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Abstract 

The question of whether to design the processing core o f  a network interface (NI) 

using a custom made hardware or an embedded processor for ATM Segmentation and 

Reassembly function is certainly an important one that has been addressed by many NI 

researches. The embedded processor core c m  be very useful in providing the following 

important features to network interfaces: simplicity, shorter developing cycle time, low cost, 

and flexibility to support protocol changes and perhaps new protocols. However, it is not 

clear what the scalability of NIs would be if their designs were based on embedded RISC 

core to support different high-speed transmission lines. 

This work investigates the ose of the Embedded IUSC core in the ATM M 

design. A cycle accurate VHDL-based simulator has been developed to measure the 

amount of processing required for ATM network interface design that support different 

transmission line speeds. The results have shown that a simple and cost effective 

embedded RISC core running under 85MHz c m  be used as a processing eiement in a 

high-speed ATM network interface. This core c m  support a wide range of transmission 

line speeds, up to 1.2Gb/s and 2.4Gb/s, for Reassembly and Segmentation functions 

respectively. We believe that this research c m  also be used as a guidance work for the 

ATM NI design. 
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Clrtrprer /: Introduction 

Chapter 1 

Introduction 

In the past few years communication networks have been advancing rapidly in 

providing new services, improving their bandwidth and integrating new technology. 

Also, the network interfaces have been improved considerably. Such interfaces, capable 

of providing above Gbps speed, have been researched for different network protocols 

such as ATM, fibre channel and Gigabit Ethemet CLPete96, Desi97 and CGcorC)7]. 

Improvements to the network interfaces have led to support a new generation of 

applications for videoconferencing, video telephone, multimedia, etc. 

As the speed of the networks have exceeded the Gbps, the design and implementation 

of high-performance Network Interfaces (NI) have become very challenging. One of the 

main challenges is the processing core design that is required for network interface 

protocols. 

The approach of partitioning the processing of the protocol by allowing sorne 

functions to be processed on the NI and leaving the others for the host processor has 

reduced the amount of processing that the host processor usually does if NI is not used. 

As an example, the lower-level of the ATM protocol such as Segmentation and 

Reassembly (SAR) are processed on NI and the higher level protocols are leA to be 

processed by the host. This approach was proposed and used in much researches 



[ECoop91. DBm93. STraw93. CKim98, and RHosb991. Other approach allows the NI to 

perfom al1 the protocol processing without the host processing involvement [ZDitt97]. 

Generally there are three possible methods that may be used to process the network 

interface protocols: 

1. GeneraI-purpose ernbedded processor [DBm93]. 

2. Fully customised logic [STraw93]. 

3. Progarnmable VLSI engines [CGeor97, CKim98, and RHosb991. 

The general-purpose embedded processors may not provide the same level of 

performance as the other method offered, but they have better flexibility and they could 

easily accommodate protocol revision or even a new protocol. The wide availability of 

these processors has contributed to the low developing cost for nehvork interfaces. Using 

these processors in designing the network interface makes the data path very simple and, 

hence makes their design simple too. An example of such network interface design is the 

one developed at Bellcore that supports 622 Mbitkec ATM Network interface for DEC 

TURBO channel whicli uses a pair of 33MHz Intel960 processor [DBniW]. 

In this thesis, we study and investigate the design of an ATM Network Interfaces 

(ANI) based on the use of the specialized embedded processor of a Reduced Instruction 

Set Computer (RISC) core type. Also, we have analyzed the amount of processing 

required by the ATM interfaces for both outgoing and incoming messages. 



The following steps have been taken in our work: 

1. We simulate an ANI model to support both ATM adaptation layer3/4 and AALS 

using S P M  S20 simulator to process the ATM Se,omentation and Reassembly (SAR) 

protocols [Patt98]. This simulation is used to measure the amount of processing 

required for ATM protocols and data movement operations 

2.  We also simulated the ANI by using a high speed integrated circuit (VHSIC) 

hardware description language (HDL) VHDL. The E E E  1164-1993 srarrdavci running 

over the Xilinx foundation version 1.5 was used for our simulation to test our 

architecturai model [Xili98, Xilinx991. 

3. The RISC clock rate was measured for Segmentation and Reassembly protocol 

processing supporting the AAL3/4 and A A . 5 .  

4. The RISC architecture was investigated to includes the appropriate instruction set, 

pipeline stage length and techniques to eliminate data and branch hazard. 

5 .  We used DMA to assist the data movement activities, while the RiSC was free to do 

other required processing. The speed of the DMA was investigated. 

This thesis is divided into 6 chapters. Chapter 2 gives a general description of the NI 

design. The chapter also includes the protocol architecture of ATM network, ATM ceil 

format and the concept of ATM Adaptation Layer (AAL). Finally, the chapter concluded 

with overview of related work. Chapter 3 shows the SPIM simulator model for ATM 

network and the SPIM simulator results. Chapter 4 described the VHDL Mode1 

architecture for ATM M and the results for both AAL3/4 and AALS. The design issues 



related to RISC core that specificaliy irnplemented for high-speed ATM host-network 

interface applications such as the instruction types at the RISC core and the pipeline stage 

are investigated in chapter 5.  Finally the conclusion and the fùture works is discussed in 

chapter 6 .  



Chapter 7: Overview of A TM Nenvork Inte@ace 

CHAPTER 2 

Overview of ATM Network Interface 

2.1 Introduction 

In every workstation, the Network Interface (NI) is usually connected to the 

workstation's WO bus and delivers messages to the host. The NI also receives messages 

from the host and then delivers them to the other end over the transmission h e  (Figure 

2.1). 

Microprocessor iiO Bus 

Figure 2.1 : Workstation architecture 

The network interfaces usually have two parts. The first part is the Line Interface 

which connects the workstation to the network line, The second part is the Bus Interface 

which connects the NI to the host. The Bus interface serves as a buffer between the NI 

and the host for receiving and transmitting messages. 

Network 
Interface 

CNI) 

Cache I 

Host Memory 

- 

- 



Clzclprer 2: Ovcrview of A TM Nehvork Intetjbce 

The NI is generally designed to work for a specific nehvork. The complexity of the 

NI design is basically dependent on transmission line speed and the protocol functions 

processing. In cases where the transmission line is ninning at moderate speed and the 

functions that are required to be processed by the NI are primitive, the M can be very 

simple and does not need an interface-based processing because most of the processing 

can be done on the host (Figure 2.2). 

Host y 0  bus 
NI (Adapter) 

Figure 2.2: Block diagram of a typical M 

In other cases, where the transmission Iine is running at high speed and the functions 

processed by the host are large, performing ail processing by the host will reduce the host 

capability of performing its normal job. Thus, an interface-based processing capability 

tliat removes the burden from the host processing becomes very important (Figure 2.3). 

NI (Adapter) 

l rn 

1 1  Network 

Figure 2.3: Typical NI using an interfaced-based processing 



Chaprer 2: Overview of ATM ffenvork lnterjfiace 

As the focus of  this research is on the ATM network interfaces design, we believe 

that i t  is important to start by reviewing the ATM standard. Such a review will familiarize 

the reader with the ATM terms, concepts, and architecture. At the end of this chapter, a 

literature survey and related works in section 2.7 wiI1 be presented. 

2.2 The Basic principles of ATM 

The Asynchronous Transfer Mode (ATM) was born out of a standardization effort 

for Broadband ISDN (B-ISDN) which began in the CCITT in the mid 1980s. In the early 

1990s, the data communications community saw the ATM standard as a promising 

candidate for netsvorking in the local area. It was seen as a scalable method for the 

provision of high-speed network connections to routers and hosts. Currently ITU-T has 

steadily continued its work with respect to standardization of ATM, filling in the details 

related to operations and the transmission~reception a block of user data, and traffic 

characterization parameters. 

There are many reasons why ATM is important for current and future networks. 

Firstly ATM c m  meet the bandwidth demands by oîTering a scalable range of 

transmission rates, such as Tl/DS-1 (1.5 Mbls), T3/DS-3 (44.7 Mbls), OC-1 

(5 lMbps), OC-3 (155 Mb/s), OC-12 (622 MWS), OC-24 (1.244 Gbps), OC-48 (2.4 

Gbps) [ITU-93, LPete961. The standard for OC-192 (10Gbps) is already under 

development [CGeor97, LPete961. Secondly there is the need for a single universal 

network which must meet al1 the userfs requirements such as moving data, voice and 

video over a single network. Thirdly, ATM allows multiple logical connections to be 

multiplexed over a single physical link. For these proceeding and many other 



reasons, ATM will continue to be a popular networking technology despite the rapid 

progess in other network technologies such as Gigabit Ethemet. 

2.3 ATM Ce11 

ATM uses a 53-byte ce11 [ITUR93] to transport data. The 5 byte header is primarily 

used for the association of cetls to virtual connections and traffic management whiIe the 

48-byte payload of cells are canied transparently fiom the source to the destination. 

There are a number of advantages to using fixed size packets in a communication 

network rather than the more traditional approach of using variable length packets. First, 

each ce11 will have a small amount of queuing delay which is usefùl for higher priority 

cells to meet the high ATM speed rate at the switch or the end node [LPetegG, Comp981. 

Second, packet lengths do not need to be calculated and the header does not need to carry 

length information. Third, it is simple to discover the delineation of cells with the fixed 

size cell. 

2.3.1 ATM Cell format 

ATM ce11 cornes in two different structure formats, user-network interface (UNI) and 

network-network interface N I ) .  The UNI ce11 format is used when the transmission 

cells are between user and network. The NNI ce11 format is used when transmission cells 

are between switches. 

The header includes information about the contents of the payload and the method of 

transmission. The sections in the header are a series of bits that are recognized and 



Chaprer 2: Overview of A TM Nenvork Inre~ace 

processed by the ATM layer, except the CRC that is processed by the physical layer 

iTray93, DBru93, RHosb99J. 

Sections included in the header are: Generic Flow Control (GFC) which appears only 

at UNI ivhile it is added to the VPI at NNI, Virtual Path Identifier (VPI), the Virtual 

Channel Identifier (VCI), Ce11 Loss Priority (CLP), Payload Type (PT), and Header Error 

Control (HEC). The payload portion of the ATM ce11 contains the data to be transmitted. 

Figure 2.4 shows the ATM ce11 structure. 

* 

Data 48 byte (Payload) 

Scncric  Flow Control (GFQ 

Virtual Path Identifier (VPI) 

Header 5 byte 

Vinual Path Idcntificr (VPI) 

Virtual Channel Identifier (VCI) 

irtucil Channel Idcntificr (VCI) 

Information field 
Data 48 bytes 

O 1 2 3 4 5 6 7 

Virtual Chmncl  Idcntificr (VCI) 

Virtual Channel Idcntificr (VCI) 

tfsader e m r  controI 

Header 

body 

Payload TF (PT) 

UNI frame 

CLP 

Figure 2.4: ATM Ce11 

Hcadcr c m r  contml 

2.3.1.1 Header Description 

The first four bits in the header for the UNI cell format include GFC presented as bits 

in the ATM header to support flow control. This mechanism was proposed by the ITU-T 

recommendation [ITUR93]. The VPI and VCI provide information on the path that the 

ce11 will take during its transmission. The PT section contains three bits that indicate 
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whether the payload contains user data or Iayer management information. User data is 

data of any trafic type that has been packaged into an ATM cell. An example of 

management information is involved in cal1 set-up. This field also notes whether the ce11 

experienced congestion. 

PayIoad Type FieId definition 

User data celI,AAU=O congestion not experienced 
User data cell,AAU=l congestion not experienced 
User dam cei1,AAU-O congestion experienced 
User data cell,AAU= 1 congestion experienced 
OAM F5 segment associated ceII 
OMA F5 end-to-end associate ce11 
resource management ce11 
reserved for future fiinction 

Table 2.1 : Payload Type (PT) description 

The CLP bit indicates the loss priority of an individual cell. Cells are assigned a value 

of 1 or O to indicate that they are either high or low priority. A ce11 loss priority value of 

zero indicates that the ce11 contents are of high priority. A ce11 that has value 1 in its CLP 

is discarded if congestion occurs in the network. CeIIs with a high priority will only be 

discarded afier al1 low priority ceils have been discarded. The last part of the ATM 

header is an 8-bit header error control field that consists of error checking bits. This field 

provides error checking only for the header field, not for the payload. 

2.4 Virtual Connection 

The ATM network service is connection-onented. This means that a comection must 

be set up behveen hvo ATM hosts before user data c m  be transmitted. In ATM 

tenninology, the connection set-up is called signaling. Once two users accept the 
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connection, then the virtual comection is dedicated to the source and the destination. 

ATM can operate one or more virtual connections over a single physical link. A Virtuai 

Channel (VC) is used to describe the unidirectional transport of ATM cells associated by 

a common identifier value specified by a 24-bit VC which is assigned at cal1 set-up 

[ITUTgS]. This cornmon identifier is the VCINPI contained in the ATM ceIl header part 

of each cell. The VPI is fixed to 8 or 12 bits long and supports 256 or 4096 virtual paths. 

Each path can be composed of up to 64K Virtual Channel Identifier by its VCI [hfarti95]. 

A VCI value is used to distinguish VCs of a VP where these VCs allocate at the end 

ATM point as well as within the network. Switches containing a routing table of switch 

ports and comection identifiers are used to intercomect ATM hosts and networks. Each 

ceIl is transported through the switch based on the c o ~ e c t i o n  identifier in the cell's 

header. 

It should be noted that two VCs belonging to hiro different VPs could share the sarne 

VCI value. Thus, VCI values are only significant within VPs. This concept is useful 

when two users need to set-up a nurnber of separate connections to each other. In 

addition, VCs demanding similar quality of services frorn the network can be multiplexed 

together. 

For example, video telephone could be sent over the neisvork. It would be divided 

into three components: one VCI for voice, one for video and one for data (Figure 2.5). 



Voice 1 
Video 2 Virtual Path 1 
Data 3 

Figure 2.5: VCI and VPI Connections in ATM 

2.5 ATM Protocol Architecture 

The basic protocol architecture for a B-ISDN mode1 behveen user and network is 

issued by the ITU-T, which is composed of three separate plans and four layers (Figure 

2.6).  The physical layer of the ATM protocol is divided into two sub-layen, the 

Transmission Convergence (TC) sub-layer and the Physical Medium (PM) sub-layer. The 

TC is responsible for the generation and verification of the header error control byte, 

checking idle cells, and ce11 delineation. 



Clroprer 2: Overview of A TM Nehvork Interface 

Figure 2.6: ATM Protocol Architecture 

The PM is concerned with converting the signal into electrical or optical output for 

the transmission of data over a transmission media at different data rates. The ATM layer 

operates independently of both the underlying physical layer and the AAL layer above it. 

