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Abstract 

Poker is an imperfect information gaine that reqiiires decision-makinp iinder condi- 

tions of uncertainty? much like many real-worlcl applications. Strong poker players 

have to skillfully deal with multiple opponents. risk management, opponent mocleling, 

deception aat! unreliable information. These feztiires make poker an interesting area 

for :\rtificial Inteiligence research. This thesis describes work donc on improving the 

knowledge representat ion. bet t ing st rategy. and opponen t rnocleling of Loki. a poker- 

playing program at the University of Alberta. First, a randomizecl bett ing strategy 

that returns a prabability triple is introclticecl. :\ probability triple is a probabilistic 

representation of betting clecisions t hat inclicates the li kelihood of each bet ting action 

occurring in a given situation. Second. real-tirne simiilations are iisetl to cornptite 

t lie expectecl values of bec t ing decisions. T hese simulations use select ive snmpfing to 

maximize the information obtained wi t h each simulation trial. Experirnental resiilts 

show that each of these enhancements represents a major aclvance in  the strength of 

Loki. 
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Chapter 1 

Introduction 

Ciames are one of the oldest areas of research in the :\rtificial Intelligence ( A I )  corn- 

munity. In fact. in 1950. at the dawn of the cmiputer revolution. Alan Turing and 

Claiide Shannon pioneeretl the work in chess programs. Xone of them wrote a pro- 

gram wliich actually ran on a computer. Turing simulatecl his program by band [?SI 

and Shannon clescribecl the underlying principles of modern cotripiiter gamo-playing 

programs in one article [t'3]. Since then. there has been a rvealth of A I  research in 

games. 

1.1 Why games? 

.As in some other cornputer applications, games raise the question of whether cornput- 

ers can make goocl decisions based on the evaluat ion of present and possi bie Future 

sit~iations. They also provide a suitable environment to support experimentation 

in different areas of computer science such as algorithms. data structures. machine 

Iearning. knowleclge engineering, tree search. ancl reasoning. 

if compiiters cannot solve decision-making problems in --simple" doniains like 

ganies. then how can we be sure that they can make good clecisions in other cornplex 

clomains where rules are ill-defined. or there are high levels of uncertainty'! Four 

characteristics make games suitable for compiiter representation: 

1. the  state of the tvorld is easy to represent. 

2. there is a fairly small number of weil-defined rules and a clearly specified goal. 



3. the relative siiccess obtained by playing a game can be measured with qtiantifi- 

able resuks, and 

1. the basic infrastructure for a game-playing program is easy to biiild. 

Games are an abstraction of ivorlds in which hostile agents act to diminish each 

other's well-being. Thiis, they can be usecl to design and analyze situations wit  h 

multiple interact i ng agents having corn peting goals. Since real li fe contains many 

situations OF this kirid. a niethod to solve a game niay be applied to problenis iri  other 

areas. For example. in Theory of Games and Economic Behauior. Von Xeurnacri and 

Morgenstern state that a s t~idy of *games of strategy" is required in orcler to clevelop 

a theory for the foundations of economics and for the main mechanisms of social 

organization, becaux games are analogous to a variety of behaviors ancl si t iiatinns 

that occur in these two areas [El]. In fact. games are alreacly usecl to rriodel certain 

economic pro blems. 

In addition. the development of a program to play a strategic game often involves 

the application of t heoret ical concepts to practical si tiiations. Prograrns t hnt imple- 

ment different theories can be played against each other to provicle a cortiparison of 

the effectiveness of thcse theories in a practical clomain. Thcreforc. ganies csn he 

used as an experimental environment to obtain supporting or reftiting eviclence for 

new icleas. and to st innilate clisciission on di fferent approaches to solve a part icular 

problem. 

1.2 Why poker? 

So far, the primary focus of games researchers has been placed on algorit hms to solve 

games wi t h perfect inforrnat ion. As a result high-performance systems have been 

developed for games stich as chess. Othello, and checkers. In many of these gaines. 

high performance can be achieved by brute-force search. Recently. attention has been 

given to games wi th  iniperfect information, such as bridge and poker. where searching 

seems not to be t h e  key to success. Since these games offer different algorithmic and 

conceptual challenges, the successfiil development of a program capable of playiiig 

them well rnay provide solutions to open problems in cornputer science. 



Poker has several Features that make it attractive for A I  research. These inclucle 

imperfect informat ion. multiple corn pet ing agents, risk management. opponent mod- 

eling, deception, and dealing with unreliable information. These characteristics are 

also present in many real-world applications that require rational behavior. 

Imperfect information irnplies that a choice must be made from a set of 

actions wit hout complrte knowledge. The relative desirability of each action 

depends on the state of the world. but the agent cloes not know exactly which 

state prevails. In poker. a player does not know the opponents' cards. Without 

knowing the cornplete state of the worlcl. how can the player find which actions 

are, "optimal", in some sense? 

Having multiple competing agents exponentially increases the complesity 

of the computatioris requirccl to play poker by enlarging the game tree. 

Risk management requires making a decision to gain a profit whilc corisicl- 

ering how miich one can afforcl to lose. Making a good decision basecl on the 

evidence available and "cost-beriefit" consiclerations is a ski11 reqiiiretl in  mariy 

real-world activities. For instance. investing in the stock market has the same 

aclrenaline-releasing characteristic. Every ti me a player makes a bet t ing tleci- 

sion in a poker game. there is the risk of losing money. However. there is always 

a chance to rvin. In the long riin. a player's objective is to end up with a positive 

balance. 

Opponent modeling involves ident i fying patterns in t h e  opponents' pl- ancl 

exploiting any weaknesses in their strategy. For example. opponent modeling is 

ertensively appliecl in poli tical campaigns. [n poker, it can be done by observing 

the opponents' betting habits. ancl cletermining Iikely probability distri butions 

for their cards. If a player can predict the opponents' actions. then t his player 

will be capable of making mtich better decisions. 

Deception and the ability to  deal with unreliable information are traits 

of a strong poker player. In fact, these activities are also necessary in real-world 

situations. For example, assume one wants to acquire a used car. Horv much 



shall one believe from ail the wonclers the salesman says about the car? How 

can one get a reduction on the price of the car7 Good poker players have to be 

unpredictable by bluffing and varying their playing style. and must also be able 

to deal with their opponents' deceptive plays. For example, if a player is known 

to raise only with a strong hand ( a  predictable player), the opponents are likely 

to fold in such cases. Therefore. this player is rnissing opportunities to earn 

more money on the best hands. By occasionally raising on a weak hancl. this 

plver d l  either profit from a successfiil bliiff. or tvill implant doubt that ivill 

result in greater profits for strong hancls. Hence. it is necessary to misleacl the 

opponents by let ting them know t hat an occasional raise or high bet is possible 

with a weak hand. 

1.3 Thesis contributions 

Loki is a poker-playing program developecl at the University of Alberta starting in 

1997. The name refers to the Norse god of mischief arid discord. At the beginning of 

the work presented in this t hesis. Loki (hencefort h referred to as Loki- 1 ) was alreacly 

a intermecliate level poker player (sec [-Il. [a]. [19]). It hacl the infrastructtire to 

incorporate advancecl features for the next step towartls the goal of creating a high- 

performance poker program capable of defeating the best human players. However. its 

rigid, deterministic. hand-tunecl betting strategy was becoming a limit ing factor for 

its futtire development. This thesis presents the work done to improve the knowleclge 

representation and the betting strategy of Loki-1. 

The first improvement is a probabilistic representation of poker betting decisions. 

A betting strategy attempts to determine which betting action is most profitable in 

a given situation. based on the evaluation function of the program. Loki-1's eviiliia- 

tion hinction was a deterministicstrategy since it always returned a single value: the 

"best" betting action. -4 deterministic strategy is viilnerable to being predictable. 

which gives a skilled opponent the opportunity to find a counter-strategy that takes 

advantage of this fact. The new version of Loki (henceforth referred to as Loki-2) re- 

turns three probabilities, one For each betting action (fold, call/check, and raiselbet). 

Loki-2 can then randornly select the betting decision based on this probability dis- 



tribution. This new evaluation function is a mixed (randomized) strategy that adds 

unpredictability to Loki-2's play without sacrificing rnuch in immediate expectation. 

This routine also merges al1 the expert knowledge components used in Loki-1. since 

the probability triple representation can be ~ised throughout the program. 

The second improvement is the use of simulation (search) to compute the expected 

value of bettirig alternatives. The Loki-2's betting strategy uses a simulation-based 

approach: select ive sampling simulation. This approach consists of simulating the 

outcome of a hand many times. In every simulation trial. a likely instance of the 

hidclen information (opponents' hancls) is generated, and the hand is played out once 

for each betting alternative as the first action of Loki-2 in the trial. The results of al1 

the trials are averaged and the betting action with t h e  iiighest expectation is returrietl. 

To select the most li  kely (selective sarnpling) opponcnts' hands and actions from the 

sample space during a sim~ilation, Loki-2 uses al1 the  information available aboiit the 

game and the opponents. The simulation refines the quality of the evaluation fiinction 

and the selective sampling increases the information gaineci with each trial. 

Experimental resiilts will be presented to clcriionstrate that both enhancements 

represent a notable improvernent in Loki's playing ability. In al1 the self-simulation 

experiments performed. Loki-2 out performed Loki- 1. Loki-2 has also consistent ly 

increased its bankroll playing against hiiman opponents on an  Internet poker server: 

at a rate that appears to be significantly higlier than Loki-1's. 

This thesis is organizeci as follows. C'hapter 2 introdiices poker terminology. de- 

scribes the game of Tesas Hold'em (the poker variation played by Loki) ancl disciisses 

other work done in cornputer poker. Chapter 3 describes Loki-1 in cletail. Chapter -1 

discusses the probabilistic representation of betting actions (probability triples) mecl 

to improve Loki-2's betting strategy and opponent modeling. It also discusses the 

new design of the program. Chapter 5 disciisses the selective sampling simulations in 

Loki-2. Chapter 6 is an overview of related work in selective sampling simulations. 

Conclusions and future work are presented in Chapter 7. 



Chapter 2 

Poker 

Poker is a rriulti-plnyer non-deterministic zero-sum gnme with imperfert informntion. 

In game t heory. a game is consiclered str-ictfy cornpetifiue i f  the players do not co- 

operate. A strictly cornpetitive game is a zero-sum nnme if the siim of the utility 

(outcorne) obtainecl for each of the players is zero. indepenclent of the strategy fol- 

lowed by each player. In poker. the profit of one player is the loss of other players. 

The long-term goal of al1 the players is to leave t lie table wit h more money than they 

had at the beginning. 

A poker session is played in a seq~iential series of gamesl wit  h a stanclard cleck of 

52 carcls. Each card is identified by its siiit and rank. There are four suits: 4 Clubs. 

O Diamoncls. V Hearts and 4 Spades. The thirteeri card raiiks are (in increasing 

orcfer of importance): Deilce (2),  Three (9).  Four (4). Five (3, Six (6), Seven (7) .  

Eigtit (8). Nine (9). Ten (T),  Jack (.J). Queen (Q) .  King ( I i )  and .-\ce ( A ) .  In this 

thesis carcls are represented by two characters. one for the rank and one for the silit. 

e.g. :\O (Ace of Diamonds) and QO (Queen of Hearts). A set of car& is represented 

by the cards separated by dashes. e.g. I ib-Qb. :\ set of cards held by a player con 

also be callecl a hand. 

2.1 A poker game 

-4 poker game is composed of several rounds. A round consists of a number of cards 

being randomly dealt followed by betting. Every active player is given the chance to 

act at least once in a round. Every time it is a player's turn to act, there are three 



alternative actions: 

fold - becorne inactive for the game. losing al1 investment done in  the current 

game, 

0 cal1 - match the current per player contribution. or 

raise - increase the amount to c d .  

If t here has not been any previous bet in the round. a cal1 is referred to as a check. 

and a raise is saicl to be a bet.  A round encls when each player has either folded or 

contributed the same amount of money as al1 the other active players. .\ poker game 

has two terniinat ion conclit ions: 

1. al1 the players have Folded escept one. who wins al1 the nioney wagerecl ( Ihe 

pot) .  or 

2. al1 the betting rotincls have been completed. 

In the latter case. the game proceeds to a showdoirm where al1 the active players 

reveal their cards and the winner is determinecl. The winner is the player holding the 

highest poker band (see Table 2.1 for hanci ranking). In the case of a. tie. the pot is 

spli t evenly. 

