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Abstract 

The problem that students have perceiving a need for proof 1s well-known to high school 

teachers and has ken  identified by researchers as a major problem in the teaching of proof 

My research addresses the problem of teaching of proof, especially the role of proof as 

explanations for students. My study builds on Hoyles' ( 1997) and Reid's ( 1995a ) studies to 

explare what q-ulities make an explanation a good explanation for the studrnr. 

Through a questionnaire. classroom observations, and interviews ~7 t h  students and 

their teachers I researched the iunds of explanations students prefer, what constitutes a good 

rxplanation for students and teachers. and whether or not students mirror teachers' 

explanations or if they have their own style of explaining. 

Both quantitative and qualitative research rnethods were emplovcd to collrct and 

report the finding. A student questionnaire. set in two domains of mathematics. yeomety 

and anthmeticialgebra. compnsed the quantitative pan of the study. To heip detenine the 

kind of explanation preferred the questionnaire offered deduct ive. inductive and analogical 

expl anations The student questionnaire was administered to adul t leamers who were 

enrolled in the trades. technician. business. applied arts. and Adult Basic Education (ABE) 

procrams + at the College of the Nonh Atlantic. Happy Valley-Goose Bay campus. 

Interviews, pamcipant observations and document analysis cornprised the qualitative 

pan of the study. Person-to-person. semi-structured interviews were conducted wth eight 

adult leamers enrolled in the ABE program at the same college. The two ABE mathematics 

instructors also participated in the person-to-person interviews. Both students and t heir 

. . 
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insûuctors were observed within their classroom sening. The interviews and observations 

helped to determine mdents' preference for a particular kind of explanation. what qualities 

make an explanation a good explanation for the student and for the teacher and whether or 

not midents &or teacher explanations. Document analysis involved an intense literature 

review of proof, proving. and the different purposes proving serves. 

Students showed an ovcnl: preference for multiple esampls esplanalion and 

analogical explanation. It was the form of the explanation, namely its familiari- and 

accessibility, that students used as cnteria for acceptance. The logical structure of an 
. 

expianation was what the teacher used as cntena for acceptance. Conforming to ieachrr 

expectations was seen as a motivation for proving in the classes observed. 
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Chapter 1 

STATEMENT OF THE PROBLEM 

My research addresses the problem of the teaching of proof. especially the rolr of 

proof as explmations for students. More specifically, 1 researched what qualities makr an 

explanation a good explanation in the eyes of students. 

The problem thar snidents have perceiving a need for proor is wdl -know to high 

school teachers and has been identified by researchers as a major problem in the teaching 

of proof. Wheeler (1990) comments on the fact that teachinç proof wili alwavs be a 

dificult thing in a mathematics classroom because it was not put there for any clear reason 

other than to imitate the activities of rnathematicians. De Villien (1990) claims that the role 

and furtction of proof in the classroom has either been completely ignored. or it has been 

presented as a means of certainty . Hoy les ( 1 997) claims that students' di ficul ty with proof 

mav be anributed to proofs ambiguous meanins and the fact that proof requires the 

coordination of a range of cornpetencies such as identiQing assumptions and organizing 

iogical arprnents. Hoyles believrs that many students have a limited awareness of what 

proof is about. "Students are unablr to distin~wish between empincal argument and 

deductive reasoning" (p. 7). She maintains that many students believe the! have proved a 

conjecture if their examples vene the statement. 

Deductive reasoning serves different purposes depending on the user. Whilr in 

mathematical practice the main funcrion of proof is justification and verification, its main 

function in mathematics education is surel y that of explanation (Hanna. 1 990 ). For Hanna. 



"a proof that expiains" proves using evidence derived from the phenornenon itself whilr at 

the same time showing why a statement is tme. Many other researchen (e.g., de Villiers 

1990, Reid 1995% Bell 1976) have invemgated the need and function of proof in the search 

for an altemate way to teach proof. 

For the mathematician, proof serves not only the need to veri-, but also the need 

to understand the why o f  one's mathematical discoveries (Thurston. 1994). Ironically . the 

teachinç of proof in schools continues to focus on proving to venf). The tracher ma! 

perceive proof as a means of establishing tnith or validity while ignoring the w b :  These 

beliefs are then passed on to students. leaving snidents with the beiirf that proof establishes 

ceminty, whch may contnbute to student dificulty in understanding proof (Hanna, 1990). 

A. What is a proof? Khat is proving? 

Researchen, mathematicians, math educators and students ail differ in their 

perceptions of what a proof is. A logical or convincing argument using deductive reasoning 

is a consistent characteristic among these varying perceptions. 

Among researchers. Hanna states that "a fomal proof (the succession of statements 

according to rules of inference), mechanizable in nature, is a finite sequence of sentences 

such that the first sentence is an axiom. each of the following sentences is either an axiom 

or has been denved from preceding sentences by applying rules of inference and the last 

sentence is the one to be proved" ( p . 6 )  Barbeau ( 1990) describes a formal proof as "a 

succession of statements ordered according to niles of inference" (p.24). For Reid ( 1995a). 



proving is "inveshga~ing using deductive reasoning": "reasoning that proceeds from agrecd 

upon premises to conclusions, using logical arguments" (p.7). The deductive aspect of proof 

characterizes the way of investigatinç which Reid calls proving. I have used Reid's 

definition of proof as my workmg definition. 

B. Wt at is an explanation ? 

One of the many uses of proving is expianation. Bell (1976). de Villiers (1990~. 

Thurston ( 1994). Hanna ( 1990). Reid ( 199ja) and Hoyles ( 1 W6), al1 suggest espiaining as 

a need to prove. Hersh ( 1993) believes that the main function of proof is to explain. Both 

Manin (1981) and Bell (1976) beljeve that explanation is a cntenon for a good proof For 

Thurston (1994), " the measure of our success is whether what we do enables people to 

understand and think more clearly and rffectivelv about mathematics" (p. 163) 

The Gage Canadian Dictionary (1983) defines expluin as "to make clear or 

understandable: tell what something means or how somet hing i s done. organized. or used: 

yve  an acceptable reason for: excuse or ~usti@.~' Reid ( 1995a, p.22) describes expiaining 

as something which provides connections between what is known and what 1s being proven 

in a way that clarifies why a statement is true. An explanation for Hanna ( 1995) would be 

that which promotes understanding and makes us wiser. Hanna uses the term 'xpluin when 

a proof reveals and makes use of the mathematical ideas which motivate it. According to 

Hanna ( 1990). a proof that explains must provide a rationale based upon the mathematical 

properties that cause the asserted theorern or other mathematical statement to be true. The 



quest for an explanation is an aaernpt to find a rationale which ma? or ma! not br rrduced 

to deductive proof (Sierpinska, 1994). 

Based on the literature related to explanatory proo fs. 1 proposed the follow ng as mu 

working definition of an explanation An explanation uses mathematical propenies to 

demonstrate why mathematical discovenes are nue. The w& may or may not be a deductive 

proof. 



Chapter 11 

PURPOSE OF THE STUDY 

My study builds on Hoyles' (1997) and Reid's (1995a) studies to esplore 

explanations offered to students. Through investigation and observation 1 addressed the 

following questions: 

What kinds of expianations do students prefer? ( E.g.. Deducrive, inductive. or 

analogical) 

What constitutes a good explanation for teachers? 

What constitutes a good explanation for students? 

Do students mirror teachers' explanatjons or do the- have their own style of 

explaining? 

Using these four questions. I explored how the research of othen fits with students' 

behaviour in Labrador, possibly adding to what othen have discovered. 

A. AïndsofExplanarions 

Many kinds of explanations have been identified bu researchers in mathematics 

rducation. They fa1 l into three main types: deductive. inductive, and analogical . 

A. (1) Deducrive Erplanationî 

Reid ( 1995a) defines deductive reasoning as "reasoning that procrrds from ageed 

upon premises to conclusions. using logical arguments" (p.7). Deductive explanations can 

be funher classified as: formulated or unformulated. Reid distin~wishes between 

"formulated and "unformulated" deductive reasoning with formulation based on the 



"provers' knowiedge that they are proving" (p.25). The prover is unaware that he:she is 

proving when providing an unfomulated explanation. Reid found that unfomulated 

expianations as explanations for others were inadequate because of hidden assumptions and 

the lack of articulation. This lack of articulation and hidden assumptions accornpanying 

unfomulated proving makes it dificuit for othrrs to understand. 

Dedumve formulated and ~domiilated explanations may be presented in the f o m  

of a proof Pre-formal. semi-formal, formal, and informal proofs are t r m s  ussd to describe 

the degree of forrnality of a proof. 

A pre-formal proof might appear in the working notes of a mathematician (Reid. 

1995a). Such a proof might include references to inductive or analogcal evidence and 

involve hidden assurnptions. and the use of informal langage. 

A semi-fomal proof consisting of deductive arguments using fonnal s y b o l s  and 

natural language is presentrd in a form suitable for publication. In a semi-formal proof, 

unusual assumptions are made explicit. If steps are omitted in a semi-formal proof, a note 

to the reader will show how these steps ma! be worlied out. 

A fomal proof includes ail steps and al1 assumptions are made explicit. The 

language of a formal proof is svmbolic. 

The prover is unaware that heishe is proving in an informal proof Thus, an 

informal proof is considered IO be unformulated but deductive. 

Reid (1995a) descnbes an additional type of deductive proof called "formuiaic" 

proof. According to Reid. a formulaic proof is not proving. A formulaic proof is 
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constructed according to principles which are associated with the creation of the sons of 

proofs teachen like. Formulait proofs result from what Reid calls "teacher-garnes". 

A. (2) Inductive Erplanations 

Inductive reasoning is a kind of reasoning in which the conclusion is based on 

several past observations. That is, an inductive explanation makes a generalization based 

on sevenl specific cases. For esample, making the generalization rhat the surn of ?LW odd 

11 numben is even from specific cases such as 3 + 5 = 8 ,2  1 +- 33 = 54,67 + 45 = 112. 

Inductive explanations can be furter classified as: single e m p l e .  multiple rxamplr 

or gneric example. A single example explanation would involve the use of an example ro 

show that the conjecture holds mie. The example mav be presented numencally. visually 

or synbolically. 

Multiple examplc explanation would include more than one esampie as empincal 

evidence that a conjecture holds tme. Multiple example explanation might be presented 

nurnencally. visually, or svmbolically. 

According to Reid ( 1 W 8 ) ,  a genenc example is one where the example is not cntical. 

Using 7 - I 1, it can be show through generic examplr that the sum of two odd numbers is 

even. Both eleven and seven can be written as the sum of two nurnben, for example 1 1 = 

10 - i a n d 7 = 6  - 1 .  Therefore 1 1  - 7 = 10- 1 - 6 -  1 .  Since6- 10 iseven. becausc it 

is the s u .  of two even numbers and 1 + 1 = 2 which is even implies that 6 - I O  + 7 is even. 

So. 1 1 - 7 = 18 (an even number). This example shows that for the two odd numben 7 and 

1 1 their sum is even and that this method can be seen to work for al1 cases. 
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A. (3) Annlogical Explanafions 

An analogy involves making a conjecture based on simllanties between two cases. 

For example, one might conjecture that the sum of two odd numben is even from the 

principle which say that the product of two negative numbers is positive. In Reid's ( 1995a) 

shidy, some students used analogy for their explana~ions. Bill. a participant in Reid's study 

used the pnnciple that the product of WU negative nurnbers is positive tu explain why the 

sum of two odd nurnbers is even. Using Bill's analogy, Reid explains how reasoninç by 

analog can be based on a case and lead to a case, or be based on a rule and iead to a rulr. 

Bill's analogy shows how he reasoned ftom a rule to a rule. In Reid's study. students' 

analogies are described as strong or weak based on the level of understanding provided. 

Reid clajms that a strong analob?, may not on1 y satis- a need for expianation. but ma? aiso 

be preferred over a deductive explanation. 

B. A Good Explanution 

Be (1) Mat constitutes a good expianation for teachers? 

De Villiers (1990) believes that proof is either completely igpored wth in  the 

classroom or is presented as a means of cenainty Hovles' ( 1997 discussions with teachers 

in the üK reveal that some teachers are cornfortable with an informai explanation while 

othen require a fomally presented logical argument. Wheeier ( 1990) daims that teachers 

teach shidents algorithm as a recipe for undemding proof. Students in Hoyles study have 

a clear perception of what the teacher expects as an explanation. In Hoy les' ( 1997) study, 



she discovered that snidents chose general proofs as the of proof which wouid be 

assigned the best mark. whereas, proofs that were both generai and explanatory were chosen 

by students for undemancimg. Thus, the tacher must have a distinct method of explaining 

which is being relayed to students. 

B. (2) mat constitutes a good explanatiori for students? 

lt is clear fiom the research that explaining is important to students. Schoenfeld 

beiieves that students are like mathematicians in that students want to understand why a 

mathematicai proposition is vaiid De Villien (1990) suggest that students develop an inner 

compulsion to understand why a conjecture is mie if they have seen it to be mie. Drevfus 

and Hadas ( 1996) reports that students feel a need to prove in  order to explain phenornena 

the! could not explain otherwise or in order to convince themselves of counter-intuitive 

results. 

" With reference to Mason's ( 1 987 ) statement that when ?ou prove. first ?ou convince 

yourself, then convince a fiiend, and then convince an enemy. . . . It is my contention that 

in order for an argument to be considered a proof. the students have to not oniy convince 

themselves and others. but also explain" (Zack, 1997, p.397). Hanna ( 1995) has assened 

tha~ in education proofs that expiain should be favoured over those that merely prove: the 

children also seem to seek proofs which explain. 

There seems to be iittle discussion in the iiterature of what features of an explanation 

are important for students' acceptance of them. Hoyles ( 1996) discovered that the fom of 



an e x p l d o n  was important for students' acceptance of them. In her study, students chose 

narrative explanations as their individual preference. 

B. (3) Do students mirror teachers' expianations or do ihey have tlieir 
own style of explainhg ? 

Hoyles' (1997) snidy seeks to investigate the influence of the teacher on students' 

responses to proof. While some teachen were cornfortable with informal explanations. 

Hovles discovered that others would require a logicai ar-ment. In her study . students chose 

for themselves proofs that were general and explanatory. Yet, proofs that students believed 

would be assigned the ben mark were evaluated as general but not explanatop. According 

to Hoyles, students in her study connect the requirement to prove with the prescribed format 

and l anpge  of presentation found in the investigations pan of ~ h e  UI; cumculum. Hovles 

found that students emploved the same type of proof on every question regardless of whether 

i t  was appropriate. Hoyles' research demonstrates teachers' influence on students' 

understanding of proof. Her research highlights the role of the cumculum in shaping 

çtudents' perceptions and approaches to proof 

Hoyles' ( 1997) studv clearly shows that students' perceptions of what is acceptable 

as a proof and what is valued as a proof differs. Reid (1995a), Alibert (1988) and 

Schoenfeid (1983) have al1 recoguzed the importance of conforming to teacher expectations 

as a motivation for proving. Mol; ( 1997) infers that the formulation of students' 

explanations may be a result of their learning experience in the course of instruction. Wong 

( 1993) believes this to be mie in Hong Kong where reception learning is the typically 



preferred mode1 and nudents do not expect the oppominity to articulate their mathematical 

thoughts. De Villiers' (1992) study shows that students' strength of belief in, or attachrnent 

to a particular method is based on extemal rather than personal grounds. 



C hapter III 

SIGNIFICANCE AND LIMITATIONS OF THE STUDY 

A. Signijcance of the Siudy 

"Proof has been reiegated to a less prominent role in the secondq mathematics 

cwiculurn in North America over the 1 s t  thirty years or so." "This has come about in part 

because many mathematics educaton have been influenced by certain developments in 

mathematics and mathematics education to believe that proof is no longer central to 

mathematical theory and practice and that its use in the classroom will not prornote learning 

in any case" (Hanna, 1996). Hanna infers that mathematics educators have sought relief 

from the effort of teaching proof by avoiding it altoçether. "The use of cornputer-assisted 

proofs, the growing recognition accorded mathematical expenmentation, and the invention 

of new types of prwf that do not fit the standard have Ied Mme to argue that mathematicians 

will come to accept such forms of mathematical validation in place of deductive proof' 

(Hanna. 1996). Such notions have caused great concem for researchers like Hanna. who 

believe that proof is a central feature of mathematics and a valuable tool for promohng 

mathematical understanding. 

Do we need proof in mathematics education? Schoenfeld (1994) replies 

unequivocally: "Absoluteiy. Need 1 say More? Absolutely." (Schoenfeld quoted in Hama, 

1995, p. 49). Proof and proving can promote mathematical understanding. Utilizing the 

many functions of proof within the mathematics classroom can help make proof a more 

meaningful activity. More specifically, the explanatory function of proof should be stressed 



in situations where conviction already exists to satis. students' need for explanation. 

My research addresses the problem of the teachmg of proof, especiallv the role of 

proof as explanations for students. By investigating what makes an explanarion a good 

explanation, my findings contributes to the teaching of proof as a meanin@ul activity. 1 

expect rny findings to be used to enhance the teac hing of proof, in particular. its explanaroc 

function. In additioh the study provides insi& into w q s  teachers c m  formulate their 

explanations to enable better student understanding. 

B. LimitatrOom of the Study 

The research rrponed in rhis thesis combines qualitanve and quantitative techniques. 