The ATM is responsible for a nurnber of functions involving the contents of the ce11 

header. in the transmit messages from source, the Segmentation and Reassembly- 

Protocol Data Unit (SAR-PDU) is accepted fiom the AAL and encapsulated in ATM ce11 

payloads where the ATM layer generates various ce11 headers including VPI and VCI 

fields. On the receiving side, the ce11 headers are extracted from their payIoad and the 

payload part is passed to the AAL layer. Ce11 payloads are not manipulated at the ATM 

layer. Other functions performed by the ATM layer are multiplexing and demultiplexing 

of cells of different VC into a single ce11 Stream on a physical layer. 

The AAL of the protocol reference mode1 accepts variable length PDUs frorn the 

higher layer protocol and maps these into Fixed size ATM ce11 payloads. However, 

different services require different &Us. The AAL layer is fiirther sub-divided into two 

sub-layers: the Convergence sub-layer (CS) and the Segmentation and Reassembly 



(SAR) sub-layer. The CS provides services which include the multiplexing of  higher 

Iayer messages and ce11 loss detectiodrecovery. The SAR sub-layer accepts the CS'S 

frame and segments it into ATM ce11 payloads. Then the SAR sub-Iayer executes the 

inverse operation of resembling the cells of a VC into data units to be delivered to the 

higher layer. The CS is further sub-divided into a Common Part CS (CPCS) and a 

Sewice Specific CS (SSCS). The function of the former is dependent upon the higher 

layer services that are using the AAL. The CPCS performs functions such as padding and 

adding headers and traders to the entire AAL fiame before passing to the underfing SAR 

sub-layer. The SSCS may operate over the CPCS. 

Layer IM 

1 Convergcnçc Sublaycr (CS) . I  

SAR PDUs 

ATM Cclls 

Ccll VPlNCI Tmslation 
Cell Multiplcx/Demultiplcx 

Fnme generation /rccovcry TC 
Physical Ccll nte dccocting (idle cell) 

Laycr 
Bit Timing P M  
Bit Encoding / Dccoding 

Oit Strcarn 

Figure 2.7 : Layers Description 
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AAL maps the user management PDU into small blocks to fit in the ATM ce11 of virtual 

connection, and vice versa. 

2.5.1 ITUT-T 1.363 iist for AAL service 

The AAL services supported by 1.362, which represented B-ISDN ATM Adaptation 

Layer (AAL) specification [ITUT93], standard are: 

Handling of transmission error. 

Segmentation and Reassembly. End ATM nodes c m  transmit a large arnount of data 

by breaking the data into small pieces to be fit in the small fixed ce11 and reassemble 

them at the destination. 

Handling of lost data condition. 

Adding some fields to the ATM payload to allow the processor at the end node to 

discover any cells missing fiom its sequence data. 

2.5.1.1 AAL Classes 

The services transported over ATM layers are classified into four classes shown in the 

Table 2.2. Each of these classes has its own specific requirernents for the AAL. The 

services are classified in three basic parameters for these four classes . 

1- Time relation between source and destination. 

2- Bit rate (variable or constant bit rate). 

3- Connection mode (connection or connection-less). 
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ITU-T defined one protocol type for each class of services narned Type1 through Type 5 

and these are known as AAL1, AAL2, AAL3/4, and AALS. 

Suppon conncctionsricntcd serviccs 
AAL 1 rcquirc information to bc tnnsfcrrcd 

bchvcen source and destination at a 
constant bit ntc. (fixcd bit ratc video) 

Constant I Connection Class A 
Oriented 

1s intcndcd for both connection-lcss and 

variablc bit rate Connection- 

supet conncction-oriented scrvices I u L 2  II that do not require constant bit ntes, but Variable 
have i h i n g  and dday requircmcnts 1 1 1 (Compressed video or sound) 

I Supports conncction-oricntcd serviccs 
that rcquire variable bit rates- Dclay md 1 

Comection 
0rienteb 1 1 1 

timing arc not crucial. AALS is a 
simpler than AAL3/4, rit thc cxpensc of 
crror correction and automtic 
rctnnsmission, but pays off with l e s  
bandwidth overhcad and reduccd 
implernentation complexity. 

Variable n Connec tion 
Oriented n 

Table 2.2: Traffic Classes and Criteria 

2.5.2 ATM adaptation layer 3 / 4 

The main fùnction o f  AAL314 is to allow bigger size messages, where the length of 

these messages do not exceed 64 Kbytes, to be transported across the ATM network as a 

series of fixed length ATM cells. The user information to be segmented involves two 



di fferent formats. The first format is Cornmon Part Convergence Sublayer-PDU (CPCS- 

PDU). Variable-length of CPCS-PDUs payload are encapsulated in the CPCS-PDU 

frarne format (Figure 2.8). 

Common Part lndicator (CPI) 1 octet 
Bqinning Tag (BTag) I octet 
Buffer Allocation Size (BASize) 2 octet 

CPCS Payload 1 -65,535 octets 
Padding (Prid) 0-3 octets 

Alignment (AL) I octct 
End Tag (ET@ 1 octct 
Lcngth (Lm 2 octet 

Figure 2.8: CPCS-PDU format for AAL3/4 

2.5.2.1 Header Description of CS-PDU 

The CPI is used to interpret the subsequent fields for the CPCS functions in t 

CPCS-PDU header and trailer. It indicates which version of the CS-PDU format is in use. 

Only the value 'O' is currently being used [ITUT93]. The Beginning Tag (BTag) field and 

End Tag (ETag) fields allow the association of the first and the last SAR-PDUs of one 

CPCS- PDU. Since variable length PDUs are encapsulated, the length of the CPCS 



payload varies. These Tags also protect each PUD against the situation in which the loss 

of the last ce11 of the current PDU and of the first ceil at the begiming of the next PDU to 

be joined as one PDU at the destination. 

The buffer allocation size (BASize) is used to indicate, to the receiver side, the max 

buffer size required allocating the current CPCS-PDU. Padding (PAD) fields contain 0-3 

octets, which are not part of the user information, positioned between the CPCS-PDU 

payload and the 32-bit aligned CPCS-PDU. The alignment field should be set to 'O1. 

Length field has two purposes. The assigrnent of the length of the CPCS-PDU payload 

and to detect the loss or gain of information at the receiver side. The CPCS-PDU fiame is 

passed to the SAR sub-layer where it is segmented into equal chunks. 

The second stage format when the CPCS-PDU frame segments into small pieces. Each 

piece with 44-byte of CPCS-PDU plus 4 bytes of header and trailer is carried with each 

cell (Figure 2.9). 

Scgmcnt Type (ST) 2 bits 
Scqucncc numbcr (SN) 4 bits 
Multiplcxing Idcntificr (MID) 10 bits 
Length hdicator (LI) 6 bits 
Cycle Rcdundancy Check (CRC) IO bits 
SAR Payload 44 octets 

Figure 2.9: SAR Structure for AAL3/4 ce11 format 
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2.5.2.2 Header Description of AAL314 frame 

In the first field of the M 3 / 4  is Segment Type (ST) which used to indicate the 

beginning of CPCS-PDU message (BOM), end of message (EOM), continuation of 

message (COM), or single segment message (SSM). See the Table 2.3. 

Value 1 Name 1 Meaning 1 

Table 2.3: AAL3/4 type field description 

BOM 
COM 
EOM 
SSM 

The next field is the sequence number (SN) which is used to recognize ce11 loss or a 

disordenng cell. The multiplexing identifier (Mm) field is used to identiQ SAR-PDUs 

belonging to paRicular SAR-SDU which c m  be assigned to help different PDU on a 

single connection. The two ends during the cal1 set-up negotiate the range value of the 

MID field [ITUT95]. 

Beginning of message 
Continuation of message 
End of message 
Single segment message 

2.5.3 ATM Adaptation layer 5 

In the AALS, the fiame of CS-PDU consists of the data portion, which is handed 

down by the higher-layer protocol, and the eight-byte trailer. At the CS Sub-layer, the 

AAL5 protocol does not specify any information for buffer allocation size, and CRC 

checking is h l ly  performed on the entire message at the CPCS Layer. 



CPCS-PDU Payioad 

CPCS Payioad > 65,535 octets 
Padding (PAD) 0..47 octets 
CPCS User-to user indication (UU) 1 octet 
Comrnon part identifier ( e l )  1 octet 
Length 2 octets 
Cyclic Redundancy Check (CRC) 4 octets 

Figure 2.10: AALS CPCS-PDU frame format 

The padding field (PAD) is located between the data and the trailer in the CPCS- 

PDU, where PAD size can Vary fiom O - 47 octets, this ensures that the total size of a 

CPCS-PDU is a multiple of 48 octets of SAR data. The second field is the user to user, 

which contains one octet that is used to cany CPCS user information. The common part 

identifier (CPI) contains zeros in its field, indicating that the CPCS PDU contains user 

data. Other CPI values are for further study. The length field is used to indicate the 

CPCS-SDU payload's length in the CPCS-PDU. It is necessary to figure out the actual 

size of user data fiom its padding data. 

The main feature missing in AAL 5 is multiplex identifier (MID) which has the 

ability to send multiple SAR connections on a single ATM layer connection ce11 over an 

active connection. Also, AALS uses the ST at ATM header to distinguish between the 



last or single SAR segment and the rest of the segments. AALS sets the ST value of '1' to 

identiQ the last ce11 of CPCS-PDU as a iast ce11 of the CPCS-PDU fiame. Al1 the other 

cells such as BOM or COM will have value 'O1. This procedure can eliminate the two bits 

ST field at AAL3/4 header. 

2.6 Segmentation and Reassembly (SAR) 

This mechanism allows the users to send a big message (less or equal 64 Kbytes) 

through the protocol layers to the ATM network where AAL has it is ability to cut the 

CS-PDU h e  into small pieces as ATM payload. Furthemore, AAL c m  send these 

pieces to lower layer (ATM layer) which then completes the process by adding ATM 

header, and sending the ce11 to the physical layer, then to the transmission line. The 

Physical layer is responsible to add CRC at the fifth byte in the ATM header to help the 

receiver side accept corrected header infonnation. This procedure is known as 

Segmentation. The receiving side accepts the packet fiom lower level (afler extracting its 

header from the packet) and then ressembles the fragments back together at the 

destination. This is known as Reassembly. The general procedure is called Segmentation 

and Reassembly (SAR). 

2.6.1 Segmentation and reassembly for AAL314 

The AAL3/4 header and trailer which contain 2 octets are added to the 44 byte 

payload which is cut fiom the CPCS-PDU frame to be 48-byte and then sent it down to 

the ATM layer which will add its header to be a complete ATM ce11 format. In the 

receiving procedure the ATM layer will extract the ATM header and then pass the 
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payload part to the AAL layer which extract the AAL header and trailer and pass the 

remaining payload to its related message format (Figure 2.11). 

User PDU I 
CPCS 

User 
Layer 

- -  - -  
Convergence 
Subiaycr 
(CS) 

Segmentation 
and Rcassembly 
SAR 

CS-Traiter -'Du 

Figure 2.1 1 : AAL3/4 Segmentation and Reassembly ( S M )  
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2.6.2 Segmentation and reassembly for AALS 

In the ATM layer there is less overhead than in AAL3/4 where the payload part can 

cany 48 bytes instead of 44 bytes. The improvement by decreasing the amount o f  

processing at AAL layer makes AALS more efficient and attractive than AAL3/4 (Figure 

2.12). 

A T M  
Layer 

PAD CS-Header Uscr PDU 
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User PDU 1 
User 
h y c r  

CPCS i 

ATM Ccll 

Figure 2.12: AALS Segmentation and Reassembly (SAR) 

2.7 Different ATM interface architectures 

Ir is very clear that using an embedded processor element on the NI will release the 

host processor fiom most, if not all, of the processing that is required by NI. A cornrnonly 

asked question concerns how large an amount of processing may be done if the M has no 

processing element. In the case where such processing is large, the cost of adding an 

embedded processor to the NI can be justified. Otherwise, the host can perform al1 the 

processing required by the NI functions. Al1 the NIs that are used today have a certain 



processing element inside the NI to reduce or eliminate the host processing required for 

NI fiinctions. 

In this section we will demonstrate some of the ATM interfaces that have been 

designed to serve in ATM ends. Bnef surnrnaries about these important works are 

presented in this section. 

a) The STS-3c interface has been developed by Traw and Smith at the University of 

Pe~sy lvan ia  (UPenn) [STraw93]. They designed an interface for the R6000 

workstation and does ATM segmentation and reassembly on the host network 

interface's memory. This interface is created with pure hardware to operate at STS-3c 

rate 155 Mbps to support AAL3/4 hnction. The protocol processing for SAR was 

divided into di fferent components (such as VCI lookup controller, linked list 

manager, and segmentation controller). These components operate concurrently to 

give good performance for the Segmentation and Reassembly protocol processing, 

where data has been pipelined to process fiom one to another component. 

The on-board processor has been used to process the ATM protocol including the 

SAR functions. The Reassembly messages are performed in a local buffer to reduce 

interrupting the host CPU by each arriva1 cell. There is a necessity to change some of 

its component in order to run different protocols or new version of the sarne protocol. 

b) An STS-12 622 Mbps ATM SONET strearn interface has been developed by Davie 

[DBru93] at Bellcore. This interface was designed to work with a TURBO channel 

bus on a DEC station 5000 and processes the segment and reassembles messages 

using host memory. The operations include SAR protocol processing for AAL3/4 

(also suitable for AAL5) done by two intel 80960CA 33MHz microprocessors. These 



rnicroprocessors give a great flexibility for deciding the transmitting and receiving of 

different VC to or fiom the ATM network, where each decision is done within 23 

instructions before the next ce11 arrives. 

Each side (receiver and trammitter) operates independentfy. However, they still 

need to cornmunicate, in some cases, with each other in order to make the 

performance of receiving and transmitting data more efficient. DMA is used for data 

trans fer. 

This interface performed the processing needed for ATM and AAL layers by an 

on-board processor. It uses the host memory for reassembling the message and 

notifies the host after receiving a number of messages for a particular VCI (when 

memory buffer is full). This approach has a smooth design for the interface but it is 

not clear that if Intel 80960CA can sustain high-speed lines such as 1.2 Gbps and 

higher rate. 

c) A 155 Mbps ATM host interface controller (ASIC) was designed in Electronic and 

Telecommunication Research Institute, Korea (CKirn981. This interface uses host 

memory to store the arrived messages. The ATM Subscriber Access Handler - 

Network Interface Controller (ASAH-MC) is composed of a segmentation and 

reassembly engine to process SAR protocols related to AAL3/4 and AALS. The 

segmentation engine requests the DMA to move a block of data ATM ce11 body fiom 

the host memory and store it in the temporary buffer (FIFO) in the network interface 

and then sent as a complete ATM ce11 to the transmission line. The reassembly 

engine requests the DMA to store the received ceil body fiom interface's memory to 

the host memory. This request provides some information, such as the host memory 
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address to which the data is stored, and the address of the local memory fiom which 

the ce11 body should be read and higher rate. 

d) A 700 Mbps interface was designed by Richard and Wang at the British Columbia 

Advanced System Institute [RHosb99]. This interface uses a 32-bit embedded 

processor core and Receive Control Unit (RCU), and Receive Data Transfer Unit 

(RDTU) for the ATM, and SAR protocol processing for AALS reassembly. The 

reassembly memory subsystem is composed of pages that c m  be dynamically 

allocated for variable sized PDU's. The address at the beginning of the transfer 

sequence detemines the memory to which the current page shouId be written. A 

special request is granted when the microprocessor determines that cornplete PDU 

has arxived in the local memory. The DMA mechanism is used for data transfer. More 

efficient data movement over 32-bit bus is enabled through 32-bit data paths. 

