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Abstract

The question of whether to design the processing core of a network interface (NI)
using a custom made hardware or an embedded processor for ATM Segmentation and
Reassembly function is certainly an important one that has been addressed by many NI
researches. The embedded processor core can be very useful in providing the following
important features to network interfaces: simplicity, shorter developing cycle time, low cost,
and flexibility to support protocol changes and perhaps new protocols. However, it is not
clear what the scalability of NIs would be if their designs were based on embedded RISC

core to support different high-speed transmission lines.

This work investigates the use of the Embedded RISC core in the ATM NI
design. A cycle accurate VHDL-based simulator has been developed to measure the
amount of processing required for ATM network interface design that support different
transmission line speeds. The results have shown that a simple and cost effective
embedded RISC core running under 85MHz can be used as a processing element in a
high-speed ATM network interface. This core can support a wide range of transmission
line speeds, up to 1.2Gb/s and 2.4Gb/s, for Reassembly and Segmentation functions
respectively. We believe that this research can also be used as a guidance work for the

ATM NI design.
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Chapter 1

Introduction

In the past few years communication networks have been advancing rapidly in
providing new services, improving their bandwidth and integrating new technology.
Also, the network interfaces have been improved considerably. Such interfaces, capable
of providing above Gbps speed, have been researched for different network protocols
such as ATM, fibre channel and Gigabit Ethemet [LPete96, Desi97 and CGceor97].
Improvements to the network interfaces have led to support a new generation of
applications for videoconferencing, video telephone, multimedia, etc.

As the speed of the networks have exceeded the Gbps, the design and implementation
of high-performance Network Interfaces (NI) have become very challenging. One of the
main challenges is the processing core design that is required for network interface
protocols.

The approach of partitioning the processing of the protocol by allowing some
functions to be processed on the NI and leaving the others for the host processor has
reduced the amount of processing that the host processor usually does if NI is not used.
As an example, the lower-level of the ATM protocol such as Segmentation and
Reassembly (SAR) are processed on NI and the higher level protocols are left to be

processed by the host. This approach was proposed and used in much researches
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[ECoop91. DBru93. STraw93, CKim98, and RHosb99]. Other approach allows the NI to
perform all the protocol processing without the host processing involvement [ZDitt97].
Generally there are three possible methods that may be used to process the network

interface protocols:

1. General-purpose embedded processor [DBru93].

S8

. Fully customised logic [STraw93].

(V8]

. Programmable VLSI engines [CGeor97, CKim98, and RHosb99].

The general-purpose embedded processors may not provide the same level of
performance as the other method offered, but they have better flexibility and they could
easily accommodate protocol revision or even a new protocol. The wide availability of
these processors has contributed to the low developing cost for network interfaces. Using
these processors in designing the network interface makes the data path very simple and,
hence makes their design simple too. An example of such network interface design is the
one developed at Bellcore that supports 622 Mbit/'sec ATM Network Interface for DEC

TURBO channel which uses a pair of 33MHz Intel960 processor [DBru93].

In this thesis, we study and investigate the design of an ATM Network Interfaces
(ANI) based on the use of the specialized embedded processor of a Reduced Instruction
Set Computer (RISC) core type. Also, we have analyzed the amount of processing

required by the ATM interfaces for both outgoing and incoming messages.
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The following steps have been taken in our work:

1.

o

We simulate an ANI model to support both ATM adaptation layer3/4 and AALS
using SPIM S20 simulator to process the ATM Segmentation and Reassembly (SAR)
protocols [Patt98]. This simulation is used to measure the amount of processing
required for ATM protocols and data movement operations

We also simulated the ANI by using a high speed integrated circuit (VHSIC)
hardware description language (HDL) VHDL. The [EEE //64-1993 standard running
over the Xilinx foundation version 1.5 was used for our simulation to test our
architectural model [Xili98, Xilinx99].

The RISC clock rate was measured for Segmentation and Reassembly protocol
processing supporting the AAL3/4 and AALS.

The RISC architecture was investigated to includes the appropriate instruction set,
pipeline stage length and techniques to eliminate data and branch hazard.

We used DMA to assist the data movement activities, while the RISC was free to do

other required processing. The speed of the DMA was investigated.

This thesis is divided into 6 chapters. Chapter 2 gives a general description of the NI

design. The chapter also includes the protocol architecture of ATM network, ATM cell

format and the concept of ATM Adaptation Layer (AAL). Finally, the chapter concluded

with overview of related work. Chapter 3 shows the SPIM simulator model for ATM

network and the SPIM simulator results. Chapter 4 described the VHDL Model

architecture for ATM NI and the results for both AAL3/4 and AALS. The design issues
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related to RISC core that specifically implemented for high-speed ATM host-network
interface applications such as the instruction types at the RISC core and the pipeline stage
are investigated in chapter 5. Finally the conclusion and the future works is discussed in

chapter 6.
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CHAPTER 2

Overview of ATM Network Interface

2.1 Introduction

In every workstation, the Network Interface (NI) is usually connected to the

workstation's [/O bus and delivers messages to the host. The NI also receives messages

from the host and then delivers them to the other end over the transmission line (Figure

2.1).

Microprocessor

Cache

/O Bus

Network

Host Memory

Interface

(NI)

Message to/from
the network

Figure 2.1: Workstation architecture

The network interfaces usually have two parts. The first part is the Line Interface

which connects the workstation to the network line. The second part is the Bus Interface

which connects the NI to the host. The Bus interface serves as a buffer between the NI

and the host for receiving and transmitting messages.
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The NI is generally designed to work for a specific network. The complexity of the
NI design is basically dependent on transmission line speed and the protocol functions
processing. In cases where the transmission line is running at moderate speed and the
functions that are required to be processed by the NI are primitive, the NI can be very
simple and does not need an interface-based processing because most of the processing

can be done on the host (Figure 2.2).

Host I/O bus
NI (Adapter)

Figure 2.2: Block diagram of a typical NI
In other cases, where the transmission line is running at high speed and the functions
processed by the host are large, performing all processing by the host will reduce the host
capability of performing its normal job. Thus, an interface-based processing capability

that removes the burden from the host processing becomes very important (Figure 2.3).

NI (Adapter)

Intertuced-
baced
processing

Figure 2.3: Typical NI using an interfaced-based processing
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As the focus of this research is on the ATM network interfaces design, we believe
that it is important to start by reviewing the ATM standard. Such a review will familiarize
the reader with the ATM terms, concepts, and architecture. At the end of this chapter, a

literature survey and related works in section 2.7 will be presented.

2.2 The Basic principles of ATM

The Asynchronous Transfer Mode (ATM) was bom out of a standardization effort
for Broadband ISDN (B-ISDN) which began in the CCITT in the mid 1980s. In the early
1990s, the data communications community saw the ATM standard as a promising
candidate for networking in the local area. It was seen as a scalable method for the
provision of high-speed network connections to routers and hosts. Currently ITU-T has
steadily continued its work with respect to standardization of ATM, filling in the details
related to operations and the transmission/reception a block of user data, and traffic
characterization parameters.

There are many reasons why ATM is important for current and future networks.
Firstly ATM can meet the bandwidth demands by offering a scalable range of
transmission rates, such as TI1/DS-1 (1.5 Mb/s), T3/DS-3 (44.7 Mb/s), OC-1
(51Mbps), OC-3 (155 Mb/s), OC-12 (622 Mb/s), OC-24 (1.244 Gbps), OC-48 (2.4
Gbps) [ITU-93, LPete96]. The standard for OC-192 (10Gbps) is already under
development [CGeor97, LPete96]. Secondly there is the need for a single universal
network which must meet all the user's requirements such as moving data, voice and
video over a single network. Thirdly, ATM allows multiple logical connections to be

multiplexed over a single physical link. For these proceeding and many other
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reasons, ATM will continue to be a popular networking technology despite the rapid

progress in other network technologies such as Gigabit Ethernet.

2.3 ATM Cell
ATM uses a 53-byte cell [[TUR93] to transport data. The S byte header is primarily
used for the association of cells to virtual connections and traffic management while the
48-byte payload of cells are carried transparently from the source to the destination.
There are a number of advantages to using fixed size packets in a communication
network rather than the more traditional approach of using variable length packets. First,
each cell will have a small amount of queuing delay which is useful for higher priority
cells to meet the high ATM speed rate at the switch or the end node [LPete96, Comp98].
Second, packet lengths do not need to be calculated and the header does not need to carry

length information. Third, it is simple to discover the delineation of cells with the fixed

size cell.

2.3.1 ATM Cell format

ATM cell comes in two different structure formats, user-network interface (UNI) and
network-network interface (NNI). The UNI cell format is used when the transmission
cells are between user and network. The NNI cell format is used when transmission cells
are between switches.

The header includes information about the contents of the payload and the method of

transmission. The sections in the header are a series of bits that are recognized and
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processed by the ATM layer, except the CRC that is processed by the physical layer
[Tray93, DBru93, RHosb99].

Sections included in the header are: Generic Flow Control (GFC) which appears only
at UNI while it is added to the VPI at NNI, Virtual Path Identifier (VPI), the Virtual
Channel Identifier (VCI), Cell Loss Priority (CLP), Payload Type (PT), and Header Error
Control (HEC). The payload portion of the ATM cell contains the data to be transmitted.

Figure 2.4 shows the ATM cell structure.

Data 48 byte  (Payload) Header 5 byte
0 1 2 3 4 5 6 7
IGeneric Flow Control (GFO) Virwal Path [dentifier (VPI) %
[Virtual Path Identifier (VPI) Virtual Channel Identifier (VCI)
Cell Header

[Virtual Channel Identifier (VCI) | Virtual Channel Identifier (VCI)

'Virtual Channel Identifier (VCI) | Payload Type (PT) CLP

Header error control Headcr error control

Information field X Cell body
Data 48 bytes ¢

UNI frame

Figure 2.4: ATM Cell

2.3.1.1 Header Description

The first four bits in the header for the UNI cell format include GFC presented as bits
in the ATM header to support flow control. This mechanism was proposed by the ITU-T
recommendation [I[TUR93]. The VPI and VCI provide information on the path that the

cell will take during its transmission. The PT section contains three bits that indicate



Chapter 2: Overview of ATM Network Interface

whether the payload contains user data or layer management information. User data is
data of any traffic type that has been packaged into an ATM cell. An example of
management information is involved in call set-up. This field also notes whether the cell

experienced congestion.

Payload Type Field definition

000 User data celL AAU=0 congestion not experienced
001 User data cell, AAU=1 congestion not experienced
010 User data cel, AAU=0 congestion experienced
011 User data cell, AAU=1 congestion experienced
100 OAM F5 segment associated cell

10! OMA FS5 end-to-end associate cell

110 resource management cell

1t reserved for future function

Table 2.1: Payload Type (PT) description

The CLP bit indicates the loss priority of an individual cell. Cells are assigned a value
of 1 or O to indicate that they are either high or low prionty. A cell loss priority value of
zero indicates that the cell contents are of high priority. A cell that has value 1 in its CLP
is discarded if congestion occurs in the network. Cells with a high priority will only be
discarded after all low priority cells have been discarded. The last part of the ATM
header is an 8-bit header error control field that consists of error checking bits. This field

provides error checking only for the header field, not for the payload.

2.4 Virtual Connection

The ATM network service is connection-oriented. This means that a connection must
be set up between two ATM hosts before user data can be transmitted. In ATM

terminology, the connection set-up is called signaling. Once two users accept the

10
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connection, then the virtual connection is dedicated to the source and the destination.
ATM can operate one or more virtual connections over a single physical link. A Virtual
Channel (VC) is used to describe the unidirectional transport of ATM cells associated by
a common identifier value specified by a 24-bit VC which is assigned at call set-up
[ITUT9S]. This common identifier is the VCI/VPI contained in the ATM cell header part
of each cell. The VPI is fixed to 8 or 12 bits long and supports 256 or 4096 virtual paths.
Each path can be composed of up to 64K Virtual Channel Identifier by its VCI [Marti95].
A VCI value is used to distinguish VCs of a VP where these VCs allocate at the end
ATM point as well as within the network. Switches containing a routing table of switch
ports and connection identifiers are used to interconnect ATM hosts and networks. Each
cell is transported through the switch based on the connection identifier in the cell's
header.