The word poker refers to a collection of card games that shnre cornmon features 

such as betting rounds ancl ranking of hancis. The carcl games classified as poker are 

divided into flop games (sorne cards of eacli player are sharecl). stticl games. ancl clraw 

games (no cards are exposecl? some are discarded and replacecl with cards from the 

cleck). Loki plays the limit version of Tezns Holdérn. Tcsas Hold'em is a flop game 

which is played as the main event of the anniial Worlcl Series of Poker to determine 

the world champion. In the limit version of this game there is a fixed bet size for eacli 

round. Texas Hold'em was chosen as the variant of poker playecl by Loki. because 

it is the most strategically complex poker form that is wiclely played. ancl lias the 

smallest ratio of luck to ski11 [z]. 



Table 2 .  L: .?-carcl hancls ranked frorn strongest to weakcst 

Sample hand 
T&-9+8&7&6& 

QI-Q&QV-QO-?I, 

J ~ - J & J U - 5 ~ - . 5 ~  

- 9 - 7 - 6 - 2  

AO-Ii&QV-JO-TI 

2.2 Texas Hold'em 

Narne and description 
Srraight Flush (inclucles Royal Flush) 
5 cards of the sarne suit in sequence 
Four of a Kind 
4 cards of the same rank 
Full House 
3 cards of identical rank and '2 cards of another rank 
Flush 
5 cards of the same suit 
St raiglit 

:\ game of Texas 1-Iold'em has Four betting rounds crrlled the prejlop, jlop. turri ancl 

riuer. In the preflop every player receives two cards face-down (known only to the 

player) called hole or pockd cards. and a betting round cnsues. Diiring the flop t h e  

cornmunity or boardcards are dealt face-up (known by al1 the players) and the second 

httting round follows. At the turn a fourth Face-up community card is dealt. followecl 

by a betting round. Finally, at the river, a fifth face-up community carcl is clealt ancl 

the last betting roiind occiirs, followed by a showdown. In the showdorvn. the pot is 

awarcled to the best five-card hand that an active player can make cornbining the hole 

cards and the five community cards. There is normally a maximum of three raises 

allowed per betting round. In Texas Hold'em. the riumber of players can Vary from 2 

to 23: but it is iisually played with S to 10 players. Figure '2.1 shows a hand of Texas 

Hold'em (on the tum) froni Loki's point of view against two opponents. The cards 

denoted by a single question mark represent the imperfect information of the game. 

The card denoted by two question marks represents the non-determinist ic oiitcome 

:\&A&AV-S0-44 

K&I<&TV-TO-C)O 

QU-Q&T&SO-:l+ 

T&Y&W-:10-20 

5 cards of ciiflecerit sui t  in sequerice 
Three of a Kind 
3 cards of the sarne rank 
Two Pair 
2 car& of one rank and 2 car& of another rank I 
Pair 
2 cards of the same rank 
High Card 
.5 car& of different suit and rank 



r;l p-1 
Opponent- 1's hole cards 

Flop 

I- 

Loki's hole carcls 

p l  
Opponent-2's hole cards 

River 

Figure 2 .  I: A Texas Mold'em hancl 

in the game (the card to corne). 

The players are in a fisecl seating order at the table. The dealer-bjdton rotates 

clockwise arouncl the table to indicate t h e  (theosetical) dealer of each hancl. The 

player to the irnmecliate left of the hiitton ( the srnall blind) is first to receive a carci. 

Figure 2.2 shows a table with the button's ancl blinds' positions indicated. Betting on 

the preflop starts w i th  the playes on the left of the big Dlind. On siibsequent roiincls. 

the first active playes left of the button acts first ( t h e  small blincl i f  not folded). 

/ Dealer 

1 SmaIl blind 

1 Big blind 

Figure 2.2: Seat position and betting orcler 

The betting structure of 2-4 Limit Texas Hold'em starts with two forced bets 

(bf inds)  on the preflop: a ~ m n l l  blind of one unit and a big blind of two units. Blintls 

are a "forced-bet" alternative to the more familiar ante in other garnes. where each 



player is required to put a fixed amount into the pot before the game begins. In a 

2-4 Texas Hold'em game, al1 bets and raises are a fixed size of two units during the 

preflop and flop. This doubles to four units for al1 hets and raises on the turn and 

river. Ot her amounts can also be used. For example, in a $ IO-$20 game. the unit size 

is $5.00. The small blind posts a $5 blind. the big one blinds $10. The size of the 

bet during the first two rounds (preflop and flop) is $10.00 and during the last two 

rounds (turn ancl river) is $20.00. 

2.3 Other work in computer poker 

Since the founding of game theory by John Von Neumann. poker has been the subject 

of rnathemstical ancl economics analyses. However. these studies have used oversim- 

plifiecl versions of poker. making most of the work clone in these areas not applicable 

to the development of strong poker-playing prograrns. In compiiter science. poker has 

been used as a testbed in diflerent areas such as cognitive science. machine learning. 

search and Bayesian netivorks. 

2.3.1 Findler's work 

One of the first stiidies of compiiter poker kvas clone by Nicolas Findler [9] [LOI.  The 

variation of poker used in his research was a. simplified version of five-carcl draiv poker. 

Duri ng the years Fincller's project was carriecl out. vsrious poker-plitying programs 

were created. each different in its structure and approach to ciecision-making. 

.LIost of the corn puter players clevelopecl in Findler's research were bwecl on simu- 

lat ing human cognitive processes involvecl in decision-making iinder uncertainty and 

risk. His approaches were baseci on psychological precepts of humsn thought rather 

t han mat hematically-oriented analysis. He considered t hat: 

"In order to program a computer to play poker well it is necessary to lin- 

derstand the cognitive processes employed when Iiuman beings play poker. 

(The mat hematical t heory of games can only treat simplified versions of 

the game)." (101 

Findler's goal was not to create a world-class poker-playing program and. indeed. 

none of his programs appears to have been a strong player. 



2.3.2 Machine learning 

Chterman [:IO] and Smith [25] used poker as a testbed for automatic learning tech- 

niques. Both of them worked on the problem of acquiring problem-solving heuristics 

through experience. 

Waterrnan worked in trvo areas: 1)  the representation of heuristics as production 

rules to facilitate their dynamic manipulation. and 2 )  the automatic modification 

and creation of these heuristics by a learning prograrn on the basis of information 

obtainec1 during training. During his research. five cornputer ~ layers  were created. 

cliffering in the number and source of the heuristics initially provicied to the program. 

The performance of his best program was evaluatecl to be the same degree of ski11 

as a -nonprofesional but experienced human player". Hi3 progranis playecl a two- 

p lve r  standard version of five-card clraw poker. Me statecl t hat by choosing poker. 

the representation and generalization techniques he tleveloped were shown to be an 

effective approach to implementing clecision rnaking ancl learning in an imperfect 

information environment. 

Smith proposed an alternative method for clynamicaily lesrning heuristics by using 

ada~ t i ve  search (genetic algorithrns). Poker was iisetl as a testbed for this technique 

to provide a basis for cornparison with CVatermanWs work. 

2.3.3 Koller and Pfeffer's work 

Recent ly, KolIer and Pfeffer [15] [L6] have developed ( h l r i .  a system for aiitomat ing 

ganie-t heoret ic analysis for two-plver compet it ive games wit ti imperfect information. 

The system takes a description of a game. analyzes it. ancl outputs strategies for the 

clifferent players which are game-theoretically optimal for the situation describeci. The 

implernentation is coniposed of two main interacting pieces: a special-purpose ganie 

specification language, and an automatic garne-theoretic analyzer for games in exten- 

sice form. The extensive form represents the garnes as a tree with t he  information 

sets (players' knowledge states) indicated. 

For games with imperfect information: the system finds an optimal randomized 

strategy. The system can now solve simplifiecl versions of twwplayer poker ( e.g. 3 -  

card deck, 1 card dealt to each player, 3 rounds; or il-card deck, 5 cards each player, 



3 rounds). However. the authors state that: 

m'CVhile we can now solve games with tens of thousands of nodes. we are 

nowhere close to being able to solve huge games such as Full-scale poker. 

and it is unlikely t hat we will ever be able to do so. .A game tree for five- 

card draw poker. for example? where players are allowed to exchange cards, 

has over difTerent nodes. The situation (for zero-sum games) is now 

quite similar to that of perfect-information games: We have algorithms 

that are lairly efficient in !he size of the yame tree;  unfortiinately. the 

game tree is often extremely large." [16] 

Optimal versus maximal player 

Koller and Pfeffer's goal is to create an optimal poker player. By definition. the 

optimal player does the best t hat can be done against a rational ( perfect ) opponent. 

and it does not do worse even if its strategy is revealeci to its opponent. However. the 

optimal strategy does not take advantages of mistakes when they become apparent. 

and human players invariably rnake rnistakes. A maximd player will tleviate from the 

optimal strategy to exploit the observecl weak points in the opponent's play. In theor- 

the maximal player niust take the risk of being sub-optimal to exploit a sob-optimal 

opponent. In practice. the risk is srnall and well rewarcied. 

In contrast to Iioller and PfefFer's aim. Loki is not an optimal plver. Our goal 

is to create a maximal player, which uses opponent modeling to exploit patterns 

in its opponents' play. nith the intention of winning the rnost money it can in every 

situation. Fiirthermore. since it does not seem feasible to deterrnine an optimal player 

for real mult i-player poker. a program to play real-world poker in the near fti t ure most 

likely will not be a game-theoretic optimal player. 

Nevert heless, Koller and Pfeffer have suggested t hat an alternat ive approach to 

deal witli less-than-perfect players is to learn the type of mistake that a player is 

prone to make. This approach can be used when there is a long-term interaction 

with the same player. The authors point out that the ability of the Gala language to 

capture regularit ies in the game may be particulûrly useful in this context, since the 

high-level description of a game state can provide ka t  ures for the learning algori t hm. 



One can see this learning algorithm as a potentiai opponent modeling component for 

a program based on the Gala systern. 

2.3.4 Bayesian poker 

Kevin B. Iiorb, Ann E. Nicholson and Nathalie Jitnah [l'il at Monash liniversity 

are working in the Bayesian Poker Program (BPP).  BPP plays two-player five-card 

st ud poker using a Bayesian network structure to represent the relat ionships between 

current hand type, final hand type (after the five cards have been dealt) and the 

behaviour of the opponent. Ciiven evidence For BPP's current hand type ancl the  

observed cards and actions of the opponent, BPP obtains its posterior probability 

of winning the game. BPP uses tliis estimated probability of ivinning the game to 

rvndomly seiect its action baseci on probabilistic curves for earli betting action. 

BPP performs opponent modeling. It Lises the relative freqiicncies of the oppo- 

nent's betting actions to tipclate the conditional probabilities per round of passirig or 

calling versus betting or raising given the opponent's current hancl type. 

BPP is work in progress as pointed out by Iiorb e t  al. The atittiors state that 

poker appears to be an ideal domain for investigating the application of Baycsian 

networks, and report positive results of BPP playing against a simple probabilistic 

program. a rule-based program and non-expert amateur human players. 

2.4 Summary 

Although poker has heen used as a testbed in different areas of cornputer science. 

mathematics anci economics. full-scale poker has been largely overlookccl as a topic 

of A I  research. However. cornputer poker research, besicles beirig i nterest ing ancl 

challenging, has the potential to provicie results wit  h reai-world implications. 



Chapter 3 

This chapter describes the architecture. betting strategy. and opponent modeling 

of the previous version of Loki (Loki-1). as it was at the beginning of the work 

done in this thesis (199s). r\lso, the limitations detected in Loki-L and the clianges 

implemented to 

sumrnary of the 

con t eut. See [4], 

overcome t hese limitations are outlined. This chapter provicles a 

material necessary to place the research described in this thcsis in 

[j] and [19] for more details on Loki-l. 

3.1 Architecture 

Figure 3.1 shows Loki-1's architecture and the interactions between the main systeni 

components. In the diagram. rectangles are major components. rouncled rectangles 

are major data structures. and ovals are actions. The data follows the arrows betwecn 

components. An annotated arrow indicates hoiv many t imes chta moves betiveen t he 

components for eacli of Loki-1's betting decisions (on the Rop, in this case). 

To make a betting clecision, the Bettor calls the Hand Evaluator to obtain an 

assessrnent of t he strength of Loki- l's hole cards. The Bettor uses the hand evaluation. 

the  public information about the state of the garne. and expert-defined betting riiles 

to generate an action (folcl, check/call or bet/raise). The probabili ty distri but ion 

of the opponents' hancls after the  Aop is not uniform. For example. hole carcls of 

Ace-Ace are more Iikely held by the opponents than hole cards of 7-2. since rnost 

players will fold 7-2 in the preflop. The Opponent Modeler maintains an array for 

each opponent with the probabilities (weights) of each possible hand being held by 

each opponent. The Hand Evaluator uses these weights to estimate the strength of 
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Figure 9.1: Loki- 1's architecture 

a band. Thus. the assessrnent of the strength of' a hand is sensitive to the actions of 

the opponents. Loki- 1's hand evaluation clecreases if' the opponents have shown signs 

of strengt h (by raising) during the game. arid increases if all the opponents have only 

The Opponent Modeler modifies an opponetit 's weight table  after i t observes an 

action of this opponent taking into accocint t h e  entire garne context (cornmunity 

cards). Updating the probabilities for al1 hancls is a process called reweighting. Alter 

each opponent action, the Opponent Modeler calls the Mand Evaluator once for each 

possible hand and modifies the weight for that case to be consistent wi th  t h e  new 

in format ion. 