Studying the previous ATM interfaces brought several issues to the foreground. The 

first issue is the distribution of protocol fùnctions between the on-board processor in the 

network interface and the host processor. Processing of higher-level protocol fwictions 

should be performed by the host and the processing of ATM and AAL functions be 

performed in the network interface. 

Second, most of the interface designers are focusing on eliminating the number of 

copying ce!ls inside the NI, and also providing a fast device for data movement. Using 

the DMA in the area of the data movement is shown in the al1 previous works and also 

is addressed in CGPart94 and AElkaOO]. 
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Third, the M should reassernble the incoming cell to be a complete message (CPCS- 

PDU frarne). One approach is to reassemble the message in the host memory, as shown 

'b' and 'c,' or  reassemble the message in the M buffer, implemented in 'a' and 'd.' 

Fourtli, the architecture of NI should provide between the host and the nehvork 

interface a flexible means of communication, which is useful in reducing the arnount of 

interrupting time caused by the arriva1 cells. The NT should be designed not to intermpt 

the host for each arriva1 ce11 [GPart94]. The commands between the host and the Ni c m  

be passed through dual ported memory, as proposed in Purc931, or through the FIFO 

queue buffer [Ckim98, RHosb99, AElka99 and AelkaOO]. Finally, the adapter should be 

simple, scalable, small in size and low cost. 

2.8 Conciusion 

There is still little study on the impact of network interface design for gigabit 

networks, specifically in the area of the processing capability for multiple gigabit 

network interfaces. Such interfaces will require a high-speed processing unit to cope with 

the increasing speed of the transmission rate. 

Most often, the use of general-purpose cores within the network interface design is 

very attractive due to their availability, short developing cost, and their simple NI design. 

However, such cores are not used in high-speed network interface designs because no 

clear indication whether such cores-based NI will be scalable, and because of that such 

core are not optimising for NI applications. 
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Chapter 3 

*4TM Network Interface Simulation 

3.1 Introduction 

Some of the challenges behind the building of ATM interfaces are: high-speed 

transmissions, ATM ce11 structures, and the ATM and AAL protocol processing. As the 

network speed increases, the time that is available to the M to process the arrived ce11 

will decrease, and therefore the processing unit inside the NI should be fast enough to 

finish the processing of one ce11 before the next one arrives. Since the ATM network uses 

cells which are very small(53-byte), the network interface in the transmission side should 

partition the original message into ATM cells. The whole message may require many 

cells to be sent out, one after the other, in order to transmit a complete message to the 

receiver. Fragmenting the original message into ATM cells is known as Segmentation 

function. At the receiver side, the original message will be constmcted from these small 

cells. The reconstruction processing at the receiver is called Reassembly function. 

Segmentation and Reassembly (SAR) fùnctions have put more challenges on the 

processing part of the ATM Ni, especially where these cells belong to different messages 

of different applications. Other fwictions that NI should process are: 

The ATM header. 

The AAL header and trailer. 
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a Virtual Channel (VC). 

* Data movement. 

* Communication with host processor. 

In order to understand and evaluate the processing which canied out by the NI, a 

simulation process will be required for NI model. Building a sirnulator for a model that 

has components used in reaI M is a time consuming task; therefore, we decided to 

evaluate the processing by using a simple simulator. Our strategy was to estimate the NI 

fiinctions processing requirement by using this simple simulator. Such estimation will 

Iielp to decide whether the cost effective embedded RiSC core is possible to be used in 

such applications. 

The rest of this chapter describes our model and the simulation process. The chapter 

concludes with the results we obtained for both AAL3/4 and AAL 5 protocol processing. 

3.2 The Simulation 

In order to simulate the NI fùnction in a very short period of time, we decided to use 

the SPIM 520 simulator [DPatt98]. It runs programs for the MIPS R2000/R3000 RISC 

microprocessors where it c m  read and immediately execute files containing assembly 

language. The simulator is a self-contained system for running these programs and 

contains a debugger and interface for a few operating system services [SPIM97]. 

The SPIM simulator is used in this work to process the ATM NI hc t ions .  Since in 

real ATM NI, the Segmentation and Reassembly functions are generally processed in two 
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different processors and both are run in parallel, the simulation for the Segmentation 

function has been performed independently fiom the Reassembly function. 

Two methods are possible for data movement and can be used in our simulation 

approach [LPete96, DPatt981. The first method is programmed WO (PYO). In this 

method, the embedded processor takes the complete responsibility for moving the data 

portion from one place to another. The second method is to use DMA. The DMA will 

take responsibility for moving data from one place to another and eliminate the need for 

an embedded processor intervention to do that function. As the SPIM simulator does not 

have a DMA unit, we only let the embedded processor core simulate the initialization of 

the control information for the DMA controller and not the data movement itself. That 

has made the simulation processing very close to reality where the processor needs only 

to initialize DMA. 

The simple simulator that we present in this chapter has used the R2000/R3000 to 

process the NI'S functions and the simulator's memory to hold al1 NI buffers (Figure 3.1). 

These buffers are: 

The Line Interface (LI) buffer to store the amval cells from the network line. 

The Host-NI communication (HNIC) buffer which is used to exchange control and 

status messages between the host and NI. 

0 The Host Interface (HI) buffer that is used for storing cells temporanly. 

The Circulation Buffer (CB) which is used to store al1 the address pointers for the 

free space that exists inside the HI buffer. 
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Clearly in real NI the LI, HI, and HNIC bufEers are hardware components and we 

chose to place them in the simulator's memory. The Content Addressable Memory 

(CAM) that is required for holding the active identifiers and the support for the link-list 

mechanism, as will be described later, is aIso implemented inside the memory simulator. 

In the real NI, the CAM is implemented as a separate memory. 

1 / Simulator - - .  

Host Interface 0 
buffer 

Line Interface (Li) 
buffer 

Circulation Buffer 
W B )  

Content Addressable 
Memory (CAM) 

Host - NI 
Communication 

m I C )  buffer 

Memory sirnulator 

Figure 3.1 : Simple NI simulator structure. 

Al1 the above buffers are used for Reassembly functions processing 

Segmentation function processing requires only HI, LI, and HNIC buffers. 

where the 
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3.2.1 Buffers Description 

3.2.1.1 Circulation Buffer (CB) 

The ATM cells are fixed in length and the reassembly process is required to 

reconstmct the amival cells in the HI biiffer to a whole message and then deliver it to the 

host. The HI buffer is basically partitioned into smaller buffers, each of these buffers is 

equal to the size of an ATM cell. The CB is used to store al1 the pointers of there small 

buffers in order to monitor al1 the buffers within HT. The Reassembly Ernbedded 

Processor (REP) uses two 32-bit registers to control the CB. These registers hold the 

head-of-the-CB pointer and the tail-of-the-CB pointer. The head-of-the-CE3 pointer refers 

to the first available space on the CB that can be used to reassemble the incoming cells, 

where the tail-of-the-CB pointer is used to indicate the location of the last available space 

inside the CB (Figure 3.2). 

Rcsd registcr a k r  rcccivc erich cc11 

\ 

Iierid+f-the-CB 
repistcr 

4 
Updatc the hcad-of-thc-list 
afier r a d  onc pointer 

Rerissembly - -.' 
.. ;. Embedded 
- .  Processor - - 

Updaic Lhe uii-of-ihe- 
(REPI lisi registct rificr adding 

a  ncw pointer w 
TaiI-of-LheCB 

Circulation Buffer (CB) 

Figure 3.2: Circulation Buffer (CB) architecture. 
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The REP used for reassembly fûnctions processing will update the head-of-the-CB 

register whenever a new ce11 amves. Moreover, it updates the tail-O f-the-CB register 

whenever the host reads the message from the HI. 

3.2.1.2 Host-NI Communication (HNIC) buffer 

The NI has to communicate with the host to organize sending and receiving messages 

and exchange control and status information. Ln the Reassembly unit, the HNIC is split 

into two sections to store the control and status information (Figure 3.3). The first section 

of HNIC is used to store information, which is sent by the REP for the host. The REP, 

after stonng the complete CPCS-PDU fiame inside the HI buffer, sends the Start-address 

and VCI-MID (for AAL3/4) or VC (for AALS) to the HNIC buffer. The host reads the 

Start-address and VCI-MID or VC, and then starts processing the CPCS-PDU fiame. The 

second half of the HNIC buffer will be used by the host to store its information to the NI. 

The host processes the reassembled messages then returns the pointer (the cell's address 

inside the HI) of each ce11 body to the HNIC buffer to be reused again by another 

message. The REP will fetch these pointers and then store them at the tail-of-the-CB. 

The host is responsible for accepting new connections afier it negotiates with other 

hosts. These connections have their own VCI-MID or VC and the REP in the NI should 

be inforrned about these new connections. These information will be deIivered to the NI 

through the second half of HNIC. 

In case the host CPU is busy doing other processing while different cells keep 

arriving fiom the network the REP could send a buffer status message to the host when 

that the HI buffer is getting fùll. 
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Figure 3.3: Communication between host and NI Reassembly Ernbedded Processor 

In the segmentation unit, the HNIC buffer will be used when the host decided to 

sends a block of data to the other ATM hosts. The host CPU sends the CPCS-PDU frame 

to the HI buffer follows with other information required to process the fiame. This 

information includes VCI, VPI, and fkame location inside the HI. The Segmentation 

Embedded Processor (SEB) must get the information fiom the W C  in order to process a 

Fini Half of HNlC 
1 I 

Frec pointer #n 

VC or VCI-MID(for n m  connechon) 

Second hjlf of HNIC 
l 

Host-NI 

CPCS-PDU (Figure 3.4). 
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(-p.< Segmentation ... 1 
Processor 

Figure 3.4: Communication between the host and the NI Segmentation Embedded Processor 
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3.2.1.2 Content Addressable Memory (CAM) 

ATM network is comection oriented. The comection is set up between two hosts 

with specific identifiers (Le. VCI and VPI). The cells that transmit over a comection 

should have the same identifiers. The receiver side can recognize al1 the arrival cells that 

Iiave the same identifier are related to the same message and it should be reassernbled 

together. In this case, the receiver must multiplex the arrival cells to its related message 

according to the cell's identifier. The REP should know about al1 the identifiers that the 

host has made in order to match it with the identifier of the arrival cells. The Reassembly 

unit is then enabled by Content Addressable Memory (CAM) to store al1 these identifiers; 

VCI-MID for AAL3/4 CDBru93, STraw93 and Ahme941 and VCI and VPI [Desi95, 

CKim98 and RHosb991. With each identifier, the CAM also stores the location (Start- 

address and End-address) of each message inside the HI buffer to help the REP link 

together the arrival cells which have the same identifier by using a linked list mechanism 

to reconstruct the messages. We will describe the linked list mechanism later. 

We chose a part of the NI'S memory to represent CAM where finding a match with 

the CAM-base memory was achieved by fetching each location and then comparing it 

with the arrived cell's identifier until a match was made. 

3.3 Processing the Reassembly Function. 

The main function for the receiver section of the NI is to reassemble the arriving cells 

into a complete message by linking together the cells that have the same identifier in the 

HI buffer. Each ce11 has its own header(s) to carry the cell's information. The header 

includes information such as Payload Type (PT), which helps the receiver side to 
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recognize the ce11 type if it  is the Beginning Of Message (BOM), or Continuation Of 

Message (COM), or End Of Message (EOM) of the CPCS-PDU, or maybe a Single 

Segment Message (SSM) of the CPCS-PDU. 

Other useful information carried by the ATM ceII header is the ce11 identifiers. The 

REP reads the arriva1 cell's identifiers to be able to distinguish to which CPCS-PDU 

frame that the arriva1 cell should reassembled with. For AAL3/4, the 26 bit identifiers 

VCI and MID, which are located in ATM and AAL headers respectively, will be checked 

with the CAM entries in order to multiplex the arrived ce11 to its related CPCS-PDU. The 

AAL 5 has 24-bit identifier VC (VPI and VCI), located in the ATM header, that needs to 

be matched with the CAM entries that contain the active VC. 

3.3.1 AAL3/4 

As soon as the ATM ce11 arrives at the NI, the ATM header, AAL header, and AAL 

trailer will be processed. The 26-bit VCI and MID are masked from the ATM header and 

AAL header, respectively, in order to match these identifiers with the CAM entries. After 

the match is found, the REP reads the head of the CB in order to get the address for a free 

location inside the HI for the arrived cell's body. The two bits of the PT field inside the 

AAL header check to determine if the type of the anived ce11 is BOM, COM, EOM, or 

SSM of a CPCS-PDU. Afier getting a match and the type of the cell, the REP then needs 

to move the ce11 body from the LI to the M buffet. 
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3.3.1.1 Data Movement 

In the Programmed y0 method, the REP handles al1 the procedures for moving the 

ce11 payload fiom LI buffer to HI buffer. Every single clock cycle, the processor loads 

32-bit to its register and then during the next cycle, store these 32-bit to a specific place 

inside the HI buffer until al1 44 bytes have been moved to the HI buffer (Figure 3.5). 

Host Interface (HI) 

Circulation Buffer 
CB 

Content Addressable 
Memory (CAM) 

Host - NI 
Communication (HNIC) 

bu ffer 

NI'S Memory 

Figure 3.5: Prograrmned UO approaches for data movement. 

In the other method, Le. we use the DMA approach for data movement, the DMA is 

initiated by embedded processor to move the ce11 payload while the embedded 

processor remains in halt mode. The initiation of DMA needs two instructions. The first 
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instruction includes the address fiom where the data has to be read, and the second 

instruction to inform the DMA about the destination location where the ce11 payload 

should be store (Figure 3.6). The amount of data that has to be transfer is not required 

since it is known in NI application. 

DMA 
initiation Loûd the cell 
c o m n d  body from the L I  

Send the ce11 body 

- - - -  

Line Interface (LI) 
bu ffer 

Bus Interface 
bu ffer 

Circulation Buffer 
CB 

Content Addrcssable 
Memory (CAM) 

Host-N1 Communication 
(HNIC)Buffer 

I J 

NI'S Memory 

Figure 3.6: DMA approach for data movement with AAL3/4 

After moving the ce11 body fiom the LI to the HI buffer, the REP then needs to link 

the arrived ce11 to its reIated CPCS-PDU fiame which is considered as a part of that 

frame. Our approach for reconstmcting the message is using a link-list mechanism. 
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3.3.1 -2 Linked List Mechanism. 