[t should be noted that two VCs belonging to two different VPs could share the same
VCI value. Thus, VCI values are only significant within VPs. This concept is useful
when two users need to set-up a number of separate connections to each other. In
addition, VCs demanding similar quality of services from the network can be multiplexed
together.

For example, video telephone could be sent over the network. It would be divided

into three components: one VCI for voice, one for video and one for data (Figure 2.5).

11
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Switch ATM

Header < ink VPI=1
translation table VCI=1
VCI=2
VCI=3

VC’s

Voice 1 oy
Video 2 o3
Data 3 -~

Virtual Path 1

Figure 2.5: VCI and VPI Connections in ATM

2.5 ATM Protocol Architecture

The basic protocol architecture for a B-ISDN model between user and network is
issued by the ITU-T, which is composed of three separate plans and four layers (Figure
2.6). The physical layer of the ATM protocol is divided into two sub-layers, the
Transmission Convergence (TC) sub-layer and the Physical Medium (PM) sub-layer. The
TC is responsible for the generation and verification of the header error control byte,

checking idle cells, and cell delineation.

12
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Control Plan user Plan

Higher Layer

ATM Adaptation Layer (AAL)

ATM Layer

Physical Layer

Figure 2.6: ATM Protocol Architecture

The PM is concemed with converting the signal into electrical or optical output for
the transmission of data over a transmission media at different data rates. The ATM layer
operates independently of both the underlying physical layer and the AAL layer above it.
The ATM is responsible for a number of functions involving the contents of the cell
header. In the transmit messages from source, the Segmentation and Reassembly-
Protocol Data Unit (SAR-PDU) is accepted from the AAL and encapsulated in ATM cell
payloads where the ATM layer generates various cell headers including VPI and VCI
fields. On the receiving side, the cell headers are extracted from their payload and the
payload part is passed to the AAL layer. Cell payloads are not manipulated at the ATM
layer. Other functions performed by the ATM layer are multiplexing and demultiplexing
of cells of different VC into a single cell stream on a physical layer.

The AAL of the protocol reference model accepts variable length PDUs from the
higher layer protocol and maps these into fixed size ATM cell payloads. However,
different services require different AALs. The AAL layer is further sub-divided into two

sub-layers: the Convergence sub-layer (CS) and the Segmentation and Reassembly

13
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(SAR) sub-layer. The CS provides services which include the multiplexing of higher
layer messages and cell loss detection/recovery. The SAR sub-layer accepts the CS's
frame and segments it into ATM cell payloads. Then the SAR sub-layer executes the
inverse operation of resembling the cells of a VC into data units to be delivered to the
higher layer. The CS is further sub-divided into a Common Part CS (CPCS) and a
Service Specific CS (SSCS). The function of the former is dependent upon the higher
laver services that are using the AAL. The CPCS performs functions such as padding and
adding headers and trailers to the entire AAL frame before passing to the underling SAR

sub-layer. The SSCS may operate over the CPCS.

ATM Convergence Sublayer (CS)
Adaptation
Layer (AAL)
Segmentation and Reassembly Sublayer
(SAR)
3 SAR PDUs
ATM Cell VPI/VCI Translation
Layer Cell Multiplex/Demultiplex

I ATM Cells

Frame generation /rccovery TC
Physical Cell rate decocting (idle cell)
Layer
Bit Timing PM
Bit Encoding / Decoding

T Bit Strcam

Figure 2.7 : Layers Description
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AAL maps the user management PDU into small blocks to fit in the ATM cell of virtual

connection, and vice versa.

2.5.1 ITUT-T 1.363 list for AAL service

The AAL services supported by [.362, which represented B-ISDN ATM Adaptation

Layer (AAL) specification [ITUT93], standard are:

¢ Handling of transmission error.

e Segmentation and Reassembly. End ATM nodes can transmit a large amount of data
by breaking the data into small pieces to be fit in the small fixed cell and reassemble
them at the destination.

¢ Handling of lost data condition.

e Adding some fields to the ATM payload to allow the processor at the end node to
discover any cells missing from its sequence data.

2.5.1.1 AAL Classes

The services transported over ATM layers are classified into four classes shown in the
Table 2.2. Each of these classes has its own specific requirements for the AAL. The
services are classified in three basic parameters for these four classes .

1- Time relation between source and destination.
2- Bit rate (variable or constant bit rate).

3- Connection mode (connection or connection-less).

15
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ITU-T defined one protocol type for each class of services named Typel through Type 5

and these are known as AALI1, AAL2, AAL3/4, and AALS.

Descripiion Bit-rate | Type | Class

Support connection-oriented services
AALL require information to be transferred Constant Connection Class A
between source and destination at a Oriented
constant bit rate. (fixed bit rate video)

Support connection-oriented services
AAL2 that do not require constant bit rates, but Variable Connection Class B
have timing and delay requirements. Oriented
(Compressed video or sound}

Is intended for both connection-less and Conanection
AAL3/4 connection-oriented services with Variable Oriented and C/D
variable bit rate Connec[ion-
) lcss
Supports connection-oriented services
that require variable bit rates. Delay and Connection
AALS timing are not crucial. AALS isa Variable Oriented C/D

simpler than AAL3/4, at the expense of
error correction and automatic
retransmission, but pays off with less
bandwidth overhead and reduced
implementation complexity.

Table 2.2: Traffic Classes and Criteria

2.5.2 ATM adaptation layer 3/ 4
The main function of AAL3/4 is to allow bigger size messages, where the length of
these messages do not exceed 64 Kbytes, to be transported across the ATM network as a

series of fixed length ATM cells. The user information to be segmented involves two

16
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different formats. The first format is Common Part Convergence Sublayer-PDU (CPCS-
PDU). Variable-length of CPCS-PDUs payload are encapsulated in the CPCS-PDU

frame format (Figure 2.8).

€idel CPCS-PDU Payload | Pad

CPl |BTag | BASize AL | ETag Len

Common Part Indicator (CPI) | octet

Beginning Tag (BTag) I octet

Buffer Allocation Size (BASize) 2 octet

CPCS Payload 1-65,535 octets

Padding (Pad) 0-3 octets

Alignment (AL) I octet

End Tag (ETag) 1 octet

Length (Len) 2 octet

Figure 2.8: CPCS-PDU format for AAL3/4

2.5.2.1 Header Description of CS-PDU

The CPI is used to interpret the subsequent fields for the CPCS functions in the
CPCS-PDU header and trailer. It indicates which version of the CS-PDU format is in use.
Only the value '0' is currently being used [ITUT93]. The Beginning Tag (BTag) field and
End Tag (ETag) fields allow the association of the first and the last SAR-PDUs of one

CPCS- PDU. Since variable length PDUs are encapsulated, the length of the CPCS

17
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payload varies. These Tags also protect each PUD against the situation in which the loss
of the last cell of the current PDU and of the first cell at the beginning of the next PDU to
be joined as one PDU at the destination.
The buffer allocation size (BASize) is used to indicate, to the receiver side, the max
buffer size required allocating the current CPCS-PDU. Padding (PAD) fields contain 0-3
octets, which are not part of the user information, positioned between the CPCS-PDU
payload and the 32-bit aligned CPCS-PDU. The alignment field should be set to '0".
Length field has two purposes. The assignment of the length of the CPCS-PDU payload
and to detect the loss or gain of information at the receiver side. The CPCS-PDU frame is
passed to the SAR sub-layer where it is segmented into equal chunks.

The second stage format when the CPCS-PDU frame segments into small pieces. Each
piece with 44-byte of CPCS-PDU plus 4 bytes of header and trailer is carried with each

cell (Figure 2.9).

¥ payload
r LI | CRC
ST |SN{MID

Segment Type (ST) 2 bits

Sequence number {SN) 4 bits
Multiplexing Identifier (MID) 10 bits

Length Indicator (LD 6 bits

Cycle Redundancy Check (CRC) 10 bits

SAR Payload 44 octets

Figure 2.9: SAR Structure for AAL3/4 cell format
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2.5.2.2 Header Description of AAL3/4 frame
In the first field of the AAL3/4 is Segment Type (ST) which used to indicate the
beginning of CPCS-PDU message (BOM), end of message (EOM), continuation of

message (COM), or single segment message (SSM). See the Table 2.3.

Value Name Meaning

10 BOM Beginning of message
00 COM Continuation of message
01 EOM End of message

11 SSM Single segment message

Table 2.3: AAL3/4 type field description

The next field is the sequence number (SN) which is used to recognize cell loss or a
disordering cell. The multiplexing identifier (MID) field is used to identify SAR-PDUs
belonging to particular SAR-SDU which can be assigned to help different PDU on a
single connection. The two ends during the call set-up negotiate the range value of the

MID field [ITUT95].

2.5.3 ATM Adaptation layer §
In the AALS, the frame of CS-PDU consists of the data portion, which is handed

down by the higher-layer protocol, and the eight-byte trailer. At the CS Sub-layer, the
AALS protocol does not specify any information for buffer allocation size, and CRC

checking is fully performed on the entire message at the CPCS Layer.
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CPCS-PDU Payload Pad
CPCS-UU CPI | Length | CRC
CPCS Payload > 65,535 octets
Padding (PAD) 0..47 octets
CPCS User-to user indication (UU) 1 octet
Common part identifier (CPI) 1 octet
Length 2 octets

Cyclic Redundancy Check (CRQ) 4 octets

Figure 2.10: AALS5 CPCS-PDU frame format

The padding field (PAD) is located between the data and the trailer in the CPCS-
PDU, where PAD size can vary from 0 - 47 octets, this ensures that the total size of a
CPCS-PDU is a multiple of 48 octets of SAR data. The second field is the user to user,
which contains one octet that is used to carry CPCS user information. The common part
identifier (CPI) contains zeros in its field, indicating that the CPCS PDU contains user
data. Other CPI values are for further study. The length field is used to indicate the
CPCS-SDU payload's length in the CPCS-PDU. It is necessary to figure out the actual
size of user data from its padding data.

The main feature missing in AAL 5 is muitiplex identifier (MID) which has the
ability to send multiple SAR connections on a single ATM layer connection cell over an

active connection. Also, AALS uses the ST at ATM header to distinguish between the
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last or single SAR segment and the rest of the segments. AALS sets the ST value of 'l' to
identify the last cell of CPCS-PDU as a last cell of the CPCS-PDU frame. All the other
cells such as BOM or COM will have value '0". This procedure can eliminate the two bits

ST field at AAL3/4 header.

2.6 Segmentation and Reassembly (SAR)

This mechanism allows the users to send a big message (less or equal 64 Kbytes)
through the protocol layers to the ATM network where AAL has it is ability to cut the
CS-PDU frame into small pieces as ATM payload. Furthermore, AAL can send these
pieces to lower layer (ATM layer) which then completes the process by adding ATM
header, and sending the cell to the physical layer, then to the transmission line. The
Physical layer is responsible to add CRC at the fifth byte in the ATM header to help the
receiver side accept corrected header information. This procedure is known as
Segmentation. The receiving side accepts the packet from lower level (after extracting its
header from the packet) and then reassembles the fragments back together at the
destination. This is known as Reassembly. The general procedure is called Segmentation

and Reassembly (SAR).