The results from the quantitative part of the study (a questionnaire) are generalisable to the 

geogaphcal location (Labrador) and studrnt population (adult leamrrs who were enrolled 

in the trades, technician, business, applied arts, and Adult Basic Education (ABE) programs 

at the College of the North Atlantic. Happy Valley-Goose Bay campus). The remainder of 

the study, in keeping with its qualitative character, seeks to undentand and interpret how the 

various participants in a social sening construct the world around them. The studv design 

focuses on in-depth interaction wi th eight research participants. The main research 

instrument is the researcher who interacts with the studyfs participants bv observing them 

(in their mathematics classes) and by asking questions (in semi-structured interviews). This 

allows an element of sub~ectivity into the research as the researcher explores and interprets 

multiple possible realities. Because of the mixture of qualitative and quantitative techniques, 

the study as a whole is neither reproducible nor generalisable. Instead it offers qualitative 



insight into individual appreciations of mathematical explanations. which illuminate 

generalisations based on the quantitative results. 



Chapter IV 

LITERATURE REVIEW 

The literature review looks at what researchen have to say about what a proof is. 

what purpose proof serves, the h d s  of proof, the cntena for a good proof and the teaching 

of proof. Hoyles' discovenes of smdentsl understanding of proof are reviewed as well. 

A. What is a proof? mat i s  proving ? 

in tus doctoral thesis. Reid ( 1995a, p h )  asks "whar is proving?". Responses providrd 

include: "proving is making a proof' and "a proof is what results from proving". According 

to Reid. "proving is investigating using deductive reasoning" (p.7). "Deductive reasoning 

refers to reasoning that proceeds from agreed upon premises to conclusions. using logical 

ar-miments" (p.7). Accordin: to Hanna ( 1990), "a forma1 proof (the succession of statements 

according to rules of inference), mechanizable in nature is a finite sequence of sentences 

such that the first sentence is an axiom. each of the followng sentences is either an a..iom 

or has been derived fiom preceding sentences by applying rules of inference and the last 

sentence is the one to be proved" (p.6). A logical or convincing argument using deductive 

reasoning seems to be consistent characteristics in the many definitions of proof and proving 

found in the research. Yet. the many definitions of proof differ depending on what need 

proof fulfils. 

B. hrrposes of Proof 

Proving satisfies man! needs including: verification, explanation, exploration, 

systematization, communication. aesthetics, persona1 self-realization, developing logical 



thinking and teacher Lames. 

B. (1) Verificatikm 

Verification (conviction or justification of the correcmess of mathematical 

staternents) has k e n  the main focus and/or function of proof. 

Bell (1976) has identified verifying as a need to prove. Venfying detemines the 

tmth or falsity of a %tement whose value of truth is questioned. For Wilder (1 944) a proof 

is " only a testing process and we apply to these suggestions of Our intuitions" (p.3 181. 

Kline (1973) states that "a proof is only meaningfid if it answers the student's doubts. when 

it proves what it is not obvious" (p. 15 1 ). Alibert (1988) says that "the necessifi, the 

functionality of proof c m  only surface in situations in which the student rneets uncertainty 

about the mith of mathematical proposition" (p.3 1 ). 

For Hanna (1989). " a proof is an argument needed to validate a statement. an 

argument that may assume several different foms as long as it is convincing" (p.20). 

Volminik (1990) in Pythqorus states that "we may regard proof as an argument sutficient 

to convince a reasonable skeptic" (p.  10). Mason. Burton. and Stacey ( 1987) propose three 

stages in the putting up of a convincing arbwment, namely convincing onesei f, convincing 

a friend and convincing an enemy. Movshovitz ( 1 988) and Alibert ( 1988 ) have ~rovided 

ways of presenting theorems and proofs. such as the stimulating response method. and the 

scientific debate method. In their presentations. proof is viewed as a valid argument. 

De Villien (1 990) argues that conviction provides the motivation for a proof. Many 

teachers believe that a proof provides absolute authority in the establishment of the validity 
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of a conjecture. For example, "a proof in mathematics consists of steps that show how one 

statement follows logically fiom other statements" (Jurgensen. Maier, & Donne1 11,. 1 973 ) 

Albert. Education ( 199 1 ) as cited in Reid ( 1995a, p.7) defines to prove as " to substantiate 

the validity of an operation, solution, formula or theorem in general and to provide logical 

arguments for each step in the process." In this sense proving is considered as logical. 

deductivc and certriin. Thus, proving is concemed uith establishing validity . 

themselves, view provrng as making certain and believe that inductive evidence provided 

by examples is sufficient. Reid 's (1 995a) research supports this claim. 

For Baiacheff. a proof is an explanation by virtue of it being a proof 

We cal1 an explanation the discoune of an individual who aims to 
establish for somebody else the validity of a statement. The validity 
of an explanatm is initially related to the speaker who aniculates it. 
We cal1 proof an explanation which is accepted by a community at 
a given time. We cal1 a mathematical proof a proof accepted by 
mathematicians. As a discourse, mathematical proofs have now-a- 
days a specific structure and follow well defined niles that have k e n  
fonnalized by logcians. (Balacheff, 1988 cited in Hanna, 1990. 
p.17). 

For Balacheff. then, al1 proofs would seem to be explanations. Yet not al1 proofs have 

explanatory power (Hanna, 1990). 

De Villiers ( 1990) recomrnends that the explanatory function of proof should be 

utilized to present proof as a rneaningful activity to students rather than focusing on proof 

as a means of verifkation - especially when a high level of conviction already exist. 



According to de Villiers, it is not a question of makinç sure, but rather a question of 

explaining why. De Villiers believes that stressing the explanatory function of proof in 

situations where conviction already exists, may not only make proof potentially more 

meaninfil to students, but it is in such cases probably more intellecrually honest. Students 

do research like mathematicians. Both are easily convinced by authority and gain conviction 

b J means of intuition and quasi-empirical testing. "Like mathematicians, students exhibit 

an independent need for explanation which seems to be satisfied by the production of some 

sort of logico-deductive argument" (de Villiers, 1990). 

Within a social conten. do students ernplov deductive reasoning to explain and to 

explore problem solving situations? Reid's ( 1995a) study examines t h s  question. After 

analvvng mdent responses to problem prompts, Reid concluded that within a social contea 

it was natural for students to explain but not necessarily to verify. Reid concludes that the 

purpose of proving in a classroom contea. particularly, that of verification. should be 

replaced by explanation. 

Reid found that analog can be a powerful method of explaining in mathematical 

situations. Analoges were described as strong or weak based on the level of understanding. 

A strong analoçy can satis. a need for explanation. A strong analogy. as Reid discovered 

can be preferable to a deductive explanation. Explaining by analogy was more or less 

successful depending on the "strength of the analogy" (p.38) (see also Polya 1968). 

Recognizing that a proof that proves and a proof that explains are both legitimate 

proofs, Hama distinguishes between the two. She States that a proof that proves provides 
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essential rewns to show that a theorem 1s tnie. Substantiation is its main concern: that is, 

with Rotiones cognoscendi, - why-we-hold-it-t+be-so reasons. For Hanna ( 1 999,  a proof 

that explains also shows why the theorem is me; it provides a set of reasons that derive fiom 

the phenornenon itself. Rationes essendi, - why-it-is-so-reasons. Mathematical induction 

or syntactic considerations aione mav sufice for a proof that proves. But a proof that 

explains mut  provide a ntionate based u p n  the mathematical ideas involved. the 

mathernatical propenies that cause the assened theorem to be mir. When a proof reveak 

and makes use of the mathematical ideas which motivate it, it is a proof that explains. Li ke 

Steiner (1978). Hama agrees that a proof explains when it shows what charactenstic 

property entails the theorem it purports to prove. 

Steiner ( 1978) is quoted by Hanna ( 1990), as saving that 

. . . an explanatory proof makes reference to a characterizing 
property of an entity or stmcture mentioned in the theorem. such that 
from the proof it is evident that the results depend on the propeq.  
It must be evident. that is. that if we substitute in the proof a different 
object of the same dornain. the theorem collapses; more. we should 
be able to see as we Vary the object how the theorem changes in 
response. (p. 143 ) 

Unlike Balacheff who believes that a proof is an explanation by vinue of it bang a 

proof, Hanna prefen to use the term explain only when the proof reveals and makes use of 

the mathematical ideas which motivate it. In line wth Steiner. Hanna says that a proof 

explains when it shows what characteristic property is included in the theorem that it 

purports to prove. According to Hanna ( 1989), the first step in promoting understanding 

through explanatory proof is to recogtuze that understanding is much more than confirming 



that al1 the links in a chain of deduction are correct. that in fact the completeness of detail 

in a formai deduction may obscure rather than enlighten, and that undentandmg requires 

some appeal to previous mathematical experience. For Manin ( 198 1. p. 107 1 ) and Bell 

(1976, p.24), explanation is a critenon for a good proof when stating respectively that it is 

convincing " one which makes us wiser " and that it is expected to convey an insight into 

why the proposition is me. 

Schoenfeld ( 1981 ) describes proving for the mathematician as . . 

Proving is a means of coming to understand and of coming 
to know what understanding is. In trying to prove somet hing new, 
one is asking what makes ir tick; in trying alternative proofs, 
rejecting them, modieing them, one is discovering things about its 
structure - and soiidifying one's knowledge in the process. This is the 
deep reason for much of the ernphasis on proof in mathematics. The 
mathematician cornes to accept proving as a way (if not & way) of 
thinking, a way of demanding and insurinç that he does indeed 
undemand. (Schoenfeld. 1982, p. 168, emphasis in onginal. cited in  
Reid. 1995. p.8 } 

B. (3) E*plorarion, Anolysk Dkcovery and Invention 

For the mathernatician, proof is a means of exploration. anaiysis. discovery and 

invention. Both de Villiers ( I W O )  and Reid ( 1995a) believe explonng motivates proving. 

"Exploration extends the bounds of what is known" (Reid. 1995a. p.3 1 ). 

B. (4) Systemzation and Commicnication 

Proof is seen as a means of systematization of vanous known results into a deductive 

system of axioms, definitions and theorems. "It apperin that proof is a form of discoune, 

a means of communication among people doing mathematics". (Volminik. 1990, p.8) as 



cited in de Villiers (1990, p.22). De Villiers (1990, p.72) quotes Davis and Hersh ( 1986. 

p.73): "In stating that mathematical argument is not mechanical or formal. we have also 

stated implicitly what it is - namely. a human interchange based on shared meanings. not al1 

of which are verbal or formulait." 

Developing logical thinking was seen as a purpose for teachinç proof. Yet while 

research conducted by Sekig~chi, (1991, p.26) shows that t!!ere is little ûansference of proof 

skills learned in mathematics to other contexts, some teachers still believe that this is the 

primary function of proof. 

B. (5) Teacher-games 

In a teacher-game (Reid 1995a. p.23). students try to satisQ the implicit or explicit 

dernands of the teacher. Attempting to achieve a high grade, or avoiding social discornfort 

are reasons why students play teacher-games. Playing a teacher-game as a motivation for 

proving has been recognized by Alibert (1988) and Schoenfeld (1983) who point to the 

importance of conformine to teacher expectations. 

C. KhdsofProof 

As stated earlier, proving satisfies many needs including verification. explanation. 

exploration, systematization. communication, developing logcal thinking and teacher 

games. Different kinds of proofs help to satis. these needs. Reid ( 1995b) distinguishes 

between formulated and unformulated proving for the purpose of explanation. 

According to Reid ( 1995a) formulated prowng al lows extended explanati ons beyond 



what analogy can provide. Mok (1997) cites Reid's (1995b) distinction of formulated and 

unformulated proving to explain. Formulation describes "the degree to which the proof is 

thought of and thought out and is related to the articulation and hidden assurnptions whiir 

proving" (Reid, 1995b, p. 137). Explaining can be done by proving, which cm be more or 

les? formulated. Forrnulated proving is not necessanly prefened over explainin- by analop. 

Appropriate social context 1s needed for formuiatrd proving and fur explaining. Eithrr, a 

social context in which formulated proving is already occumng to address another need. or 

one in which there is a strong need to expiain to othen, or one in  whch a teacher (present 

or in the past ) indicates that formulated proving should be used (Reid, 1 995b). 

Unformulated explanations are limited precisely because they are unformuiated 

(Reid. lW5b 1. According to Reid, unfomulated proving as an explanation is inadequate, 

because of its lack of articulation and hidden assurnptions, *ch prevents other people from 

k i n g  able to understand it. Unformulated expianations in ciassroom situations are useless: 

but, as explanations for an individual, they may work, if the argument required is short. 

Mok (1997) classifies students' formulation of an explanation into an hierarchy 

beginning with prestnictural progressing through umstnicturai, to multistructural and 

extended abstract. Presmictural explanations invoive those formulations of explanations in 

which students are not really engaged. Unistructural explanations are usually in the fom 

of recalling familiar procedural rules. They are brief, suggesting quick closure and may be 

inconsistent UnisthicturaYrnultistru~ explanations tend to be short and straightforward 

al though students do attempt to elaborate. Rational explanations are founded on relevant 
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clues; Le. the operations and variables. Extended absnact involves an attempt to prove. 

Students no longer rely on obsewed cases. At this level, students justib their formulated 

hypothesis through a chain of coherent arguments. Mok concluded fiom his study that if 

midents thought an explmation was simply recalling factirules or carqing out routine 

manipulations, then they would not be likely to give high level explanations. 

D. The Rule of Proof in &fathematics Education 

Hanna (1990) uses three different aspects of proof, formal proof, acceptable proof 

and the teaching of proof, to help distinguish among different perceptions of proof. 

0- (1) Formol Proo f 

For Hanna, "a formal proof (the succession of çtaternents according to mles of 

inference), mechanizable in nature is a finite sequence of sentences such that the first 

sentence is an axiom. each of the follownç sentences is either an axiorn or has been denved 

fiom preceding sentences by applying mles of inference and the last sentence i s  the one to 

be proved" (p.6).  

0- (2) Acceptance 

Realizing that proofs may have diffrrent degees of formai validity and still gain the 

same degree of acceptance. mathematicians and mathematics educators have corne to 

reassess the role of formal proof Accordin- to Hanna ( 1 990 ) mathematicians freel y admit 

that a proof may lack conviction when it is s h o w  to be valid by virtue of its fonn alone, 

without regard IO its content. The si-i ficance of what is proved rather than the correctness 



of a proof determines its acceptance. "The acceptance of a theorem by practisins 

mathematicians is a social process which is more a fict ion of understanding and 

significance than of rigorous proof' (p.8). 

Hama (1983) provides the following criteria for mathematicians' acceptance of 

pro0 fs: 

Most mathcmnticians accept a new theorem wher. some 
combination of the following factors is present: 

I . Thev understand the theorem, the concepts embodird 
in it, its logcal antecedents, and its implications. There is nothing to 
suggest that it is not mie: 

3 . The theorem is significant enough to have 
implications in one or more branches of mathematics (and thus 
important and useful enough to warrant defailed study and analysis ): 

3. The theorem is consistent with the body of accepted 
mathematical results: 

4. The author has an unpeachable reputation as an expen 
in the subject rnaner of the throrem: 

5 .  There is a convincing argument for it (ngorous or 
othenvise). of a type thev have encountered before. 

If there is rank order of cntena for admissibility. then thesr 
f ivr  cntena al1 rank higher than ngorous proof. (p. 70) 

Hanna offen an alternative approach to proof based on explanatory proofs, proofs 

that are acceptable from a mathematical point of view. For Hanna. an explanatory proof 

focuses on undentanding rather than on sytu< requirernents and fomal deductive methods. 

According to Bolzano as cited in Hanna ( 1990). making certain requires no more 

than a formal demonstration. while building a foundation demands an approach which also 

provides insight into the connections among ideas. The focus of an explanatory proof is not 



upon the deductive rnechanism but upon understanding. The teacher's argument must 

indicate why the result is taught, whether for its beauty, usefulness, or critical impomnce 

in the development. 

Wheeler ( 1990) claims that because it is so difficult to teach students proof. teachers 

teach them algorithms as a sort of recipe. The recipe has becorne what is commonly referred 

to as the T-prooj'or wo colümn proof which Wheeler believes defeats the purpose of proofs. 

Hoyles (1997) argues that the ambiguity of proof makes proof dificult for students to 

master. Hoyles questions the existence of a hierarchy of proving cornpetencies. Proof has 

the purpose of verification - confirming the truth of an assertion by checiung the correctness 

of the logc behind a mathematical argument. If proof sirnply follows conviction of truth 

rather than contnbuting to its construction and is only experienced as a demonstration of 

something already known to be mir, it is likely to remain meaningless and purposelrss in 

the eyes of audents (see De Villiers, 1 990, Tall, 1 997, Hanna and Jahn ke. 1 993 as cited in 

Hoyles 1997). Hoyles (1997) believes that school proofs should shed light upon the 

mathematical structures under study rather than seeking to verify correctness by providing 

insieht - as to why a statement is mie. She suggests adding a social dimension to the 

explanatory process. A social dimension to explanatory proof exists where students explain 

their arguments to a peer or a teacher which helps to engage students and to enable them to 

daim ownership of the proving process. 

Hanna ( 1990) implies that in the teûching of proof emphasis is piaced on the 

"convincing argument". This is a result of educators recognizing proof as a means of 

25 



communication and the social processes involved in the idea of proof. Volminik ( 1988) 

believes that if the cuniculum were to place greater ernphasis on the social criteria for the 

acceptance of a mathematical mith then mathematics education would benefit. Hanna 

(1995) believes that the role of proof in maihematics cmiculum is to reflect mathematics 

itself. and furthemore that the main function of proof in the classrmm reflects one of its key 

funcrions in mathematics itsrlf - the promotion of understanding. 

E. . Hoyles ' Discoveries of Students ' Understandings of Proo f 

According to Hoyles ( 1996), there has been a huge outcry, among mathematicians. 

engineers and scientists in universities in the LJK, complaining about the mathematical 

incornpetence of entrants to their univenities. The London Mathematical Society ( 1995) as 

cited by Hoyles (1996) States that the senous problems perceived by teachers in higher 

education result fiom: 

a senous lack of essential technicai facility - the ability to undenake numencal and 

algebraic calculation with fluency and accuracy; 

a marked decline in analytical powers when faced with simple problems requinng 

more than one step: 

a changed perception of what mathematics is - in panicular of the essential place 

within it of precision and proof (London Mathematical Society, 1995, p. 2) .  

