apple) is a { f r u i t)) and {the {tomato) is a (f r u i t)))) .

ClearIy, these two semantic evaluations are logically different.

:Ut hough the rules of Appendix A disambiguate such a construction. t h i s

ride woiild need to be Iearned and would not be obvious to a non-specialist from

the test alone. Since this is counter to the objective of Q, mixtures of -any of-

and "each of- are not allowed within arguments to the sarne predicate. The order

of semantic ecaluation in these situations can be made more clear using espression

aliasing.

8.3.6 Expression Aliasing

An expression alias is the same as the let statement found in functional programming

ianguages such as .LiL [49]. The purpose of the alias is to assign a short narne to a

comples espression in order to make a portion of test more readable.

The Q expression { {x} is {y) i n {E}} is sernantically equiialent to {E}.

with y substituted for x. To encourage simpler specifications. the espression E must

be a predicate logic espression rather than an arbitrary espression that might rep-

resent a non-Boolean value. The predicate {{x} is {y} in {E}} is syntactic sugar

for the lambda calculus espression (A x.E)y. Similarly. the tuple form {(x ,y} are

{a, b} i n {El} is syntactic sugar for the Iambda calculus expression (A x. y.E) (a, b).

Using espression aliasing, the earlier "any of" / "each of'' esampIe can be

disam biguated as

{ { i t e m) is {each of {apple , tomato}) in

{the {item) is a {any of { v e g e t a b l e , fruit}}}}

which results in a conjunction of disjunctions.

8.3.7 Argument Permutation

Thepredicates "* are al1 dis t inc t choices of * in * ' and "* are any d i s t i nc t

v
choices of * in * are used to construct conjunctions and disjunctions involv-

ing permutations of arguments. A n example of the use of this keyword was given

earlier in Section 8.3.

{(z} are al1 d i s t i nc t choices of {A) in {E}}

is sernantically e q u i d e n t to

{ { z) are {each of {P(A))} i n { E)) ,

where z is a tuple and P(A) is a list of a11 the permutations of tuples the same size

as z uses elements of A. Sirnilarly.

{{z) are any d i s t i n c t choices of { A) i n {E})

is sernantically equivalent to

{ { z) are {any of (P (A)) } in {E)).

8.3.8 Quantification

Cniversal and esistential quantification are provided by the syntas {for any {x}

{E)}. which is equivalent to Vx.$ and {there exists {x} such that {E}}, which

is equivalent to 3 x.E. Higher-order quantification is allowed. An esample is:

{ f o r any {separation o f * and * rules) (separation of {target} and

{intruder) rules)}.

-4s described i n Section 2.6. traceabili ty provides a rneans of mapping requirements

to the tests that verify those requirements [16]. The traceability of test frarnes to

requirernents is autornated in the following way by an augmented rewrite system.

Authors tag the requirernents in the Q specification with an identifier. When the Q

specification is parsed. these tags are embedded in the atoms and arguments i n the

corresponding Iogical espressions. During test frarne generation. the rewrite system

maintains t hese tags. .As logical espressions are rewri t ten atoms and argu nien ts

from various pIaces in the specification are brought together while the tags identify

t heir origin.

Xlthoi~gh this traceability mapping is generated i n a test-frarnes-to-requirements

manner. the desired inverse mapping can be easily computed.

8.5 Examples

This section describes esamples of the application of the process described in this

chapter.

8.5.1 CAATS SRS

To assess t h e practical usefulness OF this process. the partially automated p r s

c e s described in this chapter was esperirnentally appiied to a portion of the Soft-

ware Requirements Specification for the Canadian Automated Air Trafic System

(C-LATS) being developed by Raytheon Systems of Canada Ltd. This esample.

presented in a conference paper r21], is taken from a portion of the C..\t\TS software

requirernents which refers to separation rules. The separation rules form a set of

corn ples conditions under which certain responses occu r. The specification of the

separation riiles is composed of several subsections dealing with different aspects

of separation. The portion of the specification used in t h is esample contained 177'

requirements designated as testable requirements'.

When evaluating this process, it was decided that a test set with DNF Cov-

erage would not be produced for this specification due to the large number of test

frames which would have resulted. The specification refers to the separation rdes

in both a negative (the aircraft are not separated). and a positive (the aircraft are

separated). context. This results in two corresponding test classes. The numbers of

test frarnes constituting DNF Coverage are estimated to be approsimately 1.000 for

the positive case. and roughly IO*'' for the negative case.

Test frames were generated using a Term Coverage scheme. This resulted

in approsimately 130 test irames for the positive case and approsirnately Z30 test

frames for the negative case.

Table S. 1 gives one of the test frames generated by our automated process.

ROlDs are requiremen t object identifiers used to tag requirements statements.

It is important to note that the success of this esaniple was dile to the

following essential qualities:

1. The consistency of the test frames, the assurance of proper coverage. and the

accuracy of the tracing iriformation are due to the mathematical underpinnings

of the algorit hrns used.

2. The formal version of the software requirernents fragment contained enough

mathematical structure to facilitate test frame generation while still being

'In addition to requirements that can he verified through tescing, requirernents specifications
often contai^ requirements that cannot be verified through a test program and must be addressed
by other means, which are beyond the scope of this dissertation.

Stimulus
(ACC
ope ra to r)
reques t s
planned
c learance

Condit i o n s

1. {planned c l ea rance) e x i s t s
f o r t h e f l i g h t

2. t h e source of t h e {planned
c learance) is an aerodrome
c o n t r o l tower wi th a tower
method of ope ra t ion of
complex

3. the a i r c r a f t state is not
AIRBORNE

4. { i n t r u d e r) is us ing
{ a l t i m e t e r s e t t i n g)

5. {planned c l ea rance) is us ing
{ a l t i m e t e r s e t t i n g)

6. t he lowest a l t i t u d e in t h e
p ro tec ted a l t i t u d e band f o r
(i n t r u d e r) is at o r below {FL
290)

7. t h e lowest a l t i t u d e i n t h e
p ro tec ted a l t i t u d e band f o r
{planned c l ea rance) is at o r
below {FL 290)

8. the p r o t e c t e d a l t i t u d e band
f o r { i n t r u d e r) i s v e r t i c a l l y
sepa ra t ed from t h e p r o t e c t e d
a l t i t u d e band f o r {planned
clearance) by {1000) f e e t o r
more

9. (NOT {planned c l ea rance) is
dumping f u e l)

10. (NOT { i n t r u d e r) is dumping
f u e l)

Responses
1. {ATA)
s h a l l
commit
{planned
c learance)

NOTE: This is only a n example. T h i s test frame w s generated from a representation of only
a portion of the CAATS software requirements which was used to evaluate the usehlness
of this process. Any errors or omissions in this test frame are d u e to the way in which this
portion was est racted by the author.

Table 8.1: A n Automatically Generated Test Frame

reada ble.

3. Conditions were relatively independen t. which allotved for a simple encoding

of the esisting condition dependencies.

8.5.2 ICAO Flight Plan

This esample. described in a separate technical report [L9], involved the semi-

automatic generation of a set of 2.52 test frames from a portion of the ICA0 in-

structions for filling out a flight plan as specified in Appertdix 2. Subsection 2 of

IC-40's Rules of the Air and Air Traffic Services [36]. The 252 test frames were

automatically generated by the QTCG prototype tool from a Q representation of

testable requirements. Figure 5.2 presents a portion of the 526 line Q specification.

Figure S.3 provides a sample of one of these automatically generated test frames.

Two distinct sets of test frames were generated through different uses of the same

requiretnen ts speci fication. Each set of test frames provides comptete coverage of

al1 the testable requirements relative to the contest in which the requirements were

used. 122 of the test frames are schemas for testing a system that automatically fills

out a flight plan. The remaining 130 test frames are schemas for testing a system

t hat validates a given flight plan.

I t is espected that the 252 test frames could be used directly by test engineers

in the development of test procedures for software that produces a fitled-ou t flight

plan and for software validating fiiled-out flight plans.

The ten pages of testable requirements were manually translated into a

parseable representation of similar size. To prod uce the for mal specificat ion, test

was translated directly from the ICAO flight plan instructions into a Q specification.

Cornputing the base test Frames for filling out a flight plan required a total

1 lgES4.
if {not {Dinghies are carried)) then {
cross out (Item 19 D) - (each of (D, C)))

else (al1 of {
insert {Item 19 D) - {number of dinghies carried),

insert {Item 19 D) -
{total capacity in persons of al1 dinghies carried),

if {not {Dinghies are covered)) then {
cross out {Item 19 D) - {C)),

insert {Item 19 D) - (colour of dinghies)
)3

Figure 8.2: IC.40 Flight Plan Specification Fragment.

R O I D s : I19ES4
-

Stimuli

1. Dinghies are
carried

1. insert { ~ t e m 19 D} -
{number of dinghies
carried)

2. insert {Item 19 D} -
{total capacity in persons
of al1 dinghies carried}

3. insert {Item 19 D} -
{colour of dinghies}

Figure 8.3: An ICA0 Flight Plan Test Frame.

of one minute and 42 seconds3 on an Ultra-Sparc 60. The base test frames for

checking a filled-out flight plan rquired a total of two minutes and 39 seconds.

Computing the differentiated versions of this latter set of test frames had to be

done in pieces. and required approsimately fifty minutes. Constructing the set of

scripts for generating test frames took approximately haIf an hour-

From the aut hor's esposure to indust ry practice. a very conservative estimate

of the effort requirecl to derive. review. and document a traceability map for a

single test frame. on average. would be one hoiir." By this estimate. the base test

frames t hat were au tomatically generated in iinder t hree minutes would recluire

approximateIy t hree person-weeks to prepare maniially. This corn parison does not

include the translation time. since it is espected that requirements authors would

produce original specifications in Q.

During the construction of the test c l a s normal form. two potential specifi-

cation anomalies were reported by the QTCG tool. Two of the test classes espress

facts implied by the specification.

Test class 59 is analogous to the test frame:

t h e appropriate ATS authority

Stimuli

1. NOT The flight 1s along a designated ATS

route

2 . ATS f light track points are required by
,

3. NOT Use ATS style track points

Response

false

Since the response is false, t h i s implies that the specification asserts t hat the stimuli

can never occur. This poses a question to be answered by the requirements author.
- - - -- .

'The times given are the eIapsed time reported by the unix time utility.
'In rnany cases. a more conservative, and realistic estimate, is one day.

e-g.. is it true that this combination of stimuli can never occur? An inconsistency

would indicate an error in the specification.

Test class 57 is analogous to the test frarne:

Stimuli

t r u e

Response

1. insert {Item 19 E) - {the four digit f u e l

endurance in hours and minutes)

2 . insert {Item 19 A) - {colour of aircraft

and signif icant markings)

3 . in se^ { ~ t e m 19 C) - (name of p i lo t in

This test frame indicates that the response will always occur. Thus, these response

conditions can be appended to each of the other test frarnes, if desired. Again. th i s

seems consistent with the importance of the information i n these Fields of the Right

ptan.