2.6.1 Segmentation and reassembly for AAL3/4

The AAL3/4 header and trailer which contain 2 octets are added to the 44 byte
payload which is cut from the CPCS-PDU frame to be 48-byte and then sent it down to
the ATM layer which will add its header to be a complete ATM cell format. In the

receiving procedure the ATM layer will extract the ATM header and then pass the
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payload part to the AAL layer which extract the AAL header and trailer and pass the

remaining payload to its related message format (Figure 2.11).

A User
Layer
User PDU
A 4
s A
CPCS
-PDU Convergence
CS-Header User PDU PAD CS-Trailer Sublayer
(Cs)
—
7 . ATM
e : ", Adaptation
__________ - e e e . 5 — e ——— Layer
£ \\‘ k AAL
SAR PDUs Vi T
] ‘ ' 3 \"\ Segmentation
; . and Reassembly
. N SAR
Hdr Payload Tir Hdr Payload Tir Hdr Payload Tir
o000 :
- v v
A
ATM
5 Layer
Hdr Payload Hdr Payload Hdr Payload
o000
ATM Cell v

Figure 2.11: AAL3/4 Segmentation and Reassembly (SAR)

2.6.2 Segmentation and reassembly for AALS

In the ATM layer there is less overhead than in AAL3/4 where the payload part can

carry 48 bytes instead of 44 bytes. The improvement by decreasing the amount of

processing at AAL layer makes AALS more efficient and attractive than AAL3/4 (Figure

2.12).
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2.7 Different ATM interface architectures

It is very clear that using an embedded processor element on the NI will release the
host processor from most, if not all, of the processing that is required by NI. A commonly
asked question concerns how large an amount of processing may be done if the NI has no
processing element. In the case where such processing is large, the cost of adding an
embedded processor to the NI can be justified. Otherwise, the host can perform all the

processing required by the NI functions. All the Nls that are used today have a certain
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processing element inside the NI to reduce or eliminate the host processing required for

NI functions.

In this section we will demonstrate some of the ATM interfaces that have been

designed to serve in ATM ends. Brief summaries about these important works are

presented in this section.

a)

b)

The STS-3c interface has been developed by Traw and Smith at the University of
Pennsylvania (UPenn) [STraw93]. They designed an interface for the R6000
workstation and does ATM segmentation and reassembly on the host network
interface's memory. This interface is created with pure hardware to operate at STS-3c
rate 155 Mbps to support AAL3/4 function. The protocol processing for SAR was
divided into different components (such as VCI lookup controller, linked list
manager, and segmentation controller). These components operate concurrently to
give good performance for the Segmentation and Reassembly protocol processing,
where data has been pipelined to process from one to another component.

The on-board processor has been used to process the ATM protocol including the
SAR functions. The Reassembly messages are performed in a local buffer to reduce
interrupting the host CPU by each arrival cell. There is a necessity to change some of
its component in order to run different protocols or new version of the same protocol.
An STS-12 622 Mbps ATM SONET stream interface has been developed by Davie
[DBru93] at Bellcore. This interface was designed to work with a TURBO channel
bus on a DEC station 5000 and processes the segment and reassembles messages
using host memory. The operations include SAR protocol processing for AAL3/4

(also suitable for AALS) done by two Intel 80960CA 33MHz microprocessors. These
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microprocessors give a great flexibility for deciding the transmitting and receiving of
different VC to or from the ATM network, where each decision is done within 23
instructions before the next cell arrives.

Each side (receiver and transmitter) operates independently. However, they still
need to communicate, in some cases, with each other in order to make the
performance of receiving and transmitting data more efficient. DMA is used for data
transfer.

This interface performed the processing needed for ATM and AAL layers by an
on-board processor. It uses the host memory for reassembling the message and
notifies the host after receiving a number of messages for a particular VCI (when
memory buffer is full). This approach has a smooth design for the interface but it is
not clear that if Intel 80960CA can sustain high-speed lines such as 1.2 Gbps and
higher rate.

A 155 Mbps ATM host interface controller (ASIC) was designed in Electronic and
Telecommunication Research Institute, Korea [CKim98]. This interface uses host
memory to store the arrived messages. The ATM Subscriber Access Handler -
Network Interface Controller (ASAH-NIC) is composed of a segmentation and
reassembly engine to process SAR protocols related to AAL3/4 and AALS. The
segmentation engine requests the DMA to move a block of data ATM cell body from
the host memory and store it in the temporary buffer (FIFO) in the network interface
and then sent as a complete ATM cell to the transmission line. The reassembly
engine requests the DMA to store the received cell body from interface's memory to

the host memory. This request provides some information, such as the host memory
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d)

address to which the data is stored, and the address of the local memory from which
the cell body should be read and higher rate.

A 700 Mbps interface was designed by Richard and Wang at the British Columbia
Advanced System Institute [RHosb99]. This interface uses a 32-bit embedded
processor core and Receive Control Unit (RCU), and Receive Data Transfer Unit
(RDTU) for the ATM, and SAR protocol processing for AAL5 reassembly. The
reassembly memory subsystem is composed of pages that can be dynamically
allocated for variable sized PDU's. The address at the beginning of the transfer
sequence determines the memory to which the current page should be written. A
spectal request is granted when the microprocessor determines that complete PDU
has arrived in the local memory. The DMA mechanism is used for data transfer. More

efficient data movement over 32-bit bus is enabled through 32-bit data paths.

Studying the previous ATM interfaces brought several issues to the foreground. The

first issue is the distribution of protocol functions between the on-board processor in the

network interface and the host processor. Processing of higher-level protocol functions

should be performed by the host and the processing of ATM and AAL functions be

performed in the network interface.

Second, most of the interface designers are focusing on eliminating the number of

copying cells inside the NI, and also providing a fast device for data movement. Using

the DMA in the area of the data movement is shown in the all previous works and also

is addressed in [GPart94 and AElka00].
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Third, the NI should reassemble the incoming cell to be a complete message (CPCS-
PDU frame). One approach is to reassemble the message in the host memory, as shown
'b' and 'c,’' or reassemble the message in the NI buffer, implemented in 'a’ and 'd.’

Fourth, the architecture of NI should provide between the host and the network
interface a flexible means of communication, which is useful in reducing the amount of
interrupting time caused by the arrival cells. The NI should be designed not to interrupt
the host for each arrival cell [GPart94]. The commands between the host and the NI can
be passed through dual ported memory, as proposed in [Burc93], or through the FIFO
queue buffer [Ckim98, RHosb99, AEIka99 and Aelka00]. Finally, the adapter should be

simple, scalable, small in size and low cost.

2.8 Conclusion

There is still little study on the impact of network interface design for gigabit
networks, specifically in the area of the processing capability for multiple gigabit
network interfaces. Such interfaces will require a high-speed processing unit to cope with
the increasing speed of the transmission rate.

Most often, the use of general-purpose cores within the network interface design is
very attractive due to their availability, short developing cost, and their simple NI design.
However, such cores are not used in high-speed network interface designs because no
clear indication whether such cores-based NI will be scalable, and because of that such

core are not optimising for NI applications.
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Chapter 3

ATM Network Interface Simulation

3.1 Introduction

Some of the challenges behind the building of ATM interfaces are: high-speed
transmissions, ATM cell structures, and the ATM and AAL protocol processing. As the
network speed increases, the time that is available to the NI to process the arrived cell
will decrease, and therefore the processing unit inside the NI should be fast enough to
finish the processing of one cell before the next one arrives. Since the ATM network uses
cells which are very small (53-byte), the network interface in the transmission side should
partition the original message into ATM cells. The whole message may require many
cells to be sent out, one after the other, in order to transmit a complete message to the
receiver. Fragmenting the original message into ATM cells is known as Segmentation
function. At the receiver side, the original message will be constructed from these small
cells. The reconstruction processing at the receiver is called Reassembly function.
Segmentation and Reassembly (SAR) functions have put more challenges on the
processing part of the ATM NI, especially where these cells belong to different messages
of different applications. Other functions that NI should process are:
® The ATM header.

® The AAL header and trailer.
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o Virtual Channel (VC).
® Data movement.

o Communication with host processor.

In order to understand and evaluate the processing which carried out by the NI, a
simulation process will be required for NI model. Building a simulator for a model that
has components used in real NI is a time consuming task; therefore, we decided to
evaluate the processing by using a simple simulator. Our strategy was to estimate the NI
functions processing requirement by using this simple simulator. Such estimation will
help to decide whether the cost effective embedded RISC core is possible to be used in
such applications.

The rest of this chapter describes our model and the simulation process. The chapter

concludes with the results we obtained for both AAL3/4 and AAL 5 protocol processing.

3.2 The Simulation

In order to simulate the NI function in a very short period of time, we decided to use
the SPIM S20 simulator [DPatt98]. It runs programs for the MIPS R2000/R3000 RISC
microprocessors where it can read and immediately execute files containing assembly
language. The simulator is a self-contained system for running these programs and
contains a debugger and interface for a few operating system services [SPIM97].

The SPIM simulator is used in this work to process the ATM NI functions. Since in

real ATM NI, the Segmentation and Reassembly functions are generally processed in two
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different processors and both are run in parallel, the simulation for the Segmentation
function has been performed independently from the Reassembly function.

Two methods are possible for data movement and can be used in our simulation
approach [LPete96, DPatt98]. The first method is programmed IO (PLVO). In this
method, the embedded processor takes the complete responsibility for moving the data
portion from one place to another. The second method is to use DMA. The DMA will
take responsibility for moving data from one place to another and eliminate the need for
an embedded processor intervention to do that function. As the SPIM simulator does not
have a DMA unit, we only let the embedded processor core simulate the initialization of
the control information for the DMA controller and not the data movement itself. That
has made the simulation processing very close to reality where the processor needs only
to initialize DMA.

The simple simulator that we present in this chapter has used the R2000/R3000 to
process the NI's functions and the simulator's memory to hold all NI buffers (Figure 3.1).
These buffers are:
® The Line Interface (LI) buffer to store the arrival cells from the network line.

e The Host-NI communication (HNIC) buffer which is used to exchange control and
status messages between the host and NI.

e The Host Interface (HI) buffer that is used for storing cells temporarily.

® The Circulation Buffer (CB) which is used to store all the address pointers for the

free space that exists inside the HI buffer.
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Clearly in real NI the LI, HI, and HNIC buffers are hardware components and we
chose to place them in the simulator's memory. The Content Addressable Memory
(CAM) that is required for holding the active identifiers and the support for the link-list
mechanism, as will be described later, is also implemented inside the memory simulator.

In the real NI, the CAM is implemented as a separate memory.

Host Interface (HI)
buffer

Line Interface (LI)
buffer

Embedded
Processor
Simulator

Circulation Buffer
(CB)

Content Addressable
Memory (CAM)

Host - NI
Communication
(HNIC) buffer

Memory simulator

Figure 3.1: Simple NI simulator structure.

All the above buffers are used for Reassembly functions processing where the

Segmentation function processing requires only HI, LI, and HNIC buffers.
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3.2.1 Buffers Description
3.2.1.1 Circulation Buffer (CB)

The ATM cells are fixed in length and the reassembly process is required to
reconstruct the arrival celis in the HI buffer to a whole message and then deliver it to the
host. The HI buffer is basically partitioned into smaller buffers, each of these buffers is
equal to the size of an ATM cell. The CB is used to store all the pointers of there small
buffers in order to monitor all the buffers within HI. The Reassembly Embedded
Processor (REP) uses two 32-bit registers to control the CB. These registers hold the
head-of-the-CB pointer and the tail-of-the-CB pointer. The head-of-the-CB pointer refers
to the first available space on the CB that can be used to reassemble the incoming cells,
where the tail-of-the-CB pointer is used to indicate the location of the last available space

inside the CB (Figure 3.2).