3.2 Betting strategy 

3.2.1 Preflop expert system 

When it is Loki's (either Loki-1 or Loki-2) first chance to act in the preflop. Loki 

uses a rule-based expert system to select one of four clefined preflop strategies (or six 



if Loki is the small blind). These strategies determine the number of bets Loki will 

call and under which conditions it will bet/raise. The select ion of the preflop bet t ing 

strategy is basecl on the average return on investment (income rate) of Loki's hole 

carcls. and thresholds defined by linear formulas using expert values. The income 

rate of al1 the twecard hands was deterrnined with off-line simulations. The linear 

formulas take into account the expected number of players (players who will play the 

hand), Loki's position on the table, and the tightness of Loki. The tightness is a 

parameter that specifics the perccntage of hands that Loki will play. Thcre are three 

set t ings for t his parameter: t ighl, modernte and loose. The most aggressive st rategy 

rvhose threshold is less than or equal to the inconie rate of Loki's hancl is selected. 

For cxample, assume that Loki's is in the clealer's position (last player to act) 

ancl its hole carcls are .\O-SV. There are four players still active in the game and 

Loki's tight ness has been defined as rnodcrate. The incortie rate value of Loki's hancl 

obtainccl by a table lookup is 338. By using the linear formulas. ive calculate that 

the thresholds for the four strategies frorn the most nggressive to the most passive 

one are [M-l = SSO. .LI2 = 200. .\Il = 50, :\IO = -cc]. Thiis. Loki's prefiop strategy 

in this case is .W. since 200 5 3 R Y  < . X O .  With the :II2 preftop strategy. Loki rvill 

raise if there have been less than two betlraises in the roiincl. otherivise it will call. 

3.2.2 Postflop 

Loki- 1's postflop bett ing strategy consists of expert-definecl riiles that uses the hantl 

evaliiation ancl the public information about the state of the game to decicle on a 

betting action. 

Hand Evaluation 

To assess the cpality of a hand after the Rop. the Hand Evaliiator combines together 

the strength ancl the potential of the hand in a value called effecti~?e hnnd strength 

(EHS). The EHS is an estimate which gives the probability that the given hand is 

currently the st rongest one, or that it will become the st rongest one by the showdown 

wi t h the next community cards ( potential). 

E H S  = handstrength  + (1 - handdlrength)  x hand-potential 



To calculate a hancl's strength ( HS) against a single opponent. the Hand Evaluator 

enumerates al1 the possible opponent hancls and sums the weights of the hands that 

would win, lose or tie the givrn hand. Recall that the weight of a hand is the 

probability that an opponent would stiil be active with that particular hand. 

ahead + t i e d l 2  
HS = 

ahead + tied + behind = to ta ln~ im6e . r -o jhan(1s  

For instance, assume that Loki's hole cards are AC)-SV (the same as in the above 

preflop example), the comrn~inity cards on the Bop are 9V-S&2& ancl al1 weights are 

equai to 1 (iiniforrn distribution). From the (1) = lOSl possible opponent-s twecard 

hands on the Hop: 903 hands lose against Loki's hand, six hands tie and L i : !  hands 

defeat Loki's'. Therefore, Loki's HS is 

To extrapolate the hancl strength value to multiple opponents. the Hand Evaluator 

raises it to the p o w r  of the number of opponents still active in the ganie (HS,) .  For 

the above example. if there are four players active in the garne (inclucling Loki). the  

Hand Evaluator calciilates HS, = (0.S4)3 = 0.59. 

The potential of a hand can be either positive or negative. Positive potential 

(PPOT) is the probability of a hand becorning the strongest one when it is behincl. 

Negative potential (NPOT)  is the probability of a hancl falling behincl when it is 

ahead. Both potentials are calculated by enumerating al1 possible opponents' hands 

and community cards to corne in the next rounds. Potential calciilatioris on the Rop 

can be done by looking ahead either one round (considering the -15 possible car& on 

the turn) or two rounds (considering the ( y )  = 990 possible two-card combinations 

on the river). PPOT is cslculated by adding the weights of t lie cases where Loki's 

hand improves. 

bebehind-end-ahecd + be-behind-end-t iedl2  + 6e- t i cLendaheadl2  
PPOT = 

totulbe-behind + totalbe-tieci/3 

NPOT is given by: 

be-nheadsnd-be h ind + b e n  h e a d s n d - t  iedJ2 + be-t ied-end-behindl:! 
,VPOT = 

t o t a l b e a h e a d  + totalbe-tiedl:! 

144 hands with one or two 9s and 28 hands with a pair of either A. K. Q, J .  TT 8 or 2. 



Table 3.1: Yumber of cases where Loki's hand shuation changes after two conimiinity 
cards are dealt 

Flop's situation 

A head 

Behinci 

Tied 

Consider the same above esarnple. Table 3 . 1  shows the  nurnber of cases where Loki's 

hanci situation at the flop changes (or remaiiis the  same) by the time the otlicr two 

River's situation 
A head 
Behind 
Tied 

A heaci 
Behind 
Tied 

A head 
Behind 
Tied 

community cards are tlealt. r\ssiiniirig iiniform weights. this table shows t h e  suni of 

Number of cases 

1'22,46:3 
1 70.249 

1.25s 
:31,65c) 

1:32,1?C0 
+? 1 

270 
90 

3,580 

the weights of al1 the cases. Totnlbe-dead is eqiial to t he  niimber of cases whe re  

Loki's hantl on the flop is the strongest one multiplied hy the number of possiblr 

next twecarcl combinat ions (903 * 990 = S N .  970). Totnlbe-liecl is 5.9-10 (6  * 990) 

and Totnlbe-behind is 170.230 ( 172 r 990). The total nuniber of cases encinieratecl 

in the potential calciilations is LOS1 * 990 = 1.070. 190. Thus. PPOT for Loki's Iiaricl 

and NPOT is : 
170.249 + 1.25S/Z + 9012 

.VPOT = = O. 19 
S93.970 + 5.940/2 

Strategy 

The basic postflop strategy is based on the EHS. Two thresholcls determine the post- 

Aop betting actions: a postflop-raise t hreshold and a postflop-cal1 threshold. If Loki- 

1's ECIS is greater than or equal to the postffop-raise threshold then it will raise 

when less than two bets have been made this round and call otherwise. When its 

EHS is greater t han or eqital to  the post flop-cal1 tliresholci ( but not greater t han the 

postflop-raise threshold). Loki-1 will bet if nobody else has done so and call otherwise. 

except when it is two or more bets to cal1 and Loki-1 has not already callecl a bet 



this round. In the cases where Loki-1's EAS is less t han the postflop-cal1 t hreshold or 

its decisioo is to fold, the options of semi-bluffing, calling with pot odds, and calling 

with shotvdown odds are also considered. 

O Serni-bluffing consists of betting if  nobocly has done so in the ciment round. 

ancl Loki-1's hand has a high enough PPOT to call both a bet and a raise. 

Ln the subsequent rounds. Loki-1 will continue to bet (even wittiout sufficient 

PPOT) i f  no other player bets. With semi-bluffing Loki-1 pretends to have a 

strong hand ivhile there is a reasonable chance of winning the pot imrnecliately 

(to scare the opponents o ~ i t  from the garne). 

Pot oclds is the ratio of the amount of money in the pot to the amount recliiiretl 

to call the ciment bet. By iising pot odds. Loki-l will stay in the hand i f  

its winning chances (PPOT before the river and HS on the river) siirpass the 

expected return from the pot. For example. assume the pot is $20 ancl t h e  

arnount to call is $4. The pot ocltls are & = 0.16 and Loki- 1's winning chances 

are 0.25 ( 2 5 % ) .  In this situation. three times out of four that Loki- L calls. its 

hancl will lose at a cost of $4 each. However. it wins $20 one tirne out of four 

resulting in an average profit of $2 per hand. A call is better than a folcl ivheri 

Loki- 1's winning chances are greater t han or ecliial to the pot odds. 

O Showclown oclds is the ratio of the anioont of monep expectecl to be in the pot by 

the showdown. to the arnount it d l  cost Loki-1 to stay in the hand to actiiallp 

see the showdown. Loki-1 calls when its EHS is greater than showclown ocltls. 

This st rategy was introduceci to cliscoiirage freqiient bliiffing by the opponent. 

Also. Loki- 1's betting strategy contains the knowledge of some advanced strategies 

such as check-raising. This knotvledge was i nt rocliiced in Loki- L as decept ive st, rategies 

to add unpredictability to its play. 

3.3 Opponent modeling 

Although opponent modeling has been stuclied in perfect information games (for 

example ['il), the performance loss by ignoring it and assuming a perfect opponent 



is small, and hence it is usually ignored. In contrast. opponent modeling in poker 

can be the distinguishing feature between players at  different skill levels. If a set of 

players al1 have a comparable knowledge of poker fundarnentals. the ability to alter 

decisions based on an accurate mode1 of the opponent may have a greater impact on 

success t han any other s t rategic principle. 

Deciding how to gather information about the opponents and how to lise it to im- 

prove the quality of betting decisions is a cornplex ancl interesting problem. Loki-1's 

Opponent Modeler riras a first attenipt at making appropriate inferences from ob- 

serving the opponents' actions and then applying t hem by changing betting decisions 

to exploit any identified pattern or weakness in t h e  opponents' play. The Opponent 

Modeler uses the betting history of the opponents to determine a likely probabil- 

ity distribution for their hole carcls which is used hy the Hand Evaluator. Opponent 

motleling was experinientally shown to signi ficant ly irn prove Loki- i ' s  performance [- I l .  

3.3.1 Representation 

The Opponent Modeler assigns an array of weights (weight table) to each opponent 

incie.uecl by the two-card starting hands. Since Loki knows its two hole cards and the 

three flop cards, there are (-1) = LOS1 iiscd entries in the weight table after the flop. 

The probabilities for each of the 1 .OS 1 su bcases are calletl weights. since t hey act as 

miiltipliers in the enurneration compiitations. Each t ime ari opponent maltes a bett ing 

action. the weights for tliat opponent are modifiecl to account for t h e  action ancl the 

cornmuni ty carcls revealed. .A weight for a hand reflects the relative prohabiii ty that 

a specific opponent has that particular hancl. 

3.3.2 Reweighting process 

CVheti an opponent action is observed, the Opponent 'rIocleler obtains the thresholcl 

hand value needed for the observecl action and bayes the weight adjustment on that 

valiie. The Opponent Modeler maintains statistics for each opponent between games. 

These statistics are used to calculate the freqiiency of folding. calling and raising of 

each opponent per round and nurnber of brts to call. From these frequencies. the 

Opponent Modeler deduces the average ( p )  and variance ( O )  of the thresholcl neecled 

for the observed action, The threshold can be obtained either from default action 



frequencies (generic opponent rnodeling) or from the opponent ' s  observed action fre- 

quencies (specific opponent modeling). 

During the reweighting process, the reweight factors ( rwt) are assigned based on 

the distance between the hand value (incorne rate for the preffop and EHS for the 

postflop rounds) and p.  Since the income rates used in the preflop are not a percentile 

hand valuing system like EHS. the 11 obtained needs to be converted from a percentile 

value to a value on the income rate scale. To achieve this. p is used to index into 

a sorted arr- (saniple the nearcst point) of the ( y )  = 1:3-6 (al1 tivo-card hands) 

income rate values. 

0.0 1 if hand-value < p - o. 
0.5 if hand-valiie = p .  

rwt = 
1 if haiid-value > p + a. 
hrind-val i rc-p+o 

2 x u  ot hcrwise. 

For exarnplc. basetl on observecl frequencies. t lie Opponcnt Motleler tlecliices t hat 

an opponent needs a median EHS ( p )  of 0.6 to cal1 a bet or1 the Hop. with a lower 

hoiincl of O.-! ancl an upper boiind of 0.8 (a = O.?). In ttiis case. al1 hancls with an 

EHS greater than 0.Y are given reweighting factors of 1.0. :\ny hantl with a valiie 

less thari 0.4 is assignetl a reweighting factor of 0.01. ancl a linear interpolation is 

performed for valties hetween 0.4 and O.S. 