8.6 Additional Benefits

This section describes the use of test frames for requirements validation. and the

use of the nomenclature of t his discipline for describing rneasurernents of com plexi ty

and progres of system-level requirements-based testing.

8.6.1 Validation

The process presented in Section 8.2 has the potential to improve requirernents val-

idation. The purpose of validation is to ensure that the requirements reflect what

is act ually intended. Alt hough revieivs are commonly used in software development

processes to ensure that requirements are valid. a certain amount of requirernents

validation occurs during test development. This is because the activity of construct-

ing tests from specifications provides an alternative perspective of the implications

of the specification.

Un fort unately. test construction is performed after requirernents ail t horing,

and is typically perforrned by different individuals. Sommerville and Sawyer [59]

recomrnend tha t requirements authors derive test steps as a means of validating

the requirenients they write. .A test frarne generator provides an automated means

for requirements authors to leverage the gain of this testing perspective white they

are writing the specification. = h y anomalous test frames foiind during a review of

those produced by the test frame generator, can be traced back to the offending

requirements. This occurred during reviews of test frames produced for both the

C-LITS and IC-A0 Flight Plan examples.

Another benefit is that other non-specialists. such as domain esperts. can

participate in vaiidating a formal requirements specification. This is difficult to

achieve with traditional formai specification languages. tvhich typically require a

high degree of training to attain proficiency. s u c h as with Z or VDhI-SL.

The participation of a domain espert was illust rated during the au t horing

of a Q specification For Notices To Airmen [23]. A review of the Q specification by

an individual with no training in Q realized that there were many assiimptions held

by the industry that were not made esplicit in the specification. The ability of t his

individual to identify this problem shows tha t he was able to read and comprehend

significant portions of the Q specification.

8.6.2 Complexity and Progress Measurement

The non~enclature of the discipline presented in this dissertation can be used as the

b a i s for measurements. These measurements can provide an accurate picture of

t hc progress of system-level requirernents-based testing.

An iipper bound on the number of test frames for Term Coverage can be

computed in O(n log n) time. This is because test classes and frame stimuli can be

determined in an amount of time t hat is O(n log n) in the length of t he specification.

and a Terni Coveragescheme produces no more test frames than the number of frarne

stimuli i n a test class.

.A crude measure of the complesity of the system can be obtained from a n

approximation of the number of test frarnes- The number of test classes provides a

measure of the number of operations required of a system, while the number of test

frames per test class provides a crude measure of the complesity of each operation.

A possible refinement is to assign weights to each franie stimulus. intlicating the

espected relative complesity of its detection.

The bound on the number of test frarnes can be used to estimate the progress

of system-level requirements-based testing. As test frames and test steps are pro-

duced and t heir corresponding test procedures execu ted, the relationship between

'TesS. t hose completed and those not yet produced helps provide an assessrnent of pro,

This chapter has illustrated the application of the discipline of specification-based

test derivation to system-level requirements-based testing. A particular refinement

of the general test frame generation process from Chapter ï was presented that

addresses specific issues of system-level requirements-based testing. Ot her possi b[e

benefits of the discipline were also presented.

Chapter 9

Conclusions

This chapter reviews the results of t h is research, and outlines some possible avenues

for fur t her research.

9.1 Research Results

This dissertation has identified two major problems in the field of systeni-levet

requirernents-based testing:

1. the lack of objective definitions of coverage criteria; and

2. the lack of automation.

This dissertation has also identified four challenges in autoniating the generation of

test frames:

1. the structural independence of test frames from the specification;

2, dependencies between conditions wit hin test Frarnes:

3. existential and universal quantification within the specification; and

165

4. the delta problem.

This dissertation has presented a discipline ~Fspecification-based test deriva-

tion. It has also demonstrated that this discipline provides a scientific Founda-

tion for irnproving portions of software development processes, srich as system-

level requirements-based testing. This dissertation has defined a nomenclature Tor

specification-based testing that forms a basis for objective specification-based cov-

erage criteria definitions and test irame generation algorithms. T hese contributions

sat isfy the goals of t his researc h .

Furthermore, the use of t h i s discipline has several benefits. The discipline

strongly encourages the development of a testable requirements specification. At the

same time. the automation of test frame generation increases the value of prodiicing

a forma1 specification. Perhaps most importantly, the nomenclat u te can be used

in future revisions of standards documents such as DO LXB, DOD-STD-'LI67.4.

ASSI/[EEE 829-1983. and LIIL-STD-498. to state objective testing requirements

a t the system levei.

hloreover. sÿstem-level requirenients-based testing is not the only application

of the discipline OF specification-based test derivation. For the purposes of test

frame generation. t his discipline can be applied to any stimulus-response style formal

specification founded on a logic consistent with the algorithms given in Chapter 5.

,AS illustrated in Section 8.6. automated test frame generation can contribute to the

validation of the specification. This discipline can also be used for other purposes.

such as complexity and progress measurements.

The application of this discipline to a broad range of specifications has been

illustrated in four esamples: one from the Iiterature, one authored for purposes

other than testing, one translated irorn an international public domain air traffic

control authority, and one translated from a proprietary specification owned by a

prominent Company in the air trafic control industry.

Section 2.8 lists five characteristics for any solution to the problems of system-

level requirements-based testing addressed by this thesis. The discipline presented

in this dissertation satisfies each of these characteristics:

1. objective definitions of coverage criteria are based on the nonienclature:

2. test frame derivation is partiallyi automated:

3. test engineers have the cont rol t hey require t o exercise engineering judgement:

4. traceability is supported: and

ri. the Delta Problem has been s h o w to be intractable (Appendis C). but heuris-

tic solutions appear to be possible.

The algorithms presented in t his dissertation produce test frarnes wit h the Following

properties.

1. Consercatice: Each test frame is a logical corisequence of the reqiiirements.

2- Tmctable: Test engineers have the control to esercise engineering judgement.

3. Complete: The set of test frames is produced according to a specified coverage

criterion.

4. Traceable: The original eiements can be determined from which a selected test

frame was derived.

'The formalization of the requirements cannot be automated, in general.

Demonic specifications and those that do not have a test class normal form can be

identified by the algorithms. These specification forrns are suspect. and typicâlly

indicate specification errors.

9.2 Foundatious for Future Work

The work presented in this dissertation can be extended in several areas. This

research includes improvements to the test frame generation process: heuristics for

the Delta Problem: incorporating the general test frame generation process into a

testing methodology: a more mature language e'cpioiting the niain Q featiires: and

the projection of test frames ont0 a design specification.

9.2.1 Test Frame Generation Process Improvements

There are opportunities for research in refining the process itself. A n iterative ap-

plication of a test frame generator allows the processing of Large specifications. The

application of this technique in situations where infeasible test frames are numerous

requires furt her research.

Other research would focus on coverage criteria. While defining coverage

criteria. Chapter 6 introduced several variations of test frame generation based on

test classes, test frames. and frame stimuli. Xlthough these terms form the core

of the nomenclature for defining coverage criteria, it would be naive to espect that

the criteria of Chapter 6 form an eshaustive list. In particular. the range between

DNF and Term Coverages should be explored. It is quite probable that certain

situations will require test engineers to develop other variations to suit their needs.

However, these new variations will, in al1 likelihood, be described in terms of the

basic nornenciature laid forth by this thesis.

9.2.2 Delta Heuristics

Although the Delta Problem is undecidable. in general, a process capable of inte-

grating existing test frames with new test frames could potentially avoid wastefiil

rework. Appendis C shows that the Delta Problem is undeciciable and outlines one

possible heu ristic solution to this problem-

9.2.3 Methodology

This section describes the estent to which the discipline of specification-based test ing

presented in this dissertation defines a methodology for systern-level requirements-

b a s 4 testing. The following is a description of the basic contents of such a method-

ology. The met hodology woulcl specif'y:

the required properties of the specification language used to state the require-

rnents:

precise definitions of test procedure and the contents of a test procedure. e.g.

test steps:

what amount of detail is required in each test step;

algorithms for deriving and sequencing the contents of test procedures from

the specified requirements;

how t raceability is achieved;

what requirernents coverage means and how to satisfy given coverage criteria:

under what circurnstances particular coverage criteria should and should not

be used; and

8. procedures to be performed when requirements changes occur after a set of

test procedures has alreadÿ been derived.

The discipline presented in this dissertation provides a basis for most of the

above aspects of a methodology. The minimal required properties of the specification

language. for the purpose of test frame gpneration, are given in Chapter 5 . This

discipline defines test procedures in terms of test frarnes and test steps. While it

provides a forma1 definition of a test frame and a test step. this discipline does not

prescribe precisely how to choose da ta values for test steps. Nor does it prescribe

how to niethodicatly sequence test frames within a test procedure. The discipline

does provide some alternatives as t o the amount of detail to be found in test frames.

e.g.. base us. differentiated.

This discipline provides a precise mat hematical definition of requiremen ts

coverage. and of how coverage criteria relate test frames to requirements. Algorithms

that support traceability are provided for deriving a set or test frames to satisfy

specific coverage criteria. However. no details are given as to when one coverage

criterion should be used over another.

Regarding the effects of requirements changes. this dissertation h a ç identified

the Delta Probtem and hasshown that it is. in the worst case? undecidabte. Althoirgh

a heuristic partial solution is described, there is no evidence as to the applicability

of this solution.

To summarize, the discipline presented in t his dissertation provides a mat h-

emat ical basis for a met hodology for system-level requirements- based test ing, and

provides research opportunities for furt her development of a met hodology.

9.2.4 Next Step for Q

The examples in Chapter 8 demonstrate tliat certain features of Q have been useful

for formalking nat ural language, stim ulus-response req uiremen ts speci fications for

the purpose of system-level requirements-basecl testing. However, establishing that

these features result in a language that can be easily learneci and read by non-

specialists wili require furt her and controlled study.

The current imptementation of Qy its reliance on S for underlying capabilities

s u c h as t h e definition of types, constraints, and functions other than predicates,

makes it usable. but not terribly appealing, for general specification, Autornating the

declaration of predicates would improve the usefulness of this type of specification

language. However, there rnust also be some mechanism to warn of situations where

an author may have mis-spelled or mis-worded a predicate nanie. Future work

should incorporate the concepts demonstrated in Q into a more generally applicable

language.

9.2.5 Specification Projection

Watanabe and Sakamura [66] describe a manual test case generation strategy based

on Z specifications t hat incorporates information about the irnplementation t hroiigh

a structure grêph provideci by programmers. Work such as this combines information

from a specification, wit h information from the implemen tation. This is valuable for

testing, since the cornbination aIlows the determination of additional input domain

partitions. (The antecedent of a test frame is an exam ple of such a partition.)

-4 similar idea is to project test frames from a formal requirements specifi-

cation ont0 a forma1 design specification. This could serve to validate the design

from a requirements perspective. Any test frames that did not fit ont0 the design

indicate a deficiency in t h e design or an invalid test frame. which indicates an error

in the requirements. Traceability would also provide a rneans of mewuring progress

during the design phase.