Read register after receive each cell

AN

Head-of-the-CB
register

Update the head-of-the-list

after rcad onc pointer

Reassembly

Embedded :

Processor 7+ Update the wil-of-the-

(REP) /" list register after adding
a ncw pointer
Tail-of-the-CB
register

Circulation Buffer (CB)

Figure 3.2: Circulation Buffer (CB) architecture.
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The REP used for reassembly functions processing will update the head-of-the-CB
register whenever a new cell arrives. Moreover, it updates the tail-of-the-CB register

whenever the host reads the message from the HI.

3.2.1.2 Host-NI Communication (HNIC) buffer

The NI has to communicate with the host to organize sending and receiving messages
and exchange control and status information. In the Reassembly unit, the HNIC is split
into two sections to store the control and status information (Figure 3.3). The first section
of HNIC is used to store information, which is sent by the REP for the host. The REP,
after storing the complete CPCS-PDU frame inside the HI buffer, sends the Start-address
and VCI-MID (for AAL3/4) or VC (for AALS) to the HNIC buffer. The host reads the
Start-address and VCI-MID or VC, and then starts processing the CPCS-PDU frame. The
second half of the HNIC buffer will be used by the host to store its information to the NI.
The host processes the reassembled messages then returns the pointer (the cell's address
inside the HI) of each cell body to the HNIC buffer to be reused again by another
message. The REP will fetch these pointers and then store them at the tail-of-the-CB.

The host is responsible for accepting new connections after it negotiates with other
hosts. These connections have their own VCI-MID or VC and the REP in the NI should
be informed about these new connections. These information will be delivered to the NI
through the second half of HNIC.

In case the host CPU is busy doing other processing while different cells keep
arriving from the network, the REP could send a buffer status message to the host when

that the HI buffer is getting full.
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VC or VCI-MID &Surn-address of
CPCS-PDU# n

To the Host

First Half of HNIC :>
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Embedded
Processor VC or VCI-MID(for new connection) <:
(REP) '.f{‘: From the host
Second half of HNIC
Host-NI
Communication
Buffer status (HNIC)Buffer
message

Figure 3.3: Communication between host and NI Reassembly Embedded Processor

In the segmentation unit, the HNIC buffer will be used when the host decided to
sends a block of data to the other ATM hosts. The host CPU sends the CPCS-PDU frame
to the HI buffer follows with other information required to process the frame. This
information includes VCI, VPI, and frame location inside the HI. The Segmentation
Embedded Processor (SEB) must get the information from the HNIC in order to process a

CPCS-PDU (Figure 3.4).

CPCS-PDU #n

‘ ), Segmentation
! Host Interface (H]) Embedded

[}

From the host , H‘ Processor L
All the necessary (SEP) 5

information about CPCS-

PDU #n

Host-NI Communication

Figure 3.4: Communication between the host and the NI Segmentation Embedded Processor
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3.2.1.2 Content Addressable Memory (CAM)

ATM network is connection oriented. The connection is set up between two hosts
with specific identifiers (i.e. VCI and VPI). The cells that transmit over a connection
should have the same identifiers. The receiver side can recognize all the arrival cells that
have the same identifier are related to the same message and it should be reassembled
together. In this case, the receiver must multiplex the arrival cells to its related message
according to the cell's identifier. The REP should know about all the identifiers that the
host has made in order to match it with the identifier of the arrival cells. The Reassembly
unit is then enabled by Content Addressable Memory (CAM) to store all these identifiers;
VCI-MID for AAL3/4 [DBru93, STraw93 and Ahme94] and VCI and VPI [Desi95,
CKim98 and RHosb99]. With each identifier, the CAM also stores the location (Start-
address and End-address) of each message inside the HI buffer to help the REP link
together the arrival cells which have the same identifier by using a linked list mechanism
to reconstruct the messages. We will describe the linked list mechanism later.

We chose a part of the NI's memory to represent CAM where finding a match with
the CAM-base memory was achieved by fetching each location and then comparing it

with the arrived cell's identifier until a match was made.

3.3 Processing the Reassembly Function.

The main function for the receiver section of the NI is to reassemble the arriving cells
into a complete message by linking together the cells that have the same identifier in the
HI buffer. Each cell has its own header(s) to carry the cell's information. The header

includes information such as Payload Type (PT), which helps the receiver side to
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recognize the cell type if it is the Beginning Of Message (BOM), or Continuation Of
Message (COM), or End Of Message (EOM) of the CPCS-PDU, or maybe a Single
Segment Message (SSM) of the CPCS-PDU.

Other useful information carried by the ATM cell header is the cell identifiers. The
REP reads the arrival cell's identifiers to be able to distinguish to which CPCS-PDU
frame that the arrival cell should reassembled with. For AAL3/4, the 26 bit identifiers
VCI and MID, which are located in ATM and AAL headers respectively, will be checked
with the CAM entries in order to multiplex the arrived cell to its related CPCS-PDU. The
AAL 5 has 24-bit identifier VC (VPI and VCI), located in the ATM header, that needs to

be matched with the CAM entries that contain the active VC.

3.3.1 AAL3/4

As soon as the ATM cell arrives at the NI, the ATM header, AAL header, and AAL
trailer will be processed. The 26-bit VCI and MID are masked from the ATM header and
AAL header, respectively, in order to match these identifiers with the CAM entries. After
the match is found, the REP reads the head of the CB in order to get the address for a free
location inside the HI for the arrived cell’s body. The two bits of the PT field inside the
AAL header check to determine if the type of the arrived cell is BOM, COM, EOM, or
SSM of a CPCS-PDU. After getting a match and the type of the cell, the REP then needs

to move the cell body from the LI to the HI buffer.
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3.3.1.1 Data Movement

In the Programmed I/O method, the REP handles all the procedures for moving the
cell payload from LI buffer to HI buffer. Every single clock cycle, the processor loads
32-bit to its register and then during the next cycle, store these 32-bit to a specific place

inside the HI buffer until all 44 bytes have been moved to the HI bufter (Figure 3.5).

Host Interface (HI)
buffer

) RS os.

Sm:; the cell body Line Interface (LI)
inside the HI
buffer
1 ‘

oad the ATM

i cell from the L1 Circulation Buffer

Reassembly E CB

Embedded i

Processor
(REP)

Content Addressable
Memory (CAM)

Host - NI
Communication (HNIC)
buffer

NI's Memory

Figure 3.5: Programmed [/O approaches for data movement.

In the other method, i.e. we use the DMA approach for data movement, the DMA 1is
initiated by embedded processor to move the cell payload while the embedded

processor remains in halt mode. The initiation of DMA needs two instructions. The first
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instruction includes the address from where the data has to be read, and the second
instruction to inform the DMA about the destination location where the cell payload
should be store (Figure 3.6). The amount of data that has to be transfer is not required

since it is known in NI application.

Bus Interface (HI)
buffer

Send the cell body
to the HI 3)

DMA
——P
)
DMA
) initiation Load the cell
command body from the LI
A,_‘}T- Circulation Buffer
Reassembly | CB
Embedded Cell headers and trailer
Processor |z,
(REP) |/ Content Addressable
Memory (CAM)
Host-NI Communication
(HNIC)Buffer
NI's Memory

Figure 3.6: DMA approach for data movement with AAL3/4

After moving the cell body from the LI to the HI buffer, the REP then needs to link
the arrived cell to its related CPCS-PDU frame which is considered as a part of that

frame. Our approach for reconstructing the message is using a link-list mechanism.
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3.3.1.2 Linked List Mechanism.

cell which has the same VCI-MID should be linked together to get a complete message.
Each VCI-MID in the CAM entries provided with two pointers, a head of the linked list
pointer which holds the address of the first arrived cell, and the tail pointer which holds
the address of the last cell that arrived for the specific VCI-MID. The linked list is useful

for reconstructing the message from the ATM cells to a list of nodes, where each node

has a cell body and pointer to next node (Figure 3.7).

CAM
entry

#1

CAM
entry
#n

are zeros. Changing these pointers depends on the processing that the arrival cell needs

because each arrival cell may require different processing in the linked list approach than

The multiplexing of the cells can be done according to VCI-MID, where each armval
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Figure 3.7: Linked list data structure.

After inserting a new entry in the CAM, all pointers (Start-address and End-address)
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others, depending on its Segment Type (ST). In some cases, the ST indicates that the
arrived cell is BOM (ST='10"). The REP then needs to create a new linked list for this
CPCS-PDU frame by inserting the Start address and End-address in the CAM with this
VCI-MID. The Start-address refers to a head of the linked list (the address which is
loaded from CB for this cell). The End-address refers to the tail of the linked list which is
the Null’s address (Node's pointer), located at the end of the cell body. Thus, the linked
list with one node was created for the arrived VCI-MID. The procedure of adding the
new nodes (cell body and its pointer) at the end of the existing linked list after the match
between VCI-MID of the arrival cell and the one in the CAM entries is as follows: Make
the old node pointer point to the current node, and the current node pointer point to
NULL, then store the NULL's address of the current node at the CAM referring to the
new end of the list.

We have discussed the idea of adding a COM (where the ST = '00") in the existing
linked list, now let us see how the same approach can be applied in the HI buffer. The
End-address in CAM, which is referring to Null value of the previous cell, is read by REP
and then stores the address of the current cell in the same place where the NULL value is
of the previous cell. In this case the current cell was attached to the previous cell for the
same VCI-MID, then store the NULL value at the end of the current node (Figure 3.8).
Finally the NULL's address is stored in the CAM with the same VCI-MID which refers to
the End-address of this VCI-MID.

When the ST refers to EOM (ST ='01"), we also need to add this node at the end of
the list following procedure which we used for COM. With EOM there is no need to

extend
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the linked list further because it is the last cell of the VCI-MID, and there is no need to
store the End-address in the CAM. When the PT refers to SSM (ST='11') which indicates
that there is only one cell for the VCI-MID, move the cell body from LI to the HI buffer .
Finally store the NULL value at the end of the cell body where there is no need to update
the End-address or Start-address at CAM because no more cells will be arriving after this

cell.

BOM Cell
& Body z
A (o e
T A poos Pointer to Next cell

CoM

EOM

SSM

HI-based Memory

Figure 3.8: Linked list structure

3.3.2 Reassembly AALS

The Reassembly function for AALS needs only to process the ATM header where the
AAL header and AAL trailer do not exist for an ATM cell of type AALS [ITUT93].
Extract 24-bit VC (VPI and VCI) from ATM header and match it with CAM entries

which contain the active VC [Desi95, CKim98 and RHosb99]. The ATM cell header
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holds the PT field which is useful to find whether the type of arrival cell is first, middle,
last, or a single cell in a CPCS-PDU. When the PT is '0,’ this indicate that the arrival cell
is BOM or COM, otherwise EOM or SSM. The REP uses the Start-address located in the
CAM to differentiate between the BOM and COM. If the PT is ‘0’ and the Start address
is ‘0’ too, then this message is BOM. Otherwise, it is COM. The same approach will be
applied for SSM and EOM.

The linked list data structure for AALS Reassembly function for arrived cells is
processed in the same manner as for AAL3/4. For the data movement, the main
difference between AAL3/4 and AALS is the size of the cell body. AALS has 48 bytes in
its cell body which needs 12 cycles (48 Byte / 32-bit bus width) to move a complete cell
body from one location to another. As the AALS has no AAL header and trailer, the

processing requirement for AALS is less than to AAL3/4.

3.4 ATM Segmentation Function Processing

As the host transmit a CPCS-PDU frame to the other end, it moves the frame to the
HI buffer of the Segmentation unit. Also, other necessary information is required to be
sent by the host, such as the VCI and the location of the CPCS-PDU frame inside the HI
buffer of the Segmentation unit, i.e. the start and end address. This information should be

sent to HNIC for each CPCS-PDU frame.
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3.4.1 Segmentation AAL3/4

The SEP reads the information which is available in the HNIC in order to start
generating the first four bytes of ATM header (for the particular CPCS-PDU) and to
calculate the size of the CPCS-PDU in order to determine the PT and sequence number
(SN) fields in the AAL header. After the ATM header and AAL header have been
generated, they are written into the SEP's register to be sent with each segment part of the
CPCS-PDU frame (each segment is 44 byte). The SEP needs to change the PT and the
SN for each leaving cell (i.e. the PT of the BOM is '01', COM is '00' and SN should be
incremented for each leaving cell that have same VCI-MID).