The multiplexing of the cells can be done according to VCI-MID, where each amval 

ce11 which has the same VCI-MID should be linked together to get a complete message. 

Each VCI-MID in the CAM entries provided with two pointers, a head of the linked list 

pointer which holds the address of the first arrived cell, and the iail pointer which holds 

the address of the last ce11 that mived for the specific VCI-MID. The linked list is useful 

for reconstructing the message from the ATM cells to a list of nodes, where each node 

has a ce11 body and pointer to next node (Figure 3.7). 

CAM 

dic ncsi nodc 

BOiM - 
Ccll body #2 Poinicr m 

ihc ncxt nodc 1 
CO AM 

V ihc ncxt ntxic 

S U U  

1 

VCI MID #n 
cntry 

SSM 

- - 

CAM- based 
memory 

Figure 3.7: Linked list data structure. 

w 

Ccfl body S 

EOM 

AAer inserting a new entry in the CAM, al1 pointers (Start-address and End-address) 

are zeros. Changing these pointers depends on the processing that the arriva1 ce11 needs 

because each arrival ce11 may require different processing in the linked list approach than 
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others, depending on its Segment Type (ST). In some cases, the ST indicates that the 

arrived ce11 is BOM (ST='1O7). The REP then needs to create a new linked list for this 

CPCS-PDU fiame by inserting the Start address and End-address in the CAM with this 

VCI-MID. The Start-address refers to a head of the linked list (the address which is 

loaded from CE3 for this cell). The End-address refers to the tail of the linked list which is 

the Null's address (Node's pointer), located at the end of the ce11 body. Thus, the linked 

list with one node was created for the amved VCI-MID. The procedure of adding the 

new nodes (ce11 body and its pointer) at the end of the existing linked list after the match 

between VCI-MID of the arriva1 ce11 and the one in the CAM entries is as follows: Make 

the old node pointer point to the current node, and the current node pointer point to 

NULL, then store the NULL's address of the current node at the CAM refemng to the 

new end of the list. 

We have discussed the idea of adding a COM (where the ST = '00') in the existing 

linked list, now let us see how the sarne approach can be applied in the HI buffer. The 

End-address in CAM, which is refemng to Nul1 value of the previous cell, is read by REP 

and then stores the address of the current ce11 in the saine place where the NULL value is 

of the previous cell. In this case the current ce11 was attached to the previous ce11 for the 

same VCI-MID, then store the NULL value at the end of the current node (Figure 3.8). 

Finally the NULL's address is stored in the CAM with the same VCI-MID which refers to 

the End-address of this VCI-MID. 

When the ST refers to EOM (ST ='01'), we also need to add this node at the end of 

the list following procedure which we used for COM. With EOM there is no need to 

extend 
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the linked list fiirther because it is the last ceIl of the VCI-MID, and there is no need to 

store the End-address in the CAM. When the PT refers to SSM (ST='ll') which indicates 

that there is only one ce11 for the VCI-MID, move the ce11 body fiom LI to the HI buffer . 

Finally store the NULL value at the end of the cell body where there is no need to update 

the End-address or Start-address at CAM because no more cells will be arriving after this 

cell. 

EOM 

HI-based Memory 

Figure 3.8: Linked list structure 

3.3.2 Reassembly A A L S  

The Reassembly function for AALS needs only to process the ATM header where the 

AAL header and AAL trailer do not exist for an ATM ce11 of type AALS [1TUT93]. 

Extract 24-bit VC (VPI and VCI) from ATM header and match it with CAM entnes 

which contain the active VC [Desi95, CKim98 and RHosb99J. The ATM ceIl header 
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holds the PT field which is usefiil to find whether the type of amival ce11 is first, middle, 

last, or a single ce11 in a CPCS-PDU. When the PT is 'O,' this indicate that the arriva1 ce11 

is BOM or COM. otherwise EOM or SSM. The REP uses the Start-address located in the 

CAM to differentiate between the BOM and COM. If the PT is '0' and the Start address 

is '0' too, then this message is BOM. Otherwise, it is COM. The same approach wiIl be 

applied for SSM and EOM. 

The linked list data structure for AALS ReassembIy fùnction for anived cells is 

processed in the same manner as for AAL3/4. For the data movement, the main 

difference between AAL3/4 and A L 5  is the size of the ce11 body. AAL5 has 48 bytes in 

its ce11 body which needs 12 cycles (48 Byte / 32-bit bus width) to move a complete ce11 

body from one location to another. As the AAL5 h a  no AAL header and trailer, the 

processing requirement for AAL5 is less than to AAL3/4. 

3.4 ATM Segmentation Function Processing 

As the host transmit a CPCS-PDU fiame to the other end, it moves the frarne to the 

HI buffer of the Segmentation unit. Also, other necessary information is required to be 

sent by the host, such as the VCI and the location of the CPCS-PDU frame inside the HI 

buffer of the Segmentation unit, Le. the start and end address. This information should be 

sent to HNIC for each CPCS-PDU fiame. 
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3.4.1 Segmentation AAL3/4 

The SEP reads the information which is available in the HNIC in order to start 

generating the first four bytes of ATM header (for the particular CPCS-PDU) and to 

calculate the size of the CPCS-PDU in order to detennine the PT and sequence number 

(SN} fields in the AAL header. AAer the ATM header and AAL header have been 

generated, they are written into the SEP's register to be sent with each segment part of the 

CPCS-PDU fkme (each segment is 44 byte). The SEP needs to change the PT and the 

SN for each leaving ce11 (i.e. the PT of the BOM is 'O l', COM is '00' and SN should be 

incremented for each leaving ce11 that have same VCI-MID). 

For data movements using the programmed U0, the embedded processor moves 44 

bytes (as ATM ce11 body for AAL3/4) from the HI to the LI. In addition, the headers will 

be transferred fiom the SEP's register to LI. After moving the headers and the ce11 body, 

the SEP then generates the last byte of the AAL tniler which contains the actual length of 

the ce11 body, and then sends the trailer from the SEP's register to the LI (Figure 3.9). 

For data movement using the DMA, the Embedded processor initiates the DMA to 

rnove the 44 bytes from the HI buffer to the LI buffer. The ATM ce11 header and trailer 

are moved from the SEP's register to the LI buffer. The initiation of DMA needs two 

instructions as discussed previously. 
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Figure 3.9: ATM Segmentation 

3.4.2 Segmentation AAL 5 

The SEP needs to generate the ATM header for the CPCS-PDU frame and that header 

will be sent with each outgoing cell. Also there is no need to calculate the sequence 

number and the size o f  body for each leaving cell. Each BOM, COM, EOM or SSM ce11 

needs to change the PT field in the ATM header to either '0' or '1' ('O' for BOM and COM, 
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'1' for EOM and SSM). The only different between AAL 5 and AAL3/4 for data 

movements is the payload size of AAL 5 which is 48 bytes. With less headers and trailer, 

AALS requires less processing cycles than AAL3/4. 

3.5 Simulation Results 

During the simulation, we have measured the amount of processing required for ATM 

network interface protocols and for data movement, Different ATM cells have been 

deiivered to the simulator and the number of instructions required for the Reassernbly 

functions processing is rneasured for AAL3/4 and AAL5 (Table 3.1 for AAL3/4 and 

Table 3.2 for AALS). After the embedded processor finishes processing one ATM cell, it 

then fetches the new connection identifier or a pointer that was sent by the host through 

the HNiC. Also, the NI needs to send the VC or VCI-MID with its Start-address to the 

HNIC afier reassembling the CPCS-PDU fiame in the HI. The amount of the execution 

that the processor takes for different types of operations for ATM Reassembly has been 

analyzed dunng this simulation (Table 3.3). The percentage measurement was taken 

when the processor execute the EOM, Le. the result show the upper band of the execution 

rate since the EOM is required more processing than other type of messages. 
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Instruction 

Load 

Load 

Load 

Load 

Load 

Load 

Store 

Store 

Store 

store 

Store 

Ari thme tic 

Loçic 

Branch 

Total 

First ceIl Last ceIl Description 

Load the ATM header. AAL header, and AAL û-ailer fiom 
LI buffer. 

Load a space for the incoming message inside the HI 
buffer by reading the head of the CB . 

Load a VCI-MID from CAM to match it with incoming VCI 
- MID . 

Load the start-address from CAM to be stored in HNIC 
Buffer. 

Load the End-address from the CAM to get the PUZJLL's 
address 

Load the pointer or VCI-MID from HNIC buffer 

Update the CAM by two entries a head and tail of the 
linked list 

Store the VC and start and End-address to the HNIC 

Store the address of incoming message in the previous 
message to be a pointer to the incorning message. 

Store Nul1 value at the end of node. 

Store the new pointer in the tail of the list of the CB. or 
store VCI-MID in the CAM 

adci, addi 

and 

Condition branch 

Table 3.1: The number of the Reassembly instructions needed to process an ATM 
message for AAL,3/4. 
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Instruction 

Load 

Load 

Load 

Load 

Load 

Load 

Store 

Store 

Store 

Store 

Store 

Arithmetic 

Logic 

Branch 

Total tt 

First cell 

- -  

Last ce11 Description 

- .  

Load the ATM header from LI buffer 

Load a space for the incominç message inside the HI buffer 
by reading the head of the CB. 

Load the Start-address from the CAAM to be stored in HNlC 
Buffer. 

Load the End-ad&ess from the CAM to get NULL's address 

Load a VCI-MID from CAM to match it with incoming 
VCI-MID 

Load the pointer or new VC frorn HNIC buffer. 

Store the VC and Start-address to the HNIC buffer. 

Update the head and tail of the Iist in side the CAM. 

Store the address of incoming message in the previous 
message to be a pointer to the incominç message. 

Store Nul1 value at the end of current ceIl. 

Store the new pointer in the tail of the list of the CE. Or 
Store the Ioaded VC in CAM 

add, addi 

and 

Condition branch 

Table 3.2: The number of the Reassembly instructions needed to process an ATM 
message for AALS. 
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Operation type 

Load 

Store 

Arithmetic and logic operation 

Conditional branch 

Readinglwriting frordto HNIC 

The Iiked list data structure 

* Load, store and arithmetic instmctions are involted 

Processing Percentage rate 
AAL3/4 AALS 

1 

Table 3.3: Contains the percentage of the processor power for ATM Reassembly. 

The number of instructions involved in processing the Segmentation hnctions is 

shown in Table 3.4 and Table 3.5. Table 3.6 shows the percentage of each instruction 

used in the Segmentation function processing. Such result are measured for the 

processing of BOM which required more processing than any other message type, since 

its required to generate the ce11 headers and trailer for each BOM. That is, the upper 

bound of the processing rate is shown in Table 3.6. Also no data movement is involved in 

this calculation. 

Instruction 

Store 

Arithmetic 

Logic op 

Branch 

Total instruction 

First ce11 Comment 

Movuig ATM header, AAL header and AAL 
tniler data from rnicroprocessor 's register to 
nenvork Iine. 

add, addi 

and 

Table 3.4: The number of the Segmentation instructions needed to process an ATM for AAL314 

38 
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Branch 

Comment 

1 1 

Moving ATM header from microprocessor 's 
register to network line 

add, and 

Condition bnnch 

4 Total instruction 

Table 3.5: The number of the Segmentation instructions needed to process an ATM 
message for AALS. 

9 

Operation type 

- 

Store 

Generation ATM header 

Generation AAL header 

Generation AAL trailer 

Arithrnetic and logic operations 

Conditional Branch 

Processing percentage rate 

AAL3 14 AALS 

* Arithrnetic and loçic operations are involved 
- - - - 

Table 3.6: Contains the percentage of the processor power for ATM Segmentation 

After calculating the amount of processing required by REP to process each ATM 

cell, we have rneasured the amount of processing that the REP should be performed in 

order to support different transmission line speed. 
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Figure 3.10 shows these results in million Instruction per Second (MIPS). Hence the 

REP is considered to be a RISC core, every instruction can be processed in one cycle. 

Therefore, the results shown in Figure 3.10, can be represent the required speed of the 

RiSC core in terrns of MHz. As we measured the upper bound processing for ATM cells, 

the results we present in Figure 3.10 represents the maximum REP dock rate to process 

different transmission lines. 

Figure 3.10: Reassembly function processing 

If  the REP is involved in the DMA controller initialization, the results are very close 

to that without data movement and specifically when the transmission Iine speed is low 

(below 622MWs) Figure 3.1 1. However, as the speed of the transmission lines get higher, 

the arnount of processing required for initialization of the DMA controller becomes 

signi ficant. 
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Figure 3.1 1 : Reassembly with data movement using DMA 

We have simulated the amount of protocol processing with the data rnovements 

using the programmable V 0  technique. We found that the REP processing is become 

higher than that in the previous simulation where the DMA initialization is used (Figure 

3.12). 

Figure 3.12: Reassembly with data movement using prograrnmed U 0  
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The amount of processing for Segmentation Function that the SEP should execute is 

cdculated in the sarne manner as for Reassembly Functions (Figure 3.13). Clearly the 

RISC core clock rate is less than that for Reassembly function since the amount of 

processing for Segmentation function is less than that for Reassembly. 

Figure 3.13: Segmentation function processing 

Figure 3.14 shows the amount of processing that is needed for ATM Segmentation 

where the SEP process the DMA initialization. 

Figure 3.14: SEP processing amount for Segmentation huiction and with DMA 
initialization 
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As we process the data movement using programmable I/O technique, in addition to the 

processing of segmentation functions, the number of instruction processed by SEP is 

increased significantly (Figure 3.15). 

Figure 3.15: Segmentation with data movement using prograrnmed I/O 

3.6 Conclusion 

The Segmentation Function requires less processing than Reassembly function 

because of the nature of the function, which is simpler than Reassembly. Generally, the 

Embedded processor core mming on a lower clock rate will be more usefùl for the 

network interface where the cost of such core will be low. Hence, the Embedded 

processor core should be supported with a DMA controller. The processor that use a 

prograrnmed I/O approach for data movements will process about 33 % more than the 

one using the DMA technique for data movements. 