9.3 Epilogue

In an article published in the April 1996 issue of IEEE Cornputer. Hall [29] pprposed

the question: *What can forma1 methods contribute to iniprove the quality and

decrease the cost of our systemse?- This dissertation contributes part of an answer

to t his question. The discipline presented i n t his dissertation. which draws heavily

from many aspects of formal methods. can irnprove the quality of our systerns by

ensu ring t hat test procedures are developed according to ob jectively de fi ned coverage

criteria. The cost of developing our systems can be reduced in a variety of ways

described in this dissertation including, but not Iimited to, the automation of some

aspects of the task of deriving test procedures from requirements.

Bibliography

[l] Jean- Raymond Abrial. Steam boiler control specification problern. In Jean-
Raymond Abrial. Egon Borger. and Hans Langmaack. editors, F o m l Methods
for Inciustrial ;Ipplicntions: Specifying and Pmgramming the Stenm Boiler Con-
trol. volume 1 16.5 of Lecture :Votes in Cornputer Science. pages 500-509. Octo-
ber 1996. ht tp://rvww.inforrnatik.uni-kiel.de/' procos/dag95'2:3/dag952:3- ht ml-

[2] Paul Amniann and deff Offutt. Using forma1 methods to derive test frames in
category-partition testing, In Compass 9.j: 9th =Innual Con ference on Com-
puter =Issurance. pages 69-80, Gait hersbtirg, MD. 1994. IEEE Corn pu ter Soci-
ety Press. Xational Institute of Standards and Technology.

[3] :\on is. Prod uct O ce mie w: S/alidator/Req. .J une 1998.
titt p://~~~~~~~.aoni.u.com/Pdfs/SQQ~S/Va1idator_PBr.hf E p (Figure 3).

[-Il G. Battani and 41. Meloni. Interpreteur du language de programmation PRO-
LOG. Technical report, Groupe d'Intelligence Artificielle. Universite d'.Ais-
hfarseilie II. 1973.

1.51 Boris Beizer. Black-Box Testing: Techniques for Funct ional Testing of Soft ware
and Systems. .John Wiley LPt Sons, 199.5.

[6] G. Bernot. 11-C. Gaudel? and B. Marre. Software testing based on formal
specifications. So ft mare Engineering .Journal, 6 (6), Novem ber 199 1.

[i l 1Iarli R. Blackburn and Robert D. Busser. T-VEC: A tool for developing critical
systems. In C'omyass '96: Eleuenth .-innual Conference on Cornputer .4ssumnce.
pages 2.77-249, Gaithersburg, Maryland, 1996. National Institute of Standards
and Tech nology.

[8] Randal E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Cornputers. C-3.5(8) :677-691, August 1986.

Alan Bundy The Computer Modelling of i\.lathem~tical Reasoning. Xcademic
Press. 1983.

Juei Chang, Debra .J . Richardson, and Sriram San kar. Structural specification-
based testing with ..\DL. In Steven J . Zeil, editor. Proceedings of the 1996
In ternational Symposium on Software Testing and analysis. pages 62-70, Yew

York. January 1996. ACM Press.

T. Cheung and S. Ren. Esecutable test sequences and operational coverage
for LOTOS specifications. In Jirn Weeldreyer, editor, Proceedings of the 12th
.4nnunl International Phoenix Conference on Cornputers and Communications,
pages 2-Ki-2.53. Tempe. AR, March 1993. [EEE Corn puter Society Press.

John Joseph Chilenski and Philip H. Newcomb. Forma1 specification tools for
test coverage analysis. ICBSE '94 h-noutledge- Bnsed Software Engineering, pages
.?9-68. 1994.

Iïendra Cooper. Fles-fis predicates. conversation, .lune 1997.

Xancy A. Day. .Jeffrey .J. .Joyce. and Gerry Pelletier. Formalization and analysis
of the separation minima for aircraft in the north atlantic: Cornpiete speciFi-
cation and anaiysis results. Technical Report 97-12, Department of Cornputer
Science. Lyniversity of British Columbia, October 1991.

Department of Deiense. Washington D.C. .\[IL-STD-498 .'iilitnrg Stnnrlnrcl.
Software De~?elopement and Documentation. December 1994.

blichael S. Deutsch and Ronald R. WiIlis. Softuare Quality Engineering.
Prentice-Hall, 1988.

Jeremy Dick and Alain Faivre. Automating the generation and sequencing
of test cases froni model-based specifications. In Forma1 :Clethoris Europe -93.
voIume 670 of Lecture Xotes in Computer Science, pages 268-284. Springer-
i:érIag. 19913.

Michael R. Donat. Automating forma1 specification-based testing. In Michel
Bidoit and Mas Dauchet, editors, T.-1PSOFT '97:Theory and Practice of Soft-
urcire Deuelopment, 7th International Joint Con ference CA A P/E-1 SE! volume
1214 of Lecture Notes in Cornputer Science, pages $33-847. Springer-Verlag,
Aprii 1997.

Michael R. Donat. Xutoniatically generated test irames froni a Q specification
of ICA0 flight pIan iorm instructions. Technical Report TR-98-05, Department

of Compirter Science. University of British Columbia. Vancouver. B.C., Canada.
April 1998.

[;?O] Michael R. Donat. Automatically generated test frames from an S specification
of separation minima Tor the North Atlantic region. Technical Report TR-98-04.
Department of Computer Science. University of British Columbia, Vancouver.
B.C.. Canada. April 1908.

p21] Michael R. Donat and deffrey J. Joyce. Applying an automateci test description
tool to testing based on system level requirements, In 8th =Innual Symposium
of the international Council on Systems Engineering, Vancouver, July 1998.
International Coiincil on Systems Engineering. http://www.incose.org.

[-221 X. S . Eickelmann and Debra .J. Richardson. An evaluation of software test
environment architectures. In 18th lnternational Con ference on So/tware Engi-
neen'ng. pages :K3-365. Berlin - Heidelberg - New York. March 1996. Springer.

[i?3] Eurocontrol. Opernting Pmcerlures for .-LIS Dynamic Daln. May 1997.
E-ATCH IP draft AIS.ET l.ST05.1000-DEL-0 1.

[24] R. Ferguson and B. Icorel. Software test data generation using the chaining
approach. In lnternational Test C,'onference. pages 703-709, Altoona. Pa.. US.-\.
October 199.5. IEEE Corn puter Society Press.

[;?JI Uichael R. Garey and David S. .Johnson. Cornputers and Intrnctability: -4
Guide to the Theor-y of 5P-Completeness. 1V.H.Freeman and Company. San
Francisco. 1979.

PL61 &larie-Claude Ciaudel. Testing can be formal. too. In T;I PSOFT: 6th Inter-
national .Joint Conference on Theory and Practice O/ Softwcrre Decelopment.
volume 915 of Lecture :Votes in C'omputer Science, pages 82-96. 1995.

['2Ï] C . George, P. Haff, K. Havelund, A.E. Haxthausen, R. Milne, C. Bendis Xiel-
son. S. Prehn. and KR. Wagner. 'The Raise Specijcation Language. Prentice
Hali. New York, 1992.

[-281 M.J.C. Gordon and T.F. hrelharn. editors. rntroduction to HOL: .4 l h e o ~ m
proving environment for higher order logic. Cambridge University Press, 1993.

[29] -1nthony Hall. Industrial practice: What is the forma1 methods debate anyway'?
IEEE Computer, 29 (4) :22-23, April 1996.

[30] 1. Hayes and C. Jones. Specifications are not (necessarily) esecutable. IEE
Software Engineering .JO urnal, A(6) ::330-338, Novem ber 1989.

[3 L] Ian Hayes. Specification directed module testing. IEEE Tmnsactions on Soft-
ware Engineering. 12(1):124- 133. 1986.

[:32] Steffen Helke, Thomas Neustupny, and Thomas Santen. Autornating test
case generation From Z specifications wit h Isabelle. In Jonathan Bowen. Sii ke
Hinchey. and David Tiil, editors. ZUMw97: The Z Formai Specification iVota-
tion. 10th international Conference of Z Users, volume 1212 of Lecture .Votes
in Comput~r Science. Springer-Verlag, April 199'7.

[33] R. M. Hierons. Extending test seqiience overlap by invertibility. The Cornputer
.Journal. 39(4 j::3'L.j-XlO. 1996.

[:Id] Hans-Martin Horcher. Improving software tests using Z specifications. In
Jonathan P. Bowen and Michael G. Hinchey, editors, ZCrM '95 9th In!erna-
tional Conference of Z lrsers. The Z Forninl Specificntiorr Notation. volume
961 of Lecture Notes in Computer Science. pages 1.5'2-166. Springer-L'erIag.
19%.

[35] IEEE Standards Association. Washington D.C. 519-1983 (Rl991) E E E Stnn-
&rd for Software Test Documentation. 1% 1,

[36] International Civil Aviation Organization. Montréal. Canada. Rules of

the -4ir and .Air Trafic Ser~pices (P.-lrVS-R.4C Doc 4444). Sovember 1994.
http://\v\vw.icao.int .

[37] C. B. Jones. Systematic Software Deuelopment (ysing VDM (2nd edition). Pren-
tice Hall. 1990.

[38] JeRrey J . .Joyce. TCEL. Proprietary document. April 199'7.

[39] Jeffrey J . Joyce, Nancy Day. and hlichael R. Donat. S: -4 machine readable
specification notation based on higher order logic. In Thomc= F. hlelham and
Juanito Carriilleri. editors. Higher Order Logic Theorem Pro~*ing and Its .-ippli-
cations, 7th International CVorkshop. volume 8.59 of Lecture .Votes in Computer
Science, pages 285-299. Springer-Verlag, 1994.

[-LOI b1. Karnaugh. The map method for synthesis of combinational logic cir-
cuits. -4IEE Transactions, Part 1 Communication and Electronics, 72593-599.
November 19.53.

[41] Gilbert Laycock. Formal specification and testing: A case study. Software
Testing, Verification and Reliability, 2(1):7-23, May 1992.

LU] Gilbert Laycock. The Theory and Pmctice of Specification Based Soflwnre
Testing. PhD thesis. University of Sheffield, April 199.3.

[43] G. Luo. A. Das. and G. v. Bochmann. Software testing bas& on SDL speci-
fications wit h Save. [EEE Tmnsactions on Software Engineering, 20(1):72-87,
January 1994.

[-id] lan hlacColl. David Carrington. and Philip Stocks. An experiment in
specification-based testing. In K. Ramamohanarao. editor. 19th .-lustralasian
Cornputer S c i ~ n c e Conference Proceedings (.-lCSC196)? pages 1.59-168. 1996.

[45] Brian Marick. The Cm/. of Soft w a ~ -Tesling Pren tice Hall. Englewood Clitfs.
N.J. 1995.

[46] T. d . Ostrand and XI. J . Baker. The category-partition met hod for specifying
and generating functional tests. Communications of the .-\C'.CI. 31(6):676-686.
.lune 1988.

[4T] Lawrence C. Paulson. Designing a theorem prover. Technical Report 192.
Lyniversity of Cambridge. University of Cambridge. Corn puter Laboratory. Xew
hluseums Site. Pembroke Street. Cambridge CB-L 3QG. England. May 1990.