For data movements using the programmed [/O, the embedded processor moves 44
bytes (as ATM cell body for AAL3/4) from the HI to the LI. In addition, the headers will
be transferred from the SEP's register to LI. After moving the headers and the cell body,
the SEP then generates the last byte of the AAL trailer which contains the actual length of
the cell body, and then sends the trailer from the SEP's register to the LI (Figure 3.9).

For data movement using the DMA, the Embedded processor initiates the DMA to
move the 44 bytes from the HI buffer to the LI buffer. The ATM cell header and trailer
are moved from the SEP's register to the LI buffer. The initiation of DMA needs two

instructions as discussed previously.
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Figure 3.9: ATM Segmentation

3.4.2 Segmentation AAL S

The SEP needs to generate the ATM header for the CPCS-PDU frame and that header
will be sent with each outgoing cell. Also there is no need to calculate the sequence
number and the size of body for each leaving cell. Each BOM, COM, EOM or SSM cell

needs to change the PT field in the ATM header to either '0' or '1' ("0’ for BOM and COM,
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'I' for EOM and SSM). The only different between AAL 5 and AAL3/4 for data
movements is the payload size of AAL 5 which is 48 bytes. With less headers and trailer,

AALS requires less processing cycles than AAL3/4.

3.5 Simulation Results

During the simulation, we have measured the amount of processing required for ATM
network interface protocols and for data movement. Different ATM cells have been
delivered to the simulator and the number of instructions required for the Reassembly
functions processing is measured for AAL3/4 and AAL5 (Table 3.1 for AAL3/4 and
Table 3.2 for AALS). After the embedded processor finishes processing one ATM cell, it
then fetches the new connection identifier or a pointer that was sent by the host through
the HNIC. Also, the NI needs to send the VC or VCI-MID with its Start-address to the
HNIC after reassembling the CPCS-PDU frame in the HI. The amount of the execution
that the processor takes for different types of operations for ATM Reassembly has been
analyzed during this simulation (Table 3.3). The percentage measurement was taken
when the processor execute the EOM, i.e. the result show the upper band of the execution

rate since the EOM is required more processing than other type of messages.
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Instruction First cell Last cell Description

Load 3 3 Load the ATM header, AAL header, and AAL trailer from
LI buffer.

Load 1 1 Load a space for the incoming message inside the HI
buffer by reading the head of the CB.

Load 1 1 Load a VCI-MID from CAM to match it with incoming VCI
-MID .

Load 1 Load the start-address from CAM to be stored in HNIC
Buffer.

Load - 1 Load the End-address from the CAM to get the NULL's
address

Load 1 1 Load the pointer or VCI-MID from HNIC buffer

Store 2 - Update the CAM by two entries a head and tail of the
linked list

Store - 2 Store the VC and start and End-address to the HNIC

Store - 1 Store the address of incoming message in the previous
message to be a pointer to the incoming message.

store 1 \ Store Null value at the end of node.

Store 1 1 Store the new pointer in the tail of the list of the CB. or
store VCI-MID in the CAM

Arithmetic 4 3 add, addi

Logic 3 3 and

Branch 4 5 Condition branch

Total 21 24

Table 3.1: The number of the Reassembly instructions needed to process an ATM

message for AAL3/4.
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Instruction First cell Last cell Description

Load 1 1 Load the ATM header from LI buffer

Load 1 1 Load a space for the incoming message inside the HI buffer
by reading the head of the CB.

Load 1 I Load the Start-address from the CAM to be stored in HNIC
Buffer.

Load - 1 Load the End-address from the CAM to get NULL's address

Load 1 1 Load a VCI-MID from CAM to match it with incoming
VCI-MID

Load 1 I Load the pointer or new VC from HNIC buffer.

Store - 2 Store the VC and Start-address to the HNIC buffer.

Store 2 - Update the head and tail of the list in side the CAM.

Store - 1 Store the address of incoming message in the previous
message to be a pointer to the incoming message.

Store 1 1 Store Null value at the end of current cell .

Stare 1 1 Store the new pointer in the tail of the list of the CB. Or
Store the loaded VC in CAM

Arithmetic 3 2 add, addi

Logic 2 2 and

Branch 5 5 Condition branch

Total 19 20

Table 3.2: The number of the Reassembly instructions needed to process an ATM

message for AALS.
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Operation type Processing Percentage rate
AAL3/4 AALS
Load 333 25
Store 20.8 30
Arithmetic and logic operation 25 20
Conditional branch 20.8 25
Reading/writing from/to HNIC 12.5 * 15 *
The liked list data structure 166 * 20*
* Load, store and arithmetic instructions are involved

Table 3.3: Contains the percentage of the processor power for ATM Reassembly.

The number of instructions involved in processing the Segmentation functions is
shown in Table 3.4 and Table 3.5. Table 3.6 shows the percentage of each instruction
used in the Segmentation function processing. Such result are measured for the
processing of BOM which required more processing than any other message type, since
its required to generate the cell headers and trailer for each BOM. That is, the upper

bound of the processing rate is shown in Table 3.6. Also no data movement is involved in

this calculation.

Instruction First cell Last cell Comment

Store 3 3 Moving ATM header, AAL header and AAL
trailer data from microprocesseor 's register to
network line.

Arithmetic 13 5 add, addi
Logic op 1 - and
Branch 2 2

Total instruction 19 11

Table 3.4: The number of the Segmentation instructions needed to process an ATM for AAL3/4
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Instruction First cell Last cell Comment

Store 1 ] Moving ATM header from microprocessor's
register to network line

Instruction 6 2 add, and
Branch 2 1 Condition branch
Total instruction 9 4

Table 3.5: The number of the Segmentation instructions needed to process an ATM
message for AALS.

Operation type Processing percentage rate
AAL3/4 AALS

Store 16 11.11
Generation ATM header 20 * 44 *
Generation AAL header 10 * --
Generation AAL trailer 10 --
Arithmetic and logic operations 74 66.66
Conditional Branch 10.5 22
* Arithmetic and logic operations are involved

Table 3.6: Contains the percentage of the processor power for ATM Segmentation

After calculating the amount of processing required by REP to process each ATM
cell, we have measured the amount of processing that the REP should be performed in

order to support different transmission line speed.
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Figure 3.10 shows these results in million Instruction per Second (MIPS). Hence the

REP is considered to be a RISC core, every instruction can be processed in one cycle.

Therefore, the results shown in Figure 3.10, can be represent the required speed of the

RISC core in terms of MHz. As we measured the upper bound processing for ATM cells,

the results we present in Figure 3.10 represents the maximum REP clock rate to process

different transmission lines.

S51Mbps 155Mbps 622Mbps | 1.2Gbps | 2.4Gbps | 4.8Gb
@AALI/4  2.88  8.77 35.84 67.9 | 135.8.%1522
OAALS 7.31 29.33 56.67 .} 20022
LINE's SPEED. -

Figure 3.10: Reassembly function processing

[f the REP is involved in the DMA controller initialization, the results are very close

to that without data movement and specifically when the transmission line speed is low

(below 622Mb/s) Figure 3.11. However, as the speed of the transmission lines get higher,

the amount of processing required for initialization of the DMA controller becomes

significant.

50



Chapter 3: ATM nerwork Interface Simulation

75 7 —

vl
25 . R 1

g
T

§1Mbps 155Mbps 622Mbps ' 1.2Gbps | 2.4Gbps |- 4.8Gbp
WAAL3/4 312 9.5 38.14 73.6 | 14T:zifAR
OAALS 26 . 8.04 32.27 62.26 2},
LINE's SPEEDE

Figure 3.11: Reassembly with data movement using DMA

We have simulated the amount of protocol processing with the data movements
using the programmable /O technique. We found that the REP processing is become

higher than that in the previous simulation where the DMA initialization is used (Figure

S51Mbps 155Mbps 622Mbps | 1.2Gbps
‘WAAL3I/E 55 16.8 67.48 130.8 |
OAALS 5.26 16.08 | 64.55 126.5_ .|
o LIN €Dk

Figure 3.12: Reassembly with data movement using programmed /O
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The amount of processing for Segmentation Function that the SEP should execute is
calculated in the same manner as for Reassembly Functions (Figure 3.13). Clearly the
RISC core clock rate is less than that for Reassembly function since the amount of

processing for Segmentation function is less than that for Reassembly.

L 51Mbps 155Mbp 622Mbp 1.2Gbp | 2.4Gbp ; 4.8Gbp

BAALY4 228 69  27.87 5377 | 107.3 | 215 |.-. i
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Figure 3.13: Segmentation function processing

Figure 3.14 shows the amount of processing that is needed for ATM Segmentation

where the SEP process the DMA initialization.
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Figure 3.14: SEP processing amount for Segmentation function and with DMA
initialization
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As we process the data movement using programmable I/O technique, in addition to the
processing of segmentation functions, the number of instruction processed by SEP is

increased significantly (Figure 3.15).
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é ‘WAALY4  4.93 1498 6015 . 116.04 | 232 | . 46435 :
DAALS 397 1206 4841 | 9339 | .166:79%
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i

Figure 3.15: Segrnentatid‘r;;\‘/ith data movement using programmed IO

3.6 Conclusion

The Segmentation Function requires less processing than Reassembly function
because of the nature of the function, which is simpler than Reassembly. Generally, the
Embedded processor core running on a lower clock rate will be more useful for the
network interface where the cost of such core will be low. Hence, the Embedded
processor core should be supported with a DMA controller. The processor that use a
prograinmed /O approach for data movements will process about 33 % more than the
one using the DMA technique for data movements.

It is clear from the simulation result that a 1.2 Gbps ATM network interface can be
achieved by using an embedded processor running at 74 MHz for Reassembly function

processing, and 60 MHz for Segmentation function processing. These result are applied
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for supporting AAL3/4. The processing requirements for AALS are much less than with

AAL3/4, about 63MHz and 32MHz for Reassembly and Segmentations respectively.
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Chapter 4
VHDL Simulation for ATM NI

4.1 Introduction

The amount of processing required for the ATM network interface supporting
different transmission line speeds was investigated. We found that the use of an
embedded RISC core, run at 74 MHz, in ATM NI design could support up to 1.2Gbps
transmission line. We know that a SPIM-based simulator gives an estimate of that
processing, since the simulator does not simulate the real hardware that is usually used
with NI design. This gives us an incentive to investigate a detailed simulator that
simulates a real ATM NI. Such simulator uses the RISC core and other components that
are required in the interface design such as the DMA, Content Addressable Memory
(CAM), FIFO, CB, the transmission line interface, and the host interface buffer. With
such a simulator, we can find the accurate results for RISC clock rate, RISC processing,
and NI structure. We decided to use VHDL in our simulator because it is suitable and
powerful to capture complex digital system design for both simulation and synthesis
[KSKA96, DPERR98]. VHDL also has many features appropriate for describing the
behavior of components ranging from simple logic gates to complete microprocessors
and custom chips. The IEEE //64-1993 standard running over the Xilinx foundation

version 1.5 was used in our simulation [Xilin98, Xilin99]
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The VHDL-based model for Segmentation and Reassembly function of both AAL3/4
and AALS, is developed and described in this chapter. The NI components and their
operation will also been described in details. The chapter concludes with the VHDL

simulator results.