It is clear from the simulation result that a 1.2 Gbps ATM network interface can be 

achieved by using an embedded processor running at 74 MHz for Reassembly fùnction 

processing, and 60 MHz for Segmentation function processing. These result are applied 
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for supporting AAL3/4. The processing requirements for AALS are much Iess than with 

AAL3/4, about 63MHz and 32MHz for Reassembly and Segmentations respectively. 
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Chapter 4 

VHDL Simulation for ATM NI 

4.1 Introduction 

The amount of processing required for the ATM network interface supporting 

different transmission line speeds was investigated. We found that the use of an 

embedded RISC core, run at 74 MHz, in ATM NI design could support up to 1.2Gbps 

transmission line. We know that a SPM-based simulator gives an estimate of that 

processing, since the simulator does not simulate the real hardware that is usually used 

with NI design. This gives us an incentive to investigate a detailed simulator that 

simulates a real ATM NI. Such simulator uses the RISC core and other components that 

are required in the interface design such as the DMA, Content Addressable Memory 

(CAM), FIFO, CB, the transmission line interface, and the host interface buffer. With 

such a simulator, we can find the accurate results for IUSC dock rate, RiSC processing, 

and NI structure. We decided to use VHDL in Our simulator because it is suitable and 

powerful to capture complex digital system design for both simulation and synthesis 

[KSKAgG, DPERR981. VHDL also has many features appropnate for descnbing the 

behavior of components ranging from simple logic gates to complete microprocessors 

and custom chips. The IEEE 1164-1 993 standard running over the Xilinx foundation 

version 1.5 was used in our simulation [Xilin98, Xilin991 
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The VHDL-based model for Segmentation and Reassembly fùnction of both AAL3/4 

and AALS, is developed and described in this chapter. The NI components and their 

operation will also been described in details. The chapter concludes with the VHDL 

simulator results. 

4.2 ATM Network Interface Mode1 

The NI model we proposed is partitioned into three parts: the communication line 

interface, the processing core, and the host bus interface (Figure 4.1). The processing 

core performs the NI functions such as Segmentation and Reassembly, the PD&, VCI 

and VPI for AALS, VCI and MID for AAL3/4, linked list scheme, cells copying and 

bu ffering. 

The model has the architecture that can support high-speed lines for both AAL 314 and 

AAL 5 and it provides several features: 

Data movement using DMA. 

Two RISC-cores, one per direction (one for Segmentation unit and the other for 

reassembly unit), perfonn al1 functions related to the AAL3/4 and AALS. 

Using Content Addressable Memory (CAM) for virtual channel traffic [Goregi, 

STraw931, the CAM contains the active VC or VCI-MID connections to help the RISC in 

the Reassembly unit to reconsh-uct incoming cells to their PDU using the link-list 

scheme. 
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FIFOI: To carry VC or VCI-MlD and Start address for each received a signal@ cell. 
FIF02: To carry VC or VCI-MID and Start address for each received PDU. 
FIF03: To cany a new VC or VCI-MID to the receiver WSC. 
FIF04: To carry the free pointer space to the receiver RISC 
FIFOS: To carry the necessary information such as VCI to the Transmitter RiSC 
DMA : Direct Mernory Access 

CAM : Contains Addressable Mernory 

Figure 4.1 : ATM Network Lnterface Architecture 
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To provide high flexibility in terms of exchange information between these RiSC- 

cores and the host through the First-In-First-Out (FIFO) buffer. These FIFOs 

performed the foIlowing tasks: 

F E 0 1  carries information to the host such as VC or VCI-MID and a Start- 

address for each signaling message received. 

FIF02 carries important information to the host such as VC or VCI- 

MID and a Start-address for each received PDU. 

FIF03 canies the new VC or VCI-MID fkom the host to the 

RISC core at the Reassembly unit. 

FIF04 carries the fiee pointer fkom the host to the RISC core at the 

Reassembly unit. 

F E 0 5  canies information to the RISC core at the Segmentation unit, that 

needed to generate an ATM header andlor AAL header. 

NI buffers 

Receiver Buffer Interface (RBI) is used to buffer two arriva1 cells and to deliver them to 

their destination 

Ce11 Reassembly Buffer (CRB) is storing ATM cells (The payload part only). 

Sending Buffer Interface (SBI) is similar to the RB1 and it used to buffer up to two ATM 

cells until they delivered to the nehivork. 

Cell Segmented Buffer (CSB) is used to hold the PDU that it is received fiom the 

host. Such PDU will be segmented by the SEP and delivered to the SBI. 
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4.2.1 Data Movement 

In the Programmed VO, the RISC core retains control of the bus while data is moved. 

Progarnmed VO is slow because there is too much unnecessary overhead for small 

transferç. There are also drawbacks to this approach, such as the RISC core being tied up 

moving data to or fkom the network interface. This affects the performance of the RISC 

by keeping the RISC core unavailable for other activities. 

The use of DMA in NI is more efficient for NI applications than the programmed i/O. 

Therfore, a DMA is used in Our simulator for data movemnet function [ECoop91, 

DBru93, CKim98 and RHosb991. The DMA moves data fiom one location to another 

using its data register. The data moved from a source to the DMA's register and then 

storing it in its appropriate location Figure 4.2- 

Siom ihe 
data fmm Lod the 
DMA's dam frorn 
registcr to the RB1 into 
ihc CRI3 DMA 's 

register 

I Noie: In transmission appmch DMA lads from CSB and store it in SB1 

Figure 4.2: BIock diagram of RISC-core with DMA 

4-  nehvork 
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AS the block of data is required to move between the RB1 and the CRB, or between 

CSB and SBI, the RlSC core will initiate and control the DMA. Since the local bus of the 

Reassembly and the Segmentation units is shared between the DMA and the RISC core, 

the RISC core will have to release the local bus to DMA to perform the data block 

transfer. Each transfer of a word consumes two cycles. In the first cycle, the DMA read 

the source buffer to get the word to the DMA's register. During the second cycle, the 

word will be moved fiom the DMA's register to the destination buffer. The DMA state 

machine will provide the read and write signals to source and destination buffers. AIso it 

increments the address for the next location, where the next data is located, and store it 

in the appropriate location in the destination buffer ( Figure 4.3). The schematic capture 

of the DMA stucture is showrn in Appendix A Figure A.3.This process will continue until 

the whole cell will be completed. The VHDL based DMA has the state machine that 

required the foilowing information: 

(a) Block length (number of words to transfer). 

(b) Direction (from CSB to SBI) / fiom RB1 to CRB). 

Adilrerr in a i t  

D M A ~ W  
RlSC REQ I) machine 

controller 

NI Bus 

Figure 4.3: DMA structure 
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4.2.2 Content Addressable Memory (CAM) 

CAM needs to contain the network addresses of al1 the active connections that the 

host has made with other hosts. Thus, the RISC can reconstruct the CPCS-PDU frame 

from the arriva1 cells using the addresses contained in the CAM. The VHDL based CAM 

was simulated as a Look-Up table for VC or VCI-MID (VC for A A L S  and VCI-MID for 

AAL3/4). With each CAM entry there are two pointers, a Start-address (head of the link- 

list) and End-address (the tail of the Iinked k t ) .  Figure 4.4 shows the CAM structure. 

The schernatic capture of the CAM loction in the NI is shown in the Appendix A Figure 

A.4. 

VHDL based CAM is implemented to have two kinds of processing. If there is any 

new entry needed to be stored in CAM, the first kind of processing is used to insert the 

new entry in the CAM. The write signal "1" is sent through the Sel-CAM signal bus by 

the RiSC's controllor to replace data (adding new entry) in the CAM. The processor 

starts searching for the first location filled with Zeros (blank location) at any place in 

CAM and then replaces the first entry that has Zeros with the new address. The second 

kind of processing is used to find a match of the input data with the one in the CAM 

entries. If no entries of the CAM match the input data, a "miss" signal 'O' is asserted to 

RISC. The WSC then considers the arriva1 ce11 as a lost ce11 (is not related to this host). If 

any entries of the GAZI mateh thc input data, the CAM produces a signal '1' indicating 

that the match was found. After finding the match, the processing continues reading the 

other signals to figure out the next procedure. There are two procedures after finding the 

match, either reading or writing the data fiom or to the CAM. In the first procedure, if the 

W-Data is 'l', either the Start or end address is sent out according to the signal of 
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SartEnd-Add. If it is '1' the Start-address is sent out. Otherwise, the End-address is sent. 

In the second procedure, if the W-Data is '0,' the CAM writes either the Start or End- 

address according to the Sart-End-Add signal. If  it is '1,' then The CAM writes the Start- 

address (where the match was found) otherwise writes the End-address. 

Removing the CAM entries c m  be implemented simply by searching the match that 

is needed to remove from the CAM, and when it is found, replace it with Zeroes. We did 

not implement the removing entry from the CAM. Our intention is to calculate the 

amount of processing that is needed for each ce11 if the connection was active. 

Sel-CALI signal - 
W-Data signal 

Figure 4.4: CAM Structure 

San-End-Add 
b 

4.2.2.1 Linked list CAM VHDL based 

10101111100011000100lOOl 
I I  I I  IO01 10001 lOOOlOOIOOl 
lOlOlillll00llOOOlOOlOOl 

1OlOlOOllOOOllOOOl00lOOl 

0 0 0 0 0 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0  
00000000000000000000O 

The linked list mechanism is similar to that used with SPIM simulator. The Start 

address and End-address were implemented to be in the same entry with the VC (if 

AALS is used) or the VCI-MD (if the AAL3/4 is used) (Figure 4.5). The Start and End 

Address are updated differentiy based on processing that is required to be performed by 

the NI and as  the following: 

Start-add 
Start-add 

Strirt-add 

Start-dd 

signal 

End-Add 
End-Add 

r 
End-Add 

EndAdd Output 
SUFI or h d  oddrcss 

10101001 1 1  1 I I l  1 1  1100lOOl Start-dd End-Add 
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1. Read the End-address from the CAM to find the end of the linked list (if we need to 

add a new node at the end). 

2. Write the End address in CAM after receiving BOM and COM. 

3. Write Start-address in CAM after receiving the first ce11 of CPCS-PDU. AAer 

receiving the last ce11 of the same CPCS-PDU, this start address will be read and sent 

to the FIF02. That will tell the host a specific CPCS-PDU h e  is reassembled. 

When the host reads that h e ,  the Start address will tell where the kame is in the NI 

local memory. 

4. The PT for AALS can not tell if the arrived message is first or a continuation of 

message, because both have the same value "0." Therefore, the Start-address is used 

to distinguish whether the type of arrived ce11 is COM or BOM. I f  the Start-address 

equals "O" then the arrived ce11 is BOM. Otherwise, it is COM. The Start-address is 

also implemented in the case of SSM or EOM where both have value " 1" in their PT. 

Therefore, if the Start-address is "0," the message is SSM. Otherwise, it is EOM. 

BOM Addrcss ceIl2 

COM 

C0.M Ad<irrss cc11 N NULL I 
A 1 1 EOM 

CAM 

Figure 4.5: CAM architecture with its linked list mechanism 
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4.2.3 The NI'S FIFOs 

The NI cornmunicates with the host through five F E 0  buffers. These FIFOs were 

implemented as memory-based and the pointer of  each FIFO is stored in the RISC's 

register. The RISC is able to reach any FIFO afier reading its address. 

However, the intempt mechanism that happens during the exchange of information 

may effect the overall performance of NI or the host CPU. Intempting the host CPU or 

RISC cores (SEP or REP) during their processing time will cost a certain amount of tirne 

in processing the interrupting task. The interruption of the host costs at least 15 

microseconds on Sun SPARC station for line speed 155Mbps with the EUSC speed is 50 

MHz [ECoop9I]. These intermpts reduce the performance of the processing power of 

the Host CPU. 

In Our simulator, we have eliminated the overhead processing of  the host CPU caused 

by the above interrupt. This has been achieved by the following: 

1. Znstead of interrupting the host upon the arriva1 of each ce11 (i.e. 680 ns if the line 

speed is 622 Mbps), the EUSC core will send the VC or VCI-MID and the Start- 

address to FIF02. AAer accumulating the complete CPCS-PDU fiame, the host then 

reads FIF02. The host CPU starts fetching the CPCS-PDU frame from CRB for that 

specific VC or VCI-MID read from FIF02 (Figure 4.6). The host then starts reading 

the first ce11 body until it reaches its pointer, which is placed at the end of the ce11 

body. This pointer is important to locate the next ce11 in the CRB. The reading of the 

next cells will continue until the NULL value, which is placed at the last cell of the 

frame is located. By doing so, the use of the intemipt is eliminated and the associted 

time is saved. 
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The signalling messages will arrive at the M and the NI should pass these messages 

to the host immediately. The Start address and VC or VCI-MID are sent to the FIFOl and 

pIace the ce11 body in the CRB (Figure 4.6). 

FlFO 1 FIFO 1 : h s  VCI and Star[-addrcss 
of cach receivcd ceIl signaling 

A 32 bit . 
/ 

FIF02 FIFOI: has VC or WC-M ID and 
St;trt-address for each received PDU 

Local bus 

1 / 

Figure 4.6: The two FIFOs used to send the data from RISC processor to the host CPU- 

2. The intempt is used in our mode1 in only one core when the host will be intempted 

if the number of cells at the CRB occupy 90% or more of the CRI3 space. This 

intempt will force the host processor to read some of the arrived messages in order to 

leave a space inside the CRI3 for other incoming cells. 

There are no interrupts used when the host sends information to the NI. Al1 

information is delivered to NI through three FIFOs. Such delivering information to the NT 

can be described as foilowing: 

1. The host negotiates with other hosts whenever a new connection is required. AAer the 

connection is established between two hosts, there is a specific VC or VCI-MID will 

be allocated for specific connection. Either one should be used by the M when a ce11 

send to the other end. This VC or VCI-MID should be delivered on the ce11 header(s) 

where the NI processing them to multiplex the cells to its related VC or VCI-MD. 
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The host will use F E 0  3 to deliver VC or VCI-MID to the M. As the cells arrive to 

the NI, the CAM entries will be updated by storing the VC or VCI-MID that was 

fetched from F E 0 3  (Figure 4.7). The embedded RISC at the Reassembly unit will 

check the PIF0 f i e r  finishing the Reassembly processing of each ATM ce11 (i.e. 

every 353 nonsescond, if the NI connected to line 1.2 Gbps) 

2.  After the host finishes reading the ReassembIed message, the host sends the cell's 

address to the NI through the FIF04. The M will then read the free pointer address 

after finishing the processing required for the current ATM cet1 and then store the 

pointer back in the Circulation Buffer (CB) for later use. 

I Local bus 

- 
FIFO 3 

/ 1 

Figure 4.7: The two FIFOs have a VCs / ViD-MID and free pointer address 

FIF03: h~ the VCS or VCI-~MIDs 
32 bit 

3. When the host moves the PDU to the CSB, the host should notiQ the sender RISC by 

sending to FIFO 5 the location of the PDU fiame, VC or VCI-MID, and other 

necessary information needed for segmented the CPCS-PDU h e  (Figure 4.8). 