[4P] Lawrence C. Paulson. Designing a theorem prover. In ficindbook of Logic in
C'omputer Science. voIume 2 . Clarendon, 199'2.

[49] Lawrence C . Paulson. .\IL /or the IChrking Programmer. Cambridge CTniversity
Press. second, paperback edition. 1992.

1501 Lawrence C. Paulson. Isabelle: :\ generic theorem prover. Lecture .Voles in
Computer Science, 825, L994.

[5l] David Poole. Alan Mackwort h , and Randy Goebel. C,'onlputnt ional Intelligence.
Oxford University Press, January 1998.

[52] Debra .J. Richardson, S. Leif-.\ha. and T. O. OMaIley. Specification-based
Test Oracles For Reactive Systems- In Proceedings of the 14th International
C'on ference on So~twure Engineering, pages 105-1 18. hlay 1992-

[SR] Debra J. Richardson, T. O. OoMalIey, C. T. Moore, and S. L. Aha. Develop
ing and Integrating PRODAG in the Arcadia Environment. In Proceedings of
the FiBh -4CM SIGSOFT Symposium on Software Deuelopment Enuironments,
pages 109- 1 19' Decern ber 1992.

[54] Debra J . Richardson and M. C. Thompson. An analysis of test data selection
criteria using the RELAY model of fault detection. IEEE Transactions on
Soft toare Engineering? 10(6):.533-5-53. J une 1993.

[Zi] Debra J . Richardson and Alexander L. Wolf. Software testing at the architec-
tural Ievel. [n .Joint Proceedings of the SlGSOFT '96 Workshops. Part 1, pages
63-71, New York. October 1996. ACM Press.

[56] RTCA. Inc. and EUROCAE. DO-178B. Software C'onsicierntions in -4irbourne
Systerns and Equipment Certification. 12B edition. December 199'2.

[5Ï] S. Owe. S. Rajan. J. M. Rushby. N. Shankar. and M. K. Srivas. PVS: Com-
bining specification. proof checking, and mode1 checking. In Rajeev M u r and
Thomas A. Henzinger. editors. Proceedings of the Eighth International Con-
f e ~ n c e on Computer -4ided I.ér$cntion CAV. volume 1102 of Lecture ,Votes
in Cornputer Science. pages 4 1 1-4 1-1. New Brunswick. X.J. USA. .J uly/.August
1996. Springer-Verlag.

[54] Christian P. Schinagl. VDbI specification of the stearn-boiler cont rol using RSL
notation. In .Jean-Raymond .A brial, Egon Borger. and Hans Langmaack. edi-
tors. Formd :\lethods for Industrial ;Ipplications: Specifying and Progrrrmming
the Steam Boiler C'ontro. volume 116.5 of Lecture :Votes in Computer Science.
pages 428--LX?. October 1996.

[59] Ian Sommerville and Peter Sawyer. Requimments Engineering. John LViley S;

Sons. Inc.. Chichester. 1991.

[60] Space and Naval \Varfare Systems Commsnd. Washington D.C. DOD-STD-
2167-4 Militnry Standard. De,fense Systern Software Deoelopement. February
1988.

[6 11 J . llichael Spivey. (Tnderstanding 2: -4 Spee$cntion laquage and its formal
semantics. Cambridge University Press. 1988.

[62] Phi1 Stocks and David Carrington. -4 framework For specification-based testing.
IEEE Transactions on Software Engineering. 22(ll):ITI-793. November 1996.

[63] Tadeusz S t rzemecki. Polynomial-time algorit hms for generation of prime im-
plicants. COMPLESITY: Journal O/ Compledy, 8~37-63, 1992.

[64] hl. C. Thompson, Debra .J. Richardson. and L. Clarke. An information Row
model of fault detection. In Thomas Ostrand and Elaine Weyuker, editors,

Proceeciings of the International Symposium on Software Testing and .4nalyy5:is,
pages 182-192, Xew Ybrk. NY, USA, Jiine 1993. ,-\CM Press.

[G5] .J. b a s . K. Miller. and .J. Payne. Automating test case generation for coverages
required by F:LA standard DO-l'i(3B. In C.'ompirters in .-temspace 9, San Diego.
C.A. October 199.3. American lnstitute of Aeronautics and Astronautics.

[66] rL Watanabe and K. Sakamura. A specification-based adaptive test case gen-
eration strategy for open operatirig system standards. In 18th International
C o n f e ~ n c e on Software Engineering. pages 8 1-89, Bertin - Heidelberg - 'iew

York. March 1996- Springer.

[6T] Elaine Weyuker. Tarak Goradia. and Ashutosh Singh. Automatically gener-
ating test data from a Boolean specification. IEEE Transactions on Softicare
Engineering, 20 (5) :3.5:3-X3. May 1994.

Appendix A

Rules for Argument-Based

Conjunct ions and Disjunct ions

The asioms below define the semantics of the Q phrases ' ' each of ' ' and ' ' any

of."

V x . I. fn..Lfap (COILIS1: 1) fn = CONS (fn x) (M a p f fn)

V fn..Uap !VIL fn = :VIL

.-1E-CTe : t + (t) l i s t

V P.1.,4E-Ue (P (E.4CH-OF 1)) = . - t E A I x (rlE-lie P) 1

V P. Q.A E-I;é (P Q) = -4 E-Mx (. L I E-Lie P) (-4 E-Ue Q)

b' P.A E-Cie P = [P l . where P is an atom

.-t E-C'a : t -+ (t) l i s t

V P. Z.-4E-Ua (P (.4:VY-OF [)) = -4 E-Vx (.4 E-t!?(t P) 2

V P. Q..-lE-(ra (P Q) = .4E_Mx (4E-lra P) (-4 E-Ua Q)

V P..-tE-(;a P = [P l , where P is an a tom

Appendix B

Automatically Generated Test

Frames for the Steam Boiler

Control

The test frarnes presented in t h i s appendis were automatically generated froni an

S specification of a portion of Schinagl0s VDXI style RSL specification for Abrial's

steani boiler specification problem.

(:t) Exists-unique (P:t -> bool) :=

(exists v.P v)

/\ (fora11 vl-forall v2.P vl /\ P v2 => (vl = ~ 2)) ;

inmess-ok : bool ;

:PUMP;

: STATE :

:message :=

PumpState :(PüMP # STATE)

I PumpCtrState : (PUP1P # STATE)

I Level :num

1 Steam :num

I SteamBoilerWait ing

I PhysicalUnitsReady

I PumpRep :PUnP

I PumpCtrRep :PmP

I PumpFlrAck :PüMP

I PumpCt rFlrAck : PUMP

I LevelRep

1 SteamRep

1 LevelFlrAck

1 SteamFlrAck:

InMess : (message) set ;

Vait ing . Fteady : bool :
st at es CVait ing ; Readyl :

:MODE;

Uorking , Repairing, Broken : MODE;

fora11 P.States [P Working; P Repairing: P Broken];

% Hst = software opinion of the state of the control unit

% Pst = software opinion of the state of the p u p

Mst ,Pst : PUMP -> MODE -> bool;

% qst = software opinion of the state of the water level indicator

% Vst = software opinion of the state of the steam indicator

qst,Vst : MODE -> bool;

MaxUater : num;

MaxSteam : n u ;

SetInPIessOK :=

inmess-ok <=>

(f oral1 p.

(Exists-unique (\s.PumpState(p, s) In InMess)) /\

(Exists-unique (\s.PiimpCtrState(p, s) In InHess))) /\

(Exists-unique (\l.Level I In InMess)) /\

(select 1.Level 1 In InHess) <= MaxWater /\

(Exists-unique (\lesteam 1 In InHess)) /\

(select 1.Steam 1 In InHess) <= MaxSteam /\

(SteamBoilerWait ing In InHess ==> Wait ing) /\

(PhysicalUnitsReady In InMess ==> Ready) /\

(fora11 p.

(PumpRep p In InMess => Pst p Repairing) /\

(PumpCtrRep p In InMess ==> Mst p Repairing) /\

(PumpFlrAck p In Irûless -> Pst p Broken) /\

(PumpCtrFlrAck p In InKess => Ust p Broken)) /\

(LevelRep In InHess => Qst Repairing) /\

(SteamRep In InNess --> Vst Repairing) /\

(LevelFlrAck In InHess => Qst Broken) /\

(SteamFlrAck Ic InKess => Vst Broken);

B.2 Base Test Rames

-Test Frame 1.1 :

Stimuli Response

1. 7 inmess-ok

-Test Frame 1 .t :
r

Stimuli

L. PumpStnte (p . v l -) E InhIess

2. PumpState (p . vl") E [nhIess

3. 1 (v l ' = v2')

-Test Frarne 1.5:

Respome

1. 1 inmess-ok

-Test Frarne 1.4:

Stimuli

1. LevelFlr.4ck E InXless

2. 1 (Qst Broken)

-Test Frame 1.3:

Response

1. - inmess-ok

Stirnuii

r

Stimuli

Response

Res ponse

1. StearnFIr-Ack InMess

2. 1 (\'SC Broken)

L. -. inmess-ok

-Test Frame 1.6:

Stimuli

1. LevelRep E InMess

2. 7 (Qst Repairing)

-Test Frame L -9:

-Test Frame 1.7:

Response

1. 7 inmess-ok

Stimuli

1 . PumpCtrFlrr\ck p' E IniLIess

2 . 7 (Mst p' Broken)

-Test Frame 1-10:

~

Response

1. 7 inmess-ok

Stimuli Response

1. PumpRep p' E IniLIess

2. -. (Pst p' Repairing)

-Test Frame 1.8:

1. PumpCtrRep p' E InMess 1 1. 7 inmess-ok

Stimuli

Stimuli

1. PiimpFlr-Ack p. InhIess

2 . 7 (Pst p' Broken)

Response

Response

1. 7 inmess-ok

I

-Test Frame 1.1 1:

Stimuli

1. PhysicalUnitsReady E IniLIess

Response

1. 7 inmess-ok

-Test Frame 1.12:

-Test Frame 1.13:

Stimuii

1. SteamBoilerkVaiting f InNess

Response

1. 7 inmess-ok

-Test Frame 1-14:

Stimuli

1. 1 (v l = v2)

2. Steam v l E IniLIess

3. Steam v l f InhIess

Stimuli

Response

1. 7 inmess-ok

1- 1 (V I - = v2')

'1. PumpCtrState (p . vL') E Inhless

3. PumpCtrState (p . v?') f InMess

-Test Frame 1-15:

Response

1. 7 inmess-ok

-Test Frame 1.16:

Stimuli

1. V v . 7 (PumpState (p . v) E inhless)

Response

1. 1 inmess-ok

Stimuli

1. V v . 1 (PumpCtrState (p , v) E InilIess)

Response

1. 1 inmess-ok

-Test Frarne 1. L i :

Stimuli

1. V v . 1 (Level v f InMess)

Response

1. 7 inmes-ok

-Test Frame L. 18:

Stimuli

1. V v . 1 (Steam v E InMess)

Response

1. 7 inmess-ok

-Test Frame 1.19:

1 1. -. ((select tSteam 1 E [niCIess) < iL[axStearn) L. 1 inmess-ok

-Test Frame 1-20:

1 Stimuli

1. 7 ((select 1-Level I E 1nlLIes.s) < MmWater)

Response

1. 1 inmess-ok

-Test Frame 2.1:
--

Stimuli
- - - -

1. V p.3 v-PumpState (p . v) E IniL[es

2. V vl. V v'l. (V p. 7 (PtrrnpState (p . v l) E Inhless) V 7

(PumpState (p . v2) E Inh[ess)) V (v l = v2)

3. V p.3 v-PumpCtrState (p . v) € InMtss

4. V VI. V v.). (V p. 7 (PurnpCtrState (p . v l) E Inhrfess)

V -, (PumpCtrState (p . v2) E I n M e s)) V (v l = v2)

5. Level v f InMess

6. V el. V v2. 7 (Level v l f Inhless) V 7 (Level v2 €

InBIess) v (vL = v2)

7 . (select 1.Level 1 E [nhiess) < MaxWater

S . Stearn v' E 1nMcss

9. V v l . V v2. 7 (Steam v l E 1niLles.s) V 1 (Stearn v2 E

InLIess) V (v l = v2)

10. (select 1-Steam 1 E InhIess) < .ClixuStearn

11. Waïting

12. 7 (PhysicalLnitsReady E [nhIess)

13. V p.- (PumpRep p E InMess) v Pst p Repairing

14. V p.7 (PurnpCtrRep p f lnhfess) V Mst p Repairing

15. V p.-. (PumpFlr-Ack p E inMess) v Pst p Broken

16. V p.- (PumpCtrFlr-4ck p E InMess

17. Qst Repairing

18. Vst Repairing

19. 7 (LevelFirAck E Inhiiess)

20. -, (StearnFirAck E Inhless)

) v hlst p Broken

-

Response

Stimuli

1. V p.3 v.PumpState (p , v) E inMess

2. V v l . V v2. (V p. 7 (PumpState (p , v l) E [nhiess) V 7

(PurnpState (p . v2) E IniLIess)) V (v 1 = v2)

3. V p.3 v,PumpCtrState f p . v) E IniCIess

4. V vl. V v2. (V p. - (PumpCtrState (p . vl) f lnhfess)

V -. (PumpCtrState (p . vi?) f inhleçs)) V (v l = vZ)

5. Level v f Inhfess

6. V v 1. V v.). -.I (Level v l f Inhless) V - (Level v:! E

inMess) V (v l = vi?)

7. (seIect LLevel 1 f InhIess) < MaxbVater

S. Steam v' E InMess

9. V vl. V v2. 7 (Steam vl E in&iess) V -, (Steam v:! E

InSIes) ii (v l = v2)

10. (select 1.Steam 1 E inkless) 6 blaxSteam

11. - (SteamB~iler~C'aiting E InMess)

12. Ready

13. V p.- (PurnpRep p E InMess) v Pst p RepAnng

1-1. V p.-, (PurnpCtrRep p E Inhless) V Slst p Repairing

15. V p - l (PumpFlrAck p E InMess) v Pst p Broken

16. V p.- (PumpCtrFlrAck p E InMesç) v Mst p Broken

If. 7 (LevelRep f inMess)

18. 7 (SteamRep E Inkless)

19. Qst Broken

20. Vst Broken

Response

1. inmess-ok

B.3 Differentiated Test Frames

-Test Frame 1.1:

1. Level v'' E Inh ies

2. Level v"' E [nhless

:3. 7 (VI' = \+'")

4. (select 1.Level 1 E Inhless) 6 MaxWater

5. (select 1.Steam I E inhless) < MaiStearn

6 . Waiting

7. 1 (PhysicdVnitsReady E Inhless)

P. Qst Repairing

9. Vst Repairing

10. -, (LevelFlr,\ck f tnhless)

11. 7 (SteamFLr-4ck E Inhless)

1.). V p. V vl'. 1 (PumpState (p , vl') E IniCIess) V (V v.".

7 (PumpState (p . v2') E Inh ies) v (vl' = v2'))

13. V p'.- (PurnpCtrF1r:ick p' E InMess) v hlst p' Broken

14. V (PumpFlrAck p' E InSIess) v Pst Broken

1.5. V (PumpCtrRep p' E Inhless) V Mst p' Repuring

16. V pf.- (PumpRep p' E InMess) V Pst p' Repairing

17. V vl. V v2. (v l = v2) V -) (Steam v l E InhIess) V 1

(Steam v2 E Inbless)

18. V vl'. V vl'. (vl ' = v2') V (V p. 7 (PumpCtrState (p .
v i f) E InMess) v -i (PumpCtrState (p . v2') E Inilless))

19. V p.3 v.PumpState (p , v) E Inhless

20. V p.3 v.PumpCtrState (p , v) E inh'iess

21. Level v"" f Inhless

22. Steam v' E In~Mess 19 1

Res ponse

-Test Frame 1.2:

1. PurnpState (p"' . vl") E InMess

2 . PurnpState (p"' . v2") E InlLless

3. 1 (VI" = v?")

-4. (select I.Level 1 InhIess) < h1axWater

5. (select I.Steam I E InhIess) < MaxSteam

6. Waiting

7 . 7 (PhysicalUnitsReady E InlLIess)

5. Qst Repairing

9. i'st Repairing

10. 7 (LevelFlrAck E Inhless)

i l . 7 (SteamFlrhck E InMess)

12. V pl.-. (PumpCtrFlrAck E Inhiesç) v hlst Broken

1.3. V (PurnpF1r:kk p' E InMess) v Pst p' Broken

14. V (PurnpCtrRep E InbIess) v Mst p' Repairing

1.5. V p'.- (PumpRep p' E In%Iess) v Psc p' Repétiring

16. V v l . V v2. (v l = v2) V 7 (Stearn v l E [nh!ess) V 7

(Steam v2 E InBIess)

17. V VI'. V v2'. (vl ' = v2') V (V p. 7 (PurnpCtrState (p ,

vl') E InhIess) V 1 (PurnpCtrState (p . v3') E InhIess))

18. V p.3 v.PurnpState (p , v) E InMess

19. V p.3 v-PurnpCtrState (p , v) E InbIess

20. Level v"" E InMess

21. Steam v' E IniCIess

I I . V vl. -. (Level v l Inbless) v (V v2 .1 (Level v3 E

In-Mess) V (v l = v?))

192

Response

Stimuli

1. StearnFlrAclc E tnMess

2. (select 1.Level 1 E InilIess) < MauWater

3. (select I.Steam 1 E InMess) < hIaxSteam

4. Waiting

.5. 1 (PhysicaiUnitsReady f InMess)

6 . Qst Repztiring

7. Vst Repairing

S. 7 (LevelFir-Ack E IniCIess)

9. V p. V vl'. -t (PumpSta te (p , v

7 (PiimpState (p . d) f InSIess) V (vl ' = ~ 2 '))

LO. V pl.- (PumpCt rF l rhck p' E InMeçs) v Mst Broken

I l . V p'.- (PumpFlrAck p' f InhIess) v Pst p' Broken

1.'. V (PumpCt rRep E InMess) v Mst p' Repairing

L3. V p ' . ~ (PurnpRep f inBIess) v Pst p' Repairing

L-1, V vl. V v2. (v l = v2) V 7 (Stearn v l E in&fess) V

(Steam v-l E InhIess)

15. V vl'. V v2'. (v l ' = v?') V (V p. 1 (PumpCtrSta te (p .
vl ') E In31ess) v 7 (PumpCtrSta te (p . v.)') E 1niLIes.s))

16. V p.3 v.PumpState (p . v) E InhIess

LC. V p.3 v.PumpCtrState (p , v) f Inbkss

LS. Level v" E InMess

L9. Steam v"' E Inhless

.'O. V vl . 7 (Level v l E Im\[ess) v (V v2.7 (Levei v'2 E

InMess) V (vl = v2))

Response

Stimuli

1. LevelFlrjlck E IniCIess

2 , (setect 1.Levek 1 E InMess) < MauWater

3. (select IStearn 1 E Inhless) < MïxuSteam

4. Waiting

3. 7 (PhysicalUnits Ready f InhIess)

6. Qst Repairing

7 . C'st Repairing

S. 7 (SteamFlr-4ck E InBies)

9. V p. V VI'. 7 (PurnpState (p . VI') E fnhfess) V (V vZ'.

7 (PurnpState (p . v2') E InXless) v (VI ' = v l '))

10. V p'.l (PumpCtrFIr.4ck f InMess) v Mst P' Broken

i l . V p'.- (PumpFlrJlck p' E InMess) v Pst p' Broken

1'1. V p'.- (PumpCtrRep p' E InlLiess) v >Ist p' Repairing

13. V p'.- (PumpRep p' f InMess) V Pst p' Repairing

14. V v l . V v2. (v l = v2) V 1 (Steam v 1 E [nhfess) V 7

(Steam v2 E inMess)

1.5, V vl'. V v2'. (v l ' = v2') V (V p. 7 (PumpCtrSta te (p .
VI') E InhIess) v 1 (PumpCtrSta te (p . v2') f inMess))

18. Level v" E [nhIess

19. Steam v"' E inkless

'>O. V v l . 7 (Level v l E InMess) V (V v2.7 (Level v.2 €

Inhless) V (v l = v 2))

-Test Frame 1.5:

Stimuli

1. SteamRep E InMess

2. (select 1.Levcl I E InibIess) < MavPVater

3. (select IStearn 1 f Inhless) < bIavStearn

1. Fvaiting

5. -, (PhysicaiUnitsReady E InhIess)

6. Qst Repairing

7. 7 (LevelFlr.4ck E InMess)

8. \.SC Broken

9. V p. V vl'. 7 (PumpState (p . vl ') E InhIess) V (V v'l'.

7 (PumpState (p . v2') E InMess) V (v l ' = v2'))

10. V (PumpCtrFlr.4ck p' E InhIess) v Mst Broken

I l . V (PumpFlr-4ck P' E InMess) v Pst P' Broken

12. V (PumpCtrRep p' E InMess) v Mst Repairing

13. tJ pf.- (PumpRep p' f Inhless) v Pst p' Repairing

14. V VI. V v'l. (v l = v2) V -, (Steam v l E InhIess) V 1

(Steam v? E InhIess)

15, V vl'. V v'l'. (v l ' = v2') V (V p. -. (Piimpctrstace (p .

v l ') E InMess) V 7 (PumpCtrState (p , v2') E Inhfess))

16. V p.3 v.PumpState (p , v) E [nhkss

17. V p-3 v.PumpCtrState (p . v) E Inhies

18. Level v" E InlCIess

19. Steam vu' E Inbless

20. V vl. -, (Level v l E InMess) V (V v2.7 (Level v2 €

InMess) V (v l = v2))

1. 1 inmess-ok

Stimuli

4- Fc'aiting

.S. 7 (PhysicalUnitsReady f InAIess)

6. C'st Repairing

7. Qst Broken

8. 1 (SteamFlr.4ck E in i l les)