4.2 ATM Network Interface Model

The NI model we proposed is partitioned into three parts: the communication line
interface, the processing core, and the host bus interface (Figure 4.1). The processing
core performs the NI functions such as Segmentation and Reassembly, the PDUs, VCI
and VPI for AALS, VCI and MID for AAL3/4, linked list scheme, cells copying and
buffering.
The model has the architecture that can support high-speed lines for both AAL 3/4 and
AAL 5 and it provides several features:
® Data movement using DMA.
® Two RISC-cores, one per direction (one for Segmentation unit and the other for
reassembly unit), perform all functions related to the AAL3/4 and AALS.
® Using Content Addressable Memory (CAM) for virtual channel traffic [Gore97,
STraw93], the CAM contains the active VC or VCI-MID connections to help the RISC in
the Reassembly unit to reconstruct incoming cells to their PDU using the link-list

scheme.
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FIFO2: To carry VC or VCI-MID and Start address for each received PDU.

FIFO3: To carry a new VC or VCI-MID to the receiver RISC.

FIFOA4: To carry the free pointer space to the receiver RISC

FIFOS: To carry the necessary information such as VCI to the Transmitter RISC
DMA : Direct Memory Access
CAM : Contains Addressable Memory

Figure 4.1: ATM Network Interface Architecture
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e To provide high flexibility in terms of exchange information between these RISC-
cores and the host through the First-In-First-Out (FIFO) buffer. These FIFOs
performed the following tasks:
e FIFOIl carries information to the host such as VC or VCI-MID and a Start-
address for each signaling message received.
e FIFO2 carries important information to the host such as VC or VCI-
MID and a Start-address for each received PDU.
e FIFO3 carries the new VC or VCI-MID from the host to the
RISC core at the Reassembly unit.
e FIFO4 carries the free pointer from the host to the RISC core at the
Reassembly unit.
e FIFOS carries information to the RISC core at the Segmentation unit, that
needed to generate an ATM header and/or AAL header.
e NI buffers
e Receiver Buffer Interface (RBI) is used to buffer two arrival cells and to deliver them to
their destination
e Cell Reassembly Buffer (CRB) is storing ATM cells (The payload part only).
e Sending Buffer Interface (SBI) is similar to the RBI and it used to buffer up to two ATM
cells until they delivered to the network.
¢ Cell Segmented Buffer (CSB) is used to hold the PDU that it is received from the

host. Such PDU will be segmented by the SEP and delivered to the SBI.
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4.2.1 Data Movement

In the Programmed /O, the RISC core retains control of the bus while data is moved.
Programmed [/O is slow because there is too much unnecessary overhead for small
transfers. There are also drawbacks to this approach, such as the RISC core being tied up
moving data to or from the network interface. This affects the performance of the RISC
by keeping the RISC core unavailable for other activities.

The use of DMA in NI is more efficient for NI applications than the programmed I/O.
Therfore, a DMA is used in our simulator for data movemnet function [ECoop9l,
DBru93, CKim98 and RHosb99]. The DMA moves data from one location to another
using its data register. The data moved from a source to the DMA's register and then

storing it in its appropriate location Figure 4.2.

RBI
CRB
Moved - — Cell body ‘_—>
Cell body _;f’:_; buffer

Store the

data from Load the
DMA's A data from
register to the RBI into
the CRB DMA ‘s

register

Note: In transmission approach DMA loads from CSB and store it in SBI

Figure 4.2: Block diagram of RISC-core with DMA
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As the block of data is required to move between the RBI and the CRB, or between
CSB and SBI, the RISC core will initiate and control the DMA. Since the local bus of the
Reassembly and the Segmentation units is shared between the DMA and the RISC core,
the RISC core will have to release the local bus to DMA to perform the data block
transfer. Each transfer of a word consumes two cycles. In the first cycle, the DMA read
the source buffer to get the word to the DMA’s register. During the second cycle, the
word will be moved from the DMA'’s register to the destination buffer. The DMA state
machine will provide the read and write signals to source and destination buffers. Also it
increments the address for the next location, where the next data is located, and store it
in the appropriate location in the destination buffer ( Figure 4.3). The schematic capture
of the DMA stucture is showm in Appendix A Figure A.3.This process will continue until
the whole cell will be completed. The VHDL based DMA has the state machine that
required the following information:

(a) Block length (number of words to transfer).

(b) Direction (from CSB to SBI) / from RBI to CRB).

Address_in_out

DMA state
RISC REQ machine
controller
Sel R_W
DMA v
Controller
Daa _in > Data Register
Bus Control
Dawa _out

NI Bus

Figure 4.3: DMA structure
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4.2.2 Content Addressable Memory (CAM)

CAM needs to contain the network addresses of all the active connections that the
host has made with other hosts. Thus, the RISC can reconstruct the CPCS-PDU frame
from the arrival cells using the addresses contained in the CAM. The VHDL based CAM
was simulated as a Look-Up table for VC or VCI-MID (VC for AALS and VCI-MID for
AAL3/4). With each CAM entry there are two pointers, a Start-address (head of the link-
list) and End-address (the tail of the linked list). Figure 4.4 shows the CAM structure.
The schematic capture of the CAM loction in the NI is shown in the Appendix A Figure
A4

VHDL based CAM is implemented to have two kinds of processing. If there is any
new entry needed to be stored in CAM, the first kind of processing is used to insert the
new entry in the CAM. The write signal "1" is sent through the Sel_CAM signal bus by
the RISC’s controllor to replace data (adding new entry) in the CAM. The processor
starts searching for the first location filled with Zeros (blank location) at any place in
CAM and then replaces the first entry that has Zeros with the new address. The second
kind of processing is used to find a match of the input data with the one in the CAM
entries. If no entries of the CAM match the input data, a "miss" signal '0' is asserted to
RISC. The RISC then considers the arrival cell as a lost cell (is not related to this host). If
any entries of the CAM match the input data, the CAM produces a signal '1' indicating
that the match was found. After finding the match, the processing continues reading the
other signals to figure out the next procedure. There are two procedures after finding the
match, either reading or writing the data from or to the CAM. In the first procedure, if the

W _Data is 'l', either the Start or end address is sent out according to the signal of
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Sart_End_Add. Ifitis 'l1' the Start-address is sent out. Otherwise, the End-address is sent.
In the second procedure, if the W _Data is '0,' the CAM writes either the Start or End-
address according to the Sart_End_Add signal. If it is 'l,’ then The CAM writes the Start-
address (where the match was found) otherwise writes the End-address.

Removing the CAM entries can be implemented simply by searching the match that
is neceded to remove from the CAM, and when it is found, replace it with Zeroes. We did
not implement the removing entry from the CAM. Our intention is to calculate the

amount of processing that is needed for each cell if the connection was active.

10101001 100C1 10001001001

Input Bits Stast or end
address
} O - If the Match in was not found
T—— —_— - 1- 1f the masch was found
101011111000110001001001 Start_add| End_Add »
11111001 1000110001001001 Start_add| End_Add
Sel_CAM signal 101011111100110001001001 Start_add | End_Add >
. 1010100110001 10001001001 Start_add| End_Add
W_Data signal - - _ Output
000000000000000000000 Start or End address
000000000000000006000
S““—sf;‘:;l"d“ 10101001 1111111111001001 Start_add| End_Add

Figure 4.4: CAM Structure

4.2.2.1 Linked list CAM VHDL based

The linked list mechanism is similar to that used with SPIM simulator. The Start
address and End-address were implemented to be in the same entry with the VC (if
AALS is used) or the VCI-MID (if the AAL3/4 is used) (Figure 4.5). The Start and End
Address are updated differently based on processing that is required to be performed by

the NI and as the following:
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1. Read the End-address from the CAM to find the end of the linked list (if we need to
add a new node at the end).

2. Write the End address in CAM after receiving BOM and COM.

3. Write Start-address in CAM after receiving the first cell of CPCS-PDU. After
receiving the last cell of the same CPCS-PDU, this start address will be read and sent
to the FIFO2. That will tell the host a specific CPCS-PDU frame is reassembled.
When the host reads that frame, the Start address will tell where the frame is in the NI
local memory.

4. The PT for AALS can not tell if the arrived message is first or a continuation of
message, because both have the same value "0." Therefore, the Start-address is used
to distinguish whether the type of arrived cell is COM or BOM. If the Start-address
equals "0" then the arrived cell is BOM. Otherwise, it is COM. The Start-address is
also implemented in the case of SSM or EOM where both have value "1" in their PT.

Therefore, if the Start-address is "0," the message is SSM. Otherwise, it is EOM.

l Address cell lm 1

BOM [ Address cell2

T
A
B

oM [ Address cellN-1

|

£
di

<
[a]
|

com l Address cell N ] NULL J

EOM

CAM

[ Address uliT[ NULL I

SSM

Figure 4.5: CAM architecture with its linked list mechanism
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4.2.3 The NI's FIFOs

The NI communicates with the host through five FIFO buffers. These FIFOs were
implemented as memory-based and the pointer of each FIFO is stored in the RISC's
register. The RISC is able to reach any FIFO after reading its address.

However, the interrupt mechanism that happens during the exchange of information
may effect the overall performance of NI or the host CPU. Interrupting the host CPU or
RISC cores (SEP or REP) during their processing time will cost a certain amount of time
in processing the interrupting task. The interruption of the host costs at least 15
microseconds on Sun SPARC station for line speed 155Mbps with the RISC speed is 50
MHz [ECoop91]. These interrupts reduce the performance of the processing power of
the Host CPU.

In our simulator, we have eliminated the overhead processing of the host CPU caused
by the above interrupt. This has been achieved by the following:

1. Instead of interrupting the host upon the arrival of each cell (i.e. 680 ns if the line
speed is 622 Mbps), the RISC core will send the VC or VCI-MID and the Start-
address to FIFO2. After accumulating the complete CPCS-PDU frame, the host then
reads FIFO2. The host CPU starts fetching the CPCS-PDU frame from CRB for that
specific VC or VCI-MID read from FIFO2 (Figure 4.6). The host then starts reading
the first cell body until it reaches its pointer, which is placed at the end of the cell
body. This pointer is important to locate the next cell in the CRB. The reading of the
next cells will continue until the NULL value, which is placed at the last cell of the
frame is located. By doing so, the use of the interrupt is eliminated and the associted

time is saved.



Chapter 4: VHDL Simulation for ATM NI.

The signalling messages will arrive at the NI and the NI should pass these messages
to the host immediately. The Start address and VC or VCI-MID are sent to the FIFO1 and

place the cell body in the CRB (Figure 4.6).

4.1 FIFOI
4_l FIFO2

FIFO!: has VCI and Start-address
of each received cell signaling

To the 32 bit

Host

FIFO2: has VC or VIC-MID and
Start-address for each received PDU

Local bus

Figure 4.6: The two FIFOs used to send the data from RISC processor to the host CPU.

3%}

The interrupt is used in our model in only one core when the host will be interrupted
if the number of cells at the CRB occupy 90% or more of the CRB space. This
interrupt will force the host processor to read some of the arrived messages in order to

leave a space inside the CRB for other incoming cells.

There are no interrupts used when the host sends information to the NI. All
information is delivered to NI through three FIFOs. Such delivering information to the NI
can be described as following:

1. The host negotiates with other hosts whenever a new connection is required. After the
connection is established between two hosts, there is a specific VC or VCI-MID will
be allocated for specific connection. Either one should be used by the NI when a cell
send to the other end. This VC or VCI-MID should be delivered on the cell header(s)

where the NI processing them to multiplex the cells to its related VC or VCI-MID.
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The host will use FIFO 3 to deliver VC or VCI-MID to the NI As the cells arrive to
the NI, the CAM entries will be updated by storing the VC or VCI-MID that was
fetched from FIFO3 (Figure 4.7). The embedded RISC at the Reassembly unit will
check the FIFO after finishing the Reassembly processing of each ATM cell (i.e.
every 353 nonsescond, if the NI connected to line 1.2 Gbps)

2. After the host finishes reading the Reassembled message, the host sends the cell’s
address to the NI through the FIFO4. The NI will then read the free pointer address
after finishing the processing required for the current ATM cell and then store the

pointer back in the Circulation Buffer (CB) for later use.