Hoyles believes that manp students prefer empincal argument over deductive 

reasoning. Many students judge that afier having giving some examples which verify a 



conjecture they have proved it (Hoyles, 19%). Both Gonobolin and C h a n  share similar 

beliefs to that of Hoyles. Gonobolin ( 1954) argues that students do not recogruze the need 

for a logcal proof of a geometric theorem when the theorem can be shown using empincal 

evidence. Chazan (1989) reports that high school snidents who are tauçht geomeny and the 

method of deductive proof in a b e g i ~ e f s  course seemed to hold hvo incorrect beliefs: the 

empirkif evidencc is proof for al1 cases, and that deductive proof is evidencc for only one 

case (see aiso Fischbein and Kedem, 1992: Balacheff. 1988; Chazan, 1993; Finlow-Bates. 

1994). 

Hovles completed a comprehensive study of students' views of prowng and proof and 

the major influences on them. In her study, Hoyles examined students' perceptions of the 

nature of mathematical proof and its purposes. The identification and analvsi s of students' 

written responses to a range of questions conceming proof comprises the empincal core of 

hrr study. The meaning of what is reqwred as a proof is cot made explicit: neither is it clear 

what midents have ken taught, or what has been ernphasized or what foms of presentation 

have been deemed acceptable. Hoy les points out that proof is discussed either explicitly 

or implicitly in cumcula. Where proof is discussed explicitly, definitions, logical 

deductions and acceptable foms of presentation of proofs are made apparent whereas. 

implicitly mathematical proof and its critena are negotiated during the activity. Hoyles 

discovered that some teachers were cornfortable with in formal explanations whi le others 

would judge this to be inadquate and would require a logcal argument. A logical argument 

would be representative of the ' two column proof '. 
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Hoyles' study compares the general proof to the explanatory proof to ascemin which 

type of proof is valued by the student and which proof the student perceives as acceptable. 

More specificaily, Hoy les questions whether empincal examples help students explain their 

results. The 15 year old snidents, who were participants in Hoyles' study, chose for 

themselves proofs that are general and explanatory. while the proofs they thought would be 

assigned the bcst mark are genenl but not explanatory Students in Hoytes' study chose 

formal presentation (correct or incorrect) as highly favoured for the best mark whilr the 

narrative proof was the favourite for individual choice. 

Proof should be seen as a generative and not merelv descnprive process. Hoyles 

believes that teachers must resist the ternptation to assume that situations that engage 

students with proof must follow a linear sequence from iriduction to deduction. "The 

challenge remains to design situations that rnotivate mdents to use proof for al1 its functions 

and that heip students to forge connections between these functions at every opportunifi. 

Teachers need to engage students into a mathematical proving culture where students see 

a sense of purpose in provinç and reaiize that proof is onemtlve and not merel y descriptive" 

(Hoyles, 1997). 



Chapter V 

METHODOLOGY 

Methodology encompasses method, theory and episternology (Guba, 19901. Using 

naturalistic or qualitative inquiry methods, 1 studied what makes a mathematical 

explanation a good explanation within a namal semng, without manipulating or controlling 

the setting or its memben. Qualitative information consists of description and 

interpretations in narrative form coliected and analyzed from interviews, participant and 

non-participant observations, interviews, documents and records. 

A. Qualirorive Reseorch 

Qualitative reseaich is an approach to research that is rvolutionary and emergent in 

nature, that takes place in the subjects' oatunl sening. and that uses 

sociological~anthropological methods (participant observation. document anaivsis. and 

interviews) as data collection techniques. The philosophical hmework is phenomenology. 

and the belief -stem regarding reality 1s that it is pluralistic and socially constmcted. Data 

are largely descriptive. and are reponed using, as much as possible. the words and language 

of the subjrcts. The next three sections wi 1 l address theop. epistemolo~p and method. 

A. (1) Theoretical Orientations 

Guba ( 1990) says that the naturalistic approach. which is characteristic of qualitative 

research, uses a discovery onented approach that minirnizes constraints and places no pnor 

constraints on what the outcorne will be. Glaser and Strauss ( 1967) believe that hypotheses 

in qualitative research are pounded in the research and emerge with the collection and 



analysis of data. Grounded theun, (Glaser and Strauss. 1967) is generated inductive& 

through the discovery approach that occurs during research. Categories, properties. and 

hypotheses are three components of grounded throry. Through content analysis. conceptual 

categories are developed by looking for recurring regularities in the data. Categones should 

be analytical and sensitizing. Propenies are concepts that describe a pven catrgory or 

atmbutes of categories. Hypotheses rrnerge during data collection and andysis Tor the 

qualitative researcher, who prefers the term worhng hypotheses. so as not to limit the scope 

and depth of the research. 

The advantage of taking a qualitative approach is that 1 do not have a theory or 

hypotheses to verifj (falsify) but rather an idea to explore and to interpret. allowing for a 

hypotheses to emerge. Mv hypotheses or theov were pounded in research and rmerged 

through exploring and interpreting the context. 

A. (2) Epistmology 

Episternology is concemrd with what kinds of knowledge wr have or can get by the 

various investiptory means at our disposal. The underlying fiamework of qualitative 

research. phenomenological inquiry focuses on understanding human beings in context 

specific settings. Phenomenological inquiry is inductive and has a ho1 istic perspective. A 

phenornenologcal approach says sornething about our views as to what constitutes valuablr 

knowledge, or epistemoiogy and our perspective on the nature of reality. or ontology. 

Qualitative research is defined by the way the researcher sees the world. 



A. (3) Qualitative Research Methods 

Qualitative researc hm use interviews, parti ci pant and non- parti ci pant observations. 

and document analysis as data coliection methods. 

A. J(Q) Interviewiewing 

. Interviewhg is used to find out what others think and feel. what opinions the- hold 

and to find out things that cannot be obsemed. Qualitative inten.iewing bcpins nith the 

assumption that the perspective of others is meanin-@id, knowable. and can be made esplicit. 

lnterviewing is best used in conjunction with document analysis and observation. 

Person-to-penon i n t e ~ e w s  were conducted with eight adult leamers enrollrd in the 

Adult Basic Education (ABE) program to determine students' preference for a particular kind 

of explanation. Being able to ask why students preferred or rejected a particular exp l anation 

helped me discover what constitutes a good explanation for the student. In addition, the 

interviews allowed an opportuni- to discover whether or not students mirror teacher 

explanations outside of the classroom sening. Person-to person interviews were also 

conducted with the two ABE mathematics instnicton to determine what constitutes a good 

explanation for the teacher. 

A. 3(b) Participa nt-o bsentotion 

Participant-observation requires that the researcher be a genuine participant. such 

that his/her presence becomes accepted as pan of the sening. Ofien in qualitative studies 

observation is limited to non-participatory observation because of time constraints. 

Observation is valuable in that the researcher is able to see with one's own eves. 
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Panicipant-observation occurred on a daily bais  over a five week penod in which 

1 observeci ABE students within their classfoom semng. Observing the kinds of explanations 

offered by students and teachen within their classroom setting provided data that helped to 

determine what kinds of expianations students prefer. and what constitutes a good 

explanation for the student andior teacher. As well, observing the kinds of esplanations 

offered by çnidents that tcachers deemed acceptable providcd further insight into what 

constitutes a good explanation for the teacher. 

A. 3(d Document A ~ l y s i s  

For the purpose of qualitative research, a document is considered to be all wntten 

information about the entity under study. Documents are a rich source of data on 

participants' views of the situation under study. Data from documents can furnish 

descriptive information. veriS, emerging hypotheses, offer histoncal understanding and 

advance new themes and categones Document analysis. l i  ke observation should be cross- 

checked with data col lected from usinç other rnethodological approac hes. 

The document analysis involved an intense literature review of proof. proving. and 

the different purposes proving serves. The Iltenture review assisted in defining the problem, 

selrcting the methodolog. and interpreting the findings. Surveyinp. interpreting. and 

-thesiring what has been studied and published about the teaching of proof provided the 

foundation and direction for the current research study. 

A student questionnaire. set in two domains of mathematics arithmetic!algebra and 

(Teornetry offerhg deductive. inductive and analoçical explanations was adrninistered to help a 
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detemine the kmd of explanation preferred. The different kinds of expianations offered on 

the mident questionnaire sewed as categories for data anal ysis. The student questionnaire 

served as a nch source of data on snidents' views of what conainites a good explanation. 

A. (4) Methodo1 @cd Issues 

A. cf(@ Rigor of Qualitative Research 

Lincoln and Guba (!986) stress that the criterin used to judge the rigor of scientific 

methods hold for naturalistic or qualitative inquiry . Trustwonhiness and authenticity of 

natualistic or qualitative inquiry are paralle1 ternis for ngor of scientific or quantitative 

inquiry. The critena of mistworthiness that parallel those of the conventional paradigm 

(truth, value, applicabiiity, consistency and neutrality) are credibility, transferability. 

dependability. and confirmability. These criteria can be assessed using manguiat ion of data. 

rnember checks, persistent observatio~ prolonged engagement in the setting, extemal audits. 

and thick description. Tnangdation of data refers to multiple data coliection rnethods used 

as a means of establishing mistworthiness. Member checks allow the participant an 

opportunity to review data collccted from interviews to ensure accuracy. Lincoln and Guba 

(1985) believe that enlisting an outsider to audit field notes, anaiysis and interpretations 

contnbutes to trustwonhiness of findings. Thick description is a litenl description of the 

entity king researched, the circumstances under which it is used and the c haracteristics of 

the people involved. By presenting balanced views of multiple realities. and being 

empathetic and understanding to ail audiences, the researcher can achieve authenticity of 

findings. The qualitative or naturalistic researcher is concemed wth credibility of finding 
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rather than intemal validiq. Credibiliv is or will be established using cross-checking and 

triangdation to corroborate data Lincoln and Ciuba refer to applicability as being enhanced 

with working hypotheses and with the use of thick description. 

According to Sanders ( 1994), qualitative anal ysis involves an inductive. interactive. 

and iterative process whereby the researcher confirms andor explains the purpose of the 

rcscïirch and tests conclusions x i t h  relevant audiences. Smders, in his ûriicle, .:lnu(ao.sis of 

Qualitutrve Inji~rmarion. States that the researcher rnust assure accuracy of findings b- 

seeking confirmatoq evidence from more than one source and subjecting inferences to 

independent verification. Auditability of naturalistic inquiry will assure the evaluation's 

confimability (using cross checking and member checks) which is analogous to an evaluator 

using quantitative inquiry guarantying the research's neutrality. 

A. 4(b) Neutrality in Qualitative Research 

Because the chief instrument of qualitative inquiq is the researcher, the issue of 

neutrality arises. Worthen and Sanders ( 1 987) state, "because of their rel iance on the human 

tendency to minimize the importance of instrumentation and group data. advocates of this 

approach have been cnticized for loose and unsubstantiated findings". Such criticism of 

a participant-onented approach is based in the scientific paradign and the beliefs about 

objectivity. Researchers do not believe that qualitative research can be objective or neutral 

since it is emergent in design. The data collected are not specified in advance; there are iio 

controls laid down: there are multiple realities capable of being explored to different depths 

by different researchers. Qualitatjve research is intense1 y subjective, but i t does not make 

34 



the findings less believable or biased. 

A. (5) Esiaolishing Rigor fur the Current Rerearch Study 

Triangulation of observation. interviews, and questionnaire data corroborates rny 

findings. Thick description and member checks were employed to establ ish rigor. 

R e c o p n g  that data is not independent of its context whatever data was collected was not 

taken at 3 face value or unduly genenlized. 



Chapter VI 

DESIGN OF STUDY 

A. Instrumentation 

In addition to employing qualitative methods of data collection (panicipani 

observatio~ inte~ewing and document analysis), a student questionnaire was administered 

to obtain empincal evidence. The questionnaire was dividcd into two sections. the first 

related to geomeûy and the second concerned with algebra. Both sections were presented 

in a multiple-choice format as illustrated in the sample questionnaire attached in Appendis 

A. The purpose of having a multiple choice question was to expose students to a range of 

possible ways ofexplaininç - namely. empirically, deductiveiy and analogically. Studrnt 

responses were analyzed to determine what the student perceives as a good explanation - 

especially after having been exposed to a vanrty of tvpes of explanations. 

B. Study 's Participants 

Students attendin- the College of the North Atlantic. Happy Valley - Goose Bay 

Campus who were enrolled in the technician. Business Computer Studies (year 1 and II), 

Early C hildhood Education and Adul t Basic Education (ABE ) programs were invited to 

participaie in the study. Approximately 100 students were invited to participate. Of these 

students. 17 were enrolled in the Sheet Metai probmm. 13 in the Welding progam. 17 in the 

lndushial Warehousing program, 16 in the Automotive Technician program, 12 in the Adult 

Basic Education. 6 in the Early Childhood cenificate program and 28 in the Business 

Computer Studies (year 1 and II)  program. Of the one hundred and three students invited 



to participate in the questionnaire, eighty-nvo acniall y did. Business Corn puter Sr udies. year 

II students were prepanng for final exams and could not f iord the time to participate in the 

study . 

Students enrolled in these programs are required to complete Mathematics 1 000 or 

Mathematics 15 10 (with the exception of Early Childhood Education and Adult Basic 

Education studenü) (sec Appendix C for course descriptions j. Xdult Basic Education 

students complete the equivalent mathematics program to that of the high schml curriculum. 

Business Cornputer Studies, year 1 and year 11 students have to complete Mathematics 15 10 

in their first semester of their two year program. Early Childhood students are not required 

to complete a mathematics course. Although 1 teach at the same campus. 1 was not 

responsible for teachng any of the above students in the second semester of the 1997-1 998 

school year, which is when the study was conducted. 

C. Instruments 

C. (1) Questionnaire 

c How was rhe questionnaire decigned? 

My questionnaire was based on that of Hoyles. Hoyles (1997) used two survey 

i m e n t s  - a student questionnaire and a school questionnaire. ln order for the proofs to 

be accessible, familiar, and in tune with the UK cumculum. Hoyles chose mathematical 

content that was sufficiently straightforward. To ensure differentiation between student 

responses, the content was challenging. The student questionnaire, set in two domains of 



mathematics arithmetidalgebra and geornetry was presented in a varie' of foms - 

exhaustive, visual, narrative, and symbolic (Hoyles, 1997). Different "proof types" were 

offered on the questionnaire to determine whether students were influenced by the fom as 

well as the content of a proof. "Proof types included empirical, enactive, narrative, visual 

or Eormal, with two exarnples of formal proof, one correct and one incorrect" (Hoyles. 1997). 

Using an example to show that a mathematical statcmcnt bol* mie is characteristic of an 

rrnpincal proof. For an enactive proof, the student discovers the mathematical statement 

to be true by doing. A visual proof uses visual representation to show why sornething is 

valid. A spbolic proof uses mathematical notation to ven- a mathematical statrment. A 

forma1 proof is a finite sequence of sentences such that the first sentence is an axiom, eech 

of the followinç sentences is either an axiorn or has been denved From precrding sentences 

and the 1st sentence 1s the one to be proved. 

Manv months were spent reviewng exîsting literature. discussing and brainstorming 

with the thesis supervisor, teachers, and students (who were not associated with the study ) 

al1 of which aided in the design of the student questionnaire. Like Hoyies. 1 too wanted the 

mathematical content to be sd17ciently straightforward for the explanations to be accessible. 

familiar and in kreping with the Newfoundland and Labrador hiçh school cumculum and 

the mathematics curriculum of the college in which 1 work and where I conducted my study. 

The content was kept challenging enough so there would be differentiation amongst student 

responses. Keeping wiîh what Hoyles did, the questionnaire presented explanations in a 

varie- of foms - exhaustive, visual, narrative and symbolic and set in two domains of 
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mathematics - algebralarithmetic and geometry. A sample of the student questionnaire is 

attached in Appendix A. Students were given ample time to complete the questionnaire. 

The amount of time required to complete the mident quemonnaire was determined atier the 

questionnaire was piloted. Student questionnaires were distributed in the second school 

semester. Over this same period, I observed student explanatlons within the classroorn 

sem'ng. Audio tape rccordings were made, and forma1 intewiews (voluntary and outside of 

normal class hours) were conducted. Al1 information gathrred in ttus study is strictly 

confidential and at no time were individuals identified. Consent was obtained from 

administration. teachers and students. 

The questionnaire was divided into two sections, the first concerned with geometn, 

and the second with algebraanthmetic. Each of the three questions were presented in a 

muItiple<hoice format ( s e  Appendi-x A). The purpose of having a multiple-choice question 

was to introduce students to a varie. of possible meanings of 'to prove'. 

The student questionnaire addressed three questions 

8 Why does the sum o f  the interior angles of any triangle equal 180°? 

8 Wby is the sum of two odd nurnbers even? 

Why do perfect trinomial squares have the form x2 + 2bx + b2? 

Inductive (single example, generic example, and multiple example), deductive 

(formulated and unformulated) and analogical explanations were offered. Students or 

participants could select their prefened explanation for each question. 



Five different explanations were offered for the fim quemon. Both the first question 

and the explanations offered were duplicated from Hoyles' (1997) study. The explanations 

included two (2) inductive/multiple example explanations. one ( 1 ) drductive. fomulated. 

semi-formal explanation, one (1) deductive, fomulated, pre-fonal explanation and one ( 1 )  

f o ~ u l a i c  expianation. 

Figure I 

Why does the sum of the interior angles of any triangle equal 180°? 