9. V p. V vl'. 7 (PumpState (p , vl') E Inhless) V (V v2'.

-. (PumpState (p . v2') E InMess) v (v l ' = v2'))

10. V p'.- (PurnpCtrFlr.4ck E Inbless) v Mst p' Broken

11. V pl.- (PumpFlrAck p' E inhless) v Pst p' Broken

1.). V pl.- (PumpCtrRep p' InBless) v BIst Repairing

13. V pl.- (PumpRep p' E InMess) v Pst Repairing

1-1. V v l . V v2. (v l = v2) V 1 (Steam v l E [nhless) V

(Steam v.' E Inhless)

1.5. V vl'. V v2'. (v l ' = v2') V (V p. 7 (PumpCtrSta te (p .
vl ') E inhless) v -, (PurnpCtrState (p , v2') E InMess))

18. Level v" E Inhless

19. Steam vu' E Inhfess

20. V v i . 1 (Level v t E Inh ie s) v (V v2.- (Level v2 E

Inbless) v (v l = v2))

- -

1. PumpCtrFlrAck pu' E InhIess

2. 7 (Mst Broken)

3. (select 1.Level I E InhIess) 6 Ma?cW.ater

4. (select 1.Steam 1 f InMess) 6 'claxStearn

.5. LVaiting

6. 7 (PhysicalCinitsReady f InhIess)

7. Qst Repairing

S. C'st Repairing

9. 7 (Leve1Flr:lck E Inhtess)

10. -. (SteamFlr.4ck f InXIess)

11. V p. V vl'. ? (PumpState (p , vl') f InhIess) V (V v2'.

7 (PurnpState (p . v.") E Inhless) V (v l ' = ~ 2 '))

12. V p'.- (PumpFIrAck p' E InMess) v Pst p' Broken

13. V (PumpCtrRep P' E InbIesç) v Stst p' Repairing

14. V pl.- (PurnpRep p' E Inhiess) v Pst p' Repairing

1.5. V vl . V v'l. (v l = v2) v 7 (Steam v l f inhtesç) v

(Steam v2 E InMess)

16. V vl'. V v2'. (v l ' = v2') v (V p. 7 (PumpCtrState (p .
v i t) E ldless) v 7 (PumpCtrState (p , v.)') E InhIess))

L i . V p.3 v.PurnpState (p . v) f IniCIess

LB. V p.3 v.PurnpCtrState (p , v) E InhIess

19. Level v" E InBfess

20. Stearn v"' E InMess

21. V vl. -V (Level v l E IniCless) V (V vL.7 (Level v2 E

inMess) v (v i = v2))

--

Response

-Test Frame 1.8:

1. PiimpFlrhck p"' E InBIess

2. -, (Pst Broken)

3. (select 1.Level I E InBIess) < Max\ICrater

4. (select IS team 1 f InhIess) < >Ia..Steam

5. Waiting

6 . -, (PhysicdGnitsReady E inhless)

1. Qst Repairing

S. Vst Repairing

9. 1 (LevelFlr-4ck E InhIess)

10. 7 (SteamFlr-4ck f inMess)

11. V p. V vl'. 7 (PumpStnte (p . V I ') E InMess) v (V v2'.

7 (PumpState (p . ~ 2 ') E InMess) V (v l ' = ~2'))

12. V p ' . ~ (PumpCtrFlr-\CL p' E tnMess) v Mst p' Broken

13. V pI.1 (PurnpCtrRep p' E InlCIess) v Mst p' Repairing

14. V pl.- (PurnpRep p' f tn4Iess) v Pst p' Repairing

1.5. V vl . V v l . (v l = v2) V 7 (Steam v l E InBIess) V 1

(Stearn v2 E InhIess)

16. V vl'. V v2'. (v l ' = v2') V (V p. 7 (Pumpc t r s t a t e (p ,

vl ') f InhIess) V 7 (PumpCtrState (p , v2') E Inhless))

18. V p.3 v,PumpCtrState (p , v) E InhIeçs

19. Level v" E Inbfess

20. Steam v'" E 1nh.les.s

21. V vl. (Level v l E [nkIesç) v (V v2.7 (Level v2 E

inhfess) V (v l = v:'))

Response

1. 7 inmess-ok

Stimuli

1- PumpCtrRep p"' E InMess

2- - (blst p"' Repairing)

3. (select 1-Level 1 E InhIesç) 6 MaxPVater

1. (select I-Stearn 1 f Ink[ess) 6 hIciuSteam

5 . PVaiting

6 . 7 (PhysicalLTnitsReady E 1nMes.s)

7. Qst Repiring

8. Vst Repairing

9. -t (Leve1FIr:kk f InMess)

10. 9 (SteamFlr.4ck f InMess)

11. V p. V vl'. 7 (PumpState (p , vl') E IniCIess) V (V v2'.

7 (PumpState (p . v.)') f InhIess) V (VI ' = ~ 2 '))

12. V pl.- (PumpCtrFLr.4ck p' E InMess) v 51st p' Broken

13. V p'-7 (PumpFLr=\ck p' E InMess) v Pst P' Broken

14. V pf.- (PurnpRep E Inhless) v Pst Repairing

1.5. V vl. V v2. (v l = v2) V 7 (Steam v l f [nAIess) V -
(Steam v2 E InMess)

16. V vl'. V Y?'. (VI' = v2') V (V p. 1 (Pumpctrs tace (p ,

v l ') E InMess) v - (PumpCtrState (p . VZ') E InhIess))

II. V p.3 v.PumpState (p . v) f Inhless

18. V p.3 v-PumpCtrState (p , v) E InhIess

19. Level v" € InhIess

20. Steam v"' E IniLIess

21. V v l . 7 (Level v l E InMess) v (V v2.7 (Level v2 E

InMess) v (v l = v2))

1. 1 inmess-ok

-Test Frame 1-10:

Stimuli

1. PumpRep p"' E tnhless

2. 7 (Pst Repairing)

3. (select 1.Level 1 E tnhless) < SIa~LVater

4. (select 1.Steam 1 E [niCl-) S hlaustearn

ri. Waiting

6. 7 (PhysicalUnitsReady E InlCless)

7. Qst Repairing

S. Vst Repairing

9. -. (LevelFlrrIck E tnbless)

10. 7 (StearnFLr:\ck E InMess)

LL, V p. V vl'. -t (PumpState (p . vl
7 (PumpState (p . v2') E InMess

L.). V pr.- (PumpCtrFlr-4ck p' E Inhless) v Mst p' Broken

13. V pl.- (PumpFlr.L\ck p' E tnMess) v Pst p' Broken

14. V pl.- (PumpCtrRep f tnhless) v Mst Repairing

L5. V vl. V v2. (v l = v2) v 1 (Steam v l E [nhIess) V 7

(Steam v2 E Inilless)

16. V vl'. V v2'. (v l ' = v2') V (V p. -. (Pumpct r s ta te (p .
v l ' j € InMess) V 1 (PumpCtrState (p , VZ') E InSiess))

17. V p.3 v.PumpState (p . v) E InMesç

18. V p.3 v.PurnpCtrState (p , v) E [nhkss

20. Steam v'" E Inhless

21. V vl. 1 (Level vL E Inhiess) V (V v2.7 (Level v2 E

inMess) V (v l = v2))

Response

-Test Frame 1.1 1 :

Stirntdi

1. PhysicaiUnitsReady f InMess

2. (select 1-Level 1 E Inhless) 6 hfa..Water

3. (select 1.Stearn 1 E InMess) < hlauSteam

.5. Qst Repairing

6. Vst Repairing

8. 7 (SteamFlr-4ck f InMess)

9. V p. V vl'. -, (PiirnpState (p . vl') E InhIess) V (V v2'.

7 (PurnpState (p , v2') E InMess) ii (v t ' = ~ 2 '))

10. V (PumpCtrFlrAck P' f InhIess) v Mst p' Broken

11. V pl.- (PumpFirAck p' E InMess) v Pst Broken

12. V (PumpCtrRep p' f InhIess) V XIst Repairing

13. V (PiirnpRep p' E InlCIess) v Pst P' Repairing

14. V vl . V v2. (v l = v2) V 7 (Stearn v l E Inhless) V -t

(Steam v'l f InMess)

15. V VI'. V v2'. (v l ' = v'l') V (V p. -, (PumpCtrState (p ,

vl ') E InhIess) v - (PurnpCtrState (p . v2') E InXIess))

16. V p.3 v.PumpState (p , v) E Inhless

17. V p.3 v.PurnpCtrState (p . v) E InhIess

18. LeveI v" E 1nMes

19. Stearn v"' f Inhles

20. V vl. 7 (Level v l E ImLless) v (V v2.1 (Level v2 E

InMes) v (v l = v2))

Response

-Test Frame 1.12:

Stimuli

t. SteamBoilerWaiting E InhI-

2. (select I.Level 1 E InMess) < hlau\'Vczter

3. (select I.Steam t E Inh le s) 6 MaxSteam

4. Ready

5. Qst Repairing

6. Vst Repairing

7. 7 (LevelFlr.4ck E InMess)

8. 7 (SteamFIrAck E InJIess)

9. V p. V vif . 7 (PurnpState (p . vl') E InMess) V (V Y?'.

-, (PiimpState (p . v2') E InMess) V (v l f = ~ 2 '))

10. V (PumpCtrFlrAck pf f Inltless) v Mst P' Broken

L i . V p'.- (PumpFlrAck p' E inlCIess) v Pst p' Broken

1.). V (PumpCtrRep p' f InMess) v Xlst Repairing

13. V pf.- (PumpRep P' InhIess) v Pst Repainng

1-1. V vl. V vZ. (vL = v2) V - (Steam v l E IniC[es) V -
(Stearn vl' f InMess)

15. V VI', V v2'. (vl ' = v2') V (V p. 7 (PurnpCtrstate (p .
v l f) E InMess) v 7 (PumpCtrState (p , v2') E Inh le s))

16, V p.3 v.PumpState (p . v} E [nhkss

17- V p.3 v.PumpCtrState (p , v) E InMess

18. Level v" E [nhleçç

19. Stearn v"' E InhIess

30- V v l . 1 (Level v l E Inbless) V (V v2.7 (Level v2 E

InlvIess) V (vL = v2))

Response

-Test Frame 1-13:

Stimuli
-. .