_’ FIFO 3

FIFO3: has the VCs or VCI-MIDs

32 bit

From
the Host

FIFO 4 .
FIFO4: has the free pointer address

L ocal bus

Figure 4.7: The two FIFOs have a VCs / VID-MID and free pointer address

3. When the host moves the PDU to the CSB, the host should notify the sender RISC by
sending to FIFO 5 the location of the PDU frame, VC or VCI-MID, and other

necessary information needed for segmented the CPCS-PDU frame (Figure 4.8).
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Local bus
32 bit
from FIFO 5 FIFOS: has the necessary
the Host information needed for a CPCS-
PDU frame

Figure 4.8: The FIFO carries the information needed for Segment
CPCS-PDU frames

4.2.4 The interface buffers

4.2.4.1 The Cell Receiver Buffer (CRB) and Cell Segmentation Buffer (CSB)

The NI has a CRB which is used to reassemble the cell bodies arriving from the
network and store them until host is ready to process them. Each cell is represented in
the buffer as 12 locations of memory, each with 32-bit word (44-byte and the pointer
location) for AAL3/4, or 13 locations, each with 32-bit (48-byte and the pointer location)
for AALS. The size of the CRB buffer is 256 Kbytes. This buffer can hold of 4 CPCS-
PDU payload where each payload may contain 64 Kbytes. Obviously, more payloads can
be held if they are smaller than 64 Kbytes

The CSB stores the PDUs frames which are sent by the host to be segmented and
sends them to the network line as ATM cells after adding its header(s) and/or trailer. This
buffer can also hold 3 CPCS-PDU frames (each frame has 64 Kbytes for CPCS-PDU

payload), in addition to the trailer and/or header for CPCS-PDU.
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4.2.4.2 Receiver and Transmission Line buffers

When a cell arrives at the RBI, the FSM in the RBI will enable one of the two buffer
locations to hold the serial bits arrived from the transmission line. A FSM will enable one
buffer and can switch to another buffer after interrupting the RISC-core in the
Reassembly unit. The RISC core will start processing the ATM cell header which is
located at the top of its body (Figure 4.9). The RBI VHDL based is shown in Figure A.5

in appendix A.

Cell Header
From SONET
Cell BOdy — framer
Local Bus
«—
Cell Header
| Cell Body

Figure 4.9: The buffer architecture in RBI

The SBI contains two buffers each of which hold one ATM cell. The sequential
machine controls the SBI and allows only one buffer to be active and to receive data at a
given time. The buffer will remain enabled until the complete ATM cell has been stored
(Figure 4.10). The SBI VHDL based is shown in Figure A.6 in appendix A
The sequential machine will then allow the stored data to be sent out while it filis the

other buffer.
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Cell
Buffer 1
Local Bus
——>
Cell To the SONET
Buffer2 framer

SBI

Figure 4.10: The SBI architecture

4.3 VHDL Simulation Results

Three stages pipelined RISC core, CAM, DMA, RBI, SBI, FIFOs, CRB, SCB, and
CB have been used to simulate the ATM line interface. After testing the VHDL model of
each component, a complete NI has been designed based on the model that presented
before. All NI components are connected together with all the necessary connections,
busses, and control lines (Figure A.l in the appendix A). A testing process has been
performed to check the functionality of the NI and to perform the performance
evaluation that required for this research. We believe that by processing ATM cells with
such RISC core based NI, we can measure the amount of RISC processing for different

transmission line speeds.
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4.3.1 Reassembly Function

By delivering different ATM cells to the simulated model and by investigating the
waveform generated from the simulator, we are able to find the number of instructions
needed to process a complete ATM cell for both AAL3/4 and AALS. The results
presented in Table 4.1 is for the NI when the DMA has the same RISC 's clock speed.
The number of instructions is dependent on the type of the cell, i.e. BOM, EOM, COM,
and SSM. The DMA needs 22 (11 load and 11 store) RISC instructions in order to move
one payload body for AAL3/4 and 24 (12 load and 12 store) RISC cycle for AALS.
However, some of the RISC processing instructions needed to use the local bus, in order
to send the NULL value at the end of the cell body during the processing of the link list
mechanism. In this situation the RISC has to wait for several cycles until the DMA
completes its job. The RISC wait cycles will reduce the NI performance by extending the

execution time for each ATM cells by number of the RISC’s wait cycles (Table 4.1).

No. of instructions No. of idle cycles
Type of cells

AALS AAL3/4 | AALS AAL3/4
Single Segment Message (SSM) 38 40 12 10
Beginning Of Message (BOM) 38 41 11 9
Continuation Of Message (COM) 38 41 12 9
End Of Message (EOM) 40 41 12 11

Table 4.1: number of instructions processed for Reassembly AALS and AAL3/4
messages (the DMA's clock has the same speed as RISC's clock).
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To eliminate the RISC's idle cycles, we forced the DMA to finish its processing cycle

in a shorter period of time than the first approach where the DMA has the same RISC's

clock cycle. Therefore, the DMA clock rate is increased to run faster than RISC to allow

the local bus to be available fro both DMA and RISC core. The DMA runs double the

RISC's clock to complete moving 44 byte within 11 cycles and 12 cycles for 48 byte

(Table 4.2). In this case, we eliminate all the idle cycles which could take almost 25% of

the RISC's power.

Type of cells

No. of instructions

No. of idle cycles

AALS AAL3/4 | AALS AAL3/4
Single Segment Message (SSM) 26 29 0 0
Beginning Of Message (BOM) 26 30 0 0
Continuation Of Message (COM) 26 30 0 0
End Of Message (EOM) 28 30 0 0

Table 4.2: number of instructions processed for Reassembly AALS and AAL3/4
messages (the DMA's clock has double speed of RISC's clock).

Clearly, the number of instructions required to process the AALS is less than that for

AAL3/4. This has made the RISC core process more cells/sec for AALS than for

AAL3/4. With the AALDS, there is no need to load and process the AAL header and AAL

trailer. Table 4.3 shows the main difference between the processing of the ATM cells for

both AAL3/4 and AAL S cells.
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Instructions [[nstructions
Operation For For
AAL3/4 AALS

Read AAL header from RBI 1\ 0
Read AAL trailer from RBI 1 0
Mask VC (for AALS) or VCI-MID (for AAL3/4) information needed
for data matching 3 1
Mask only VCI for signaling test 0 l
Number of the comparison needed to recognize the PT of the current cell 4 2
Additional comparison needed to figure out the type of the current cell
besides checking the Payload Type (PT) 0 1

Table 4.3: The main differences between the processing for AALS and AAIL3/4 for

ATM Reassembly

To make clear about how we get the results in Table 4.1 and Table 4.2, it is important

to describe the details of processing for every ATM cells. Figure 4.11 shows the total

number of instructions that the RISC will process if the type of the incoming cell is BOM

for AALS. The RISC starts by loading the ATM header from RBI. Then it reads the head

of the CB that contains the pointer space. The RISC initiates the DMA to move the cell

body from the RBI to the pointer space inside the CRB. The highlighted area shows the

instructions that the RISC can process during the data movement (the DMA's clock in

this case has double RISC's clock). The DMA needs 12 RISC cycles (each cycle 32-bit)

to finish transferring one ATM cell payload (48 bytes). During the data movements, the
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RISC can execute instructions, such as finding a CAM match, updating the CAM entries,
or calculating the available space inside the CB before the DMA finishes its job. After the
DMA finishes its job, the RISC processor takes control of the bus. Then the RISC
processes the linked list mechanism or reads the FIFO3 which contains new VC to be
stored in CAM, and FIFO4 which contains a pointer to be stored in CB. Figure 4.12
shows the total instructions that RISC needs to process for one ATM cell type of COM.
The number of instructions in the COM is the same as the BOM, but the COM has a
slightly different mannerism than BOM. In the processing of the COM there is no need to
update the CAM entries by the Start-address (this instruction exists in BOM processing).
In the COM, processing is needed to update the previous cell's pointer (this instruction
does not exist in BOM processing). Figure 4.13 shows the total instructions that are
needed by the RISC processor to process EOM. The EOM has a higher number of
instructions than BOM and COM because the RISC, at this point, needs to notify the host
CPU that the PDU frame was received and is stored in the CRB. The notification to the
CPU can be done by sending the Start-address of the location for the PDU frame inside
the CRB and the VC that is related to this PDU frame to the FIFO 2. Figure 4.14 shows
the total instructions that are needed by the RISC processor to process the SSM cell type.
This message is a unique cell, which notifies that there are no more cells arriving for this
VC. The RISC, after processing the SSM, sends the Start-address and VC host CPU
through FIFO2. The SSM has the same mannerism as EOM, but the SSM shows fewer
instructions than EOM because the SSM does not need any processing related to link-list

mechanism and updating (i.e. reading the Start-address) the CAM.
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Type of instructions that are processed by RISC in order to process BOM for ATM Reassembly for AALS
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Figure 4.11:Total instruction for BOM of AALS is 26 inst.
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ATM Reasscmbly for AALS processing scheme of COM
where the FIFO3 and FIFO4 are not empty
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Figure 4.12:Total instruction for COM of AALS is 26 inst.
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ATM Reassembly for AALS processing scheme of EOM
where the FIFO3 and FIFO4 are not empty

If not send
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Figure 4.13: Total instruction for EOM of AALS is 28 inst.
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ATM Recassembly for AALS processing scheme of SSM
where the FIFO3 and FIFO4 are not empty
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Figure 4.14: Total instruction for SSM of AALS is 26 inst.
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Figure 4.15 shows thows the total amount and the type of the structions that the RISC
processor needs to process the BOM for AAL3/4. The RISC starts reading the cell
headers and trailer. These headers contain the information (i.e. VCI, MID and PT) that
help the RISC find the match for VCI-MID and to recognize the type of incoming cell.
This information will keep the RISC busy during the data movements which take 11
cycles (44 bytes, each cycle is 32-bit). The local bus is busy during the data movement so
RISC does not access it. The RISC does not need the local bus during the execution of
the instructions including: finding a CAM match or tracing the CB size. While the cell
body has already been moved from RBI to the CRB, the RISC controls the local bus and
is able to execute the linked list mechanism and can also read from FIFO3 and FIFO4.
Figure 4.16 shows the instructions needed by the RISC processor to process one ATM
cell type COM for AAL3/4. Figure 4.17 shows the total instructions that are needed to
process EOM cell, the RISC with this type of message needs to send the VCI-MID and
the Start-address to the FIFO2. There is no need to update the CAM entries. Figure 4.18
shows the total amount and the type of the instructions needed for ATM cell type SSM.
The processing time needed is less for SSM than it is for BOM, COM and EOM where
there is no need to update the CAM entries (Start- and End-address) or to process the

linked list functions.
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ATM Reassembly for AAL3/4 processing schemce of BOM
where the FIFO3 and FIFO4 arc not cmpty
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Figurc 4.15: Total instruction for BOM of AAL3/4 is 30 inst.
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ATM Reassemibly for AAL3/4 processing scheme of COM,
where the FIFO3 and FIFO4 arc not empty
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Figure 4.16: Total instruction for COM of AAL3/4 is 3() inst.