To avoicl eliminating legal siibcases cornpletely. no weight is allowecl to go below 

0.0 1. In Loki- 1. the Opponent Mocleler only performs one relveighting per mode1 per 

rouncl. :\ çopy of the weight table is storecl at the heginriirig of each round and usecl 

in the reweighting process each time a new action is witnessed that reqiiires a higher 

thresholtl. For example. assume a n  opponent calls a bet. and the rewcight process 

mes / r  = 0.5 to adjust the  weight table. If. later in the bet ting roiincl. t hat opponent 

raises. the reweighting will be done with the higher valiie of p over the storetl copy 

of the weight table. 

3.4 Modifications to Loki-1 

Loki-1's design has several limitations. First, expert knowledge appears in various 

places in the prograrn (Bettor, Opponent Modeler). rnaking Loki-1 difficuit to main- 

tain and improve. Second, the Bettor is deterrninistic (it  always retiirns the sarne 



single action: fold. call. or raise, given identical input). This makes Loki-1's betting 

actions predictable. Finally, the Opponent Modeler does not distinguish between the 

different actions that an opponent might take (a cal1 and a raise are treated the same) 

and does not perform -negative reweighting". The lack of negative reweighting gives 

a pessimistic vision to the Hand Evaluator. since the weights of the top hancls are 

never decreased when a Iess aggressive opponent's action is observed. These issues 

led to a redesign of how knowledge is useci in Loki-'2. 

The neiv version of Loki. called Loki-2. makes two ftindamental changes to Loki- 1 's 

architecture. First. it introduces a data object called a probnbility triple that is cisecl 

t hroughoiit the program. Cliapter 4 ex plains probabili ty triples in detnil. For now 

consider a probability triple as three values clefining the probability distribiition of 

the betting actions (folcl. call. raise) in a given context. Ln hct .  Loki-2's architecture 

revolves aroiirid generating and using probability triples. Second. sirniilrit ion with 

selcctive sainpling is cisecl to refine the betting stratcgy (see Çhapter 5). 
... . .. . . 
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Figure 3.2: Loki-2's architect use 

Figure 3.2 shows Loki-2's architecture. The Triple Cenerator contains the poker 

knowledge. and is analogous to an evaliiation fiinct ion in two-player games. The Triple 

Generator uses the hand value provided by the Hand Evaluator, the current game 



stateo and expert-defined bett ing rules to comptite a probability triple. Probability 

triples are used in three places in Loki-2. The Action Selector uses a single probability 

triple to decide what action to take ( fold, call. raise). The Simulator uses probability 

triples to choose actions for simulated opponent hands. The Opponent Modeler uses 

an array of probability triples (PT) to update the weight table of each opponent. 

Loki-2 can be used with or without selective sampling simulation, as s h o w  in the 

diagram. With simulation. the  Simiilator component replaces the simpler Act ion 

Selector. 

3.5 Summary 

Loki-L rvas a iiitermediate level poker player as shown by the experimental resiilts 

in [19]. :\lso. Loki- 1 demonstratetl the benefits of iising opponent modeling. Howver. 

weaknesses in its bettirig strategy were hampering the  overall performance of the 

program ancl the  Opponent Mocleler required irnprovement. These issues led to rr 

redesign of Loki's architectiirc to facilitate the addition of new components to ttie 

program: probability triples aritl selective sampling simiilations. 



Chapter 4 

Probability triples 

To make a betting decision Loki-l uses an evaluation function to determine which of 

the three actions (folcl. checkJcal1. or betlraise) is more Iikely to be profitable. In  

fact . the .'besto7 action c m  be considerecl as the action wit h the highest expected valiic 

over al1 the possible scenarios. However. Loki-1 provides too much information to the 

opponents if it always takes the best action. Loki-L is preclictable and the opponerits 

exploit that predictability. CVe use yrobability triples. a set of three probabilities 

representing the three types of actions. to provicle a randomizetl hetting strategy for 

Loki-2 ancl to represent the probabilistic nature of poker. This rcpresentation isolates 

the expert knomletlge in a single fiinction ( probability triple generation routine) ancl 

allows a cornputer oriented (i.e. easy to niaintain and modify ) design of the evaliixtion 

fiinction. 

A prolnbilitg t n p k  ( P T )  is an orderecl list of three values. PT = (1, c. r )  siich that 

f + c + r = 1.0. Each wlue represents the Iikelihood that the next action in a giveri 

state is s fold ( f) .  a cal1 (c). or a raise ( r ) .  respectively. Probability triples are iisecl 

in three places in Loki-2: 1) as a stand-alone betting strategy? 2) as the reweighting 

factor in the opponent rnodeling modiile. and 3) as the action gneration mechanism 

diiring the simiilations. 

4.1 Probability triple generation function 

The PT generation function describes how a p1-r should behave with a particular 

pair of cards in a specific situation. The function returns the probability distribution 

that, given a specific two-card hand and the public information about the state of 



the game. the action should be eit her fold. ca l .  or raise. 

f = P(action = fold 1 pair of cards and game context) 

c = P(action = cd1 1 pair of car& and game context) 

r = P(action = raise 1 pair of cards and game context) 

The function uses the hand evaluation in an expert-defined rule-based bet ting 

strategy to compute the three values. The hand evaluation comprises the streugth 

and the  potential of the hancl; the strength represents the probability of the hand 

presently being the strongest one and the potential represents the probability of the 

hand becoming the strongest after future carcls have been dealt (see 1191). 

The first version of the PT generation function was a completely ncm betting 

strategy that was simpler than Loki-L's betting strategy. :Ut hough tliis fiinctiori 

sufficecl to show experimentally the advantages of having a non-deterministic bettirig 

strategy. it was oatperformed by the oltl one. The main adcxntage of having a non- 

cleterministic betting strategy is that we aIlow Loki-2 CO randomly choose its action 

based on a set of probabilities rather than follow the single action returnecl by Loki- 1's 

betting stratcgy. 

The second attempt to create the PT fiinctiori was to translate the strong. but 

rigitl. betting strategy of Loki- L into the PT schcme. :\ literal translation of the previ- 

oiis betting strategy into the PT fiinction prodiicetl pure or deterministic probability 

triples. A pure PT has the value of the most likely action equal to one and the other 

two actions equal to zero. Once the PT Fiinction niirnickecl Loki-1's betting strategy. 

the boiindaries between actions were smoot liecl by applying linear interpolation to 

create iinpreclictability. 

With Loki-1's betting strategy in  PT form. sniall modifications to the PT func- 

tion. such as the one described in the previous paragraph. are less time consiiming 

and the consequences of each change can be evaliiated indepenciently. By cornpart- 

mentalizing the expert knowledge in a single routine. the design was improved by 

standard software engineering concepts. The benefits of the  PT generation function 

are: 



a i t hides the poker specific details of the evaluat ion function from the rest of the 

system, 

a it provides a well-defined interface, 

it confines the impact of changes in Loki-2's knowleclge to a single function, and 

it facilitates the verification of changes. 

To generate the PT for a hancl. the hand value is cornputed first . The hand value 

is an estimate of the probability of rvinning. This value is then ~ised by a set of riiles 

to compute t h e  probabilities of folding, calling and raising. C'onsider that S() gives 

the information about a game. h is a. hancl, E HS(h. S( ) )  gives the hand value. 

and .P7s,EHs( f ,  c.  r )  represents a PT generation fiinction. .-ln abstract view of a 

sirnplist ic PT generation furict ion is: 
-- ( O  5 )  i f  E H S ( h .  S ( ) )  > . i:). 

WS.EHS = { (20.  SO.0) i f  .75 2 E f l S ( i i .  5'0) > 3 0 .  
(..jO. .-IO. 0) ot herwise 

Note that one can add as rnany rules as needed to the PT generation function. Sirice 

al1 the knowledge is locatecl in one single fiinction. the acltlition of extra riiles is a 

minor ctia~ige in the program. In Figure -1.1 the algorithm For a sirnplified four-rule 

PT generation function is shown. The t hreshold values t liat clefine the likelihoocl 

of each action (pnrnrn-poslfZopRake and param-min ToRnise) ancl the probabilities of 

each action for every case are defined by a poker expert ancl can be modifiecl to Vary 

Loki-Ys playing style. Loki-2's PT generat ion fiinct ion uses nine niles to produce the 

PTs used to choose an action in a game and eight rules to generate the PTs used 

in  the opponcnt modeling module as a reweighting factor. Wheri the PT  generation 

funct ion is callecl to determine a PT to select a n  action in the game. it consiciers riiles 

containing more expert knowledge such as calling hasecl on pot odcls (the ratio of 

the amount of money in the pot to the amount of money it wil1 cost ils to c d )  and 

based on showdown odds (the ratio of the amoiint of money it will cost us to stay 

in the game to see the showdown to the amount of mon- we will make if we win in 

the showclown). During the reweighting process a sirnpler and faster PT generation 

algorithm is used. In addition, this PT generation function does not generate zero 

probabilities for an action, because ive do not want to rule out  any opponent's hand. 



# d e f i n e  MAXPROBABILITY 0 . 9 9  
# d e f i n e  MINPROBABILITY 0 . 0 1  

generate-probabilityTriple(~~a, b e t s - t o - c a l l ,  two-card-hand) C 
PTCfold] = PTCcal l ]  = PT[raise]  = 0 . 0 ;  
/* The e v a l u a t i o n  of  t h e  band i n c l u d e s  t h e  hand s t r e n g t h  and 

t h e  hand p o t e n t i a l  */ 
hand -eva lua t i on  = e v a l u a t e  (two-card-hand ,game-sta te)  ; 
/* 4 e x p e r t - d e f i n e d  r u l e s  t o  c a l c u l a t e  a p r o b a b i l i t y  t r i p l e  */  
i f  (hand -eva lua t  i o n  > param-postf  l o p ~ a i s e  [bets- to-cal11 ) { 

PT [raise] = MAXPROBABILITY; 
PT [call] = MINPROBABILITY ; 

) e l s e  if (hand-eva lua t  i o n  > param-minToRaiseCbet s - to -ca l11  ) ( 
/* L i n e a r  i n t e r p o l a t i o n  between 

param-postflopRaise[bets-to-cal11 and 
param-minToRaise [be t  s - t o - c a l l ]  */  

r = (1 / (param-postf  l o p ~ a i s e [ b e t s - t o - c a l 1 1  - 
param-minToRaise [ba t s - t o - ca l l ]  ) ) * 
(hand-eva lua t  i o n  - param-minToRaise [bets- t  O-call] ) ; 

PTCraise]  = r ;  
PT [cal11 = 1 - r; 

) else i f  (hand-eva lua t ion  > param-postflop~all[bets-to-call]) ( 
PTLraise]  = MINPROBABILITY; 
PT[ca l l ]  = 1 - 2 * MINPROBABILITY; 
PT [f o ld]  = MINPROBABILITY ; 

) else ( 
i f  (hand -eva lua t i on  > param-minToCal1) ( 

c = (1 / (param-postf  l o p C a l l  [ be t s - t o - ca l l ]  - 
param-minToCall [ be t s - t o - ca l l ]  ) ) * 
( hand -eva lua t i on  - param-minToCall [bet s - t o - c a l i l  ) ; 

) else c = 0 ;  
d = c a l c u l a t  e-Pot Odds () ; 
/* J o i n  p r o b a b i l i t y  */ 
c = d + c - c d ;  
PT [raise] = MINPROBABILITY; 
PT [call] = c * MAXPROBABILITY; 
PTIfo ld]  = (1 - c )  * MAXPROBABILITY; 

3 
r e t u r n  (PT) ; 

Figure 4.1: Pseudocode for a simplified PT generation funct ion 



4.2 Using probability triples 

4.2.1 As a betting strategy 

Loki-2 can decide what action to take either using PTs or selective sampling simu- 

lations. This section discusses the use of the PT generation function as the betting 

strategy of the program. Selective sampling si tnulations are disciissed in Chapter 3. 

Every time Loki-2 has to act in a game. it calls the PT generation fiinction and 

selects its action based on the PT returned. The choice is made by generating a 

ranclom number in the range 0.0 - 1.0. For example, assume our hand and the 

current information about the statr of the game is given to the PT function and it 

returns the triple [0.1.0.63.0.25]: if  t h e  rariciom number is less tlian 0.1 Loki-2 folds. 

i f  it is less than 0.75 Loki-2 calls. ottierwise Loki-2 raises. .-\ single ranclom number 

is generated at the beginning of each hancl and used every time it is necessary to 

select an action in the garne. The random number is kept constant. because it defines 

Loki-2's level of aggressiveness in  that game. IF the random number is high then Loki- 

2's probability of betting or raising in the game increases and thus Loki-2's playing 

style is more aggressive. Loki-2's aggressiveness s ho11 lcl be consis tent t hroi1ghoi.i t a 

hand. because it is not a goocl iclea to bet strongly early in the gnme only to give iip 

later. A gootl player tloes iiot norrnally invest a lot in a tiand ancl then Folcl easily i n  

the next round. üsing a single randorn niimber keeps Loki-2's style fixecl in a game. 