1. 7 (d l = VI)')

2, Steam v" E InilIess

3. Steam v"' E InMeçs

4. (select 1.Level I E IniLIess) < b[ax\lVater

5 . (select 1-Steam 1 f InMes) < hIa~Steam

6. Waiting

7. (PhysicdUnitsReady f InhIess)

8. Qst Repairing

9. Vst Repairing

10. - (LevetFlrAck f InMess)

11. 1 (SteamF1r:kk f InMess)

12. V p. V vl'. 7 (PumpState (p . vl') E Inhless) v (V v2'.

7 (PumpState (p . v.)') E InlLIess) V (V I ' = v'l'))

13. V p'.- (PumpCtrFlr-Ack E InMess) v Mst p' Broken

14. V pf.-. (PumpFLr.4ck p' E [n h l e s) v Pst Broken

15. V (PurnpCtrRep P' E 1nhIes.s) v Mst Repairing

16. V pf.- (PumpRep E IntCIess) V Pst p' Repairing

17. V VI'. V v2'. (vl' = vl') v (V p. 7 (PumpCtrState (p ,

vl ') E 1nMes.s) v - (PumpCtrState (p , v2') E Inhless))

18. V p.3 v.PumpState (p , v) E [nh.[ess

19. V p.3 v-PumpCtrState (p , v) E inbfess

20. Level v"" E InMess

21. Stearn v' E IntCless

22. V VI. 7 (Level vl E Inbless) V (V v2.- (LeveI v2 E

InMess) v (v i = v2))

203

Response

-Test Frame 1-14:

Stimuli

1. -7 (vl" = V.)f ')

2. PumpCtrState (p" . vl") E InhIess

3. PiimpCtrState (p" . d') E Inhless

4. (select 1.Level 1 E InhIess) < hIauWater

5. (select 1.Steam 1 E InhIess) < S[auSteam

6. Waiting

7. i (PhysicalUnitsReady E IniLIess)

8. Qst Repairing

9. Ç'st Repairing

IO. -7 (LevelFlr.~ck E Inhies)

I l . 7 (SteamFlr,4ck E InMess)

12. V p. V v l ' . 7 (PumpState (p . vl') € inSIes) v (V Y?'.

7 (PumpState (p , v2') f (n3kj.s) v (vl ' = v2'))

13. V (PumpCtrFlr.4ck p' E inilIess) v Mst p' Broken

1-1. V pf.- (PiimpFlrrIck P' f InXless) v Pst p' Broken

i5. V p'.-, (PumpCtrRep f InXiess) V Mst Repairing

16. V pf.- (PumpRep p' E Inkless) v Pst Repairing

17. V vl. V v2. (v l = v2) V 7 (Steam vl f [nhless) V

(Steam v2 f [nhless)

18. V p.3 v.PumpState (p . v) E InhIess

19. V p.3 v-PumpCtrState (p , v) f InhIess

20. Level v"" InMess

2 1. Steam v' € IniLIess

22. V v l . 7 (Level v l E I&Iess) V (V v2.7 (Level v2 E

In%Iess) V (vL = v2))

Response

1. -, inmess-ok

-Test Frame 1-15:

Stimuli

1. V v.7 (PumpState (pl1' . v) E Inhless)

2. (select 1.Level 1 f InMess) < b[a..kVater

:3. (select 1.Steam I E Inhless) < hIicuSteam

4. kVaiting

5. 1 (PhysicalünitsReady E InMess)

6. Qst Repairing

r. Vst Repairing

8, -, (LevelFlr.4ck E h5Iess)

9. 7 (SteamFlr-4ck E InhIess)

10. V p. V vl'. 7 (PumpState (p . vl ') E fnhIess) v (V v?'.

7 (PumpState (p . v?') E InhIess) v (v i t = ~ 2 '))

I I . V p'.- (PrimpCtrFLr-Ack p' E Inhless) v Mst p' Broken

12. V p'.- (PumpFlr.4ck p' E inhIess) v Pst p' Broken

13. tl p'.- (PumpCtrRep p' E InMess) v . C h Repairing

14. V pl.- (PumpRep p' f InhIess) V Pst p' Repairing

15. V vl . V v2. (v l = Y%) V - fstearn v l f [nhfess) V -i

(Stearn v.' E IrihIess)

16. V vl'. V vl'. (v l ' = v2') V (V p. 7 (Purnpctrstate (p .
v i l) € InMess) V 7 (PumpCtrState (p , vl') E InMess))

L i . V p.3 v.PumpCtrState (p . v) € Inhless

18. Level v"" E Inhless

19. Stearn v' E Inhkss

20. V vl . 7 (Level v l E Inhless) V (V vl .1 (Level v2 E

InMess) v (v l = v2))

Response

C. -. inmess-ok

-Test Frame 1.16:

Stimuli

1. V v . 1 (PumpCtrState (p'" . v l € InMess)

2. (select 1.Level 1 E InMess) < MaxWater

3. (select 1.Steam 1 E InMess) < SIzLxStearn

4. Waiting

5 . 7 (PhysicaIUnitsReady E inhless)

6. Qst Repairing

6 . Vst Repairing

S. 7 (LevelFlrAck E inbIess)

9. 7 (SteamFir.4ck € InSless)

10. V p. V vl'. 7 (PumpSta te (p . vl') E IniLIess) V (V v2'.

7 (PumpState (p . vl) ') E InMess) v (VI' = d))

11. V p'.- (PurnpCtrFtrAck p' E inhiess) v hlst p' Broken

12. V p'.- (PurnpFir.4ck p' f InMess) v Pst pr Broken

13. V pI.7 (PumpCtrRep p' E InMess) v hlst p' Repairing

14. V p'.- (PumpRep p' E Inhless) v Pst Repairing

15. V v l . V v2. (v l = v2) V -9 (Steam vl E [nhless) V -,

(Steam v2 E Inhless)

16. V vl'. V vzr. (vl ' = v2') V (V p. 7 (PurnpCtrState (p ,

vl') E InhIess) v 7 (PumpCtrState (p , vl') E Inhless))

17. V p.3 v-PumpState (p , v) € Inhless

18. Level v''" E IniLIess

19. Steam v' E 1nhIess

20. V vl. 7 (Level v l E Inhless) V (V v2 .7 (Level v2 E

InMess) v (v l = v3))

Response

-Test Frame 1.17:

1. V v.7 (Level v E InhIess)

2. (seiect LLevel 1 E IniLIess) < Ma.xWater

:3. (select 1.Steam 1 f lnilIess) < Mausteam

4. Waiting

.5. 1 (PhysicalUnitsReady f [nMess)

6. Qst Repairing

7. i'st Repairing

S. 7 (LevelF1r:kk f Inh Ies)

9. 1 (StearnFlrJlck f InMess)

10. V p. V vl'. 7 (PumpState (p . v i f) E InhIess) v (V v2'.

7 (PumpStnte (p . vl ') f 1nrCIess) v (v l ' = v2'))

11. V p'.- (PumpCtrFlr.4ck E InhIess) v Mst P' Broken

12. V p'.- (PurnpFlr.4ck p' f Inhless) v Pst P' Broken

13. V pr.- (PumpCtrRep p' IniCIess) v SIst p' Repairing

14. V pr.- (PumpRep f In5Iess) v Pst p' Repairing

15. V v l . V v2. (v l = v2) V 7 (Steam vL € InJIess) V

(Steam v2 E Inhless)

16. V VI'. V v2'. (v l ' = v2') V (V p. - (PumpCtrState (p .
vl') f InXIess) v 7 (PumpCtrState (p . v2') E Inhl-1)

17. V p.3 v,PurnpState (p , v) f InlLIess

18. V p.3 v.PumpCtrState (p , vj E InMess

19. V vl. 7 (Level v l E InhIess) V (V v2.7 (Level v2 E

Inhless) v (v l = v2))

10. Steam v' E InivIess

Response

1. 7 inmess-ok

Stimuli

1. V v . 7 (Steam v E InMess)

2. (select 1.Level 1 E [nlCIcss) < IClauWater

3. (select 1.Steam 1 f InMess) < Ma..Stearn

4. Waiting

.S. 1 (P hysicalCTnitsReady E InMess)

6. Qst Repainng

7 . Vst Repniring

S. 1 (LevelFlrtkk E InMess)

9. 7 (StearnFlr-Ack E InMes)

10. V p. V vl'. 7 (PurnpState (p . vl') f InMess) V (V v2'.

7 (PiirnpState (p . v l ') E InlCIess) V (vl ' = v?'))

11, V (PumpCtrFIr-Ack p' E InMess) v Mst p' Broken

12. V (PumpFlr=\ck p' E InhIess) v Pst Broken

13. V (PurnpCtrRep f Inbkss) v Mst P' Repairing

14. V p'.- (PurnpRep P' E In&[ess) v Pst Repairing

15. V vl. V v2. (v l = v2) V 7 (Steam vl f inh'[ess) V

(Steam v:! f InMess)

16. V vl'. V v2'. (vl ' = v2') V (V p. -, (Purnpctrçtate (p .
VI') E InMess) v 7 (PumpCtrState (p , v2') E InhIess))

17. V p.3 v.PurnpState (p . v) f InSIes

18. V p.3 v.PurnpCtrState (p , v) E InhIess

19. Level vr E [nhless

20. V vl. 7 (Level v l f Lru\Iess) V (V v2.7 (Level v2 f

InSless) V (v l = v2))

- -

Response

1. -, inmess-ok

Stimuli

1. -, ((select 1.Steam 1 E inhtess) < Ma~Steam)

2. (select 1.Level 1 f InMess) < SlaukVater

3 . Waiting

4. -, (PhysicdUnitsReady E InMess)

5. Qst Repairing

6. Vst Repairing

7. 7 (LevelFLr-Ack E InMess)

S. 7 (SteamFlr-Ack E InMess)

9. V p. V vl'. 7 (PurnpState (p . vl') E [nhless) V (V v1'.

7 (PurnpState (p . v.)') E InMeçs) v (vl' = v2'))

IO. V (PumpCtrFlr.4ck p' E InMess) v Mst p' Broken

II. V p'.- (PumpFir-4ck p' E [nMess) v Pst p' Broken

11. V pl.- (PumpCtrRep p' E in.l[ess) v hist Repairing

13. V p'.- (PumpRep p' E 1nhIess) V Pst p' Repairing

14. V v i . V v?. (v l = v2) v 7 (Steam v l E InMess) v 7

(Stearn v2 E InMess)

15. V vl'. V v2'. (vl ' = v2') V (V p. - (Purnpctrstate (p ,

vL') E InMess) v (PumpCtrState (p , v1') E Inkless))

16. V p.3 v-Pumpstate (p , v) € ~ n h k s s

17. V p.3 v.PumpCtrState (p , v) f [nhkss

19. Steam vu' E Inbless

10. V vl. -, (Level v l f [nhless) V (V v2.7 (Level v:! E

InMess) V (v l = v2))

Response

Stimuli

1. 7 ((select 1.Level 1 E [nhiess) < hIzcxkVater)

2 . (select I.Stearn I E Ini\iIess) < MaxSteam

13. Waiting

-1. 7 (PhysicalL~nitsReady E I nhtess)

5. Qst Repairing

6. Vst Repairing

7. 7 (LeveIFlrAck E InhIess)

S. 7 (SteamFlrAck E inhless)

9. V p. V vt'. 7 (PumpState (p . v1') E InlLless) V (V v5'.

1 (PumpState (p . v.") E InMess) V (v l ' = v2'))

10. V p'.- (PumpCtrFlrhck E In,Cless) v Mst p' Broken

11. V p'.- (PiirnpFlrAck p' E Inhtess) v Pst p' Broken

12. V p ' . ~ (PumpCtrRep E InMess) V Nst p' Repainng

13. V p ' . ~ (PumpRep E InMess) v Pst p' Repairing

14. V vi. V v?. (v i = v2) v -. (Stearn vl f In81es.s) v 7

(Steam v2 E InhIesç)