Fm rn / 
thc tiost / 

FiFO 4 
FIF04: has the free pointer address 
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Local bus 

32 bit 

FIFO 5 FIFOS: has thc necessxy 
the Host information needed for a CPCS- 

PDU fnmc  

Figure 4.8: The F E 0  carries the information needed for Segment 
CPCS-PDU fiames 

4.2.4 The interface buffers 

4.2.4.1 The Cell Receiver Buffer (CRB) and Cell Segmentation Buffer (CSB) 

The Ni has a CRB which is used to reassemble the ce11 bodies amiving fiom the 

network and store them until host is ready to process thern. Each ce11 is represented in 

the buffer as 12 locations of memory, each with 32-bit word (44-byte and the pointer 

location) for AAL3/4, or 13 locations, each with 32-bit (48-byte and the pointer iocation) 

for AAL5. The size of the CRI3 buffer is 256 Kbytes. This buffer c m  hold of 4 CPCS- 

PDU payload where each payload may contain 64 Kbytes. Obviously, more payloads can 

be held if they are smaller than 64 Kbytes 

The CSB stores the PDUs frames which are sent by the host to be segrnented and 

sends them to the network line as ATM cells after adding its header(s) and/or trailer. This 

buffer can also hold 3 CPCS-PDU frames (each frame has 64 Kbytes for CPCS-PDU 

payload), in addition to the trailer andor header for CPCS-PDU. 
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4.2.4.2 Receiver and Transmission Line buffers 

When a ce11 arrives at the RBI, the FSM in the RB1 will one of the two b 

locations to hoid the serial bits arrived fiom the transmission line. A FSM will enable one 

buffer and c m  switch to another buffer after interrupting the RISC-core in the 

Reassembly unit. The WSC core will start processing the ATM ce11 header which is 

located at the top of its body (Figure 4.9). The RB1 VHDL based is shown in Figure AS 

in appendix A. 

i RB1 

Figure 4.9: The buffer architecture in RB1 

Local Bus 

The SB1 contains two buffers each of which hold one ATM cell. The sequential 

machine controls the SB1 and alJows only one buffer to be active and to receive data at a 

given time. The buffer will remain enabled until the complete ATM ce11 has been stored 

(Figure 4.10). The SB1 VHDL based is shown in Figure A.6 in appendix A 

The sequential machine will then allow the stored data to be sent out while it filis the 

other buffer. 

Ce11 Headcr 

Cell Body 
Fmm SOSET 

fnmrr 

t 
Ccll Header 

1 
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Ce11 Body 
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Figure 4.10: The SB1 architecture 

h l  Bus 

4.3 VHDL Simulation Results 

Three stages pipelined RISC core, CAM, DMA, RBI, SBI, FKFOs, CRB, SCB, and 

CB have been used to simulate the ATM line interface. After testing the VHDL mode1 of 

each component, a complete NI has been designed based on the mode1 that presented 

before. Al1 NI components are comected together with al1 the necessary connections, 

busses, and control lines (Figure A.1 in the appendix A). A testing process has been 

performed to check the functionality of the NI and to perform the performance 

evaluation that required for this research. We believe that by processing ATM cells with 

such RISC core based NI, we can measure the amount of WSC processing for different 

transmission line speeds. 

Ce11 
Buffer 1 

I 

TO 

1 

1 
Buffer2 

Ce11 
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4.3.1 Reassembly Function 

By delivering different ATM cells to the simulated mode1 and by investigating the 

waveform generated from the sirnulator, we are able to find the number of instructions 

needed to process a complete ATM ce11 for both AAL314 and AALS. The results 

presented in Table 4.1 is for the NI when the DMA has the same RISC 's clock speed. 

The number of instructions is dependent on the type of the cell, Le. BOM, EOM, COM, 

and SSM. The DMA needs 22 (1 1 Load and t 1 store) WSC instructions in order to move 

one payload body for AAL3/4 and 24 (12 load and 12 store) N S C  cycle for AALS. 

However, some of the RISC processing instructions needed to use the local bus, in order 

to send the NULL value at the end of the ce11 body during the processing of the link list 

mechanism. In this situation the RISC has to wait for several cycles until the DMA 

completes its job. The RISC wait cycles will reduce the NI performance by extending the 

execution time for each ATM cells by number of the RiSC's wait cycles (Table 4.1 ). 

No. of idle cycles 

AALS Am314 
Type of cells 

Single Segment Message (SSM) 

No. of instructions 

AALS AAL3/4 

Beginning Of Message (BOM) 

38 40 

Continuation Of Message (COM) 

Table 4.1 : number of instructions processed for Reassembly AALS and AAL314 
messages (the DMA's clock has the same speed as RISC's clock). 

12 10 

38 41 

End Of Message (EOM) 

1 1  9 

38 41 12 9 

40 41 12 1 1  
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To eliminate the RISCfs idle cycles, we forced the DMA to finish its processing cycle 

in a shorter penod of tirne than the first approach where the DMA has the same RISC's 

clock cycle. Therefore, the DMA clock rate is increased to mn faster than RISC to allow 

the local bus to be available fio both DMA and RISC core. The DMA mns double the 

RISCfs clock to complete moving 44 byte within I l  cycles and 12 cycles for 48 byte 

(Table 4.2). In this case, we eliminate al1 the idle cycles which could take almost 25% of 

the RISC's power. 

Type of cells 

Single Segment Message (SSM) 

No. of instructions 

AALS AAL314 

Table 4.2: number of instructions processed for Reassembly AALS and AAL3/4 
messages (the DMA's clock has double speed of RISCfs clock). 

No. of idle cycles 

AALS AAL3/4 

26 29 

O O 

O O 

I 

End Of Message (EOM) 

Clearly, the number of instructions required to process the AALS is less than that for 

AAL3/4. This has made the RISC core process more cells/sec for AALS than for 

AAL3/4. With the AALS, there is no need to load and process the AAL header and AAL 

trailer. Table 4.3 shows the main difference between the processing of the ATM cells for 

both AAL3/4 and AAL 5 cells. 

O O 

Begiming Of Message (BOM) 

Continuation Of Message (COM) 

26 30 

26 30 

28 30 O O 
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Opention 

Read AAL header from RBI 

Mask VC (for AAIS) or VCI-MID (for AAL3/4) information needed 
for data matching 

Read AAL trailer from RB1 

Mask only VCI for signaling test I " L  

I 

Instmctions 
For 

AAL3/4 

1 

Nurnber of the cornparison needed to recognize the PT of the current ce11 1 

Instmctions 
For 
AALS 

O 

1 

Additional cornparison needed to figure out the type of the current ceil 
besides checking the Payload Type (PT) I O 

O 

Table 4.3: The main differences between the processing for AALS and AAL314 for 
ATM Reassembly 

To make clear about how we get the results in Table 4.1 and Table 4.2 , it is important 

to describe the details of processing for every ATM cells. Figure 4.1 1 shows the total 

number of instructions that the RISC will process if the type of the incoming ce11 is BOM 

for AALS. The RISC starts by loading the ATM header from RBI. Then it reads the head 

of the CB that contains the pointer space. The RISC initiates the DMA to move the ce11 

body from the RB1 to the pointer space inside the CRB, The highlighted area shows the 

instructions that the RISC can process during the data movement (the DMA's clock in 

this case has double RiSC's clock). The DMA needs 12 RISC cycles (each cycle 32-bit) 

to finish transfemng one ATM ce11 payload (48 bytes). During the data movements, the 
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RISC can execute instmctions, such as finding a CAM match, updating the CAM entries, 

or calculating the available space inside the CB before the DMA finishes its job. Aller the 

DMA finishes its job, the RiSC processor takes control of the bus. Then the RISC 

processes the linked list mechanism or reads the FIF03 which contains new VC to be 

stored in CAM, and F E 0 4  which contains a pointer to be stored in CB. Figure 4.12 

shows the total instructions that RISC needs to process for one ATM ce11 type of COM. 

The number of instructions in the COM is the sarne as the BOM, but the COM has a 

slightly different mannerism than BOM. In the processing of the COM there is no need to 

update the CAM entries by the Start-address (this instruction exists in BOM processing). 

In the COM, processing is needed to update the previous cell's pointer (this instruction 

does not exist in BOM processing). Figure 4.13 shows the total instnictions that are 

needed by the N S C  processor to process EOM. The EOM has a higher number of  

instmctions than BOM and COM because the RISC, at this point, needs to noti@ the host 

CPU that the PDU frame was received and is stored in the CRB. The notification to the 

CPU can be done by sending the Start-address of the location for the PDU frame inside 

the CRB and the VC that is related to this PDU fiame to the FIFO 2. Figure 4.14 shows 

the total instructions that are needed by the RISC processor to process the SSM ce11 type. 

This message is a unique cell, which notifies that there are no more cells arriving for this 

VC. The RiSC, after processing the SSM, sends the Start-address and VC host CPU 

through FE02. The SSM has the same mannerism as EOM, but the SSM shows fewer 

instructions than EOM because the SSM does not need any processing related to link-list 

mechanism and updating (Le. reading the Start-address) the CAM. 
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Chap ter 4: VHDL Simulation Result for A TM NI. 

Figure 4.15 shows thows the total amount and the type of the stnictions that the RISC 

processor needs to process the BOM for AAL3/4. The RiSC starts reading the ce11 

headers and trailer. These headers contain the information (Le. VCI, MID and PT) that 

help the RISC find the match for VCI-MID and to recognize the type of incoming cell. 

This information will keep the RTSC busy during the data movements which take 11 

cycles (44 bytes, each cycle is 32-bit). The local bus is busy dunng the data movement so 

RISC does not access it. The RISC does not need the local bus during the execution of 

the instructions including: finding a CAM match or tracing the CB size. While the ce11 

body has already been moved fiom RB1 to the CRB, the RISC controls the local bus and 

is able to execute the linked list mechanism and can also read from F E 0 3  and FIF04. 

Figure 4. tu shows the instructions needed by the RISC processor to process one ATM 

ce11 type COM for AAL3/4. Figure 4.1 7 shows the total instructions that are needed to 

process EOM cell, the RISC with this type of message needs to send the VCI-MID and 

the Start-address to the FF02. There is no need to update the CAM entnes. Figure 4.18 

shows the total amount and the type of the instructions needed for ATM ce11 type SSM. 

The processing time needed is less for SSM than it is for BOM, COM and EOM where 

there is no need to update the CAM entries (Start- and End-address) or to process the 

linked list functions. 
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Chaprer 4: A host Interface Architecture for A TM Network 

4.3.2 Segmentation Function 

Segmentation firnction simulation using the DMA's clock at the same speed as the 

RISC 's clock means the DMA needs 22 cycles to move one ce11 body fiom CSB to SB1 

for AAL3/4, where it needs 24 cycle for AALS. While moving data, the DMA controls 

the local bus to move the ce11 body fkom CSB to the SBI. The RISC also needed to send 

the ATM ce11 header (if the tram fer ce11 is AALS type) or send the ATM header, the 

AAL header and the AAL trailer (if the transfer ceIf is AAL3/4 type) fiom RiSC's 

register to the SBI. In this case, the RISC has to wait until the DMA completes the data 

movement. Then, the RISC is able to control the local bus and transfer the data register to 

the SBI. The total instructions that were needed for Segmentation fùnction, where the 

DMA's dock is the same RISC's clock cycle are shown in Table 4.4. The RISC has 

several idle cycles during the data movements and obviously is not able to send any of its 

data registers on the local bus. 

1 For AAL314 and AALS I I 

Type of cells for 
Total instructions 

AALS AAL3/4 

No. of idle cycls 

AALS AAL3/4 

17 13 
I 
I 1 

Single Segment Message (S SM) 

Begiming Of Message (BOM) 

Table 4.4: Number of FUSC instructionsprocessed and the idle cycles for Segmentation 
messages (the DMA have the same clock cycle as the RISC) 

26 26 

22 18 
1 

End Of Message (EOM) 

26 26 

Continuation Of Message (COM) 

18 14 

26 26 

26 26 21 17 
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The number of idle cycles is quite high and the RISC wastes almost 70 O h  of its 

power. We tried to eliminate the number of idle cycles by increasing the DMA's clock 

speed to be double that of the RISC's, thus forcing the DMA to finish its job by moving 

the ce11 body within 11 instructions for AAL314 and 12 instruction for AAL5 (Table 4.5). 

Type of cells 

For AAL 5 and AAL3/4 
Single Segment Message (SSM) 

Begiming Of Message @OM) 

Total instructions 

AALS AAL3/4 

14 15 

Continuation Of Message (COM) 

Table 4.5: Number of RISC instructions processed and the idle cycles for Segmentation 
messages (the DMA have the clock cycle double the RISC) 

No. of idle cycles 

AALS AAL3/4 

5 2 

14 15 

The performance of the processing gets better, but there is a loss of about 40940 the 

RISC's power. We tned to improve Our processing performance by pushing the DMA's 

dock to be triple that of the RISC core's clock (Table 4.6). 

6 3 

14 15 

9 6 
1 

10 7 

End Of Message (EOM) 14 15 
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1 

Type of cells 

For AALS and AAL3/4 
Single Segment Message (SSM) 

Beginning Of Message (BOM) 

Total instructions 

A A L S  k4L3/4 

10 13 

Continuation Of Message (COM) 

Table 4.6: Number of instructions processed and the Idle instructions for Segmentation 
messages where the DMA has triple the clock cycle of the RiSC 

No. Of idle cycles 

A A t S  AAL314 

1 O 

10 12 

End Of Message (EOM) 

For the Segmentation part of the network interface, we found that using a DMA 

controller faster than the RISC core will improve the performance. Because the RiSC 

core can pe~orrn  little processing while the DMA controller is moving the payload from 

the Ce11 Segmentation Buffer (CSB) to the Send Buffer Interface (SBI), the RISC core is 

forced to be idle for a few cycles until the DMA completes the payload transfer. 

Therefore, using a faster DMA will help to eliminate al1 idle cycles of the RISC core. The 

differences in the instructions that executed by AAL3/4 and AALS are shown in Table 

4.7. 

2 O 

10 11 4 2 

10 11 5 3 
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Operation 
Instruction for 

AAL3/4 

1 Send AAL header from CSB to SB1 O 

1 Send AAL trailer from CSB to SB1 1 1 1  O 

Calculate the length of the AAL miler 
l * I 0  

Change the Sequence Number (SN) for each leaving ce11 

- -- 

Table 4.7: The main differences between the AALS and AAL3/4 for ATM Segmentation 

1 * 

Generate the A 4 L  header 

* Irisrnicrion erecufed during rhe moving dara. 

To make clear how we get the results in Table 4.4, Table 4.5 and Table 4.6, it is 

important to describe the processing details. The focus is given on the case where the 

DMA's dock mns at triple the dock cycle of the NSC. When the host decides to send a 

block of data to the other ATM host, the host CPU sends the CPCS-PDU frame to the 

CSB. The host CPU also sends al1 the information needed to transmit this fi-arne through 

FIFOS, including VCI, VPI, and the location of the M e  inside the CSB. Figure 4-19 

shows the number of instructions required for ATM Segmentation fiinction for BOM for 

AALS. In order to generate the ATM header and calculate the PDU size, the RISC starts 

by reading al1 the information related to the PDU fiame. 