Amanda's answer: 

I tore the angles up and put them together. It came to a straight line which is 180" 

I tried for an equilateral and an isosceles as well and the same thing happened. 

Amanda's inductive explanation uses three different examples to explain why the 

sum of the intenor angles o f  any mangle equals 180" She tears up the angles of a tnangie. 

puts them together and discovers that the angles form a straight line. Amanda tried the same 

thing for an equilatercil mançle and an isosceles mangle only to discover that the same thing 
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happens. She discovers that the sum of the intenor angles of a inangle equais 180" b?, 

doing, which is indicative of an enactive proof. In an enactive proof, the prover discoven 

the conjecture to be mie by doing. Amanda's inductive explmtion uses a visual aid to show 

what she did. 

Figure 2 

1 drew an isosceles triangle, with c equal to 65". 

Statements 
a =  180" - 2 c  
a = 50" 
b = 6 Y  
c = b  

therefore, a + b - c = 1 80 O 

Reasons 
Base angles in isosceles trtangle equal 
180" - 130" 
180" - ( a  * c )  
Base angles in isosceles triangle equal 

Bany's explanation uses the concept that the angles opposite the equal sides of an 

isosceles tnangle are equal. His explanation is presented in the staternents and reasons 

format. Barry's explanation would be considered a formulait explanation, because it is 



constructed according to principles which are associated with the creation of the sons of 

proofs teachers like. According to Barry's formula the interior angles of an isosceles 

triangle equals 180°, because the base angles of an isosceles mangle are equivalent. A 

diagram accompanies Bany's fonnulaic explanation. Barry concludes his explanation with 

a formula. 

Figure 3 

Cynthia's answer: 

1 drew a line parallel to the base of the triangle 

Statements 
p = s  

Reasons 
Altematc angles between two paral lei lines are 
equal 
Altemate angles between two parallel lines are 
equal 
Angles on a straight line 

therefore s - t - r = 180" 



Cynthia's deductive, formulated, semi-forma1 explanation also uses statements and 

reasons format. Deductive reasoning "that proceeds fiom ageed upon prernises 10 

conclusions using logical arguments" (Reid, 1995a, p.7) is employed by Cynthia to explain 

why the sum of the interior angles of any triangle equals 180". Cynthia uses parallel lines 

and congruent angles to explain why the sum of the interior angles of any tnangic equais 

180". Since Cyithia maks referencz to @le1 lines and congruent angles, il is safe to sa) 

that she is aware that she is proving. Based on Reid's de finition of formulation -- " prover's 

knowledge that heishe is proving" (1995% p.25), 1 would describe Cynthia's deductive 

explanation as fomulated. It is semi-formal in the fact that it is a deductive argument 

suitable for publication. Like Bany's fomulaic explanation. Cynthia's deductive. 

formulated xmi-formal explanation is presented using statements and reasons format and 

concludes with a formula. However, the two explanations differ in that B a y  is not proving. 

Figure 4 

Dylan's answer: 

I measured the angles of al1 sons of tnangirs accuratrly and made a table 

They al1 added up to 180" 

total 
180 
1 80 
1 80 
1 80 

Dylan's inductive/multiple example explanation uses four numencal examples to 



show that the sum of the interior angles of any niangle equais 180". Dylan does not use a 

diagram as part of his explanation. Of the five different explanations provided, Dvlan's 1s 

the only one that does not inciude a diagram (see Figure 4). 

Figure 5 

Ewan's answer: 

if y u  walk al1 the way around the sdge of the triangle, you cnd up facing the wa! 

you began. You mut have tumed a total of 360". You can see that each extenor angle 

when added to the interior angle m u t  give 180" because they make a straight line. 

Thisrnakesa totaIofS40°. 540" -360" = 180". 

Ewan's deductive, formulated, pre-formal explanation differs from Cynthia's 

deductive, formulated, semi-fonnal explanation in that Ewan's is more narrative and does 

not use the statements and reasons format. Ewan's explanation is deductive because he 
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cornes to the conclusion that the surn of the interior angles of any triangle equals 1 80 ' using 

the exterior angle theorem and the straight angle theorem. Because Ewan's aqpment uses 

informal language and hidden assumptions, it would be described as a pre-fomal proof A 

diagram accompanies Ewan's explanation (see Figure 5 ) .  

Why is the sum of two odd numbers even? 

Four difercnt cxplmtions were provided for the second question. Since the intcnl 

of the study was to build on Hoyles' ( 1995) study and Reid's ( 1995a) study and since both 

used this question in their studies, I thought it pertinent to include it in my study. The 

explanations for this question were generated by the thesis supervisor and rnyself They 

incl uded one ( 1 ) deductive, formulated, serni-formal explanation. one ( 1 ) inductiveisingle 

example explanation. one ( 1 ) inductive:rnultipie example explanation and orie ( 1 ) analogical 

explanation. The analogcal explanation was a duplication of one off'red by a participant 

in Reid's ( 1995a) study A description of rach of the explanations for this quesrion follows 

Figure 6 

Andy's answer: 

Let one odd number be (3n  + 1 ) and the another odd number C m  - I 1. then (2n - 1 ) 
-Qm + I ) = ? ( n - m ) - 2  

Andy's deductive. formulated. semi-fomal explanation is somewhat like a symbolic 

proof whch uses mathematical notation to verify the mathematical statement that the sum 

of two odd numbers is even. 



Figure 7 

Bill's answer: 

Because Bill uses a finite set of dots. his explanation would be considcred to be a 

single exarnple. His single example is strictly visuai with the use of dots to represent 

n um bers. 

Figure 8 

Cora's answer: 

Although Cora's explanation is also inductive. she uses more than one exarnple to 

show that the sum of two odd nurnbers is even. Unlike Bill's inductiveisingle examplr 

explanation. Cora's inductive~rnultiple example explanation i s  stnctly numerical. 



Figure 9 

Drake's answer: 

An odd number plus an odd number equals an even number because of the same pnnciplc 
which says a negative number times a negative number is a positive. 

, Drake uses an analogy to explain why the sum of two odd numbers is even. Drake's 

analog shows how he reasoned from 3 mle to a rule. k s  analogy compares the surn of two 

odd numben being even to a negative nurnber tirnes a negative nurnber being positive. 

Why do perfect trinomial squares bave the form x' + 2bx + b2? 

The third question was suggested by the thesis supewisor. However the different 

expianations were generated by the researcher. supewisor and students (not associated with 

the research). Students enrolled in the Common First Year program were invited to 

formulate explanations for the tnnomiai square question. At the Orne of the invitation, these 

students were completing the topic, Review of Fundamentai Algebra in their Mathematics 

1 100 course. Any fomulated espianations were developed outside of regular classroom 

time and was on a voluntary basis. Five different explanations were provided to explain the 

third question. The? included one ( 1 ) inductiveimultiple generic exampie expianation. one 

( 1 ) deductive, formulated, pre-forma1 explanation. one ( 1 ) inductive~multiple example 

explanation, one (1 ) deductive. fomulated, semi-formai explanation and one ( 1 ) deductive. 

unformulated, informal explanation. The deductive, formulateci, pre-fonnai explanation was 

offered by a student f b n  the Common Fint Year progam. The inductive~multiple generic 

example expianation, inductive/multiple exampie expianation. deductive, formulated, semi- 
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formal expianation and the deductive. unfomulated. informal expianations were generated 

by the thesis supenisor. 

Figure IO 

Lisa's answer: 

If you take the nurnber 114. then Itl 1s equal to 10' + 2( IO)(?) - 2' 
Likcaisc. 169 = 13' is 10' - 3 10)(3) - 3' 
Finah, 8 1 = 9' is 8' - 2( 8)( 1 ) - 1' 

Therefore, any perfect square number is equd to a binomial square which always 
multiplies out into the form x' - ?bx + b' 

The binomial is found by finding two numbers which add up to the number beforr 
it is squared. For example 9 = 8 - 1 and 9' = 81. Similarly, 13 = 10 + 3 and 13' = 169 

Lisa's inductiveirnultiple generic example explanation uses three generic examples 

to explain "Whv perfect tnnomial squares have the fom x2 - Zbx - bL?" 

Figure 1 I 

Julia's ans wer: 

If you multiply two same binornials such as (s - b)(x - b) using the FOL method. 
then the first two tenns of the two binomials will multipl? to s *s = s' : the two outside 
tems will be x times b = xb ; the two inside terms will be b times x = bx; and the two last 
tems of each of the two binomials multiplied together wdI be b'. Combining like tems. 
the xb and bx will equal 2bs. Thus. ( x  - b)(x b) will always multiply into the form x' - 
Zbx - b'. 

Julia's explanation 1s deductive in that shr uses the FOIL method (agreed upon 

premises) to corne to the conclusion that perfect trinomial squares have the f o m  x2 + Zbx 

- b'. With the use of the FOIL method to show that (s - b)(x - b) = x-' - I b x  - b'. Julia is 

aware that she is proving. Thus. her explanation is fomulated. Yet, her explanation 



assumes the reader is farniliar with the FOL method. Becaure Julia's deductive. fomulated 

explanation involves hidden assumptions and informa1 language, her explanation would be 

characteristic of a pre-formal proof. According to Reid ( 1995% p.9), a pre-fotmal proof ma' 

involve hidden assumptions, and use of informal language and notation. 

Figure 12 

J ody 's 

Therefore perfect trinomial squares always have the forrn x' - Zbx +b2 

Using multiple examples, Jody shows how a squared binomial multiplies into 

perfect trinomial square. 

Figure 13 

Dena' answer: 
Using the distributive law: 
( X  + b)(x + b) 
( X  + b)x = x 2 +  bx 
( X  + b)b = xb + b' 

( x  + b)(x - b) = s-' - bs - xb + b' 
The "2" cornes because "xb" occurs rn both distributions 

Denas explanation uses mathematical properties, namely the distributive law to show 

that (x  - b)(x + b) = x' + 2bx - b' Although Dena's explanation explains why the "7" occurs 

- "The 7' cornes because 'xb' occurs in bth  distributions." - she does not show a concluding 
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step x2 + 2bx + b'. With the use of the distributive property, Dena is aware that she 1s 

proving. Thus, her explanation is formulated. 

Figure 14 

C heryl's answer: 

( x  : b j represents a line se_ment of length (x - b) 

Cheryl's explanation for why do perfect tnnomial squares have the fonn x' - ?bx - 

b2 would be considered deductive but unformulated. Without a statement to show that she 

is multiplying two binomials or a concluding statement like ( x  - b)( x - b )  = s' - 2bs + b', 

it is safe to say that Cheryl is unaware she is proving. That is, her deductive explanation is 

unformulated. Cheryl fin& the area of  a square with length (a + b)  to show that ( x  *b)(,x - 
b) = k + 2bx + b'. 



Co l(b) H m  w a .  the questionnaire administered? 

The questionnaire was administered over a two week period (prior to the second 

semester break) by the researcher with the shop insmictor or home roorn insmictor present. 

Students were çiven as much time as needed to cornpiete the questionnaire. The instructions 

for completing the questionnaire consisted of checking one of the students' explanations for 

each of the three questions presented. Participants were told th31 they could choosc one 

explanation and were not asked ro specib their reason for doing so. 

c- (2) Observations 

Adult Basic Education (ABE - level III) students were chosen for observation. 

because they were accessible and willing to participate in the classroom observations. At 

the end of the second school semester, most students had finished their program of studies 

or were on-the-jobtraining with the exception of the ABE students. ABE level 111 students 

and their mathematics instructors volunterred to be obsrrved in their classroom setting. 

Students' mathematical background vaned given entrance requirements. For the 

most pan a high school diploma is required as entrance into the Trades and Technolog. 

Business and Applied Arts progams: but. often students are accepted through the mature 

student clause. The mature studcnt clause states that applicants who do not meet the 

educational prerequisites for the progam they wish to enter may be considered for 

admission on an individual basis provided that they are at least 19 years of age and have 

been out of school for at least one year. Students enroiled in the Level III, ABE program are 



representative of the school popularion since some are high school gaduates seeking better 

grades or refiesher courses as entrance requirernents for univenity pro-ims and others arc 

mature students. 

During the seven week intersession (Apnl27, 1998 - lune 11. 1998). 1 was able to 

observe çtudents and their teachers on a reguiar basis. Approximately one to two hours daily 

werc spent obsewing shidenn and teachers in their rnathcrnatics chss .  The classoom 

observations concluded at the end of the fifth week when al1 possible data had been 

collected. 

Audio tapes were used to record data along with field notes. The intenr of the 

classroom observations was to relate questionnaire responses to the ciassroom setting 

looking for commonalities among students' preferences. By observing students and teachers 

within the ciassroom setting, data was collected to determine the kinds of explanations 

students offer their ciassrnates or teachers; kinds of expianations offered by students that 

teachers deemed acceptable; kinds of explanations students provided on the questionnaire 

and in classroom setting. These data collections helped to answer the four research 

questions. 

Cm (3) Interviews 

C. 3(u) Student irttewiews 

i. Ho w were students selected? 

Level III, ABE (both the academic and general mathematics) students who 



voluntarily participated in the classroom observations were invited to panicipate in the 

in te~ews .  Eight of the twelve level Di, ABE nudents were receptive to the invitation. Of 

the eight students who volunteered to be interviewed, six (6) students were fiom the 

academic mathematics Stream and the other two (2) were fiom the general mathematics 

Stream. The eight interviews were conducted over the last two weeks of the 1997-1998 

schoo! yey. MOSI of the eight snidents h a d  completed their required credits for graduation 

and had time to panicipate in the study. 

iL Mat questions were used? 

The questionnaire questions were used for the interviews as a means of finding 

patterns in student responses to see if students' preference for a type of explanation was 

consistent among different seaings. By using the questionnaire questions. the resrarcher 

was able to determine not only what kind of explanation students preferred but why the? 

preferred it. This provided insight into what constitutes a çood explanation for the student. 

Other questions in addition to the questionnaire questions were used for the 

interviews. These additional questions came about from the classroom observations. The 

"Picli Up Charge" question and "Solving an Equation with Negative Nurnben" question were 

asked to the same students who were observed solving them in their classroom senings. 

Both of these questions were chosen to collect data relating to whether or not students mirror 

teachers' explanations. Other questions. namely. "Why does ,451.99 reduce to 45/99?hnd 

"Which of the following sequences is geometric and why?" were asked to the academic 

students who were interviewed. These questions were explained by their teacher in the 
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ciassrmm setting. By asking the same questions in the interviews. data could be collected 

to see if midents parrot the teacher. 

Pickup Charge 

1 asked student $5 and student #6 how they would calculate the pickup charge for 

275 kg of a product if $6.10 is charged for each 100 kg or fractional part. Both students 

could choose h m  the answers provided. 

$6.10 * (275 + 100) = $16.775 

Solving an equation with negative numbers 

I asked student #7 to choose From the two different ways of solving the following 
equation. 

Why does .45/.99 reduce to 45/99? 

Whicb of the following sequence is geometric and why? 

1 113 119 1/27 

1 5 10 15 20 



c 3(b) Teacher interviews 

The two ABE mathemahcs inmctors were also recephve to k i n g  intervicwed. The 

two teachers were busier than their students in the last two weeks of the school year when 

the snident interviews were conducted. Thus, the teacher interviews were conducted dunng 

the summer vacation. The questionnaire questions were used for the teacher interviews to 

collect data that would help answer what constitutes a good explanlition for the teachc:. 



Chapter VI1 

Results 

The first part of the results section records the data collected from the questionnaire. 

The second part records the data frorn the interviews. The first section of part two of the 

results records the data collected from the student interviews. The second section compares 

the resdts from the questionnaire and the student interviews. The third section of pan two 

of the results records the data collected frorn the teacher interviews. The fourth section 

records the data from student interviews using the questions developed from classroom 

observations. 

A. Questionnaire Resufts 

The student questionnaire addressed three questions set in two domains of 

mathematics, algebraianthmetic and geornetry. 

Why does the sum of the intenor angles of any triangle equal 180°'? 

Why is the sum of two odd numbers even? 

Why do perfect trinomial squares have the fonn x'-lbx - b2? 

Inductive (single example, genenc example. and multiple example), deductive 

(formulated and unformulated) and analogical explanations were offered. Students or 

participants could choose the explanation of their choice for each of the three questions. 

The three questions and the explanations offered are explained in detail in the design 

chapter. 



A. (1) Why does the sum of the interîor angles of any triangle equd 180 ? 

Five different explanations were offered for this question. They included two (1) 

inductive/muliiple example explanations, one ( 1 )  deductive, formulated, semi-formal 

explanation, one ( 1 ) deductive, fornulateci, pre-fomal and one ( 1 ) formulaic expianation. 

Table I 

Why does the sum of the interior angles of any triangle qua1 180°? 

.- - -. . -. - . . . 

1 Cynthia 1 Deductive, formulateci, semi-formal 1 1 8 (22%) 

S tudents' 
Explanations 

Of the eighty-two students who panicipated in the questionnaire, most chose either 

Barry's formulaic explanation (twenty-one students, 35 5%) or Dylan's inductive. mu1 tiple 

exampie explanation ( a h  wenty-one students. ?5.6%). Nearly as many preferred Cynthia's 

deductive, formulated, semi-formal explanation (eighteen students. 27%) or Amanda's 

inductive. multiple exarnple explanation ( sixteen students, 19.5%). Onl y six students (7.3O10) 

preferred Ewan's deductive, formulated. pre-formal explanation. 

Kind of Explanation 

Dylan 

Ewan 

Number from the 
questionnaire who chose a 
particular explanation n = 87 

Inductive/Multiple Example 

Deductive. formulateci, pre-fonnal 

21 (25.6%1 

6 (7.3%) 



A. (2) Why is the sum of two odd numbers men? 

Four different explanations were provided to explain why the sum of two odd 

numbers is  even. They included one (1 ) deductive. formulated, semi-forma1 explanation. 

one (1)  inductive/single example explanation, one ( 1 )  inductiveirnultiple example 

explanation and one ( 1 )  analogcal explanation. 