15. V vl'. V v2'. (vl ' = v l ') V (V p. - (PumpCtrState (p .
V L ') E Inhless) v 7 (PumpCtrState (p , v2') € InMess))

17. V p.3 v.PumpCtrState (p , v) E Inhless

18. Level v" f Inhless

19. Steam vu' E inMess

20. V v1. -, (Level v l f InMess) V (V v2.7 (Level v2 E

InMess) V (vl = v2))

Response

-Test Frame 2.1:

Stimuli

1. V p.3 v.PumpState (p , v) E inrLIess

2 . V vl. V v2. (V p. - (PumpState (p . v l) E InhIess) V 1

(PumpState (p , v?) f 1nMes.s)) v (v l = v2)

3. V p.3 v.PumpCtrState (p . v) E Inbless

4. V vl. V v l . (V p. 7 (PurnpCtrState (p . v l) E Inhless)

V - (PumpCtrState (p . v2) E InrCIess)) V (v l = v2)

.5. Level v E lnhless

6. V vl. V v'l. 7 (Level v l E InhIess) V 1 (Level v l E

InkIess) V (v l = v:')

7 . (seIect 1-Level 1 E [nhless) 6 hIaxWater

S. Steam v' E Inhiess

9. V vl. V v2. 1 (Steam v l E InXIess) V -((Steam v'l f

InXIess) V (v l = v2)

10. (select I.Steam i E InhIess) < -lia?cSteam

I l . kt'aiting

12. 7 (PhysicalLrnitsReady E Inhless)

13. V p.- (PumpRep p E Inhless) v Pst p Repairing

14. V p.- (PumpCtrRep p E In&ss) v Mst p Repairing

15. V p.- (PumpFLr-kk p E InhIess) v Pst p Broken

16. V p.- (PumpCtrFlr-4ck p E InbIess) v &Est p Broken

17. Qst Repairïng

18. Vst Repairing

19. 1 (LevelFLrAck E Inhless)

10. - (SteamFirAck E InbIess)

21. SteamBoilerWaiting E InMess

Response

-Test Frarne 2.2:

Stimuli
-

1. V p.3 v.PurnpState (p . v) E Inhfess

2. V vl . V v:'. (V p. -. (PumpState (p . v l) € InhIess) V

(PumpState (p . v2) E inhiess)) V (v l = v2)

3. V p.3 v.Pum1 CtrState (p . v) f inhies

4. tl vl. V v2. (V p. (PumpCtrState (p . v l) E [nh[ess)

V - (PumpCtrState (p . v2) E IniLIess)) ii (vl = v2)

.5, Level v E Inhies

6 . V vl , V v2, 7 (Level v l E inh[ess) V 7 (Level v2 E

[nh,Iess) V (v 1 = vZ)

7. (select 1.Level 1 E inhiess) 6 MauCVater

P. Stearn v' f [nhless

9. V vl. V v'>. 7 (Scearn vl E InhIess) v 7 (Steam v1' E

Inh[ess) V (v l = v2)

10. (select 1.Steam 1 E InJIess) < SIaxScearn

11. 7 (SteamBoilerLL'aiting E Inhies)

11'. Ready

(PumpRep p € InMess) v Pst p Repairing

(PumpCtrRep p E Inhless) v hlst p Repairing

(PumpFlrAck p f Inhiess) v Pst p Broken

16. V p.- (PumpCtrFlr-4ck p f inhIess

17. 7 (LevelRep E Inhless)

18. 1 (SteamRep E inMess)

19. Qst Broken

10. Vst Broken

31. PhysicalUnitsReady f inhless

) v Mst p Broken

Appendix C

A Heuristic for the Delta

Problem

This appendis presents a mathematical definition of the Delta Problern from Sec-

tion -4.6 and outlines a proposed heuristic test frame delta algorit hm. The proposed

partiai solution to the Delta Problem also allows the test frame generation process

to accept user mandated tests. thereby providing further controi by test engineers.

A n additional capability of this algorithm is the identification of sorne test frames

which span multiple test classes while allowing for appropriate coverage.

As described in Section 4.6, the Delta Problem is to integrate test frames

previously generated from a specification with new test frames generated from a

changed version of the same specification while satisfying the specified coverage cri-

terion. The original motivation for this problem is the reuse of esisting test frames

after specification changes have occurred. However. if the structural difference be-

tween the two versions of the specification is ignored, t hen whether the existing test

frames were generated automatically or specified manually is of little consequence.

Thus. the integration of user mandated test frames with those test frames prodiiced

irom a specification is an instance of the Delta Problem.

In the context of test frame generation, the Delta Problern is defined as

follows. A prime (') is used to distinguish n e w literals resulting from a requirernents

change from litetals corresponding to the previous version of the requirements.

Let Q.j R be an esisting test frame deriveci from requirements spec-

ification -4. and let Pf.Sf + Rf be a test class of . - I f . where Q and Pt

represent the outer quantifiers of the test frame and test class. respec-

tivel. The antecedent of the existing test irame is represented by f . R

represents the consequent of the esisting test frame. S' represents the

antecedent of the test class to which the esisting test frame might be-

long. R' represents the consequent of this test class. The Delta Problem

can be espresseci as the following two questions:

1. IS Q.f R still a valid test? i-e.. Does .-If imply Q./ * R'T

2. C'an Q-f R be incorporated into a new set of test frames? hJore

precisely, if Q.1 3 R is implied by the test class Pf .Sf =+ R'. which

of the prime implicants oi S' is represented by f'I

Since test class normal form is not canonical, it is possible that the esisting

test frame is valid. but is not implied by any one test class. In this situation,

Question 2 above is irrelevant and the existing test frame cannot be incorporated into

the new set of test frames. Thus. although confirmation of Question L is valuable.

it does not assist in integrating an esisting test frame with a new test franie set.

The first part of Question 2 is represented formally as the conjecture:

(P 'S ' + R') + (QJ =. R)

If Conjecture (C.1) is a theorem. then the test frarne is still valid and stiould be addecl

to the initial set used by the coverage scheme. This conjecture is unclecidable. in

general. However. if a reasonable proportion of the instances of this conjecture that

are triie cotild be proven aiitomatically. t hen this woiild provide a partial solution

to the Delta ProbIem.

The following theoreni hirits at a partid solution.

w here P and Q are seqiiences of quanti fiers and P' is the logical diial of quantification

P t . i-P.. P'.S = - (P t . - 1) .

Thus. a proof of Conjecture (C. 1) can be achieved by proving the ïollorving

-4 heuristic algorithm for attempting a proof of (C.3) is based on the assump

t i o n that most changes are small and that variables quantified by Q are sirnilady

quantified by P f . The heuristic is suggested by esamining a particular proof by

contradiction of the trivial theorem (Vr, 3 y.E(x, y)) + (Vr. 3 y.E(t. y)).

-(Vz. 3y.E(r. y)) + (Vx. 3 y.E(x. y))

= (Vz.3y.E(r. y)) A -(Vr.3~.E(c. y))

= (Vx. 3 y-E(x. y)) A (3 x.V y-- E(r. y)) -

This illustrates that when the expressions within the quantifiers, represented by

E above. are sirnilar. an appropriate rnatching of e.uistentially quantified variables

against universally quantified variables can resuIt in a proof. This matching is

referred to below as a n appropriate set of bindings. Assuming the Frame stimuli of

Sr and f are replaced by variables, this heuristic transforrns a conjecture involving

quantifiers into a conjecture in predicate caIcuIus, which is decidable.

This approach is guaranteed to End a proof if the antececient is a test cl-

and the consequent is a test frarne derived frorn that test class. There are also

situations where srnall differences between the antecedent and consequent which

do not affect the validity of the conjecture will still result in the heuristic being

successful. Therefore. this heuristic will provide a partial solution to the Delta

Problem.

The above analysis Ieads to the following test frame delta algorithm:

1. Find the set of bindings suggested by Q. l>'.rr 3 R.

2. Fail if n o viable binding results in a proof.

3 . Further constrain the set of bindings by cornparing the frarne stimuli off to

the frame stimuli wit hin S'.

4. Fail if n o viable bindings remain.

5 . Scan the set of prime implicants of Sr for those which match f.

This heuristic algorithm h a the useFu1 property that i t will be able t o prove

conjectures such as

This means that mandated test frames do not need to be specified in thcir most

general form for them to be matched to the corresponding test class.

So what does it mean to match f and a prime implicant, s', of SI? As an

esample. let -5' = -4 /\ B. There are t hree cases:

1. f = s': The test frame matches perfectly.

2. f =+ s': f is more specific. e-g. f = -4 A B A C'.

3. s' f: f is too vague. e.g. f = -4. and the corresponding esisting test frame

is no longer \idid.

Case L) is the normal case. The change in specification .-LI has not affected

Q.f + R . Case 2): if f is more specific than required. the esisting test frarne is

still ralid. but malr be too restrictive. This should be reported so test enbineers can

adjust the esisting test frame as desired. Case :3) : if t h i s is the most specific match

for f (i.e.. for al1 prime implicants. p l . from al1 test classes which have a matching

response. (p l * f) =+ (s' 3 p')), t hen s' is included in the new test set. This allows

a test engineer to mandate a vague test frame and have the test frarne generator

determine the most general test class and -flesh out' the test frame. I n al1 cases.

Q.1 a R is tagged as being matched to this test class. -An- esisting test frames

which are not matched should be reported.

These new test frame sets form the initial setections from the test class.

Once the eristing frames have been processed, the selected coverage scheme aug-

ments these sets as necessary, marking any redundant test frames as described in

Section 5.6.2. This allows user mandated tests and existing tests to guide test frarne

selection. This approach also allows user mandated and existing test frame sets to

be evaluated according to a selected coverage scheme.

Regarding case 2) above, it may be the case that / implies several different

implicants from one or more test ctasses. In t his case. the corresponding test classes

should be used in combination to ensure that the given frame follows logically from

the specification. For example. assuming f =. sil A s;* A s;. the theorem i- .-If s

(Q.1 3 R) foI1on.s from the t heorerns:

and

where si 1 Si. s i 2 S[. si 3 S;, Theorem (C.5) is produced by the test class

algorith ni. and Theorem (C.6) is produced by the test frarne delta algorith m. It also

follows t hat the use of prime implicants 4, and from S(and irnplicant -5; £'rom

Si are siibsumed by iising 1. This allows one user mandated test frarne to account

for partial coverage of more than one test class.

Although the Delta Problern is iindecidable. in the worst case, it may be

possible to solve this probtem for many of the small changes that are made to a

requirements specification during the course of system developrnent. By treating

these case automatically when it is possible to do so would result in reducing the

amount of involvement required by test engineers to make the necessary adjustments

to esisting test infrastructure.

IMAGE EVALUATION
TEST TARGET (QA-3)

APPLIED - IMAGE. lnc = 1653 East Main Street - -. - - Rochester. NY 14609 USA -- --= Phone: 71 W82-0300 -- --= Fax: 71 6/200-5989