However. varying the random tiiimber [rom garne to game makes it more di tficiil t for 

the opponents to create an accurate mode1 of Loki-2 over a session. 

The use of the PT generation function as Loki-2's betting strategy aclcls iinpre- 

dictability to Loki's play. Unpredictability is a reqiiirement to play strong poker. 

with a bet by Loki. The resiilt is that Loki's winnings will be sma 

to randomly select a betting action allows the program to Vary its 

even in identical situations. rnaking it dificuit for opponents to pred 

of Loki-2 and to exploit its weaknesses. 

because i f  the opponrnts recognize a playing pattern tlien they a.re able to make 

better informed decisions. For eeample. if an opponent realizes that Loki will bet 

j~ist  with a very good hancl ( E U S  2 O S )  then the opponent will fold when facecl 

ller. Using PTs 

play over time. 

ict the behavior 



hand-list = enmerate-all-possible-2carddhands(deck); 
for hand = hand - l i s t [ f i r s t ]  to hand, l i s t [ las tJ  { 

PT = probability-triple(hand, game-state) ; 
opponent -wtTable [handl = 

opponent -utTable Chand] * PT [observed-action] ; 

> 

Figure -1.2: Pseudocode for t lie reweight ing algori t hm iising PTs 

4.2.2 As a reweighting factor 

The opponent modeling rnoclulc maintains an array for each opponent with weights 

for al1 the Iiancls that opponent can holtl. What cloes the weight for a specific Iiand 

represent? For instance assume that the weight for Q&TO in Loki's weight table for 

a particular opponent is 0.60. This weight inclicates that il Q&TO has been dealt 

to t his opponent then Loki believes there is a 60% chance that this opponent woulcl 

have playeci in the observecl manner so Far i r i  the game. In other worcls. the weight 

for a hand is the  probability of an opponent's past behavior in a game given a speciFic 

pair of carcls. 

iot = P(observecl actions ( pair of carcls) 

When an opporient action is observecl. t h e  iveight table for t hat opponent is rnocl- 

ified to reflect the latest action. In Loki-2 probability triples are iised diiring the 

postffop rounds (after the three comrnunity cartls have been deatt) as a reweighting 

factor to upclate the weight table of each opponent. Loki-2 cornputes the PT for each 

hancl the opponent can hold (the community cards and Loki-2's cards are reniovecl 

from the cleck) and multiplies the weight of each hand by the entry in the probability 

triple that corresponds to the observecl opponent's action (see Figure 4.2). 

By using PTs to upclate the weight tables, the opponent modeling modiile was 

simplifieci. It ivas also irnproved since it makes better use of the information provitleci 

by an opponent's action by differentiating between a cal1 and a raise. and by not ig- 

noring an opponent's check. For example, assume that the entry in the weight table 



For the band . \CAO is 0.90. and the opponent calls. In the previous reweighting 

system the weight for A b . 4 0  would still be high. because the program only distin- 

guished between fold and play. Now. if the PT for .\&:\O in the current context is 

[O. 0.20.0.80] tlien the updatecl weight for this hancl would be 0.90 x 0.20 = 0.1s (i.e. 

.-\&-\O's weight times the probability of the observed action). The relative likelihood 

of the opponent holding A&-\() has decreased from 0.90 to 0.18 since no raise was 

made. 

Hoivever. an opponent might try to deceive Loki hy calling with a strong liand 

instead of raising. The call value of 0.20 in the above example reflects the ~incertainty 

in Loki's beliefs about the actions of this particular opponent. Probability triple 

valiies allow Loki-2 to deal with the unreliable information diiring opponent modeling. 

This featiire kvas not supportecl in Loki-1. 

Specific opponent modeling 

Loki-2 performs genen'c opponent rnodeling (GOM) in the sense that it uses the sanie 

PT generation function For al1 the opponents without accoiinting for each opponent's 

playing style. Obviously, treating al1 opponents t h e  sarne is clearly wrong. Each 

player has a different style. ranging from loose (plays most liands hcyond the flop) to 

tighl (iisiially plays orily those hands that have a very high probability of winning). 

In addition a player may be passive (calling insteacl of raising even with a strorig 

hancl) to aggressive (raising insteacl of calling). If the style of an opponent is known. 

a player can acljiist betting decisions based on the opponerit's style. For example. a 

perceived tight player who bets aggressively. probably has a strong hantl. .\ loose 

player will play many marginal hands or may bliiff a lot. This is iiseful information 

and rnay allow a player to Fold a strong hand or cal1 wi t h a weak one when i t is correct 

to do so. In general. a bet made by a loose agressive player shoulcl not be taken as 

seriously as one made by a tight passive player. 

Loki-2 can gat her information about the opponents to obtain hetting frequencies 

for each opponent and use this data to customize the PT function to account for 

the playing style of each opponent. This process is called specific opponent modeling 

(SOM). The default call and raise thresholds used in the PT generation function can 

be adj usted by bet ting frequency statistics gat herecl on each opponent from previous 



hands. Thus, the reweighting factors applied to the  entries of each opponent's weight 

table are adjiisted to better fit their playing style. For example? assume a tight 

opponent raises. Since in the case of a tight player, the call and raise thresholds will 

increase. few PTs generated will have a high raise value. Hence. after reweighting. 

tliis opponent's weight table will indicate fewer hands that are likely to be held. 

Loki- 1 already collected the bet ting action frequencies of the opponents each round 

basecl on the number of bets to call. These action freq~iencies are used by Loki-2 in 

the PT gencration fiinction to obtain the EHS thresholds recpired to perlorm the 

observed action. 'The EHS thresholcls are obtained in the same way as was clone in 

Loki-1. For example. assume Loki has observed twenty actions by a specific opponent 

on the turn with one bet to call. Assume the observations arc sis raises, eight calls 

ancl six folcls. The EHS raise threshold usecl for this opporierit by the PT generatiori 

fiinction when an action is observed on the tiirn with one bet to call is 1 - $j = 0.7. 

The EHS call thresholtl iisecl is 0.7 - $j = 0.3. Besicles the acciimiilated (historie) 

action Frcq~iencies collectecl by Loki- 1. Loki-2 keeps track of the last twenty actions 

of each opponent observecl in the current session. EHS thresholcls are calcidatecl 

From bot h recorcls (tiistoric action freqiiencies ancl last twerity observecl actions) and 

averagecl to obtain the EMS thresholcls usetl by the PT generation ftinction. Iiecping 

track of the last twenty actions allows Loki-2 to react more qiiickly to ctiariges in the 

opponents' playing style. 

Siiperior opponent modeling is much more complex than the current techniqiies 

used by Loki. Players can act to mislead their opponents into constrticting ari e r r e  

neous model. For example. early in a session strong poker players may try to create 

the impression of being very conservative. only to exploit that image llater iti that 

session when tlieir opponents are using an incorrect moclel about them. Players can 

also Vary their style over a session, and then recency of the information gathered 

about them has to be considered. Therefore. a strong player rniist continually aclapt 

the moclel for opponents who may be varying their playing style or trying to deceive. 



4.3 Experiments 

4.3.1 Design 

One goal of this research project was to construct a series of self-play poker tourna- 

ment experirnents to obtain statistically significant resiilts that show each enhance- 

ment improved Loki-2's performance under clifferent playing conditions (as is typically 

seen against human cornpetit ion). The experimental design to accornplish t hese goals 

is describecl in t his section. 

Each self-play tournament consists of playing trvo versions of Loki against each 

other: eight copies of a control version and two copies of a moclified version. To rediice 

the .gli~ck" factor of the garne and consequent ly the variance. the tournaments lollow 

the pattern of diiplicate bridge toiirnaments tlescribed in [2 ]  and [L9]. Each deal is 

played ten times. each tirne changing tlie scat order so that 1) every plqer  tiolcls 

every set of hiclclen carcls once. ancl 2) every player is seated in a cliferent positiori 

relative to al1 opponents. :\ toiirnarnent consists of 2.500 clifferent deals (Le. 25.000 

garnes or trials). 

The playing style of a playcr is clefinecl by the percentage of hancls pl-cc! (e.g. 

li beral-loose or conservative-tight ) ancl the fseqiiency of raising rvhen active (cg.  ag- 

gressive or passive). Players are classified iising a two charùcter notation where the 

first letter represents the perceritage of hancls played and varies from tight (T) to loose 

( L) ,  and the seconcl letter represerits the raising freqiiency and goes from passive ( P )  

to aggressive ( A ) .  These characteristics are not exclusive in a player. For esample. a 

conservative/aggressive (Tl:\) player will play few hands (lolcl most of the hancls in 

the preflop), but will bet/raise often when active. 

To test an enhancement. one particular version of the program is first p l a ~ ~ c l  

against an iclentical program with the  new feature in a homogeneoos field (al1 the 

players have the same playing style). For example, one can play eight conserva- 

t ivelaggressive base Loki- 1 players s a i n s  t two conservat i ve/aggressive Loki-2 players 

t hat are augmentecl wit h the  PT fiinction betting strategy. Second. the enhancement 

is testecl in combination with other changes. Third, the modification is tested against 

opponents that have difFerent playing styles. 

To measure the impact of each new enhancement on the program's performance, 



we use the average number of small bets won per hand (sblhand). This is a nietric 

sometimes used by human players. For instance. in a game of $10-$20 Holdem (small 

bets are $10 and big bets are 920), a player who has an iniprovernent of +O20 sblhand 

will make an extra $60 per hoiir (based on 30 hands per hour); anything above +&O5 

sb/hand is considered a large irnprovement. One must be cautious when interpreting 

the resiilts of these self-play experiments. since any feature could perform worse (or 

better) playing against hiiman opposition [Il. The main function of these experiments 

is to weecl oiit had ideas. Ultirnately. the only performance metric that is important 

is how Loki plays against hiimans. Since it is difficult (and expensive) to get this 

data. rnost of our experirnentation miist be done with self-play first. 

4.3.2 Results 

This section contains the experimental results of usirig Probability Triples as a. stand- 

alone betting strategy (Section -W. 1 ) and as a. reweighting factor in opponent rnoclel- 

ing (Section 42 .2 ) .  Both the indivitlual effect of each enhancement sncl thcir combined 

resiilt arc discussed. In t h e  experirnents. B stands for the iise of the PT gencration 

ftinct ion as a betting strategy ancl R stancls for the change of the reweighting systcni 

to iise PTs. 

Figure 1.3 shows the resiilts of playing ten Lokis against thernselves in a ho- 

rnogeneous environment (only one type of player) with the B ancl R enhancernents 

indivicliially and cornbinecl ( B+R). The players were eight Loki- 1 players against tivo 

enhanced Lokis. Loki-1's perforniance is t h e  baseline for the cornparison. The B 

Featiire represents a 0.0:ll I 0.009 sb/liand improvement. the R feature represents a 

0.055 k 0.0 16 sblhancl and B+R represents a O.OS3 I 0.020 sblhancl improvement. 

'The B+R results show that the effect of these enhancements is nearly additive since 

these features are almost independent of each other. Sote that each enhancernent is 

a win by itself and in conibination with the other one. 

A second series of experiments mas conducted to see how well t he  neiv features 

performed against a mixture of opponents with clifferent styles. For t his set of eu- 

periments, opponents wit h different playing styles were used. In each experirnent 

there was a pair of players from each of the foiir categories: tight/passive (T/P). 

t ight Iaggressive (T/..\). loose/passive ( L/P) and loose/aggressive ( L/ A).  In each pair. 
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Figiire 4.3: Loki- 1 versiis Loki-2 wit h PT enliancenients 

one of the players was a basic Loki- 1 player and the other was a Loki-2 player ivith 

eit her new betting strategy ( B ) ,  new reweighting systern ( R )  or both features ( B+R). 

Figures 4-1. -4.5 and 4.6 show the absolute irnprovements per type of player obtainecl 

by aclding B. R or B+R respectively. Since ten players are reqiiiretl to play a tour- 

rianient, we actually used two pairs of tight /passive players and reported t h e  average 

over the results of both pairs. 

In each mixecl experiment. the enhancecl player always outperformed the  corre- 

sponding un-enhanced player. The absolttte individual improvement varies greatly 

from one style of player to another. For example. the L/A player enhanced by R 

in Figure 4.5 had a 0.1 1 sb/hand irnprovement going from -0.033 sb/hand t o  0.077 

sb/hand. rvliile the T /P  player enhanced with R went from -0.031 sb/hand t o  0.023 

sb/hand showing a 0.054 sb/hancl improvement. On average the B enhancenient 

procluced an irnprovement of 0.045 sb/hand. the R enhancernent of 0.070 sb/hand 

and B+R of 0.096 sb/hand. These esperiments showed that both enhancements win. 

regardless of playing style. 