Tuble 2 

Why is the sum of  two odd numbers even? 

Number from the 
questionnaire who chose a 

S tudents' 
Explanations 

particular explanation 
n = 82 

Kinds of Explanations 

h d y  

Bill 

Of the eighty-two students who partici pated in  the questionnaire. most chose 

Drake 

either Cora's inductiveimultiple example explanation (thiny-five students, 42.68%) or 

Drake's analogy (thirty-three students. 40.34%) Only eleven students ( 1 3.4 1 O h )  preferred 

Andy's deductive, fomulated. semi-forma1 explanation: fewer students preferred Bill's 

inductive, single example explanation (three students, 3.6796). 

Deductive, formulated, semi-fonnal 

InductiveiSingle ExampleNisuai 

1 1 ( 13.4 1 %) 

3 (3.67Oh) 

Analogy 33 (40.24%) 



A. (3) My do pefect tirinornial squares have the font r' + 26x + b2 ? 

Five different expianations were offered to explain why perfect trinomial squares 

have the form x' + 2bx + bZ. They included one (1) inductive~multiple genenc example 

explanation, one ( 1 ) deductive, formulated, pre-formal explanation, one ( 1) deductive, 

formulated, semi-formal explanation, one ( 1 ) inductive/multiple example explanation, and 

one (1) deductive!unfomulated/Visua1 explanation. 

Table 3 

Why do perfect trinomial squares have the form x2 + 2bx + b2 ? 

1 Students' 1 h n d s  of Expianations 1 Number Frorn the questionnaire 1 
Explanations I who chose a particular 

explanation n = 87 

Lisa 

Julia 

Julia's deducti ve. formulated, pre-formal explanation was the rnost preferred with 

thirty-two students (39.02%) choosing it. Only half as many chose Jody's inductive, multiple 

explanation (seventeen students, 20.73%) with almost the sarne nurnber of students choosing 

Dena's deductive, fomulated, semi-formal explanation (sixteen students, 19.5 1 %). The 

Dena 

Cheryl 

Inductive/ûenenc Example 

Deductive, formulateci, pre- 
formal 

8 (9.76%) 
3 

32 (39.02%) 

Deductive. formulated, semi- 
forma1 

Deductive, 
unformulated/informaI 

16 (19.51%) 

9 (10.91%) 



nurnber of students who chose Lisats inductive, generic e m p l e  explanation ( eight studrnts. 

9.76%) was about the same as Cheryl's deductive, wiformulated informal explanation ( nine 

students, 10.9 f %). 

B. Intewiews 

The student interviews included questions from the questionnaire and fiom 

ciassroom observations. 

B. ( 2 )  Student inte~iews using questionnaire questions 

B. I(a) 

Table 4 summanzes the data collected from the student interviews using the first 

questionnaire question. 

Table 4 

Why does the sum of the interior angles of any triangle equal 180°? 

Number from the 
interview who chose a 
particular explanation 
n = 8 

Students' Expianations 

Cynthia 

Kinds of Expianations 

- --- 1 Deductive. forrnulated. s e m i - I r  

1 Dylan 1 lnductivelMu1tiple Example ( 1 1 
Deductive. formulated. pre- 
formal 1 O 



Four of those students interviewed preferred Amanda's inductivemultiple example 

explanation Cynthiafs deductive, formulatd, semi- f o d  expianation was the second mos t 

preferred. Of the eight studenîs interviewed, one preferred B q ' s  formulait explanation 

and another preferred Dylan's inductivdmultiple example explanation Of the eight students 

inte~~lewed, no one chose Ewan's deductive, formulated, pre-fomal explanntion. 



Table 5 specifically shows who fkom the inte~ews conducted preferred a pax-ticular 

explanation, the kmd of explanation preferred and their reason for choosing the explanation 

for the questionnaire question, " M y  does the s u .  of the interior angles of any mançle equal 

1 80°?" 

Table 5 

Why does the sum of the interior angles of any triangle equal 180°? 

1 Student #2 1 Amanda's ( Inductive/Multiple Example 1 Easy 1 

Student 
interviewed 

Student # I 

1 Student #3 1 Amanda's 1 InductiveMultiple Example 1 Clear 1 
1 Student #4 1 Amanda's ( hductivelMultiple Example 1 Obvious 1 

-- 

Choice of 
expianation 

Amanda's 

1 Student #5 1 Bany's / Forrnulaic 1 Statements & Reasons 1 

Kind of explanation 

InductiveMultiple Example 

1 Student #7 1 Cynthia's 1 Deductive, formulate& serni- 1 Logical 1 

Reason for choosing 
explanation 

Farniliar 

Student #6 

) Student #8 1 Dylan's 1 Inductive/Multiple Example 1 Sîraightforward 1 

Because Amanda's inductive~multiple example explanation did not require an? 

additional explanations, for example, why altemate angles are equal, it was student #3's 

preferred choice. Student #3 described Amanda's expianation as clean and clear and not 

wamanting subsequent proofs. "1 tell ya now. . . Arnanda's answer hmrn hmm because it's 

Cynthia's Deductive, formulated, semi- 
formai 

Statements & Reasons 



clear. It is ve- clean. It's not clunered. It answers the question full! without goine - into 

long details" (see Appendix B). 

Arnanda's inductive/multipie exarnple explanation was srudent #4's choice becausc 

of its obviousness that three bends would sûaighten into a straight iine equalling 1 80 O .  

". . . three different bends. Then itls obvious. Three angles got to equal 1 80 O " ( see Appendis 

8 ). 

Student #2 liked Arnanda's inductiveimultiplr example explana~ion for its casiness. 

Shident #2  felt that Amanda's expladon was easy because it did not involve staternents and 

reasons. "It is easy. It doesn't involve statement and reasons" (see Appendix B 1. 

Student # I thought that Amanda's inductive/rnultiple example explanation was the 

most appropnate explanation because he could relate what Amanda was saying to one-half 

of a circle whch equals 180" When 1 ran into student # 1 a few weeks after the interview, 

I asked him how Amanda's inductive/multiple example explanation reminded him of a half 

of a circle. 1 finally understood that student # 1 was relating Amanda's inductive/muitiple 

r m p l e  expianation to a haif circle, because in Amanda's expianation she cuts up the angles 

whch according to mident # 1 is like cutting a circle in half equalling 1 80". "Think of circle 

- 180' is 1/2 of a circle - you add them ail up together equal 180" - so go with Amanda's 

response. She cut the angles and made a straight line. Like a circle is 360" but, ah, if you 

cut in half, then you get a straight iine 186"" (see Appendis B). So, student # 1 was 

explaining why he preferred Amanda's inductive/multiple example explanation using an 

analogy. For student # 1, Amanda's inductive/multiple exarnple explanation served as an 

63 



analogy in which his reasoning by analogy was based on a case and lead to a case (see 

Appendix B). 

Student #5 preferred Barry's formulait explanation, becausr he uses statements and 

reasons providing a formula at the end "Barry's because fint he showed what he did - why 

in statements and reasons and then a formula at the end" (see Appendix B). 

The format. narnc!~ statcments and reasons, of Cqnthia's deductiw. formulated. 

semi-forma1 response was why student #6 prefened it as an expianation for - Why does the 

sum of the interior angles of any triangle equal 180' O ?  "Cynthia's answer because shr: is 

using statements and reasons" (see Appendix B). 

Srudent #7, on the other hand, prefened Cynthia's deductive, fomulated. semi- 

forrnal response for its reasoning. According to student #7. Cynthia's explanation uses 

logical arguments with the use of the straight line and equivalent angles. "Cynthia's - she 

justifies using logical arguments and equivalent angles. Kind of liked Ewan's too because 

that one's using reasoning - al1 of them would be same tnangle right - not going to change 

degrees" l see Appendix B). 

Student Y8 was convinced and did not require any funher explanation why the sum 

of the interior angles of any tnangle always equals 180" than what Dylan's 

inductive/multiple example expianation provided. Student #8 was convtnced that wiren you 

add the intenor angles of any tnangie your answer will always be 180" by the simple fact 

that three different measurements added summed to 180" 



B. l(b) 

Table 6 summarizes the data collected from the student interviews using the second 

questionnaire question. 

Table 6 

Why is the sum of two odd numbcrs even? 

Students' 
Explanations 

1 Bill 

1 Drake 

Kinds of Explanations Nurnber from the interview 

1 who chose a particular 
explanation n = 8 

Deductive, formulated semi-forma1 1 

InductiveMultiple Example 3 ' 

Three of the eight students interviewed preferred Cora's explanation. and another 

three preferred Drake's analogy. One of the eight students interviewed preferred Andy's 

deductive. fornulateci, semi-fonnal explanation and another preferred Bi Il's inducrive~single 

example explanation. 

Tabie 7 specifically shows who from the interviews conducted prefmed a particular 

explanation, the iund of expianation preferred and their reason for choosing the explanation 

for the questionnaire question - Why is the surn of two odd numbers even? 



Table 7 

Why is the sum of two odd oumbers even? 

Student 
interviewed 

1 Student #5 

1 Student #7 

1 Student #2 

1 Student #3 

1 Student #6 

Choice of 
explanation 

Kind of explanation Reason for choosing 
explanation 

Deductive, formulated, 
semi-formal 

-- 

Statements & 
Reasons (Formula) 

Bill's 

Cora's 

Inductive/Single 
ExampleNisual 

Cora's 

Cora's 

Drake's 1 Analogy 

Inductive/Multiple Example 

Inductive/Mul ti ple Example 

1 Familiar 

- -- 

Examples 

Examples 

Drake's 1 Analogy 1 Familiar 

Drake's 1 Analogy ( Wnnen in words 

Student -5 tended to prefer responsrs that were in the mtements and reasons format. 

Because Andy's deductive, formulated. semi-formal explanation provided, in student Ws 

opinion. statements and reasons and then a formula at the end. it was her preferred 

explanation. "Andyls - he is q i n g  what one number is and another in formula and then he 

went on to say why he did it - then the formula" t sec Appendis B). Student i 5  believed that 

Andy's deductive explanation provided statements and reasons: yet, he does not indicate why 

?n - 1 or 2m - 1 equals an odd number and why 3(n - m - 7 is an even numbrr. 

Student #7 chose Bill's inductiveisingle example explanation because it provided a 

visual representation of why the sum of two odd numbers is even. Both Drake's analog and 



Cora's inductive/multipie examples explanations caught student #7's attention. but. she still 

preferred Bill's visual explanation. "I'rn better with visuals sornetimes. It depends on what 

I'm doing. If 1 can see diings. Noi that 1 would dispute that (Cora's explanation) or that" 

@rakefs explanation) (see Appendix B). Wben 1 asked student #7 what she thought about 

Andy's deductive, formuiated, semi-formai explanation. she indicated that she could see the 

logic to i& but she could no? think of the algebra at the rime. "Xndy's is alright, but IiL right 

now I cant think odd nurnbers. I'm tqinç to think of the algebra sniff - the numbers -- the 

equations. It is logcal to see where it worked out" (see Appendix B). Yet. logic was the 

reason student Y7 had chosen m a n d a ' s  inductiveimultiple example explanation to explain 

why the surn of the intenor angles of any triangle equals 180". However, for the sum of two 

odd numbers is even. studrnt Y7 chose the visual explanation over the 'logical' esplmation 

(see Appendix B). 

Cora's inductive/rnultiple examplr explanation showing the surn of two odd num bers 

is even through examples was enough to convince student 87. When askrd if Cora's 

explanation would be proof that the sum of two odd numbers is always rven. student #7 

responded 'sure'. Student X2 indicated that Cora's inductivelmulti pie example explanat ion 

was a lot easier to see or understand. "1 would say Cora's answer. This one is a lot easier 

to see. The numbers make it easier You don't have to count the dots" (see Appendix B). 

Student 113 did not like Drake's analog because it sounded too much like a word problem 

to her. "Drake's is like a word problem" (see Appendix B) Nor did she like Bill's 

inductive~single example explanation because she did not want to count the dots. 
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Borh student #3 and student tl.4 also preferred Cora's inductiveirnultiple esarnplr 

explanation kcause Cora's explanation provided examples of why the surn of two odd 

numben is even, and they would not have to fi-pre out why a negative times a negative is 

positive. "Cora's answer on that one, because, not ody, does she give more than one example 

and it's clear, again. it is the contents of it" (see Appendix B - student #3) .  "Given bunch of 

examples, right, which I think would be easier to do than just trying ro esplain sornething. 

okav, like a negative times together would gwe you a p s i  tive: whereas. if ?ou were given 

an example, then 1 would Say students would learn better, would understand bener" (see 

Appendix B - student J? 1. 

Student # 1 decided on Drake's analogy. Student # 1 found that he could relate an odd 

number to a negative number and an even number to a positive number. It was clear to 

student d 1 that if a negative times a negative is positive , then an odd plus an odd is evrn. 

"Drake's answer because it goes along with a negative times a negative gives you a positive. 

So. an odd plus an odd is even. Ya. okay. an odd number is like a negative number and an 

even number is like a positive" (see Appendix B). For student # 1. Drake's reasoning by 

analou which 1s based on a rulr and lcads to a rule was strong. That is. Drake's analoby 

allowed student # 1 to understand why the swn of two odd numbers is even. 

Student #8 also preferred Drake's analogy because it related the sum of two odd 

numbers is even to a farniliar principle that says the product of two negative numbers is 

positive: therefore, the surn of wo odd nurnbers must be even. "Drake's because a negative 

times a negative nurnber is positive: therefore, an odd number plus an odd number is an even 
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number" (see Appendix B). 

The fact that Drake's anaiogy uses words and not numbers, spbo l s  or dots was 

reason enough for student #6 to choose his expianation "Drake's because it's written out not 

using numben" (see Appendix B). 

B. I(c) 

Table 8 sunmanzes the data collrctd from the student in teniws using rhe third 

questionnaire question. 

Table 8 

Why do perfect trinomial squares have the form x' + 2bx + b2 ? 

Nurnber from the interview 
who chose a particular 
explanation n = 5 

S tudents' 
Explanations 

- - 

Kinds of Explanations 

Lisa 

Julia 

( Cheryl 1 Deductive, unformulatediinfomal 1 0  1 

J ody 

Dena 

Julia's deductive, pre-formal explanation was the most prefened with three of the 

five students inteMewed choosing it. Only one of the five students interviewed chose Lisa's 

inductive/multiple genenc example expianation. Likewse. only one of the five chose Jody's 

inductive/muitiple exarnple explanation. No one from the interviews conducted selected 

Dena's deductive, formulated, semi-formal explanation or Cheql's deductive. unfomulated 
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Inductive/Multiple Generic Exarnple 

Deductive, formulated. pre-fomal 

1 

3 

Inductive/Multiple Example 

Deductive. formulated, serni-formal 

1 

O 



explanation. 

Table 9 specifically shows who from the i n t e ~ e w s  conducted preferred a panicular 

explanation the kind of explanation preferred and their reason for choosing the explanation 

for the questionnaire question - Why do perfect tnnomial squares have the form x ' 2 b s ~ b  

Table 9 

Why do perfect trinomial squares have the form x2 + ?bx + b2 ? 

- 

1 
. - -. -. -- 

Choice of Kind of explanation Reason for choosing 
interviewed explanation 

I S t u d e n t  I I explanation 

StudentH Lisa's l I InductivelMultiple Genenc 
Example 

1 Student #3 1 Julia's 1 Deductive, formulated, pre- 1 Straightforward 1 

Two different wavs 

1 Student #Z 1 Julia's / Deductivc, formulaad, pre- 
forma1 

1 Student #4 / Julia's 1 Deductive, fomulated, pre- 1 Straightfonvard 1 

Familiar 

Student #8 ( Jody's 1 Inductive/Multiple Example ( Farniliar 
i 

Student # I seemed impressed that Lisa's inducrive/multiple generic example 

explanation provided a different means to obtain the square of a number. He l i  ked how 1 1 ' 
could be wntten as a binomial squared which multiplied out provided the same result as 12 ' 
"Lisa's answer because she shows two different ways" (see Appendix B). 

S tudent X2 chose Julia's deductive. formulated, pre-formal explanation because of 

its familiarity. Julia's explanation uses the FOL method of multiplication which was 



farniliar to student #2 .  Student #Z did not know how her choice of expianations would have 

b e n  dfferent if the FOL rnethod had not k n  so familiar to her. "Julia's response because 

she is using the FOL method - maybe because it's familiar" (see Appendix BI. 

Student #4, like student #2.  chose Julia's deductive explanation, because she uses 

the FOL method which sîudent #4 thought was straightfonvard. "Ah, because she is using 

the FOIL methcxi, ri& and in iiiy opiiiion, ir is easier for studcnts to understand and I mean 

- it is straightforward - First Outside Inside Last" (see Appendix B). 

Student #3. too, chose Julia's deductive, fomulated, pre-formai explanation. because 

she uses the FOL method of multiplication which, according to snident $3. is simple. In 

student #3's opinion, it is simple. because it uses straightfonvard instructions which you 

could follow like a recipe. "Say. Julia's answer for this one because it's -- she is explaining 

what she is doing. She is using the FOIL method of multiplication. Not only that. she'll go 

through everv step of the FOIL method in rach line. Again, i t 's simple -- simplicity. itsrlf. 

This here is very simple, straightfonuard instructions. If you had different numbers and you 

were going to do this, you could almost follow like a recipe which she has here and leam 

and teach yourself how to do something like that." (see Appendix Bi. 