O 

2* O 
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The RISC initiates the DMA to move the 48 bytes fiom the CSB to the SBI. The 

liighlighted boxes show the RiSC instructions that are executed during the data movement. 

Tliese instructions include the generating of the ATM header and checking if there are more 

ATM cells to be sent for the same VC. After the DMA finishes its job by sending 48 bytes 

from the CSB to the SB1 which needs 8 RISC cycle (the DMA's dock in this case has triple 

RISC's clock), the RISC sends the ATM header to the SBI. Figure 4.20 shows the total 

instructions needed by COM for AALS. The RISC will be idle several cycles while waiting 

end addrcss of 
this m g c  
byte 
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for the DMA to finish. It is clear that the RISC has more idle cycles in COM than BOM 

because, in this stage, the RISC has no need to generate the ATM header again (it already 

exists in the EUSC's register). 
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Figure 4.20: ATM Segmentation for AALS processing scheme of 
COM (Total instructions by COM for AALS is 10 inst) 
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Figure 4.21 shows the total instructions needed by EOM for M L 5  Segmentation 

function. The RISC has one more instruction than the COM, because the RISC needs to 

change the PT in ATM header Erom 'O' to '1,' thus indicating that this ce11 is the iast ce11 of 

the PDU fiame. 
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Figure 4.2 1 : ATM Segmentation for AAL5 processing scheme of 
EOM (Total instructions by EOM for AALS is 10 inst) 

Figure 4.22 shows the total instruction by SSM for AALS. The RXSC was busy dunng the 

data movement and there is one idle cycle shown because the RiSC was finsheing its job 

before the DMA finishing its task. 
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Figure 4.22: ATM Segmentation for AALS processing scheme of SSM (Total 
instructions by SSM for AAL5 is 10 inst) 

Figure 4.23 shows the total instruction that the RISC needs to process the Segmentation 

function for BOM ce11 type for AAL3/4. AAer reading the necessary information from 

FIF05, the RISC starts to generate the ATM header and AAL header based on the 

information that the RISC reads fiom FIFOS. AAer the DMA finishes transfemng the cell 

body fiom the CSB to SBI, the RISC starts sending the ce11 headers and trailer to the SBI. 
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Figure 4.23: ATM Segmentation for AAL3/4 processing scheme of BOM (Total 
instructions by BOM for AAL3/4 is 12 inst.) 

Figure 4.24 shows the total instruction that the RISC needs by COM for AAL3/4. The 

idle cycles are more than the BOM because the RISC in this stage has no need to generate 

the ATM header, but the RiSC needs to change the PT and SN inside the AAL header from 

' 1 0' to '00.' 
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Figure 4.24: ATM Segmentation for AAL3/4 processing scheme of COM ( 
instructions by COM for AAL3/4 is 1 1 inst) 

Figure 4.25 shows the total instruction that RISC needs for Segmentation function by 

EOM for AAL3/4. The RiSC in this stage needs to calculate the actual data size inside the 

ce11 body (BOM and COM the ce11 bodies are fixed 44 bytes (ITUT93)). 
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Figure 4.25: ATM Segmentation for AAL3/4 processing scheme of EOM (Total 
instructions by EOM for AAL3/4 is 12 inst) 

Figure 4.26 shows the total instruction by SSM for AAL3/4. The RISC was busy 

dunng the data movement and there was no idle cycle shown because the RISC was busy 

generating the ce11 header and trailer. 
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Figure 4.26: ATM Segmentation for AAL314 processing scheme of  SSM (Total 
instructions by SSM for AAL3/4 is 13 inst) 

4.4 NI Performance Evaluation 

The VHDL simulator gives more details and more accurate results than the SPIM 

Simulator. We have completed this simulator for AAL314 and AALS using Xilinx FPGA 

tool version 1.5. The reason for using Xilinx fkamework is that it provides a good 
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environment for simulation and testing the VHDL model. Our intention was not to use 

FPGA as a target chip for our future irnplementation. 

We have used the M simulation to measure the amount of processing required for 

different transmission line speeds. For the Segmentation section of the network interface, 

a RISC core supported by a DMA having the same clock as the RlSC can support 

1.2Gbps transmission lines for AAL3/4 and AAL5 with 74 MHz, where a 147 MHz is 

required to support 2.4 Gbps line (Figure 4.27). 

Figure 4.27: ATM Segmentation for AAL314 and AALS using DMA for data 
movement (the DMA has the sarne EUSC's clock rate) 

Figures 4.28 and 4.29 show the RlSC processing speed for the AALS and AAL3/4 

for segmentation function when the DiVA has double clock speed than the previous rate. 
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Figure 4-25: ATM Segmentation for AAL3/4 using DMA for data movernent (the DMA 
has double EUSC's clock rate) 

Figure 4.29: ATM Segmentation for &5 using DMA for data movement (the DMA 
has double RISC's clock rate) 

Figures 4.30 and 4.31 show the RISC processing rate that is needed for ATM 

Segmentation for AAL 3/4 and AALS, when the DMA has triple speed than the RISC 

core. Clearly, as the DMA getting faster, the RISC core will not need to be waiting, Le., 

executing no operation instructions, while the NI local bus is busy due to the DMA 

moving data operation. 
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Figure 4.30: ATM Segmentation for AAL314 using DMA for data movement (the DMA 
has triple than the RiSC's clock rate) 

Figure 4.3 1 : ATM Segmentation for AALS using DMA for data movement (the DMA 
has triple NSC's clock rate) 

Figures 4.32 and 4.33 will present the RISC processing rate needed in order to process 

the ATM Reassembly for both fiinctions AAL3/4 and AALS, when the DMA has the 

sarne dock rate as  the RISC processor. 
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Figure 4.32: ATM Reassembly for AAL314 using DMA for data movement (the DMA 
has the same RISC's clock rate) 

Figure 4.33: ATM Reassembiy for AAL3/4 using DMA for data movement (the DMA 
has the same RISC's clock rate) 

Figures 4.34 and 4.35 presents the RiSC processing clock rate in order to process the 

ATM Reassembly for both fimutions AAL3/4 and AALS when the DMA has the double 

clock rate as the RiSC processor. 
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Figure 4.34: ATM Reassembly for m 3 1 4  using DMA for data movement (the DMA 
has double RISC's clock rate) 

- -..-. - 
*m- rr. - 

Figure 4.35: ATM Reassembly for AALS using DMA for data movement (the DMA has 
double RïSC's ciock rate) 
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In Segmentation function processing, it is clear that the RISC processing speed is 

become less as we use the DMA with a higher speed (TripIe RISC's clock) where a11 the 

idle cycle associated with the RISC core processing has eliminated. The VHDL 

simulation for the Segmentation unit of the network interface has shown that a 68 MHz 

processor can support 2.4 Gbps lines, when the DMA speed is 213 MHz (triple RISC's 

clock). 

The VHDL simulation for the ReassembIy unit of the network interface has shown 

that an 85MHz processor can support 1.2 Gbps lines supported by the 169 MHz DMA. 

Clearly, a cost effective RISC core can be used to processes 1.2 Gbps transmission line. 

Also it is clear that a higher RISC core dock rate could also be used to support higher 

transmission speed with extra cost. In the next chapter we will see the RiSC Architecture 

that we used in the NI. 
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Chapter 5 

Embedded Pipeline RISC Core for ATM Network 
Interface 

5.1 Introduction 

During the VHDL simulation, two RISC cores have been used and supported with 

DMA in order to process al1 the AAL3/4 and AAL5 function. The RlSC with 85 MHz 

has been found to be capable of supporting a network interface of 1.2 Gbps and 2.4 Gbps 

for Reassembly and Segmentation function, respectively. A network interface with high 

speed can still be supported with the use of the RISC core based NI by using a faster 

RISC core. In this chapter, we will introduce our three-stage pipeline RISC architecture 

and descnbe how it provides the requirements of high-speed ATM network interface. 

5.2 Developing RISC core for ATM N 1 Processing. 

The development of a specialized RlSC core c m  generally be done in a short period 

of time and at lower cost than a general-purpose core. The RISC core, required for ATM 

interfaces design, is optimized for this application. Hence, some parts, which might be 

used in RISC core to support the general-purpose applications, may not be required for 

the ATM network interfaces design. For example, the Floating-Point Unit is not 

necessary for neiwork interfaces. Also, the use of the data cache is not required since it 

will not help to improve the performance of the RISC core for this application. The 
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elimination of these units will help to make the core simple to develop at a low cost. In 

addition, the limited number of instructions that are required to support the ATM 

interfaces processing c m  reduce the size of the control unit, improve the speed of such a 

core, and reduce its complexity. 

In order to be able to use the RTSC core for diffscnt types of network interface, the 

RISC core should be designed with the Hardware !Jescription Language, VHDL, and that 

wiil make such porting operations possible and easy. 

5.3 VHDL-Based RISC core 

5.3.1 RISC Pipeline 

RiSC pipelines divide the execution of an instruction into a nurnber of steps, or 

pipeline stages. The depth of a pipeline corresponds to the number of pipeline stages 

(Figure 5.1). The schematic capture of the pipeline stages is shown in Appendix A 

Figure A.7. 

The NI RISC core has been designed to execute one instruction in three-pipeline stage: 

a) Fetch an instruction from local memory (Fetch stage). 

b) Decode/execute the instruction and registers read (Decode/Execute stage). 

c) Store results back into the destination register (write back, or W B ,  stage). 

The RISC fetches instructions which are used to run the ATM protocol program from 

local memory, Decoding and Executing stage is done to execute the mnning instruction 

that has been ktched by the first stage of the pipeline. The last stage of the RISC's 

pipeline is W B ,  in which the data is written to the RiSC's register. Some instructions 

such as Store instruction terminate at DecodeExecute stage. 
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r 
Fetch 

r+ 1 

1+2 Wn3 

Figure 5.1 : Structure of RISC instruction Pipeline 

5.3.2 Instruction Representation 

During the SPiM simulation, we learn about the suitable instructions that are required 

for M. These instructions have been represented in Table 5.1. The instruction format 

contains the op-code in the first five most significant bits to represent the type of 

instruction. 

Instruction 

ADD 

ADDl 

SUT3 

AND 

LOAD 

STORE 

STCAM 

BEQ 

BGE 

BLE 

LCAM 

r3 <-- r 1 + r2 

r3 C- r l  + irnrn 

r3 <- r 1 - r2 

r3 C-- r I and rUirnm 

r 1 C-- mem 

r 1 -> mem 

r 1 - >(CAM) 

rl = r2/imm --> label 

rl  >= r2/imm -> label 

r i  <= r2/imm -> label 

r l = (CAM) --> r2 

op-code Comments 
- - -- --  

Arithmetic addition 

Arithrnetic addition immediate 

Arithmetic subaction 

Logical AND 

Load from memory 

Store to memory 

Store value at Content Addressable 
Memory (CAM) 

Branch if equal 

Branch greater or equd 

Bnnch less or cqual 

Find the match of rI with CAM con- 

tents and store the CAM data in r2 

Table 5.1 : Type of RISC Instructions. 

1 O4 
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The description of code instructions group is as follows: 

5.3.2.1 Aritbmetic and logic operation instructions 

They provide computational capabilities for processing nurneric data. Logic 

instructions provide the logical operation such as And, Or, .., etc. The format for 

arithmetic and Iogic instruction is as follows: 

a. Anthmetic/Logic instruction formation (Register-to-Register format) 

Op-code 

b. ArithmetidLogic ïnstniction formation ( h e d i a t e  format) 

SRRl 

Op-code 

Where: SRRl source register 1 
SRR2 source register 2 
DES destination register 
F function bit 
IMM16 immediûte value 
X for future use 

X F 

Figure 5.2: Anthmetic and logic instruction format 

DES SRR2 

F 

The arithrnetic instructions, such as Add, is executed as follows: Add register SRR2 

DES SRRl 1 MM 16 

to register SRRl and store the result into register DES. In the add immediate instruction 

(addi), the register contents, to which SRRl refers, will be added to the MM16 value. 

The result is stored in register DES. These instructions can be wntten in the program as: 

add r 3 , r 2 , r l  ; Add r2 CO rI and store the result in r3 

addi r4, r3, 10 ; Add r3 to the value of 10 and then store the result in r4 
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As read after write (RAW) data dependency could occur during the program 

execution, the forwarding mechanism has been implemented to resolve such dependency. 

For the two preceding instructions, the add instruction stores the result in register r3 

where the addi instruction will use r3 as a source operand. Duxing the DecodeExecute 

stage of addi instruction, the r3 is not updated yet by the add instruction, and thus, an 

error of calculation wiII occur. The use of the forwarding mechanism will solve this 

problern fiom accruing [DPatt98 and JHen9q. To provide the support that is required by 

the forwarding mechanism, an F bit is used in the instruction format to initiate the 

fonvarding mechanism if F is '1 .' Otherwise no action will be taken. The F bit is set or 

reset during the prograrn compilation. The compiler can detect whether the forwarding 

mechanism is required to be initiated or not (more details in section 5.3.3). 

5.3.2.2 Branch instructions 

Branch instructions are used to test the value of data or the status of a computation 

before jumping to the label's address. There are three Branch instructions listed in Table 

5.1 and al1 have the same instruction format (Figure 5.3). 

Where: label address in rnemory (instruction memory) 
imrn imrnediate value 
F fiinction bit 
M immediatdregister select 
X for fiiture use 

Figure 5.3: Branch instruction format. 

label Op-code SRRL F 

irnm 

SRR2 X M 
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The M bit will be checked by the RiSC's controller to distinguish whether the second 

source operand is an imrnediate value or a data register. in the case where the M =1, the 

cornparison should be done between SRRl and the immediate value (value 10). 

Otherwise, it should be done between SRRl and SRR2. The F bit is used to control the 

fonvarding mechanism, one of the operand of  the current instruction still in the WA3 

stage of the previous instruction. The forwarding mechanism will be turn on when F is 

set to 1, to prevent pipeline stalling. The F bit will be reset if no RAW dependency exist 

between the branch and preceding non-branch instruction. 

The branch instruction c m  be wntten as follows: 

beq r l  ,r2 , label ; Branch to labcl if contents of rI= contents of r t  
beq r l ,  IO, label ;  ranch to [abcl if contcnts of r I = I O  

The PC will be updated to point to the label's address afier checking that the value at 

r i  is equal to tliat at r2, or when rl  equal to the irnmediate value which is 10. The use of 

the immediate value with the Branch instruction is useful for ATM Payload Type 

checking (in AAL3/4 the Payload Type is 2-bit, and in A A L S  only l-bit), or checking if 

the VCI of the arrived ce11 is equal value 5. 