Loki-2 with B and R was also tested under more realistic conditions against human 

opposition. Loki-5 plays in a n  on-line poker game running on the Internet Relay Chat 
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Figiire -4.4: PTs as bctting strategy ( B )  in a mixeci environment 
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Figure 3.5: PTs as reweighting factor ( R )  in a mixed envirooment 
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Figure 4.6: PTs as reweighting factor ancl betting strategy ( B + R )  in a rnixed erivi- 
ronment 

( IRC) poker server (irc. pokcr.net ). tIuman players ancl ot her poker-playirig programs 

connect to IRC: aricl partici pate in games conducted by dedicateci server progranis. 

Xo real nioney is at stake. b ~ i t  bankroll statistics on each player arc niairitairiecl. Since 

there is no control over the qiiality and type of opponents. t h e  perforniance of the 

program depends strongly on ivhich players tiappen to be playing and t h e  variance 

in these games is very high. tlowever. Loki-2 is a consistent winner increasing its 

bankroll at a rate of O. 11 sb/hancl in 2.5.703 games (Loki- 1's winning rate or1 IRC was 

0.08 sb/hand). 

4.4 Summary 

Representing poker clecisions as a set of three probabilities provicles a siiitable infras- 

tructure to perform well in a noisy environment. where randomized strategies and 

misinformation are important aspects of strong play. Besicles the performance im- 

provernent obtained by the use of PTs as a non-deterministic betting strategy and as 

the reweight ing factor in the  opponent modeling module. the PT geeneeration function 

improves the design of the system by encapsulating al1 the knowledge-based cornpo- 



nents of Loki-2 in a single routine. 

Alt hough the results obtsined are encouraging, there are still opportunities for 

improvement. Using showdown and bltiffing information about the opponents to 

perform more accurate speci fic opponent modeling, replacing Loki- 1's preflop bet t ing 

strategy with a PT-basecl strategy, using PTs in preflop reweighting. and refining the 

knowledge in the current probability triple function are sorne of the possible next 

steps. 



Chapter 5 

Selective sampling simulation 

The general structure of a program for a. perfect information game. siich as chess or 

checkers. contains an evaluation fiinction and a search algorithm. Loki's knowledge- 

basecl betting stratcgy is. in fact. arialogoiis to a static evaluation function. If  detes- 

ministic perfect information gantes are tisecl as a mode1 then the obvious extension is 

to adc1 .*searcho' to Loki's evalilation ftinction. 

in clieckers or chess. t h e  average hraiiching factor is 3 and 30 -40 respectively. One 

can consitler al1 possible moves as tleeply as resources permit. However. in poker the 

existence of hitlden information. uncertainty ancl multiple players makes the  sanie 

approach irifeasible. There are too niany possibilities to consider. In a two-playes 

Texas Hold'em game t here are 363.9 x 10"ossi ble states at the begirining of the Rop 

and [ y )  = 1.081 possible opponent's hole car& (see Figure 4.2 in [NI) plus multiple 

possihilit ies for each bett ing rotincl. Thesefore. cornp~iting the complete game tree 

for poker is prohibitively expensive in real-time. If exhaustive search is oiit of the 

q~iest ion. how do we adcl %earcti" to LokiY 

We can examine (sirn u h t e )  a representat ive sample. as large as resources permit . 
from al1 the possible game scenarios. The larger the  sample and the more inforniecl 

the selection process. the higher the chances to decluce meaningfiil conclusions. 

.A simiilation consists of playing oiit a hand in many likely scenarios. from the 

current state of the game throiigh to the end, to determine how much money each 

decision will win or lose. Every time Loki-2 laces a decision. it performs a simulation to 

get an estimate of the erpected value (EV)  of each betting action and then chooses the 

action with the  greatest expectation. Inside each simulation? Loki-2 uses probabiiity 



triples ( PTs) to generate actions for al1 the opponents and itself. as well as, opponent 

modeling information (rveight tables) to bias the selection of opponent's cards. 

5.1 How simulation works 

When it is Loki-2's turn to act. it invokes the simiilation routine to get an eçtirnate 

of the EV of calling and raising. Folding is considered to have a zero EV. because 

t here is no further profit or loss. The simulation routine plays out Loki-2's hancl a 

specifiecl nuniber of times (trials). Aowever. each trial is actiially playecl out twice - 

oiice to consider the conseqiiences of a check/call and once to consitler a betlraise. 

For each case the amount of rnoney won or lost is determinecl and averaged with the 

corresponcling results of al1 the trials. .At the end of the simulation the averagcs of 

the turo sets of trials are taken as the EVs of the corresponclirig actions. 

Çiniulation is analogoiis to a seleciive expansion of some branches of a game 

tree. Since not al1 the branches of the game tree cari be expanclecl dite to tirne 

constrairits. the information obtainecl from a sirriiilation neects to he rnaximizect. The 

*perlectV* sirn~ilation woulcl examine only the real game state (complcte information 

about the opponent hands. played out over al1 possible combinat ions of future coni- 

munity carcls). However, the -perfectw sirriiilation is impossible withoiit knowing the 

opponents' cards. and a n  accurate estimate may be foiincl rvit hout looking at al1 pos- 

sible oiitcornes of ftitwe cards. One can try to approximate the EV values obtainecl 

by the -perfectV simulation by expantling and evriliiating the nocles which are niost 

likely to occur. In poker not al1 opponent's hancls are ecpially likely. For example. a 

p l v e r  who has been raising the stakes is more likely to have a strong hand than a 

p lyer  who has just called every bet. To consicler the opponents' hands iri  proportion 

to t heir tinderlying probability distribution, Loki-2 uses the informat ion gathered by 

the opponent modeling module. At the beginning of eve- trial. Loki-2 ranclomly 

generates a hand for each opponent based on the weight table of that opponent. :\ 

ranclom method is used to generate the opponents' hands. because of the simplicity 

of its implementation. 

Loki-2's first betting action is predetermined to be eit her cal1 or raise. Every time 

it is a player's turn to act inside the simulation. an action is chosen from one of threc 



alternatives ( fold. check/call, betlraise). Since the choice is strongly correlated to the 

quality of the cards that the player holds, Loki-2 can use the PT generation routine 

to obtain the likeliliood that the player will fold. check/call. or bet/raise. Thiis. rvhen 

a p l a y  (an opponent. or Loki-2 after its first action) has to act in the simulation. 

the PT generation function is called wi th  the player's hancl and the ciirrent state 

of the simulated pame. The player's action is then randomly selected basetl on the 

probability distribution defined by the triple returned, and the simulation proceeds. 

.\s more trials arc pcrforrncd. if the EV of one bctting action cscrecls ttic alterna- 

tives by a statistically significant margin. one can say tliat tliis action is an obvioi~s 

more ancl the simulation c m  be stoppcd early. [vit h full kriowleclge of the statistical 

valiclity of tliis clecisiori. We currently clefine an obvious move as any action where the 

separation between the EV of the b a t  action nncl the EV of the second best action 

is greater tliari the siini of the stariclard tleviations of the EVs. This criterion for 

defining an obvioiis move is estrernely conservative. sirice t lie separat ion between the 

-best" tlecision ancl the next one is usiially not more thari two srriall I~ets. anci the 

average stanclarci tleviation of the EVs is si': sniall bets for calling aricl cight srriall bets 

for raising. This sitiiation results in tleclaring fewer than 5% of actioris as obvioiis 

moves. C h w i  the real-time nature of the ganie. niore liberal criteria for tlistiriguish- 

ing obvioiis nioves need to be testecl to prodiice more freqiieiit ciitofk w tiile retaining 

sanie statist icai vaiicli ty. 

The interactioris between the opponent mocleling niocliile ( Opponent .\fodeler). 

the PT generation routine (PT Cietierator) arid t hc sim~ilation nioclule (Siniiilator ) 

are shown in Figure 9.1. In the  cliagram squares are system coniponents ancl rounded 

rectanglcs are data striictures. The data follows the arroivs between coniponents. 

The sqiiare corresponcling to the Simiilator also illiistrates the major steps insicle the 

sirnulat ion process. The dashetl sqiiare arounci the Opporient hfodeler ancl the PT 

Generator inclicates t hat t heir interaction occurs hefore t h e  simiilation starts. 

1. For every trial. the Simulator generates the opponents' hands basetl on their 

weight tables which have been updated by the Opponent Slodeler. 

2 Each trial is played twice - once with cal1 as the first action and once with raise 

as the first action. As  the hand is played the PT Cenerator is called to obtain 
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Figure 5.1: Simulation process 

the likeli hood of the  actions of the players (iriçluding Loki-2). This means that 

al1 players in t lie simiilation use the PT Cknerator ns their hctting strategy. 

3. The Simulator stops whcn  an obvioits move is founcl or the maxini~ini niiniher 

of trials is performecl. 

4. At the encl of the  simulation the expectecl value (the average over al1 the trials) 

for each action is cczlculatec1. 

When the simulation returns the EV valiies for check/call. hetlraise and zero for 

fold. the current version of Loki-2 simply chooses the action wi th  the greatest espec- 

tation. If two actions have the same EV. the program opts for the rnost aggrcssive one 

(cal1 over folci: raise over c d ) .  However. against hiirnan opposition. a bet ter st rategy 

will be to randomize the selection of betting actions whose EVs are close in value to 

increase iinpredictabili ty. 

5.1.1 Dealing cards out 

The opponents hands are generated according to the seating order of the players ( the 

small blind gets cards first and the dealer gets cards last). The criterion for assigning 



the bole cards to an opponent depends on whether the opponent is still active in the 

game or not. Hole cards are dealt to the folded players because we want to choose 

the cards to corne (turn and river cards) not only from the correct number of cards. 

but also from cards with the correct distribution of weaklstrong cards. 

To deal the hole cards to an opponent, the Sirnulator uses selective sampling. it 

randomly extracts two cards from the deck arid generates a random number in the 

range 0.0 - 1.0. In the case of an opponent already folded. the cards extractecl are 

kept as t hc opponerit's hole carcls i f  the preflop hand d u c  (incorne rate of the hand) 

is less than the random number: otherwise, the cards are returned to the deck and 

the generat ion process is repeatccl. Thus. preference is given to weak hancls (hancls 

that are likely to fold on the preflop). For an opponent who is still active in the game. 

the carcls extracteci are kept i f  the weight for the two cards in the iveight table of 

the opponent is greirter than or eqiial to the rantlom number; otherwise. the cards 

are re-inserted into the deck. and the Simulator extracts two carcls aricl generates 

another ranclorn number. Since the weight of a pair of cards intlicatcs the likelihoocl 

of the oppone~it holding these carcls. preference is giveri to the most likely holclings. 

However. al1 the two-card cornhinations have sonie opport unit ies to be selectecl. 

In analyzing the results of self-play experiments with selective sampling simula- 

tion. we noticecl that simulations contairi high variance and a lot of noise. We ~iieecl 

to keep the sampling in the sirnidation as representative and fair as possible to get 

the best possible (reliable) results. Thiis. tlifferent methocls to recliice variance have 

to be tested. For example. in the ciirrent version. a random selection of the tiirn and 

river cards is made for every trial in a simulation. To reduce statistical anomalies ancl 

variance. one can obtain a perfect representation of the one-card potent ial by clealing 

al1 47 possible tiirn carcis exactly once. Then a certain niimber of river carcls can be 

chosen, wit hout replacement. for each of t hese tiirn cards. 

5.2 Experiment s 

The esperimental design used to test Loki-2's simulation-based performance is the 

same as described in Section 43.1. In a tournament. there are eight Loki-l players 

playing against tivo Loki-2 players. A tournament consists of 2.500 different deals 



played ten times each (i.e. 25.000 games). The number of trials per simulation was 

chosen to meet real-time constraints and statistical significance. In the experiments, 

,500 trials per simulation were performed. since the results obtained after 500 trials 

were quite stable. For example. 4.6% of the betting actions selected wi:li 100 trials 

changed after more trials were performed. whereas only 0.5% of the decisions were 

changed after 500 trials. 

Selective sampling simulation was tested alone and in combination with the PT 

enhancements. Figure 5.2 shows the increment in Loki-2's performance in a homoge- 

neous environment obtained by using the  following rnoclifications in Loki-1: 

0 S = Selective sanipling simulation. 

O S+R = Selective sampling sirniilat ion wit h PT-basecl reweighting. 

a Ç + B  = Selective sampling simiilation with PT-basecl betting strategy as the 

action generat.ion mechanism insicle the  simulation. and 

0 S+B+R = Selective sarnpling sirniilation wit h PT-basecl reweighting and PT- 

basecl betting strategy. 