Although snident M3 preferrrd Jodv's inductivemultiple example explanation, she 

did for the same reason as student ff2, student # 3  and student it4 chose Julia's deductive, 

fomulated, pre-fomal explanation Student $8 chose Jody's exptanation. because he uses 

the FOL rnethod. Student #8 seemed to focus more on the final product than the method, 

indicating that the perfect square tnnomial works out evenly as a result of using the FOIL 
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method. 

B. I (d) Summuty of sntdent inteMews using questionnaire questions 

Table 10 summarizes the studentfs choice of expianation, the kind of explanation for 

each of the three questions and why he/she preferred a panicular explanation. 



Table IO 

Student #2 

L 
Student t f 3  

S tuden t #4 

Student fi8 

1 

Student #5  

swn of the mtenor andes rn 
any mangle 1s 180" and why 

Amanda's Inducnve/Mdnple 
Example 
Familiar 

-- 

Amanda's Inducnv&~ulnple 
Example 
Clear 

Amanda's inducnve/Multiple 
Example 
O bvious 

Student Choice of explanafion for the 
uitemewed 

Snident # I 

- 

3-  

Dyian's 
InducrivwMultiple Example 
Srraightfotward 

m. 

- 

L 

Bmy's 
Formdaic 
Statements & 
Reasons 

8 

Srudent #6 Cynthia's 
Deducnve. forrnulated semi- 
fonnd 
Statement & Reasons 

Student ff7 L C  TI thia's 
Deducnve. formuiated. semi- 
fotmal 
Logical 

- - -  

Drake's 
4nalogy 
Familiar 

Ihoice of explananon for 
he sum of two odd nurnben 
s even and whv 

hducûve~?Wupie 
Genenc Examplr 
Two differcnt ways 

Choice of explamnon 
for perfect mnomai 
squares and why 

- - 

Cora's inductive/Mdtiple 1 Julia's 
Exampie Dductive. fornuiaieci. 

Cora's 1 ~ulia's 

Esam plts 

Cora's 
hductrve/Mulnple Example 
Exampies 

semi- formai 
Familiar 

J ul ta's 
Deducnve. formuiated. 
semi-formai 
Straightforward 

Drake's 
.bdogy 
Familiar 

InducrivdMulnple Example 
Examples 

Julia's 
Deducnve. formulated. 
sem-forma1 
Familiar 

Deducnve. forrnulated. 
semt-formal 
Straightfomard 

hldy's 
Deducnve, formulated, 
semi-formal 
Statements & Reasons 
( Formula) 

Drake's 
h a l o g  
Wnîîen out in words 

Bill's 
inducnve/Sin& Example 
Visual 

N i  A 



Cornparison of findings between questionnaire and shiderit 
interviews 

Tables 1 1, 12 and 13 compare the results from the questionnaire and the student 

interviews for the three questions 

Why does the sum of the interior angles of any triangle equai 180'7 

Why is the sum of two odd numbers even? 

Why do perfect tnnomial squares have the fom x' + 7bx - b? 

B. 2(a) 

Table Il 

Why does the sum of the interior angles of any triangle equal 180°? 

Cynthia 

Dy lan 

E wan 

Kinds of 
Explanations 

Inductive/Multiple 
Example 

Deductive, 
fomulated, semi- 
fonnal 

Inductive/Multiple 
Example 

Deductive, 
formulateci, 
pre- formal 

Number of participants 
fiorn the questionnaire 
who chose a particular 
explanation n = 82 

- - - -  

Nurnber of 
participants from 
the interviews who 
chose a particular 
explanation n = 8 



Althou& there are no obvious consistencies arnong the type of expianation prefrrrrd. 

students did seem to prefer the empincal explanations over the deductive explanations. Lt 

is interesting to note that only six of the eighty-two questionnaire participants (7.3?0) and 

no one from the interviews preferred Ewan's deductive, formulateci, pre-formal explanation. 

Table 12 

Why is the surn of hvo odd num bers even? 

Kinds of 
Explanations 

Deductive, I l  (13.41%) 
formulated, semi- 
forma1 

Number of participants 
from the questionnaire 
who chose a particular 
explanation n = 83 

Inductive/Muitiple 
Example 

Nurnber of participants 
from the interviews 
who chose a particular 
explanation n = 8 

Analogy 1 33 (40.24O/0) 1 3 (37S0/i) 1 

Although it was not obvious what kind of explanation students preferred for whv the 

surn of the intenor angles of any triangle equals 1 80°, it was obvious for why 1s the surn of 

two odd numbers even. Thirty-five of the eighty-two questionnaire panicipants (43.68O/0) 

and three of the eight students interviewed (37.5%) preferred Cora's inductive/multiple 

exarnple explanation (see Table I I ) .  An equal number of students interviewed (37.5%) (see 



Table 2) and over forty percent (40.24%) (see Table 121 of those students who panicipated 

in the questionnaire preferred Drake's analogy. 

B. 2(c) 

Table 13 

Why do perfect trinomial squares have the form x2 + 2bx + b' ? 

i S tudents' 
Explanatiom 

Kinds of 
Explanations 

Number of 
participants from the 
questionnaire who 
chose a particular 
explanation n = 82 

Con's inductive~multiple example explanation which was stnctly numencal was 

favoured for why is the sum of two odd numbers even; while Julia's deductive. formulated, 

pre-fornial explanation was favoured for why do perfect tnnomial squares have the fom 

Number of 
participants frorn the 
interview who chose 
a particular 
explanat ion n = 5 

L isa 

Julia 

Jody 

Dena 

Cheryl 

InductiveiMultiple 
Genenc Example 

Deductive, 
formulated, pre- 
formal 

lnductivelMultipIe 
Example 

Deductive, 
formulated, semi- 
forma1 

Deduct ive, 
unforrnulated' 
informal 

8 (9.76%) 

32 (39.02%) 

17 (20.73%) 

16 (19.51%) 

9 (10.91 %) 

1 (2090) 

3 (60°/0) 

1 (20°h) 

O (0%) 

O (0°/0) 



x2+-2bx+b2 . Close to forty percent (39.02%) of the students who participated in the 

questionnaire and sixty percent (60%) of those i n t e ~ e w e d  preferred Julia's deductive. 

formulated, pre-fomal explanation (see Table 1 3 ). 

B. Z(d) Summnry ofconrporlFon 

. Tables 14, 15 and 16 show the chi-square test for each of the three questionnaire 

questions. 

Table 14 

Why does the sum of the interior angles in any triangle equal 180°? 

Kind of 
Explanation 

Inductive/Multiple 
Example 
Amanda's 
Dylan's 

Deductive 
Cynthia's 
Ewan's 

Number of 
students who 
prefemed a 
particular 
explanation 
n = 82 (%) 

Number of 
explanations 
O Rered 
n = 5 (96) 

lobserved - expecred)' 
expected 

The Chi-square statistic of 4.19. at 2 degees of freedom indicates that ttiere i s  about 

a 90% chance that students pre ferred inductive and formulaic explanations over deductive 



explanations for some other reason than chance. 

Table 15 

Why is the sum o f  two odd numbers even? 

Kind of 
Explanation 

Number of 
students who 
preferred a 
panicular 
exp lanation 
n = 82 

InductiveiSingle 
Example 
Bill's 

Inductive/Multiple 
Example 
Cora's 

Deductive 
Andy's 

Analog cal 
Drake's 

I 
-=- =- ----. - 

Number of 
cxplanations 
offered 
n = 4 ( % )  

(observed - expected )2 

expected 

The Chi-square statistic of 37.22. at 3 degrees of freedom indicates that there is more 

than a 99% chance that students preferred inductive and anaiogicai explanations over 

deductive explanations for some other reason than chance. 



Table 16 

Why do perfect trinomial squares have the form x2 + Zbx + b2? 

Kind of 
Explanation 

InductivelMultiple 
Example 
J ody's 
Li sa's 

Deductive 
Julia's 
Dena's 
Cherylts 

Number of 
students who 
preferred a 
particular 
explanation 
n = 82 (%) 

Number of 
explanations 
ofTered 
n=4(%) 

lobserved - expected)' 
expected 

The Chi-square statistic of 3.09. at one degree of freedom indicates that there 1s 

about a 90°/0 chance that students preferred deductive explanations over inductive 

explanations for some other reason than chance. 



The results of the inte~ews with the two instnictors showed that both preferred the 

deductive explanations, with one prefemng formulated and the other not expressing that 

preference. 

B. S(a) Results from the teacher interviews using the jim questionnaire question 

Why does the sum of the iaterior angles of any triangie q u a i  MO? 

Both instnictors preferred Cynthia's dedunive, formuiated, semi-fomal explanation 

for the sum of the angles in a triangle question. According to instructor # I .  Cynthia's 

deductive, formulated, semi-formal explanation uses postulates, theorems and proven 

statements which makes it the best choice. "Cynthia, she used postulates and theorems, 

proven statements." (see Appendix B). Insmictor $3 liked Cynthia's deductive explanation. 

because "she shows an understanding of some aspeas of math and application of them. " ( see 

Appendix B) 

Dylan's inductive/multiple example explanation also interested instructor ti 1 .  

Instructor #1 believed that Riants inductive/multiple example explanation was based on 

sowd geometnc principles. "Dylan's is tnal and error whrre he measured angles. It's based 

on sound geornetric principles." The fact that Cynthia's deductive, formulated, semi-formal 

explanation uses proven statements was reason enouçh for instnictor d 1 to prefer it over 

Dylan's inductive/multiple example explanation (see Appendix B). 

Instructor # I did not like Amanda's inductive/multiple example explanation. The 



idea that Amanda's enactive proof tears up paper to show that the angles in a mangle form 

a straight line was not accurate enough for instnictor # 1. "Tearing up paper is not accurate. 

in my opinion." (see Appendix B). instructor #3, like insmictor # I .  felt that Amanda's 

inductivdrnultiple example explanation was not accurate, because it did not provide proof 

for al1 cases, but rather for one panicular case. "Amanda's is not proving for al1 cases: she 

shows that jt 1s for one instance only - no accuracy." (see Appendix £3). 

During the insmictor interviews, 1 asked both insmictors for their opinion of Ewan's 

deductive, formuiated, pre-formal explanation. Both selected Cynthiats explanation which 

was also a deductive, fomulated explanation and I expected that they would be equally 

comfortable with Ewan's. Instructor #l's first reaction to Ewan's deductive, fomulated 

explanation was that she did not undentand it. "1 don't understand that at all." (see 

Appendix B). AAer a period of time studying Ewan's deductive explanation. instructor # 1 

said that his explanation "explains it in a round about manner" and that it was "no better than 

the others" (see Appendix B). ln instructor #2's opinion, Ewan's deductive. formulated 

explanation does not apply mathematical concepts. "Ewan's uses no mathematical 

concepts." (see Appendix B) 

B. 3(b) Results from the teacher interviews using the second questionnaire question 

Why is  the sum of two odd oumbers even? 

As was the case for the first question. both instructors preferred the deductive, 

formulated, semi-fornial explanation for the second question. Both instructon preferred 

Andv's deductive, formulated, semi-formai expianation (see Appendix B). Instnictor # 1 
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liked the fat  that AndYs deductive explanation "makes more sense because it's alcebraicall!. - 
laid out" (see Appendix B). lnshuctor #2, noted that it "shows sorne thought gven to 

mathematical aspects" (see Appendix B). 

Instructor # 1 noted the similarities behveen Cora's inductiveirnultiple exarnple 

explanation and Dylan's inductive~multiple example explanation for the sum of the angles 

in a triangle question. "Cora's 1s the same as Dylan's, but it is tnal and error ai?d has only 

four. not enough to substantiate. It's only four, not a large sample size." Because Cora's 

inductive/multiple exarnple explanation is based on tnal and error and included a small 

sarnple size, it came second to Andy's deductive, fomulated. semi-formal explanation (see 

Appendix B). 

Both instructors disliked Bill's inductive/single example explanation saying they 

found the dots confusing. "1 find the dots confusing, but a visual learner might li ke it." (see 

Appendix B - instructor # I ). "Hated the dots." (see Appendix B - instructor #3). 

Accordmg to instmctor t: 1. Drake's analogy "makes no sense what so ever, because 

of two totally umelated pnnciples or cases are being compared" (see Appendix B ). The fact 

that the product of two negative numben is positive did not convince insmictor # 1 that thus 

the sum of two odd numbers is even 

B. 3 0  Results /rom the teacher interviews using the third questionnaire question 

Why d o  perfect trinomial squares have the form x2 + 2bx + b2 ? 

Again, instnictor # 1 chose the deductive, fomulated explanation for the perfect 

tnnomial square quemon. Instructor Y 1 preferred Julia's deductive, fomulated, pre-forrnal 
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explanation for why do perfect tnnomial squares have the form x' - Zbx - b2 V o w v e r .  

instructor #2 preferred Cheryl's deductive, unformulated, informa1 explanatioo (sec 

Appendix B). 

Of the three deductive explanations, (Julia's, Dena's and Cheryi's) Julia's wss 

instmctor # 1's preference. Instructor # 1 thought that Julia gave a better explanation. "lt 

explains step by step what you are doing." Although Julia's deductive. fomulated. pre- 

famal explanation was instnictor #lts  favourite, she also liked to some extent Dena's 

deductive, formulated. semi-formal explanation. "Julia's and Dçna's. they're both similar 

except Julia's gwes an explanation" (see Appendix B). Like instmctor # 1, instructor it? ais0 

had some pos~tive cornments regardin- Dena's deductive. formulated. semi-formal 

explanation. "Dena's is not bad. She shows where the two (2) cornes from, but Che-1's 

provides a diagram" (sec Appendix B).  

Although insmictor $ 1  preferred Julia's deductive, formulated, pre-formal 

explanation. she felt that Cheryl's deductive. unformulated. infornial expianation would be 

more suitable for a visual learner ( s e  Appendix B )  Contrary to instructor # 1. instructor #? 

did prefer Chrpl's deductive. unformulated. informa1 explanation. because of its application 

with area to show why perfect trinomial squares have the form x' + 2bx + b2. "Cheryl's 

shows through the use of application the process and should be easier to see for students as 

area" (see Appendix B). 

Lisa's inductiveimultiple genenc example explanation was confusing and unclear to 

instnictor # 1. A small sample size was another thing about Lisa's inductive, multiple generic 
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example explanation that instnictor # 1 disliked. "Lisa's is retarded. How would you know 

to break down 144. Not a whole lot of cases to support - unclear" (see Appendix B). 

Likewise, instmctor # 1 did not like Jody's inductive/multiple example explanation 

because of the small sample size which instnictor # I felt was inconclusive. "Jody's is mal 

and error. Five cases, small sample size is not enough to conclude" (see Appendix B). 

Instnictor W? supports insmictor #l's daim that Jody's inductivdmultipk exampk 

explanation is inconclusive. "Jody's doesn't prove anything. He only shows that it 1s for 

those particular cases, but not for al1 cases" (see Appendix B). 



B. (4) Results from student interviews using questions front classroom 
O bsentations 

B. 4(a) 

Pickup Charge 

Two midents were asked how the! would calculate the pichxp charge for 175 kg of 

a product if $6.10 is charged for each 100 kg or Fractional part. Both students could choose 

from the answers provided. 

56.10 * (775 - 100) = $16.775 or $6.10*(300-100)=518.30 

When deciding that the second response was the be* sntdent # 5  commented - "The 

way we leamed it is that 100 - 100 - 100 = 300; 275 is 75 more than 200 so vou go to the 

next 100 kg up which brings you to 300 kg" (see Appendix B). For similar reasons. student 

$6 also chose the second response. Student #6 remarked that since 275 was 15 away from 

300 kg ?ou would have to use 300 kg (see Appendix B). 

The manual which provided the question and answer showed $6.10 * (275 - 100) = 

$16.775. Student #6 and student # 5  were both familiar with the textbook answer. In class, 

their mathematics insmictor told thern that i t  was incorrect and should be changed to $6.10 

* (300 4 0 0 )  = $18.30. Without questioning, both student # 5  and student #6 accepted that 

their instnictor was nght and the manual was wrong. This is evident in student W s  

comment - "The way we leamed it is ..." (see Appendix B). 



B= 4 (b) 

Solving an equatioo with negative numbers 

1 asked student #7 to choose fiom the two different ways of solving the following 

equat ion. 

In class, student #7 solved the equation using the first method as was shown in the 

answer key. However. dunng the interview. she preferred to solve the equation using the 

second m e t h 4  because she could eliminate the negative s ips .  "Because you are bnnging 

the negative back over on this side. You still got the negative here. Just set rid of the 

negatives." (see Appendix B). 

B. ?(c) 

Why does .45/.99 reduce to 45/99? 

Three ofthe five students interviewed using rhis question said that brcause 4 5  and 

.99 have the same number of decimal places. the decimal would cancel or be eliminated. 

Their explanations were much the same as what their instmctor had provided. 

"Because .45 and .99 have the same number of decimal places, it can reduce down 

to 45/99." (see Appendix B - Instructor d l  ). "Because there ah is two numbers after the 

decimal. You can just eliminate the decimal - 1 guess. That's what 1 would do." (see 
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Appendix B - student Mj. "Each has the sarne number of decimal places. Because decimai 

places are in the same spot; they are each the m e  amount of decimal places fiom - so that 

i t  doesn't change it." (see Appendix B - student #3) .  "Well !ou know 1 dont have to use 

them because they're the same distance apart That goes to that because where your decimal 

place is the same or both sets of numbers." (see appendis B - student 117). "Don't you have 

to rnultiply by 100?" ( s e  Appendix B - student $2). 

B. I(d) 

Which of the following sequence is geometric and why? 