5.3.2.3 Memory access instructions 

These instructions are used to move data between memory and the RlSC core 

registers and these instructions are as follows: 
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a) Load/Store instruction: To load data fiom a local memory into a RISC's register, or 

to store the data register into local memory, the instruction format is as follows: 

Address 

Where: Address Memory address 
S W  Holds t!e data that needed to store in local memory (if the 

instruction is load ), in store instruction used as the 
destination register (to store the data rnemory ) 

SRRI memory address 
X for future use 

Figure 5.4: Load/Store instruction format. 

For Load instruction, the value at address field and the contents of the SRRl are 

used to address the source address. The SRR2 is used as the destination register. The 

same is applied for Store instruction where the memory address is calculated as in the 

load instruction, while the SRR2 is used as the source register instead of the destination 

register. The Laod/Store instruction can be written as follows: 

lw rl , address (r2) ; r 1 = Mernorylrt + address] 

sw r4, address (r2) ; Memory[r2+address] = r4 

b) Load CAM (LCAM): This instruction is used to load data from the CAM afier a 

match for a certain data with the contents of the CAM is found. The instruction 

format of LCAM is shown in Figure 5.5 
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Where : SRRl holds the data match 
DES store the loaded data from CAM 
S bit signal to the RISC's controller 
X for fiiture use 

Figure 5.5: LCAM instruction format. 

X 

The contents of the SRRl is used to be matched with the CAM contents, if the 

match found, the CAM then retums the contents of that matched location. SRRl 

contains either VC or VCI-MID which needed to be match with another active identifier 

that stored in CAM content, if rnatched exist, then the Start or  end Address will send out 

from CAM. The RiSC's controller afier reading the S bit, it sends a signal to the CAM 's 

controiler (Start-end-signal) to either send the Start-address or End-address as data out 

from the CAM to the RiSC. DES is a distention register which used to store the CAM 

output. 

I f  the match is not found, the CAM sends a signal to the IUSC (match = O), the 

RISC, considers this ce11 as a lost ce11 and discardes it. The LCAM instruction can be 

written as: 

Op-code S DES SRRl 
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lcam r2,rI ; match what in r l ,  which couId be VC or VCI-MID, with the contents of CAM. 

; then reads CAM data output iato r2. 

C) Store CAM (STCAM): This instruction is used to store data in CAM. The instruction 

format is shown in figure 5.6. 

Where : SRR1 holds the data, such as VC or VCI-MID 
SRR2 holds the stored data (Start or End address) 
S bit signal to the RiSC's controller 
L type of data that needed to store it in CAM 
X for future use 

Figure 5.6: RISC instruction-set format for CAM operation (stcam). 

Op-code 

The register SRRl could hold the value for VC or VCI-MID that is required to be 

stored as new entry in the CAM. After a match is found, the instruction can be used to 

store the Start or End-address. The SRR2 contains the data that the RiSC needs to store 

in CAM, i.e. the Start-address or the End-address. The RISC's controller will send a 

signal to the CAM'S controller to store the data as a Start or End address, or to store the 

new entry (see section 4.2.2). If the S = 1 and L = O then store a new entry in CAM, in 

SRRZ S L SRRl X 
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the hand if the s = O and L = 1 this means store Start-address, if it is 00 then store End 

address. An exarnple of  the SCAM instruction as follows: 

stcarn 1-9, r3 ;Store the contents of r9 in CAM where r3 has the value of CAM entry to be 
; matched such as VC or VCI-MID. 

5.3.3 Pipeline Hazard 

In the instruction Stream, hazard is the prevention of the next instruction fiom being 

executed during its designated dock  cycle. Cleariy, hazard reduces the RiSC 

performance. Hazard types include: 

1- Control hazards. 

2- Data hazards. 

The Control hazard couid occur during the condition branch instruction execution. 

The decision about whether the branch is taken or not taken does not occur until the result 

of the cornparison is completed (in DecodeExecute pipeline stage). The fetched 

instruction afier the condition branch instruction will be flashed from the pipeline if the 

branch is taken. Such operation is called branch penalty. Clearly, the branch penalty will 

reduce the pipeline performance. The branch-delay technique is used to reduce such 

problems and is as follows: 
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1 and r l  , r7 , OxOOOOOOOO 

i+ 1 add 1-6, r2, r3 

i+2 beq r6,r4, label 

a: Before scheduling the branch-delay slot 

1 add r6, r2, r3 

i+ 1 beq r6,r4, label 

i +2 and r l  , r7, 0x00000000 

b: After scheduling the branch-delay slot 

Figure 5.7: Scheduling the branch-delay 

In Figure 5.8 (a) shows the code before scheduling where add instruction will execute 

before the branch instruction. The add instruction in Figure 5.8 (a) is considered as 

independent instruction. In Figure 5.8 (b) the add instruction is used as a delay do t  which is 

scheduled to be executed after the branch instruction. in this case, the and instruction will be 

executed in either way (if the branch is taken or not) and that will not affect the pipeline's 

performance. 

The frequency of occurrence for conditional branches for Reassembly unit for both 

AAL3/4 and AALS is shown in Table 5.4. The branch-delay slot technique can be used to 

eliminate the effect of performance degradation due to conditional branch instructions. We 
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found that a usehl instruction can be managed for every conditional branch instruction for 

the processing of both AAL314 and AALS. 

COM 
I - 1 - 

19 1 8  1 

Message type 
SSM 
BOM 

Table 5.2: Occurrence of the conditional branch for M 3 / 4  and AALS Reassembly 
Processing 

The data hazards could occur when an instruction being executed in the current pipeline 

AAL314 
8 
9 

stage requires a result that still unavailable of an instruction executed in an earlier 

AALS 
8 
3 

pipeline stage. The following portion of the ATM protocol is an exarnple where there is 

a data hazard: 

1 % ~  r4,O(rl) ; load a free pointer from the CB 
and r l ,  r6, O~ooOCfffO ; Mask VCI from ATM header (r6) and store the result in r l  

ble t-1, S, signahg ; Check if the curent  ce11 is signaling, 

and r3,r6,0x0000000E ; Mask the PT from ATM header (r6) and store the result in r3 

beq r3, 0~00000002, EOM ; Check if the current ceIl is the EOM/SSM ceIl of 
; CPCS-PDU by checking the R3's value 

and rS, r6, O~OffffffO ; Mask The VC (VC1,VPI) from ATM header (r6) and store the 
; result in R5 

The and instruction, at i + l ,  writes the value of r l  in the W/B pipeline stage, where 

the ble instruction at i+2 reads the value during its DecodeExecute stage. Clearly, the 

ble instruction wiIl have the data hazard probIem. Unless precautions are taken to 

prevent it, the ble instruction i+2 will read the wrong value of the r l .  Data hazard also 

happen between i+3 and i+4 instruction, when i+4 is ûying to use r3 for the cornparison. 
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Clearly, this data hazard happened quite often in the M codes. A support should be 

provided for NI design in order to reduce its impact. Otherwise, a severe reduction in 

performance will occur. 

There are different techniques that can be used to reduce or even eliminate the 

performance reduction due to the data hazard (or dependency). One technique is 

forwarding or injecting. By using the injecting technique a usefûl instruction will be 

placed before instruction that required an information where the needed information still 

not provided yet by the proceeding instruction. In Our work, we decided to use the 

injection of a usehl instruction to avoid the hazard. The same code in the previous 

example could be written as follows: 

i ( i+ /  previously) and rf, r6, 0 ~ 0 0 0 ~  ; Mask VCI from ATM header (r6) and store the result in 
; rl 

i+ / (i previously) IW r4,O(rl) ; load a free pointer from the CB 
i+2 ble rl,  5, signaling ; Check if the current celi is signaling, 
i+3 and r3,r6,0x0000000E ; Mask the PT from ATM header (6) and store the 

; result in R3. 
i+4 (i+5 prcviousiy) and r5, r6, OxOfmfflO ; Mask The VC (VC1,VPI) from ATM header (r6) 

; and store the result in r5. 
j+s (ii-4 previotrsiy~ beq r3,0x00000002, EOM ; Check if the current ceIl is the EOM/SSiM ce11 

; of CPCS-PDU by checking the r3's value 

By using the injecting technique to avoid the data dependency problem, the pipeline 

then will not forced to stall during the NI code execution. The frequency of data hazard 

occurrence for both AAL3/4 and AALS Reassembly is shown in Table 5.2 and 5.3. 

Although the occurrence appears to be minor, the impact or reduction of performance is 

significant. AAer rescheduling the program that has been written for ATM Reassembly, we 
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still have one RAW hazard for AALS within BOM and COM out of the total cycle required 

for the BOM (where the total instruction needed is 26 cycles). One RAW within SSM for 

AAL3/4 is also required for the BOM (where the total instruction needed is 30 cycles). 

AALS message type 1 RAW Hazard 
1 

Table 5.3: Occurrence of the Read After Write ( R N )  hazard for A A L S  Reassembly 
Processing 

I 

AAL3l4 message type1 RAW Hazard 
BOM.COM. EOM 1 O 

BOM and COM 
S S M  and EOM 

S S M  1 

1 
O 

TabIe 5.4: Occurrence of the Read After Write (RlW) hazard for AAL3/4 Reassembly 
Processing 

Since most independent instructions are used to avoid the control hazard, we unable 

to find a usefiil instruction to be injected after these instructions cause the hazard. Still, 

adding the forward mechanism in our simulator is important to elirninate the data hazard 

that may occur [DPatt98 and JHen961. An example of the forward mechanism used in our 

simulator is as following: 

1 ; Add r l  to r2 and store resuIt in r3 

o m r d  R3 

I+I 1 beg r3,5, send signal 1 ; If the r3 is equal to value 5 then jump to the send 
; signal locations 
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Latch the result of the ALU (rl - r2), and then send the latched data at register (r3) to 

the ALU to compare it with value 5 (during the DecodeExecute of the current 

instruction). The schematic capture for the forwarding mechanism is shown in Appendix 

A, Figure A.8. The forwarding hardware receives a signal from the RISC's controller 

indicating that the current instruction needs the latched data of the previous instruction. 

The latched data is sent to the DecoddExecute stage of the current instruction (Figure 

5.9). 

beg r3, 5 ,  send signal 
( I + I )  

Figure 5.8: Minimize Data Hazard by latching the output of the ALU to be 
read within next instruction (forward mechanism). 

5.4 RISC's Registers 

In our implementation, the RISC's instruction format has three register operands. We 

will need to read two data words fiom the register file and write one data word into the 

register file for each instruction. For each data word to be read from the registen, we 

need an input to the register file that specifies the register number to be read and an 

output from the register file that will carry the value that has been read from the registers. 

TO wnte a data word, we need two inputs. The first input needed specifies the register 

number to be written. The second input supplies the data to be written into the register. 
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Thus, we need a total of four inputs (three for register number and one for data) and two 

outputs (both for data) (Figure 5.10). The register files VHDL based is shown in 

Appendix A Figure A.9. The register file always outputs the contents of whatever register 

numbers are on the Read register inputs. Read registers is controlled by a specific signal, 

called R(RI,RZ), which must be asserted a read cornmand to the specified register. The 

wnte register is controlled by a specific write control signal, called Wwor W/B register), 

which must be asserted by RISC's controller to write data into certain register. 

Register 
numbers 

Datain - 
ControI - 
signal - 

SeIect R 1 
Output 1 

Select R2 

SeIect Write back 

R ( R 1 . W  
W( for W/B register) 

Data 
Out 

Figure 5.9: RISC register file 

The register number inputs are 5 bits wide to speciQ 1 of existing registers, whereas 

the data input and two data outputs are each 32 bit wide. The size of the register files 

differ between the Reassembly and Segmentation fùnctions. The sizes of register files for 

the Reassembly unit and for the Segmentation unit are shown in Table 5.5. Clearly, the 

register file within RISC processor in the Reassembly unit is larger than the 

Segmentation unit because the Reassembly function has extra registers just needed to 

hold the specific information (during the setup operation). This information includes two 
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registers to hold the CB's pointers (the head and tail of CB). The other registen to hold 

the address of the FFOs (FIFOI, 2 ,3  and 4). 

1 Functions unit 1 &gisfer size 1 

Table 5.5. Register file size for Segmentation and Reassembly units 

Reassembly 
Segmentation 

5.5 The Component Needed With RISC cores. 

- 
28 register 
20 register - 

Both RiSC cores may need other components helping with SAR processing. Table 5.6 

shows the component needed for each side. 

Reassembly 

Requùed 

Processing core 
Performance 

D m  

C.4M 

Segmentation 

Required 

Local bus 

Nurnber of FIFO(s) 1 1 

Required 

32-bit word bus 1 32-bit word bus 

Circulation Buffer 

Required for the Active comection 

1 I 

1 1 

Table 5.6 : Shows the component needed for segmentation and Reassembly 

Not required 

SRAM Ce11 buffer 

func t ions 

Required to Store the free pointer 
spaces 

Required Required 
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Conclusion and Future work 

We have presented cornputer simulation to measure the amount of processing required 

by the ATM network interface for both AAL 314 and AAL 5 .  The VHDL simulator has 

shown that the processing requirements for the data movement of the Segmentation and 

Reassembly units c m  be reduced by using DMA controller. Such controlier must runs at 

two to three times the speed of the embedded FüSC could eliminate al1 RiSC's idle cycles. 

Also, the simulation results have shown that a cost effective embedded RISC core c m  

efficiently provide network interface with the processing that required to support a wide 

range of transmission line speed. A 70MHz RISC core c m  support the segmentation unit 

processing for up to 2.4Gbps transmission speed, while a core running at 85MHz is found 

to be suitable for the Reassembly unit processing for up to 1.2Gbps line speed. These 

results are based on the use of a specialized RISC core that we developed and simulated 

for ATM NI applications. Such core has three stages pipeline supported with forwarding 

mechanism, instruction set of only 1 1 instructions, a register file of 20 register for 

Segmentation and 28 for Reassembly. 



As the fbture work for this thesis, we would like to investigate the support for AAL1 

and AAL2 by our NI model. Such support will require the protocol fûnctions 

modification and not the NI architecture. Also, the ATM NI can be extended to process 

the upper layer of the ATM protocol the Convergence Sub-layer (CS) layer. Such 

support can be useful to have direct network-to-device communication with minimum 

interfering fiom the host processor. 

The use of the RISC processing core, for other type of network interface c m  also be 

investigated in the future. 
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Appendù A 

VHDL Simulation Diagrams 

In this Appendix, the schematic diagrams for every unit of the network interface have 

been presented. 

Figure A.1 VHDL based ATM Network interface architecture 



Figure A.2: Location of the DMA controller in the NI architecture. 





Figure A.4: CAM stmcture 



Figure AS: Receiver Buffer Interface (RBI) 



Figure A.6: Sending Buffer Interface (SBI) 



Figure A.7: Stnicture of RXSC instruction VHDL based pipeline 
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Figure A.9: RISC register file 
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Figure A. 10: WSC register file structure format 