In the graph. Loki-1's performance is the baseline for cornparison. Selective 

sanipling simulation (S) represents an improvement of 0.098 f 0.0:IS small bets per 

hand (sb/hand). By aclding both PT enhancements (S+B+R), a n  improvement of 

O. 1 1 f 0.035 is obtained. A s  can be seen i n  the graph. the effects of S. B and R are 

not aclclitive. These enhancements may exploit the sanie aspect of the opponents' 

play ancl th& effects overlap. Another reason may be the hyper-aggressive plqing 

style of the simulat ion-based players. T hey are very siiccessfiil against Loki- 1 players. 

and can lead to over-optimistic conclusions about the performance improvement rep- 

resented by S. Since the B enhancement allows us to simulate less tight opponents. 

S+B may result in a Iess aggressive playing style, lowering S+B winnings against 

Loki- 1 opponents. 

Also. one has to consider tliat the larger the winning margin, the smaller the 

opportunity there is for demonstrating further improvement against the same opposi- 

tion. There is a lirnit to how much money one can make lrom an opponent in a game. 



Enhancement 

Figiire 5.2: Selective sampling sirniilat ion experiments 

Two other experiments were carried out raising the bascline for cornparison. In the 

first esperiment. two Loki-2s with S were matched with a field of Loki-2s witli B+R. 

The S enhancement won 0.023 f 0.04-1 sb/hantl. [n the  seconcl experiment. the same 

fielcl of opponents (B+R)  playecl against two Loki-2s with S+B+R. The 3+B+Rqs 

winning rate was O.OS7 I0 .03S sb/hand. 

:\ rnisecl environment experiment was conducted to see how well selective sanipling 

simiilation performed against different playing styles. In this experiment. the fielcl of 

opponents wvas composed of pairs of players wit h the styles: t ight/aggressive (T/A). 

Ioose/ passive ( L/  P )  and loose/aggressive ( L / A ) .  as ive11 as two pairs of t ight/ passive 

(T/ P )  players. Frorn each pair of players. one player used selective sampling simula- 

tion and the other one was a Loki- L player. Figure 5.3 shows the average performance 

of the players tvi t hout simulation ( N E )  and the average performance wit h simula- 

tion (:\VE+S). The average improvrment obtained for al1 different players by using 

simiilation is 0.0:36 sb/hand. 

Loki-2's playing ability with the three enhancements (S+B+R) was also tested 

against human opposition in on-line poker games on the Internet Relay Chat (IRC). 

Loki-2's winning rate is 0.13 sb/hand in 26-17 games (Loki-1's winning rate on IRC 
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Figure 5.4: Loki-2's behaviour on IRC: 



was 0.08 sb/hand). Figure 5.4 shows Loki-2's behaviour on the first level of IRC. 

5.3 Comment s about select ive 
sampling simulation 

5.3.1 Advantages 

The simulât ion-based approach used in Loki-2 has experiment ally provecl to be bet ter 

than Loki-1's static approach. This should not be at al1 siirprising. since the simii- 

lation approach essentially lises a. select ive search to augment and refine the static 

evaluation fiinction. Excliiding a serioiis misconception (or bacl luck on a liniitecl sarii- 

ple size). playing out relevant scenarios can only be expected to improve the valites 

obtained by a heuristic (i.e. by the static evaluation hnction), resiilting in a riiorr 

acctirate estirnate, 

Selective sampling siniiilations cliscover information that improves the valiies oh- 

tairiecl by the static evaliiatiori fiinction. In  both Loki-1's betting strategy aritl the 

PT generatiori function. actions are taken basecl on the hand evaliiation. Diiring a 

simulation. the acciiracy of the hancl evaliiation is increasecl. The riiirnber of trials 

where oiir hancl is strongcr than the one assigned to the opponents rcfines the esti- 

mate of hand strength. The fraction of trials where oiir hancl becornes the best one. 

or is overtaken. with the next carcis clealt refines the calcttlation of hnnrl potential. 

In aclclition. a simulation yielcls information about subtler inipiications cli fficiilt to 

acldress in a static betting strategy. 

By performing simulations Loki-2 is able to find game strstegies which are not 

specified in the knowledge contained in its evaluation function. For example. i f  a 

player has a strong hancl then the player can pretend weakness by cliecking iri  the 

first turn to act in a betting rouncl. The opponents will likely bet to their hantls 

(thinking that the player's hand is not good), and then a raise will collect niore 

money tlian betting as the first action. This strategy is known as check-raising. Loki- 

2 check-raises its opponents wit hout having the explicit knowledge to do it. Çelective 

sampling simulations uncover the benefits of cornplex strategies such as check-raising 

wit hout providing additional expert knowledge to the program. 

The use of available information about the game to bias the sampling of the 



garne tree is the key difference between selectiue snmpling simulations and !Ilonte 

Car10 simulations. Select ive sampling is context sensitive. In Loki-2 t lie opponents' 

weight tables are useci to influence the selection of hole cards for each opponent. The 

sample is taken in accordance with the underlying probability dist ribiit ion of the o p  

ponents' hands rather than assuming uniform or other fixecl probability distributions. 

;\lthoiigh Monte Carlo techniques may eventiially converge to the right answer. selec- 

tive sampling converges faster and with less variance. This is essential in a real-time 

game like poker. 

Finally, anot her benefit of the simulation-basecl framework is t hat the sirriulation 

can he terminated early baseci on the statistically well-definecl concept of an obvioiis 

rnove instead of using an ad hoc techniqiie as is freqiiently clone in alpha-beta-based 

5.3.2 Simulation trade-offs 

As encoiiraging as the simiilation resiilts have been. tliere is still room for improve- 

ment. Simulation can revesl inforrnat ion that resolts in  better betting clecisions and 

refine t h e  estimate of the evaliiation fiinction. k t .  a simulation contains high variance 

and it is unclear how the  otlier cornponents of t h e  prograni impact on its performance. 

As was disciissecl in the previous section. simulation can recover from lack of 

knowledge in the evaliiation function. procluce corn plcx game st rategies and refine the 

estimatecl EV of the actions. This featiire raises the question: how much knowledge 

does simulation reqiiire'? Every time a new card is clealt in a trial, the hand strength 

and hancl potential for active hands in the trial are calciilatetl. For each betting 

action to be played, a PT generation function is callecl to generate an action for 

the opponents and Loki-2. Thus, during the simulation every trial is an acciirate 

representation of a real game. However. each trial is a tirne-consurning process. In 

fact. one can exchange the acciiracy of each trial for the number of trials performed 

in reai-time. This tradeoff was explorecl by replacing the PT generation fiinction 

betting strategy wit h an "always c d "  betting strategy inside the simulation. An 

-always call" betting strategy is probably the simplest betting strategy that can be 

provided to the simulation: it always returns call as al1 of the players' actions and 

al1 of Loki's subsequent actions. Therefore. in an "always call" simulation, t here is 



no further betting after Loki's first decision, which is predetermined to be either cal1 

or raise. and every trial only consists of dealing al1 the cards and determining the 

hand t hat takes the pot. n.41ways-call?' sirnulat ion-based Lo ki-2 wins against Loki- 1 

by a healt hy margin (0.05'7 sb/hand) and runs 2.5 times faster t han Loki-2 using the 

PT generation f~mction. However it does not win as much as the full simulation- 

based Loki-2 does. Even thoiigh simple simulation is better than no simulation at 

alIl knowleclgeable simulation seems to provide bet ter results. 

5.3.3 Cornparison with alpha-beta 

The alpha-beta algorithm ('201 has proven to be an effective tao1 for the design of two- 

player. zero-sum. deterministic games with perfect information. [ts crigins go back 

to the  beginning of the 1960's. Since that time the basic strticttire has not changecl 

nitich. although there have bcen niirneroiis algorit hrnic enliancernents to improve the 

search efficiency. The selective-sanipling siniiilatiori techniqix is becoming an effec- 

tive tool for the design of zero-sum games with imperfect inforniatiori or conclitions 

of unccrtainty (sec Chapter 6) .  Table 5.1 shows a cornparison between the iisiial 

characteristics of bot h approaches. 

1 Criterion Alpha-beta 1 Selective sarnpling 

I 1 (iterat ive deepening) 1 

simulation 
Full depth. Search 

lterat ion 

Full breaclth. 
but limitecl tiepth 

Search depth 

Heiirist ic Evaluation 
Iriterior node alternatives 

1 best move choice'! I I 

but limitecl breadth 
Yumber of samples taken 

considercd 
S tat ist icai support to 

Table 5.1 : Corn parison between search frameworks 

At the leaf nodes 
:III. except for those 

In poker the heuristic evaluation nt the interior nodes of the simulation is done 

to determine the appropriate opponents' actions and Loki-2's actions. The leaf node 

evaluations are the amount of money won or lost. since the simulation done for each 

sample goes to the end of the game. In deterministic games, the heurist ic evaluation is 

At the interior nodes 
A subset, to recliice 

logically eliminatecl 
Yo 

the cost of a sample 
Yes 



done to estimate the expected utility of the game from a given position (i.e. the value 

of the subtree beyoncl the maximum search dept h of the program). A simple leaf node 

evaluation for some perfect information games can be the material balance. Figure 5.5 

illust rates where the evaluat ion occurs in the search and simuiat ion approaches and 

the game space explored by t hem. 

(3 )  Alpha-Betri framework (b)  Selectivc sampling fnrncwork 

Figure 5.5: Search space explorecl 

The alpha-beta algorithm gathers confidence in its move choice by searching 

tieeper alorig ench line. The cleeper the search. the greater the confidence in the 

niove choice. althoiigh clirninishing returns quickly takes over. The alpha-beta al- 

gorithm is clesignecl to itlentify a ;best" move. and not cliffercntiate between other 

moves. Metice. the selection of the best niove rnay be brittle. in that the niiseval- 

uation of a single node can propagate to the root of the search and alter the best 

move choice. Similady. selective sampling simulation increases its confidence in the 

answer as more nodes are evaluated. However. rliniinishing ret iirns takes over after a 

statistically signi ficant riumber of trials have been performed. 

Select i w sampling simulation can be compared to select ive search or forward prun- 

ing techniques in alpha-beta algorithms. These techniques discarci some branches to 

recluce the size of tree: however. their major drarvbacli is the possibility t h a t  the 

loolüihead process rvill ignore a key move at a shallow level in the game t ree [lS). To 

be reliable. forwarcl pruning methods need to reason about the tree traversal to de- 

duce which "future branches'' can be excluded. On the  ot her side. selective sanipling 

sirnulat ion uses availa ble information about the game and the opponents to explore 

the most likely "current branches" of the game tree. 



5.4 Summary 

According to the resiilts of self-play experiments. a select ive sanipling sirnulat ion- 

based betting strategy for Loki-2 significantly outperforms the static-evaluat ion based 

alternatives. Similar to what has been seen with brute-force search in games like chess. 

the effect of the simulation (search) amplifies the cpality of the evaluation lunction. 

allowing high performance to be achieved withoiit adding additional expert knowl- 

edge. Selective sarnplirig tises the th ta  available about the game and the  opponents 

to increase the quality of the information obtained wit,h each simulation run. Yet. 

the work on selective-sampling simiilation in poker is still in its early stages. The 

knowleclge component and select ion methods have to be tiined wit h the  algorit hmic 

component of the simiilation. and the right balance between the different simiilatiori 

t racleoffs (cost per trial versus num ber of trials. ranclorn versiis systenint ic approacli ) 

has to be fotind. 



Chapter 6 

Ot her examples of select ive 
sampling simulation 

The use of stochastic simulation to solve problems where eshaustive methods take 

too long is not new to the  Astiticial intelligence commiinity. Specifically. stochastic 

methods have been cleveloped for performing inference in belief netrvorks and for 

clecision-rnaking in imperfect information or non-cleterministic garnes. 

There are two important advantages of stochnstic simulation algorithms. The- 

have an *'anytime" property in the sense that they can be stoppecl at any time and 

will give the bcst answr  available. Given more time. their estimates will improve. 

This %iiytime" property is especially appropriate for real-time domains like poker.  

Also. simiilation algorithms are trivial to perform in pasallel. 

In this chapter. simulation algorithms iised in belief rietworks and garnes will be 

reviewed. The algori t tims discussetl perforrn select ive sampling on the search space by 

iising available information about the state of the world to bias the sample selection. 

The aim of selective sampling met hods is to converge faster t han approaches using 

uniform sampling. 