1 1/3 1/9 1/27 

1 5 10 15 30 

Five of the sis students questioned said that 1 1 9 1'27 was a geomerric 

sequence. Student # 1, student M, student #7. and student rt3 conciuded that 1 1 i3 119 1/77 

was geomemc afier dividing the second number the first andor the third number bu the 

second to determine the common ratio for eac h sequence. Since 51 1 dws not equal 1 O/5, the 

second sequence was niled out. Because 1 3  l and 1 '9,' 1'3 are equal, 1 1 .'3 1 !9 1.27 was a 

geometric sequence. Student i i3 also added that the sequence 1 l!3 119 1/27 was geîting 

subsequently smaller by the samr amounc -- "each subsequent number is being multiplied 

by 113." Student #8 chose to work with the sequence 1 5 10 15 20 first. Because 15/10 = 

1.5 and 1 O/5 = 2 ,  student ;t8 concluded that this panicular sequence was not geometnc. 

Although student #8 appeared to know how to calculate the common ratio for a geometric 



sequence, she did not kncw how to calculate it for the fractional sequence. Like student $3. 

though, she knew the sequence was changing by a factor of l/3 and that the next number in 

the sequence was 118 1 (see Appendix - B). 

Student #2, on the other hanci, decided on 1 5 10 15 20 as a geomemc sequence. 

Student E's calculations involved dividing five (5) by one ( 1 ) to get tive ( 5 )  and then adding 

five ( 5 )  to each precedmg number to obtain the next number in the sequence (see Appendis 

- m. 



Chapter VI11 

Anaïy sis 

The study investigated students' understanding of the role of proof as an explanation. 

Adult leamers attending the College of the North Atlantic, Happy Valley-Goose Bay 

campus enrolled in the technician. business. applied am and Adult Basic Education 

prograrns participated in the study. Students' written responses to questions conceming 

proof made up the empincal core of the midy. The rneaning of what was required as a proof 

was not made expiicit to the study's participants. Because each of the research questions 

required slightly different ûpproac hes to anai !sis, each question is considrred separatel>.. 

A. M a t  kinds of explanutions do studenîs prefer (deductive, inductive, 
an alogical) ? 

Data col lected frorn the eighty-two questionnaires was analyzed, looking for 

cornrnonalities arnong responses. Any pattern< found in student responses were then related 

to the student interviews and classroom se;ting to ser if students' preference for a panicular 

type of explanation was consistent. St~dents showed an overall preference for multiple 

exampie explanations and analogical explar at ions. Drductive argument was also preferred 

at times. 

4 .  ( 1  Inductiv~ultiple Example Erplanaiions 

The most popular kind of explanation arnong the study's participants was the 

multiple example explanation. Five different multiple example explanations were offered 

for the three questionnaire questions. Coca's multiple example explanation was the most 



preferred explanation for "Why 1s the surn of two odd numben even?" Over fom, percrni 

(42.68%) of the questionnaire participants preferred Cora's multiple example explanation 

(see Table 2). Three of the five multiple example expianations (Amanda's explanation. 

Dylan's expianation, and Jody's explanation) were fairly favourable with about twenty 

percent or more of the questionnaire participants prefemng either one of the three 

( h a n d a ' s  explanation - 19.5oi x e  Table 1,b lan's explanation - 25.6% sze Table 1 , Jodk's 

explanation - 20.73°/~ see Table 3).  Less than ten percent (9.7b0/o) of the questionnaire 

participants preferred Liça's multiple generic example explanaiion. Students' preference for 

multiple example explanations supports the research which says that studènts prefer 

empirical evidence over deductive argument (see Fischbein and Kedem, 1981: Balacheff, 

1988: Chazan, 1993; Finlow-Bates. 1994 ). 

A. (2) A nalogical Erplunotions 

The onlv analogical explanatton offered on the student questionnaire was Drake's 

analogy for "Why is the surn of hvo odd numbers even?" Over forty percent (40.24%) of the 

eighty-two students who panicipated in the questionnaire and thirty-srven percent (3 7.Y0) 

of those interviewed indicated a preference for Drake's analogical explanation. Although 

analogcal explanations only occurred once on the questionnaire. students' reacrion to this 

kind of explanation was highly favorable. Students in my study, like Polya ( 1968) 

recognized the importance of analogical explanation. This suppons Reid's ( 1995a) claim 

that a strong analogy can be preferable to a deductive explanation. 



A. (3) Deducrive Expianations 

Six deductive explanations were offered on the student questionniare which 

included: Cynthia's, Ewan's, Andy's, Julia's, Dena's, and C hery 1's explanations. Five of the 

six deductive explanations were formulated with the other, Cheryl's explanation being 

unformulated. Students did not show an overall preference for deductive explanations. 

neithsr did the! dismiss deductive argument. Xlthough students did not indicîte a 

preference for deductive explanations for the first two questionnaire questions. they did for 

the third question. Julia's deductive, formulated, pre-formal explanation was the most 

favored for " M y  do perfect tnnomial squares have the form x' +2bx + b'?" with close to 

forp percent (39.03%) of the questionnaire participants choosing it. Over twrne percent 

(22%) of the questionnaire participants preferred C ynthia's deductive, formulated. semi- 

formal explanation for the first question. About twenty percent ( 19.5 1 q ~ )  of the 

questionnaire participants preferred Dena's deductive. formulated, semi-fomal explanation 

for the third question. A linle more than ten percent ( 13 .4%)  of the questionnaire 

participants preferred Andv's deductive. fomulated semi-formai explanation for the second 

question. Approximately ten percent ( 10.9 190 )  of the questionnaire panicipants preferred 

Cheryl's deduciive, unfomulated, informa1 expianation for the third question. Less than ten 

percent (7.3%) of the questionnaire participants preferred Ewan's deductive. fom ul ated. pre- 

formai explanation for the first question. 



A. (4) ExplonaTiom that were not prefemd 

A. ( ' a )  Inductive lZrpla~*orts  (Single Example and Generic Example) 

Students and i m c t o r s  indicated a dislike for Bill's inductive:single esample!visual 

explanation. ûnly three of the eighty-two questionnaire participants preferred Bill's 

explanation. Lisa's multiple genenc example explanation for the third questionnaire 

question fias not well liked eithcr. Only cight of thc eighty-two qucs:ionnaire pnnicipants 

indicated a preference for it. Other explanations that were not well received were Ewan's 

and Chery 1's deducti ve explanations. 

.4. (5) M a t  is it about these explanatiom thaf studenfs rejected them? were the 
popuhr explana fions preferred? 

No kmd of explanation was preferred by the majority on al1 three of the questionnaire 

questions. Deductive explanations were arnong the most common explanation but the ieast 

popular. On the first question the formulait explanation, Barry's explanation was almost as 

popular as a correct deductive explanarion, Cynthia's explanation and ûylanfs inductive 

explanation. These results suggest that there is something other than the logcal structure 

of the explanation that detemines students' preference for a particular explanation. 

B. WItut constitutes a good explanation for the student ? 

The data collected to answer this question came from analyzing the questionnaire, 

interviewing s~udents. and observing students within their classroom sening. Students' 

pre ferences and disli kes for di fferent explanaticns were anal yzed to determine what 

constitutes a good explanation for the nudent. Students' preferences were also anal ysed 



using Hoyles (1997) "proof types", but no pattern of preference was found i see Chaprer VI. 

section C. \(a)) 

B. (1) Why were the popular explanatiom preferred? 

The more popular explanations (Cora's multiple exampie explanation. Drake's 

analog. and Julia's deductive. fomulated, pre-forma1 explanation) were preferred for their 

fmiliarity, clarity, obviousness, easiness, and smightforwardness. In addition, Cora's use 

of examples was why students preferred it for the second questionnaire question. 

Three of the eight students interviewed selected the same kind of explanation for 

each of the questionnaire questions: two multiple example explanations and a deductive 

explanation (see Table 10). In doing so, they described their preferred expianations as easy. 

farnilar. straightfonvard. and obvious. 

Pnor learning experience influenced these three studenü' choice of explanations. 

Their familiari- wth the straight angle made Amanda's inductive~multiple example 

explanation seem easy. clear and obvious. Likewise their pnor learning expenence or 

farniliarity with the FOL method made Julia's deductive. fomulated, pre-fomal expianation 

straightfonvard. Cora's use of examples to show that the sum of two odd nurnbers is even 

provided clan- and made the conjecture easier to understand. 

Student's familiarity with the mathematical principle that the product of two negative 

numbers is positive was the reason for at least IWO of the eight students interviewed 

prefemng Drake's analogy . 



B. (2) Why were the unpopular explunatiom rejected? 

The presentation of Bill's inductive/single example explanation was w hat students 

and teachen disliked. That is, students and instructors rejected Bill's single example 

explanation because they did not want to count the dots. 

Students' unfamiliari', with Ewan's deductive, formulated, pre-forma1 explanation. 

and Lisa's inductivehiltiple genrric example explanation was why the? rejected these 

explanations. Ewan's walking around the mangle explanation is a type unfamiliar to the 

students and the instructors, and so was rejected. ?bis is evident in the insmictofs 

comments regarding Ewan's exphnation for "Why the sum of the interior angles in a mangle 

equals 1 80°?" - "1 dont understand that at all. lt explains it in a round about manner." The 

same insmictor refen to Lisa's inductiveimultiple çenenc example explanation as "retarded" 

and says "How would you know to break down 1M?" (see Appendix B). 

So. what makes an explanation a g d  explanation for the student? Student :7 chose 

explanations based on their being logical and visual. Four of the five explanations for the 

t in t  questionnaire question were visual. so logical may have been student 37's second 

criterion. For the other students, however, accessibility or familianty seems to be more 

important than the kind of expianation offered (deductive. inductive. or analogical). 

Students in my study seemed to use the same kinds of criteria that Hanna ( 1983) says 

mathematicians use to determine acceptance of a proof ( see Chapter 1 V, section D(2)). In 

particular, students seemed to use Hanna's critena # 1 and # 5  : 

1. Tney understand the theorem. the concepts embodied in it. its logical 
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antecedents, and its implications. There is nothing to suggest that it is not mie: 

5. Thm is a convincing argument for it (ngorous or otherwise), of a type the! 

have encountered before. 

Students in my study, like the mathematicians Hanna refers to, accepted an 

explanation if there was nothing to suggest that it was false. More importantly, what seemed 

:O mattcr ;O the srudents in ni' srud) was whether or not the tsplanation &as of a 1)pc 

fmiliar to them. Thus, Hanna's criteria #5 for mathematicians' acceptance of proof was the 

same criterion students used to determine what constitutes as a good explanation. 

C. What constitutes a good explanarion for the teacher? 

The data collected to answer this question came fiom interviewin- and observing the 

two mathematics instnictors that teach at the same college as the researcher. Explanations 

that teachers provided for the studrots were analyzed. Observing the kinds of explanations 

offered by students that teachers deemed acceptable helped to determine what constitutes 

a good explanation for the teacher, 

The results of the interviews wth the two mathematics instructors showed that both 

preferred the deductive explanations with one prefeming formulated and the other not 

expressing that preference. For instmctor 1 .  a good explanation is one that is deductive 

and formulated, one that uses postulates, theorems and proven statements. and one that 1s 

clear - explaining step by step. In addition. tnal and error or empirical explanations must 

include large sarnple sizes. For instmctor # 2.  a good explanation had to not only use 



iogical arguments. but had to apply the question mathematically. 

D. Do students mirror teachers ' explanations or do they huve their own 
style of erplaining? 

Do students respond differently in different situations: that is. do students respond 

differently in an informal setting than a classroorn setting? Do students offer similar 

cxplanations on test questions as their teachers offered in class or do they tend to use their 

own style of explaining? Observing students and their teachers in the classroorn. observing 

students in informal situations and interviewinç students and teachers coupled with the 

empirical data collected from the questionnaire provided answen to this question. 

The manual which provided the quemon and answer for the pick up charge question 

showed $6.10 * (275 400 )  = $16.775. Both students interviewed (student f: 5 and student 

rC 6 ) were familiar wth the textbook answer. In class. their mathematics instructor told them 

that it was incorrect and should be changed to $6.10 * (300 4 0 0 )  = % 1 8.30. Without 

questioning, both students accepted that their instructor was nght and the manual was 

wrong. This is evident in one studentfs comment - "The way we leamed it  is ..." This 

example shows the teachets authonh as a disincentive to explain. If things are the wav they 

are solely because the teacher savs W. then there is no reason for the student to explain. De 

Villiers' ( 1997) mdy shows that students' strength of belief in or anachment to a panicular 

rnethod is based on extemal rather than personal grounds. Both students showed an 

attachrnent to the way the teacher had explained the pickup charge question and had made 

sure they would answer any related test questions accordingly. 



Solving mathemarical equations accordinç to the answer key is another esample of 

how students are influenced by other authorities (see Results B. 4(b)). Ln this w e ,  the 

answer key influenced student # 7's decision to cany the negative to other side rather than 

eliminating it from the beginning. Reliance on answer keys advenely affects students' 

confidence to do and to undentand mathematics. How does the level of education or pnor 

leaming expenence affect hidents' mathematical confidence? .9re ABE students and other 

adult leamers taught to rely on answer keys? 

Perhaps, students were accustomed to formulating their explanations so as to 

confom to tacher expectations. This is especially evident with student 5 and student #6 

and the pickup charge question. The formulation of students' explanations was influenced 

by their leaminç experience in the course of instruction. Again. this is evident through 

audents' parroting of the teachers' explanations (see Results B. 4. (c ) and 4. (d)). There was 

only one student who seemed to use her own style of explaining. She either explained things 

differently, or she did not have a response for the question being asked in the interviews. 

This is interestinç to note because pnor to entennç ABE she attended high school in 

Ontario: whereas, al1 of the others had aîtended hi@ school in Labrador. Maybe her method 

of explaining was similar to what Ontano teachers used. 



Chapter IX 

Conclusion 

No kind of explanation was preferred by the majority on ali three questionnaire 

questions. Students showed an overall preference for multiple example explanation and 

anaiogical exphnation. Deductive explanations were one of the most common kind of 

explanation offered but the least preferred Students did not show an overall preference for 

deductive expcplanations: neither did they dismiss deductivr argument. It was the fom of the 

explanation, namely its farniliarity and accessibility, that students used as criteria in 

determining its acceptance. Unlike the students, the instmctors accepted or favored an 

explanation based on its logcal structure. It was also found that students' reliance on answer 

keys adversely affects their confidence to do and undentand rnathematics. Students' 

parroting of teacher explanations shows how they are accustorned to formulating 

explanations so as ta conform to teacher expectations as a motivation for proving (see Reid 

1995a Alibert 1988, Schoenfeld. 1983 and Wheeler. 1990). If things are the way they are 

solely because the teacher says so, then there 1s no reason for the student to explain. 

Teachea need to be cognizant of the kinds of explanations offered to students and 

by students. Although the logical structure of an explanation seems to be important for the 

teacher, the student may perceive things differently. Teachers must be aware of students' 

criteria for acceptance of an explanation. That is. its accessibility and fami liarity 

Students should be exposed to the different purposes proof serves, in particular, the 

explanatory function of proof. If proof serves a distinct purpose within the classroom it wi l l  



be meaningful for students. The teachg of proof should shed li&t u p n  the mathematical 

structures under midy by providing insight as to why a statement is hue. Hanna ( 1995) 

daims that the main function of proof in the classroom is the promotion of understanding. 

Perhaps, math educators can promote understanding by placing greater emphasis on the 

social criteria for acceptancr of an explanation. 

Encouraginç sîudents to formulate their own explanations wiII cnhance their 

confidence to do and understand mathemarics. Exposing students to the differen~ purposes 

proof serves will serve better as a motivation for proving than formulating explanations so 

as to confom to teacher expectations. 

Finally, additional research will help to answer some of the questions my research 

has raised such as: 

Would students' prefrrence for a kind of expianation differ if deductivr explanations 

were made more accessible? 

What role could analogical esplanations plav in the teaching of proof' 
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Appendix A 

Sample of Student Questionnaire 

Why does the sum of the interior angles of any triangle equal 

Arnanda's answer: 

1 tore the angles up and put them toçether. It came to a straight line which 1s 

180". 1 tried for an equilateral and an isosceles as we:: and the same thing 

happened. 



B q ' s  answer: 

1 drew an isosceles tnangle, with c equal to 65" 

Statements 

Base anglts in isosceles tnanglc cqual 
180" - 130" 
180" - (a + c) 
Base angles in isosceles tnangle equal 

therefore. a - b - c = 180" 



Cynthiats answer: 

I drew a line parallel to the base of the aiangle 

Statements 

p = s  

Reasons 

Alternate angles between two parallel lines 
are equal 

Alternate angles between two parai le1 l ines 
are equal 

Angles on a straiçht line 

therefote s - t - r = 180" 



Dylan's answer: 

1 measured the angles of al1 sons of tnangles accurately and made a table 

They al1 added up to 1 80 O 

total 
180 
180 
i8O 
180 



Ewan's answer: 

If you walk al1 the way around the edge of the triangle, you end up facing the way 
you began. You mut have m e d  a total of 360". You can see that each estenor 
angle when added to the interior angle must give 180" because they make a 
straight line. 

This makes a total of M O 0 .  540" - 360" = 180". 



WHY IS THE SUM OF TWO ODD NUMBERS EVEN? 

Andy's answer: 

Let one odd number be (Zn + 1 ) and the another odd number (3x11 - 1 ). 
t h e n ( 2 n i  1 ) + ( 2 m  + 1 ) = 2 ( n +  m) - 2 

~ i l l ' s  answer: 
........ 
. * * * O *  .O 

Cora's answer: 

Drake's answer: 

An odd number plus an odd number equals an even number because of the same 
principle which says a negative number times a negative number is a positive. 



Why do perfect trinomial squares have the form x2+2bx+b2? 