6.1 Belief networks 

Bayesian belief networks ( BBNs ) are a graphical represent ation for reasoning uncler 

uncertainty [ - O ] .  A BBN is a directecl acyclic graph with a conditional probabilit- 

distribut ion for each node. BBNs contain nodes representing domain variables. and 

arcs between nodes represent ing probabilistic clependencies. The basic t a s  k for a B B N 



is to compiite the posterior probability distribution for a set of query variables. given 

exact values for some evidence variables. 

Since exact ("brute-force") algorithms for performing inference on BBXs take 

erponential time (in the number of nodes) in the worst case, they cannot handle large 

or highly connected networks. Stochastic simulation algorithms have been developecl 

to give approsimate results for a wicler variety of belief network topologies. Simulation 

algori t hms differ from the brute-force approach in t hat t hey select only a sample of the 

nodc states. whcrcas s brute-force strirtegy sselects wery state. One of the simiilation 

algorithms for BBNs. likelihood meighting [El [1 LI. is similar to the idea of selective 

sampling simulation in poker. 

Likelihoocl weigliting selects the node states based on  their prior prûbability of 

occurrence. By choosing more likely states niore often, t his algorithm typically is able 

to converge miich more quickly t han equiy robnllr sctnlpling w hicli rantlomly chooses 

a state for each node in the network [Y]. Likelihoocl weighting chooses a state for 

a. node by generating a randorn number between O and 1 and ~ising this nurnber to 

select a state accorcling to the conditional probability table of the node. For each 

simiilatiori trial. the probability of the eviclencc given the sampled state values is 

usecl to increment the coiint of each event of interest. The estiniated probability 

distribution is obtained by normalizing after all the simiilation trials are completeci. 

By using selective sampling simiilation in poker. we estimate the erpectetl values 

of betting actions insteacl of estimating the posterior probability distribution for a set 

of variables. Bot h simulation met hocls have the following characteristics: 

1. They select the states to sample (node states or opponents hsnds) on the ba i s  

of their probability of occurrence by iising either conditional probability tables 

or (in our case) weight tables. 

2 .  Both methods can use heuristics or information available about the tvorlcl to 

rnodik the tables for choosing states and bias the state selection to the m a t  

likely ones. 



6.2 Games 

In t his section. three garne-playing programs t hat use simulations are described. 

These programs do not use Monte Car10 sarnpling to generate instances of the miss- 

ing in format ion. They use variations of selective sampling; sampling biased towards 

taking advantage of al1 the available information. They use information about the 

game state to skew the underlying probability distri bution of the opponents' moves, 

cards or tiles. rather than assuming uniform or other fixed probability distributions. 

The general simulation algorithm used by these games to select a move from a set .W 

of canclidate nioves is: 

1. Construct a set I of instances of the missing information consistent with the 

public information about the state of the game arirl the prograrn's assumptions 

(information) abolit the opponents. 

2 For each niove nt E .LI ancl each instance i E 1. evaluate the resiilt of making 

the rnove rn in the instance i. Denote the score obtairiecl by rnakirig tliis move 

4 m. 2 ) .  

:I. Return that m for which xi s(m.  i )  is maximal. 

6.2.1 Backgammon 

In backgammon the unknown outcome of the dice rolls makes the brute-force approach 

infeasible by raising the branching factor to several hunclreds moves ( 2  1 possibie dice 

combinations. each of them having 20 legal rnoves). The backgammon program TD- 

Cammon [26] [-Tl uses temporal difference (TD) learning to learn by itself how to 

play backgammon at a rvorld-champions hi p level. The TD-Gamrnon neural ne t  wor k 

is trainecl by self-play simulations. During training. TD-Chnunon considers each of 

the 21 ways it can play its dice role ancl the corresponciing positions t hat will result. 

Then, the move that leads to the position with the highest estimated value is chosen. 

This learning method is used even at the start of the training when the network's 

strategy is random. After playing about 300.000 games against itself, TD-C;amrnon 

0.0 with essentially zero backgammon knowledge learned to play approximately as well 

as the best previous backgammon computer program. Self-play training refined wit h 



some initial backgammon knowledge prodiiced a program that played at a worlcl-class 

level. 

Recent versions of the program were aiigmented with a selective tweply or t hree- 

ply search procedure. A pl9 is an individual playing action (only one of t h e  players 

makes a move). To select moves. these programs look ahead to consider the opponent's 

possible dice rolls ancl moves. Assuming that the opponent always takes the move that 

appeared immediately best for t h e  opponent. the expected value of each candidate 

move is compiited and the best move is selccted. The second plu of scarch is condiictecl 

only for candidate moves that were ranked high after the first ply. This sclectivesearch 

procedure affects only the move selection: the leariiing process proceetls esactly as 

before, 

:Uso. simulations are used in backganmon to perform *rolloiits' of certain posi- 

tions. The rollouts are now generally regarclecl as the best available estirnates for the 

equity of a given position. A simulation consists of gcneratirig a series of tiice rolls. 

playing through to the end of t h e  game? ancl then recording t h e  outcoriie. 

6.2.2 Bridge 

In bridge the hitlclen information consists of the carcls that the opponents holcl. The 

current best bridge program CIB [L4] performs simulations in two stages of the ganie: 

during the auction to make a bici and diiring the actual garne to decide which carcl 

to play. 

To select a hid. CXB deals cards to the opponents in a way that is consistent with 

the bidcling observed so Far. GIB uses a database to project how the aiiction rvill 

continue if a certain bid is made. and then computes the resiilt of playing out the 

hancl. The hantis are played in a double dummy variation of bridge (assiiming perfect 

information - knowledge of ail four hands). At the end of t h e  simulation the bici rvit h 

the maximal expected value is retiirned. 

Diiring a game. a simulation consists of dealing cards to the opponents in s manner 

that is consistent with the bidding and the cards played so far. The score of a move 

is determined by playing out the hand in a double dummy mode [El. Repeated deals 

are played until either enough confidence is gained to decide which card to play, or a 

maximum number of hands is simulated. or a real-time constraint is met. 



Opponents' cards are constrained by the information given by each player about 

the hand during the bidding. GIB also uses a probabili ty  distribution of the possible 

cards held by an  opponent to  bias the card dealings towards the rnost likely ones. 

This probability distribution is adjusted by identifying mistakes the opponents might 

make during the garne. For example. assume that GIB's analysis s q s  that 75%) of 

the time t hat a player holds a specific card and cloes not play i t in a particular ganie 

situation that an error has occurred. T h e  probability of this opponent holding that 

carcl is modifiecl accorclingly after CX3 observes t hat the  card was not playecl. 

Simulations have allowed CXB to play ha~ids  a t  a rvorltl-class level: however. lim- 

itations in the simulation-based approach and the high variance have promptecl the 

author of GiB. Matt Ginsberg: to look at  other solutions (incliiding builcling ttie 

entire search tree) (13J. 

6.2.3 Scrabble 

:\ simulation-basecl approach lias been used for a long tirne in Scrabble progrnriis. 

Brian Slieppard. whose Scrabble program hlaven cleferitecl Grandmaster :\clam Logan 

( a  top-rankecl player in the worlcl) in the :\:\AI-98 Hall of Champions. coined tlie term 

~osimiilator" for this type of game-plqing prograni structure. 

Diiring the non-enclganie stage of a Scrabble game. Maven [2:I] chooses its rnoves 

iising simulation to  try to determine rvhich move for tlie cornputer leads to the m m -  

imum number of points. To select a move Maven generates ii set of cancliclate rnoves. 

siniulates these moves a specific niimber of trials and  chooses the move whose ex- 

pected value is highest. :\ simulation trial consists of a two to four ply search of the 

game tree. except in the pre-enclgaine where a trial sirnulates to  the end of the game. 

Since in Scrabble. the opponent's tiles are  iinknown. they neecl to  he generatecl for 

every trial in the simulation and used t o  play out al1 the candidates rnoves. The tile 

generation is constrainetl by the tiles in the cornputer's hand and those that have 

appeared on the board. hlaven does not randomly assign seven of the remairiing un- 

knorvn tiles to  the opponent. Instead. it tries to  match the distribution actcially seen 

in games. To achieve this. it biases its choice to give the opponent a *nice" hand. 

since strong players like to have a balanced hand with lots of potential. 

Opponent modeling is not performed in Maven, since i t cloes not seern to be a cri t- 



ical component in playing strong Scrabble. However. inferences about the opponent's 

tiles can be done based on previoiis opponent's moves. 



Chapter 7 

Conclusions and future work 

Using probnbility triples as Loki-2's betting strategy and as the reweighting factor 

in its opponent modeling module represents a significant improvement in Loki-2's 

play against previotis versions of Loki in self-pl- experiments and against hiiman 

opponents on IRC. Selective sampling simiilations show irnpressive results in self- 

play esperiments. Against hiiman opponents on IRC. t h e  best results were obtainetl 

iiphen al1 three enhancements were usecl. In self-play experirnents. t tie playin:, style 

of t lie cornputer players certainly matches t hc opponents' actions generated insicle 

the simulations. Thus. the simulation-basecl betting strategy successfiilly exploits al1 

the weaknesses in the cornputer opponents' play. In the  more realistic environment 

on IRC. the less preclictable approach of the sirniilatioii-based Loki-2 paicl clividericls 

by making it more clificiilt for regular opponents to Form a correct moclel of Loki-Ys 

p h y -  

Developing Loki is an iterative process. The work concentrates on iniproving an 

aspect of the program until it becomes apparent that anot her aspect is the main per- 

formance bottleneck. That problem is then addressed iintil it is no longer the limiting 

factor. and new weaknesses in the program's play are revealed. Loki-1's deterministic 

betting strategy was its limiting factor. This bottleneck was overcorne in two ways. 

Probability triples provide as a probabilistic representation of betting decisions to 

increase iinpredictability. Simiilations add dynarnic fiinctionality to static betting 

st rategies. The PT-geoerat ion fiinction also supports better use of the in format ion 

available to the Opponent Modeler. and is more tolerant of the uncertainty in the 

opponents' actions. However. the opponent modeling still needs to be refined. In 



fact. it seems that further performance gains will depend on perfecting the oppo- 

nent modeling module together with improvements to the simulation-based betting 

st rat egy. 

This t hesis presents the first steps in using a simulation-based betting strategy 

ancl improving the reweight ing process in the Opponent Modeler. T hese are the initial 

steps and there are still rnany to take. Some avenues to esplore in Loki-2's futlire 

development are: 

1. The opponent modeling information can be used to improve the simiilations. 

C'iirrently. the opponent modeling data is usecl to select the most likely oppo- 

nents' hands; hoivever. it can also he used to simillate the most likely opponerits' 

actions. 

2 .  Simulations can also improve the opponent modeling. For exaniple. after cloing 

a simulation. the expected reaction for each opponent cari be recordecl. if their 

actions frecliiently cliffer frorn what is predictecl. then Loki-2 c m  adjiist its 

opponent model. 

3. Loki-2 can easily collect lots of data about the opponerit tvhile playing. The 

probleni is filtering and utilizing this clata. If these problems are not solved. 

Loki-2's opponent modeling will be  too slow to react or its betting strategy will 

base its clecisions on irrelevant information. 

4. Other metrics that may be better pretlictors of an opponent's style and futtire 

behavior have to be considered. For example. rneasuring the amount of nioney 

t hat a player invests per game rnay be a good predictor of loose/tight play. 

5 .  Using showdown information to re-play a hancl ancl obtain ches about how 

an opponent perceived each decision cluring the hand may help to adaptively 

measiire important characteristics iike aggressiveness. bliiffing frequency. pre- 

dictability. afiïnity for draws and so forth. 

6. The employment of learning algorithms in Loki-2's simulation-based strategy 

and in its Opponent Modeler rnay help to make inferences based on limited 

data. 



7. Loki-2's preflop behavior can be improved by using a preflop PT-based bett,ing 

s t rat egy. 

As esperimental results point out,  Loki-2 wins more money (plays better) than 

Iast-year's Loki. Flowever. does t he  prograrn play world-class level poker? It is not 

there yet. but rnany improvements are being made to its performance and there are 

still lots of ideas to try. 
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Appendix A 

Table of Abbreviat ions 

AAAI American Association for Artificial Intelligence 

AI Ar t  ificial intelligence 

BBN Bayesian Belief Yetwork 

BPP Bayesian Poker Program 

EHS Effective tIand S t rengt h 

EV Expected Value 

GOM Generic Opponent MocIeling 

HS Hand S trengt h 

IRC Internet Relay Chat 

NPOT Negative Potential of a Hancl 

PPOT Positive Potential of a Hanci 

PT Probability Triple 

rwt Reweight Factor 

sb/hand Srnall bets won per hand 

SOM Specific Opponent Modeling 

TD Temporal Difference 