Lisa's answer: 

If you take the number 14, then 144 is equal to 10' i 2( 1 O)(?) + 2' 
Likewise, 169 = 13' is 101 + 2(1 O)(3) + 3' 
Finally, 81 = 9-' is 8' -+ 2(8)(l) + 1' 

Therefore, any perfect square number is equal to a binomial square which always 
multiplies out into the form 9 + 2bx + b' 
The binomial is  found by finding two numbers which add up to the number before it is 
squared. For example 9 = 8 + 1 and 9' = 8 1 .  Similarly, 13 = 10 + 3 and 1 3' = 1 69 

Julia's answer: 

If you multiply two same binomials such as (x + b)(x + b) using the FOIL method, then 
the first nvo tems of the two binomials will multiply to x *x = x' : the two outside terms 
will be x times b = xb : the two inside terrns will be b times x = bx; and the two last 
terms of each of the two binomrals multiplied together wil1 be b'. Combininç like terrns. 
the xb and bx will equal2bx. Thus, ( x - b)(x - b) will always multiply in10 the form x2 - 
2bx + b2. 

Jody's answer: 

Therefore perfect rrinomial squares always have the f o m  x' + 2bx +b2 

Dena' answer: 

Using the distributive law: 
( x  +- b)(x + b) 
( X  + b)x = x2 + bx 
( X  + b)b = xb + b2 
( X  + b)(x + b) = x' + bx - xb - b' 
The "2" cornes because "xb" occurs in both distributions 



Chery 1's answer: 

(X  + b) represenb a line segment of length (x + b) 



Appeodix B 

1. Why dues the sum of the interior angles ofany triangle equal180 ? 

1. (a) Students ' respomes IO Amanda's induct ive /dp le  eromple 
explanation 

Student #I 

"Th& of circle - 180' is 1.2 of a circle - you add thcm all up togeether equal 180' -- 

so go with Amanda's explanation. She C L ~  the angles and made a straight line. Li ke a circle 

is 360" but, ah, if ?ou cut it in half, then you get a straight line 180" . "  

Student #2 

"Amanda's answer because she tore up the angles. It is easy. It doesn't involve 

staternent and reasons. " 

Student #3 

"1 tell ya now ... Amanda's answer hmm hmrn because it's clear. it's not. it's veq.  ah. 

She is trying tu solve the problem and she said well to add up to 180" '1 took ail the angles 

basically straighten them out and when I did so thev al1 became a straight line:' so. therefore. 

that's why, right. It is very ciean. It's not cluttered; whereas. 1 found some of the other 

answen - they're big equations. large equations and stuff like altemate angles betwecn two 

parallel lines are equal. How do you know this? You don't. You have to prove that that 

subsequently. This says everything. It answers the question fülly without going into great 

big long details." 



Student #4 

"...three diffèrent bends. Then it's obvious. Three angles pot to equal 180a." 

1 .  Shcdents' responses to Barry's formulait explamtion 

Student #5 

. "Barry's because first he showed what he did - why in statement and reasons and 

then a formula at the end." 

1. (c) Studenîs ' and instruc fors ' responses to Cy nthia k deductive, fornrulated. semi- 
formaî erplanation 

Student ff i  

"Cynthia's answer because she is using statements and reasons." 

Student #7 

"Cynthia's - she justifies using logical arguments - straight linc and equivalent 

angles. " 

"Kind of liked Ewan's too because that one's using reasoning - al1 of them would be same 

tnangle right - not going to change degrees." 

Instructor #I  

"Dylan's is mal and error where he measured angles. It's based on sound geometric 

principles. Cynthia's is bettrr. Cynthia, she used postulates and theorems. proven 

statements. Teanng up paper is not accurate. in my opinion (implying Amanda's 

explanation. I donr understand that at al1 (irnplying Ewan's explanationj. l t  explains it in 

a round about rnanner. No better than the others." 
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Instructor #2 

"Cynthia's, this answer shows an understanding of some aspec:s of math and 

application of them. Ewan's uses no mathematical concepts. Amandas is not proving for 

all cases; she shows that it is for one instance only - no accuracy." 

I .  (d) Students' r e p a s e s  ru @lads imhctiïe/multiple example explunation 

Student #8 

"Dylan's - pretry sûaight fonvard - you take any angle and make the measure equal 

180°." 

I .  (e) Imtructors ' responîes to Ewan 's deducrive, /ormulated, pre- forma 1 eïplanotion 

Instructor #1 

"1 dont undentand that at al1 (implving Ewan's explanation). It esplains it in a round 

about manner. No better than the others." 

instructor #2 

"Ewan's uses no mathematical concepts. " 



2. Wny LF the sum oftwo odd numbers men? 

2. (a) Studen~s' und imîmctors' r e s p o m  to Andy's deducn've- formulated. semi- 
formai e~rplunation 

Student #5 

"Andy's - he is saying what one nurnber is and another in f o n u l a  and then he weni 

on IO say why he did it - then the formüla." 

Instructor #1 

"Andy's makes more sense because it's algebraically laid out. Cora's is the same as 

Dylan's, but it is trial and error and has only four, not enough to substantiate It's only four, 

not a large sarnple s i x .  I find the dots confusing, but a visuai leamer rnight like it ( irnpiying 

Bill's induaivdsingle example explanation). Drake's makes no sense what so ever. because 

of two rotally unrelated pnnciples or cases are being compared. 1 dont know how !ou c m  

corne to that conclusion. Do you?" 

Instructor #2 

"hdy's shows sorne thought to mathematical aspects and factonng. Hated the dots." 

2. (b) Studenl 's respome to Bill's inductivdsingle exampldvisual expianation 

Student #7 

"i'm berter wth visuals sometimes. It depends on what I'rn doing. If 1 can see things. 

Not that 1 would dispute that (Cora's explanation) or that (Drake's explanation). 1 know there 

is something better than that - just the same. 1 don't know if it is in one of those tease 

testers - sorne kind of book - some explanation. You know like ail kinds of game type of 



thngs. 1 h o w  there was a whole bunch of miffsirnilar to that, but there's so man? different 

thmg - so many numbers. Andy's is alright, but like right now 1 can't thinli odd numbers. 

I'm trying to think of the algebra stuff - the numbers - the equations. It is logical to see 

where it worked out." 

2. (c) Stitdents' responses to Cura's inductive/multiple =ample explination 

Student #2 

"Rose, this one here. I would say Cora's answer. This one here is a lot easier to see. 

The numbers makes it easier. You dont have to count the dots. Drake's is like a word 

problem. 

Interviewer - "So. you would be conwncrd given a few examples that the sum of two odd 

numben will always be even?" 

Student X2 f'Sure!" 

Student #3 

"Cora's answer on that one, because. not only, does she -ive more than one rxample 

and it's clear, again, it ts the contents of it. If you read Drake's, he goes into the same 

pnnciple which says a negative number times a negative riurnber is positive. Well, if you 

didnt know that or if vou weren't versed in algebra, you wouldn't know that: whereas this 

is basic addition. You can see that, well. they made the statement -- Why 1s the sum of two 

odd numbers even? Well, while Cora's m w e r  doesn't explain why it  is, she does show that 

it 1s. Okay. She does say -- you know what 1 mean - okay. It may not be explained to a 

level of understanding, but it's taken as a gven by the way she explains it. She says look at 

118 



it -- no matter how many tirnes you do if it works out that way. Therefore. its got to be 

tme. " 

Student #4 

"Given bunch of e m p l e s ,  ri& whch 1 thnk would be easier to do than just trying 

to explain something, okay, like a negative times together would give you a positive; 

ivhereas, if ?ou w r e  gwen an c m p l e ,  then I w u l d  sa? students ivould learn bener. would 

understand better. " 

2. (d) Students' respomes IO Drake's analogical expianation 

Student #1 

"Drake's answer because it goes along with a negative tirnes a negative gives !ou a 

positive. So, an odd plus an odd is even. Ya okay, an odd number is like a negative number 

and an even number is like a positive" 

Student #8 

"Drake's because a negative times a negative number is positive: thrrefore. an odd 

number plus an odd number is an even number." 

Student #6 

"Drake's because it's wntten out not using numbers." 



3. Why do perfen trinomial squares have the Jorn A? + 2hr + b' ? 

3. (a) Studeds response to Lkds inductive/m~1Iîîpfe generic eromple expianation 

Studeut #1 

"Lisa's answer because she shows two different ways" 

IS2 = 144 

17' = (10 - 2)' = 102 - ?(10)(2) 2' - 100 - 40 - 4 = 144 

3. (b) Studenîs' and irtstructors' responses to Julia's deductive, formulated, pre- 
formai ercplunation 

Student #2 

"Rose. Julia's response because she is using the FOIL method - mavbe because it's 

farniliar." 

Student #3 

"Say, Juiia's answer for this one because it's - she ts explaining what she is doing. 

She is using the FOIL method of multiplication. Not only that, she'll go through every step 

of the FOL method in each line. Again it's simple - sirnplicity. itself. Stacks of numbers -- 

if you were just leaming how to do this and 1 saw this - Jody's answer you wouldn't know 

what to make of it. It would be very difficult to follow because ?ou be -- because there is 

such ah of information closely written together; whereas, this here is very simple. straight 

forward instructions. If y u  had different numbers and you were going to do this. you could 

almost follow like a recipe which she has here and leam and teach yourself how to do 

something like that. Because ?ou are adding like terms, she goes on to explain what like 



t ems  are to a certain extend anyway - combining like ternis xb and bx leads to 2bs - so 

effective." 

Student #4 

"Ah, because she is using the FOL rnethod right, and in rny opinion, it is easier for 

students to understand and - 1 mean - it is stmight forward - First Outside b i d e  Last." 

Instructor # I  

Julia's and Dena's, they're both similar. except Julia's gves an explanation. In fact. 

Julia's is probably better. Perhaps, it 1s - because rrn not sure what is reaily happening here. 

Dena's is a little unclear. because she starts with one equation. then splits in two and then 

makes it one or reverts back to one. 1 can see what she's done, but sorneone else might be 

contused by that. Julia explains step by step what you are doing. Dena does not explain that 

xb = bx. A visual leamer would probably like that way sort of better (irnplying Cheryl's 

deductive. unformulated explanation). But it is not as good as the other misses r irnpiying 

Julia's deductive, formulated, pre-forma1 explanation). Lisa's is retarded. How would you 

know to break d o w  1 4 .  Not a whole lot of cases to support - unclear." 

3. (c) Strcdenî's respome to Jody 's inductive~tnulliple eromple erplanation 

Student #8 

"Jody's answer because she uses the FOL rnethod - they work out eveniy like 

( x +  3 ( x +  ')= xl + - 2~ + 2' = x'+ 4 x +  4." 



3. (d) Inrtructors' responîes to Dena's deducrive, formuiated. semi-forml 
tzrplanarion 

lnstructor $1 

"Dena's is a linle unciear. because she çtarts with one equation, then splits in two and 

then makeç it one or revertç back to one. I can see what shets done, but someone else might 

'k confused by that. Julia explains nep by step what you are doing. Dena docs not explatn 

that xb = bx." 

Instructor #2 

"Dena's is not bad. Shr shows where the two ( 2 )  comes from, but Cheryl's provides 

a diagram." 

3. (e) Instructo r 's respome tu Che- 1 's deduclive, un formulated mp f unorion 

Instructor #1 

"A  visual ieamer would probably like that way son o f  bener ( implyinç Cheryl's 

deductive, unformulated, informal explanation)." 

Instructor #2 

"Cheryl's shows rhrough the use of application the procrss and should be easier to 

see for students as area. Dena's is not bad. She shows where the two ( 2 )  comes from, but 

Chevl's provides a diagram. Jody's doesn't prove anything. He only shows that it is for 

those particuiar cases, but not for al1 cases. Cheryl kind of explains it similar to Dena but 

with a diagram." 



4. Insttuctor and studem' responîes tu " Why does .45A 99 reduce ru 45/99?" 

Same Number of Decimal Places 

Instructor #1 

"Because .45 and -99 have the same number of decimal places, ii can reduce d o m  

to 45/99. Okay." 

Student #4 

"Because there ah is two numbers afier the decimal. You can just eliminate the 

decimal - I guess. That's what 1 would do. " 

Student #3 

"Each has the same number of decimal places. Because decimal places are in the 

same spot; rhey are each the same amount of decimal places From - so that it doesn't change 

it." 

Student #7 

" Well you know 1 don't have to use thern because thev're the same distance apan. 

That goes to that because where your decimal place is the same or both sets of numbers." 

Multiply by 100 

Student #2 

"Don't you have to rnultiply bv 1 OO?" 

Equivalent Fractions 

Student #8 

"1 dont know why, but it works out on the calculator. You get the same answer for 
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both (.45/.99 and 45/99) - so theyre equivalent." 

Summary 

Three of the five students intewiewed using ths question said that because .45 and 

.99 have the same number of decimal places, the decimal would cancel or be eliminated. 

Their explmations were much the same as what their instnictor had provided. 

5. Instrucior and -dents' responses to "Wtich of the follawing sequence b 
geonietrîc and why ? 

Instructor #1 

"Divide the second number in the sequence by the fint and the third number by the 

second. It is nongeomtric if you get diffetent answen." 

Student #1 

"Divide second number by first get 1/3 - li3 divided by 1 equals 113 and 119 divided 

by 113 equals 113. Five divded by one is five and 10 divided by five is two - boaom one's 

nat." 

Student #3 

"The first one because if you divide the second one by the first one or third by the 

second you are going to get a common ratio and if you times it together no matter what, 



youll always get - if you times the common ratio by it nght, hrnm. I'm gening confused - 

right. Okay, basically, no matter how many numben are there, right, youll get a common 

ratio that you c m  multiply, right, to get the following one; 1 guess is what I'm ~ i n g  to say. 

right." 

Student #8 

Liilian wrote 1 j;l0 = 1.5 and lGi5 = 2 and said "so not geomrrnc because ditTerem 

answers. " 

Studeat #7 

"Same even number of digits and try to divide." 

1 3  divided by I equals 113 

1 /9 divided by 1 /3 equals 1 i3  

5il  = 5 and 10/5 = 2 "Nor geomemc." 

Student #3 

"The first one ( I 1 5  1/9 1.37). becaux it is getting progressively smaller bv the same 

amount. Itts. it's, ah, okay, because you're multiplying by 1 /3. so each time each subsequent 

number is getting rnultiplied by I,:3 by 1 3 "  

Interviewer - "Student #3, how did you determine that?" (implying the 113 factor)? 

Student #3 - " 1 is greater than. less than or equaled: whereas. the r is less than, 

greater than 1 .  Ah, second divided by the first." 



6. Siudent #7's response to "Sofving an equotiun with negan've numbers ' 

1020 =a(-755') or 1020 = a m  
- 1 - 1 

-1020 = a (-355) or 1020 = a ( 2 5 5 )  

a = 4  or a = 4  

Interviewer 

"Which way dù lu prefer?" 

Student #7 

"This way." (Implying the second choice) 

Interviewer 

"Whv didn't vou like this way?" (Implving the first choicel 

Student #7 

"Because vou are bnnging the negative back over on this side. You still got the 

negative here. Just get rid of the negatives " 

Interviewer 

"When you were actuallv doing i t  !ou look~d at the answer key and the answer key 

had it this way, carrying the negative over to the other side, so you left it according to the 

answer key. Why didn't you change it to the way you wanted?" 

Student #7 

"I don? know. Because I was probahly going to ask about it sometime later, but 

never got around to it. But  that would be what 1 would go with, myself, right, get rid of al1 
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of the negative signs. 1 figure to get rid of al1 negatives, make it positive." 



Appendix C - Course Descriptions 

MATHEMATICS 1510 

MATHEMATICS FOR COMPUTER STUDIES I 

TlME ALLOCATION: Semester Length: I 5 weeks @4 hoursiweek 

TEXT: ,2lurhemat1cs jiv Progrumrning C'ompurers, F. J .  Clarke. 

C E D I T  VALLIE: FOUR (4 j 

DESCRIPTION: This course involves the study of mathematical topics which are 
applicable to business computer studies. 

COURSE OBJECTIVES: 1 .O  Review related algebraic concepts 

2.0 Use the decimal, binary, octal, and 
hexadecimal numeration systems. 

3.0 Perfom basic anthmetic cperations in the 
four numeration systems. 

4.0 Apply Boolean Algebra. 

5 .O Use Deterrninants and Matnces. 



MATHEMATICS 1000 

TYPES AND PURPOSE: This is a course in basic mathematics designrd to help 
alleviate specific weaknesses in students' mathematical 
skills. This course is a non-credit prerequisite for 
Mathematics 1100 for those students identified by the 
placement testing procedure. 

CALEhDAR ENTRY. Operations \hl th Whole biumbers and Fractions; Operations 
with Decimals and Percents: Operations with Integers and 
Exponents; Linear Equations, Operations with Aigebraic 
Expressions; Operations with Fractional Expressions, 
Solving Formulas: Graphing, Systems of Linear Equations: 
Basic Geometry and Tngonometry 

PREREQUISITES: 
SCHEDULE: 

TEXT: 

COURSE ms: 

MAJOR TOPICS: 

None 
Duration: 1 3 wee ks 
Class Hours: 5 hours~week = 65 hours total 

Zimmer, R. A., Essen; ru1 Muthematrcs (Kencialmunt 
Publishing Co.) 

1 ) To provide an opportunity for students to eliminate 
mathematical deficiencies as identified bv the 
placement testing procedure. 

2) To strengthen the student's mathematical skills in 
order to enhance the probability of success in 
hisher chosen technology program. 

1 .O Operations with Who\e Numbers and Fractions 
2.0 Operations with Decimals and Percents 
3.0 Operations with Integers and Exponents 
4.0 Linear Equations, Operations with Algebraic 

Expressions 
5.0 Operations hvolving Fractional Expressions, 

Solvinç Formulas 
6.0 Graphing, Systrms of Linear Equations 
7.0 Basic Geometry and Trigonornetry 