ATM Reassembly for AAL3/4 processing scheme of EOM
where the FIFO3 and FIFO4 are not empty
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> the host
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Figure 4.17: Total instruction for EOM of AAL3/4 is 30 inst.
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ATM Reassembly for AAL3/4 processing scheme of SSM,
where the FIFO3 and FIFO4 are not empty
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Figure 4.18: Total instruction for SSM of AAL3/4 is 29 inst.
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4.3.2 Segmentation Function

Segmentation function simulation using the DMA's clock at the same speed as the
RISC s clock means the DMA needs 22 cycles to move one cell body from CSB to SBI
for AAL3/4, where it needs 24 cycle for AALS. While moving data, the DMA controls
the local bus to move the cell body from CSB to the SBI. The RISC also needed to send
the ATM cell header (if the transfer cell is AALS type) or send the ATM header, the
AAL header and the AAL trailer (if the transfer cell is AAL3/4 type) from RISC's
register to the SBI. In this case, the RISC has to wait until the DMA completes the data
movement. Then, the RISC is able to control the local bus and transfer the data register to
the SBI. The total instructions that were needed for Segmentation function, where the
DMA's clock is the same RISC's clock cycle are shown in Table 4.4. The RISC has
several idle cycles during the data movements and obviously is not able to send any of its

data registers on the local bus.

Total instructions No. of idle cycls
Type of cells for
AALS AAL3/4 | AALS AAL3/4
For AAL3/4 and AALS

Single Segment Message (SSM) 26 26 17 13
Beginning Of Message (BOM) 26 26 18 14
Continuation Of Message (COM) 26 26 22 18
End Of Message (EOM) 26 26 21 17

Table 4.4: Number of RISC instructions processed and the idle cycles for Segmentation
messages (the DMA have the same clock cycle as the RISC)
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The number of idle cycles is quite high and the RISC wastes almost 70 % of its

power. We tried to eliminate the number of idle cycles by increasing the DMA's clock

speed to be double that of the RISC's, thus forcing the DMA to finish its job by moving

the cell body within 11 instructions for AAL3/4 and 12 instruction for AALS (Table 4.5).

Total instructions

No. of idle cycles

Type of cells
AALS AAL3/4 | AALS AAL3/4
For AAL 5 and AAL3/4
Single Segment Message (SSM) 14 15 5 2
Beginning Of Message (BOM) 14 15 6 3
Continuation Of Message (COM) 14 15 10 7
End Of Message (EOM) 14 15 9 6

Table 4.5: Number of RISC instructions processed and the idle cycles for Segmentation
messages (the DMA have the clock cycle double the RISC)

The performance of the processing gets better, but there is a loss of about 40% the

RISC's power. We tried to improve our processing performance by pushing the DMA's

clock to be triple that of the RISC core's clock (Table 4.6).
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Total instructions No. Of idle cycles
Type of cells
AALS AAL3/4 | AALS AAL3/4
For AALS and AAL3/4

Single Segment Message (SSM) 10 13 1 0
Beginning Of Message (BOM) 10 12 2 0
Continuation Of Message (COM) 10 11 4 2
End Of Message (EOM) 10 11 5 3

Table 4.6: Number of instructions processed and the Idle instructions for Segmentation
messages where the DMA has triple the clock cycle of the RISC

For the Segmentation part of the network interface, we found that using a DMA
controller faster than the RISC core will improve the performance. Because the RISC
core can perform little processing while the DMA controller is moving the payload from
the Cell Segmentation Buffer (CSB) to the Send Buffer Interface (SBI), the RISC core is
forced to be idle for a few cycles until the DMA completes the payload transfer.
Therefore, using a faster DMA will help to eliminate all idle cycles of the RISC core. The
differences in the instructions that executed by AAL3/4 and AALS are shown in Table

4.7.
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Instruction for
Operation AAL3/4 AALS

Send AAL header from CSB to SBI 1 0
Send AAL trailer from CSB to SBI 1 0
Change the Sequence Number (SN) for each leaving cell 1* 0
Calculate the length of the AAL trailer 1* 0
Generate the AAL header 2= 0

* Instruction executed during the moving data.

Table 4.7: The main differences between the AALS and AAL3/4 for ATM Segmentation

To make clear how we get the results in Table 4.4, Table 4.5 and Table 4.6, it is
important to describe the processing details. The focus is given on the case where the
DMA's clock runs at triple the clock cycle of the RISC. When the host decides to send a
block of data to the other ATM host, the host CPU sends the CPCS-PDU frame to the
CSB. The host CPU also sends all the information needed to transmit this frame through
FIFOS, including VCI, VPI, and the location of the frame inside the CSB. Figure 4.19
shows the number of instructions required for ATM Segmentation function for BOM for
AALS. In order to generate the ATM header and calculate the PDU size, the RISC starts

by reading all the information related to the PDU frame.
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Read the necessary Initiate 2?:“ :ddl " san Test the new RISC RISC Send
information related to the header 18 bytes start address is ATM
the PDU. This ?:”“\ greater than the Idle Idle
information includes move end address of Header
VCI, VP! and the the this message
location of the PDU in- | cell byte
side the CSB. body
from
CSB to
SBI
i iinst 4 inst. 1 inst. l inst. . linst. [ inst 1 inst.
- >4 >« >
i
' » — >
Prepare for ! Start transmission
transmissmision
Processing 8 inst. the RISC core can process t. during I inst to
needed the data movement move the
before ATM header
moving cell Note: The DMA needs 8 RISC cycle to from RISC'
body move 48 bytes (the DMA has triple the register to
=1 inst clock cycle of the RISC) SBI

Figure 4.19: ATM Segmentation for AALS processing scheme of BOM
(Total instructions by BOM for AALS is 10 inst)

The RISC initiates the DMA to move the 48 bytes from the CSB to the SBI. The
highlighted boxes show the RISC instructions that are executed during the data movement.
These instructions include the generating of the ATM header and checking if there are more
ATM cells to be sent for the same VC. After the DMA finishes its job by sending 48 bytes
from the CSB to the SBI which needs 8 RISC cycle (the DMA's clock in this case has triple
RISC's clock), the RISC sends the ATM header to the SBI. Figure 4.20 shows the total

instructions needed by COM for AALS. The RISC will be idle several cycles while waiting
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for the DMA to finish. It is clear that the RISC has more idle cycles in COM than BOM

because, in this stage, the RISC has no need to generate the ATM header again (it already

exists in the RISC's register).

P Addsart | Testthe new RISC RISC | RISC | RISC | RISC | RISC
Iniiate :gd:y::‘ start address if it Send
i han

DMA e s | Idle dle | idle | Idle | Idle | Idle AT™M

to . Header

move of this message

the byte ?

cell

body

from

CTB to

SBI

linst I inst. 1 inst. linst. .linst. 1 inst 1 inst. linst. 1 inst
+—r < —-q— >
Processing 8 inst the RISC core can process during the Linstto
needed data movement move the
before ATM header
moving cell from RISC'
body register to
=1 inst SBI

Figure 4.20: ATM Segmentation for AALS processing scheme of

COM (Total instructions by COM for AALS is 10 inst)

Figure 4.21 shows the total instructions needed by EOM for AALS Segmentation

function. The RISC has one more instruction than the COM, because the RISC needs to

change the PT in ATM header from '0" to '1,’ thus indicating that this cell is the last cell of

the PDU frame.
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1

;dy header
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SBI
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Processing 8 inst. the RISC core can process some inst. I inst to
needed before during the data movement move the
moving cell ATM header
body from RISC'
=1 inst register to

SBI

Figure 4.21: ATM Segmentation for AALS processing scheme of
EOM (Total instructions by EOM for AALS is 10 inst)

Figure 4.22 shows the total instruction by SSM for AALS. The RISC was busy during the

data movement and there is one idle cycle shown because the RISC was finsheing its job

before the DMA finishing its task.
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Figure 4.22: ATM Segmentation for AALS processing scheme of SSM (Total
instructions by SSM for AALS is 10 inst)

Figure 4.23 shows the total instruction that the RISC needs to process the Segmentation

function for BOM cell type for AAL3/4. After reading the necessary information from

FIFO5, the RISC starts to generate the ATM header and AAL header based on the

information that the RISC reads from FIFOS. After the DMA finishes transferring the cell

body from the CSB to SBI, the RISC starts sending the cell headers and trailer to the SBL
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of the RISC)

Figure 4.23: ATM Segmentation for AAL3/4 processing scheme of BOM (Total
instructions by BOM for AAL3/4 is 12 inst.)

Figure 4.24 shows the total instruction that the RISC needs by COM for AAL3/4. The
idle cycles are more than the BOM because the RISC in this stage has no need to generate

the ATM header, but the RISC needs to change the PT and SN inside the AAL header from

'10' to '00.
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Figure 4.24: ATM Segmentation for AAL3/4 processing scheme of COM (
instructions by COM for AAL3/4 is 11 inst)

Figure 4.25 shows the total instruction that RISC needs for Segmentation function by

EOM for AAL3/4. The RISC in this stage needs to calculate the actual data size inside the

cell body (BOM and COM the cell bodies are fixed 44 bytes (ITUT93)).
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Figure 4.25: ATM Segmentation for AAL3/4 processing scheme of EOM (Total
instructions by EOM for AAL3/4 is 12 inst)

Figure 4.26 shows the total instruction by SSM for AAL3/4. The RISC was busy

during the data movement and there was no idle cycle shown because the RISC was busy

generating the cell header and trailer.
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Figure 4.26: ATM Segmentation for AAL3/4 processing scheme of SSM (Total
instructions by SSM for AAL3/4 is 13 inst)

4.4 NI Performance Evaluation

The VHDL simulator gives more details and more accurate results than the SPIM
Simulator. We have completed this simulator for AAL3/4 and AALS using Xilinx FPGA

tool version 1.5. The reason for using Xilinx framework is that it provides a good
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environment for simulation and testing the VHDL model. Our intention was not to use
FPGA as a target chip for our future implementation.

We have used the NI simulation to measure the amount of processing required for
different transmission line speeds. For the Segmentation section of the network interface,
a RISC core supported by a DMA having the same clock as the RISC can support
1.2Gbps transmission lines for AAL3/4 and AALS with 74 MHz, where a 147 MHz is

required to support 2.4 Gbps line (Figure 4.27).

o 5IMbp 155Mb  622Mb |
_!AA L3/4and 5 3.1 9.5 38.1 73.6
ODMA MHz 3.1 9.5 38.1
 LINE!

Figure 4.27: ATM Segmentation for AAL3/4 and AALS5 using DMA for data
movement (the DMA has the same RISC's clock rate)

Figures 4.28 and 4.29 show the RISC processing speed for the AALS and AAL3/4

for segmentation function when the DMA has double clock speed than the previous rate.
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Figure 4.28: ATM Segmentation for AAL3/4 using DMA for data movement (the DMA
has double RISC's clock rate)

g
51Mbp 155Mb 622Mb | 1.2Gb

WAALS 1.68 5.118 | 20.55 | 39.6.

O0OMA MHz 3.367 :70.236141.11 :79.

LINE

Figure 4.29: ATM Segmentation for AALS5 using DMA for data movement (the DMA
has double RISC's clock rate)

Figures 4.30 and 4.31 show the RISC processing rate that is needed for ATM
Segmentation for AAL 3/4 and AALS, when the DMA has triple speed than the RISC
core. Clearly, as the DMA getting faster, the RISC core will not need to be waiting, i.e.,
executing no operation instructions, while the NI local bus is busy due to the DMA

moving data operation.
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Figure 4.30: ATM Segmentation for AAL3/4 using DMA for data movement (the DMA
has triple than the RISC's clock rate)

SIMbp 155Mb 622Mb 1.2Gbp
WAALS 1.202 3.655 . 14.68 | 28.3
ODOMA MHz 3.605 10.96 | 43.92.| 84,9/, 1698

EERRr
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Figure 4.31: ATM Segmentation for AALS using DMA for data movement (the DMA
has triple RISC's clock rate)

Figures 4.32 and 4.33 will present the RISC processing rate needed in order to process
the ATM Reassembly for both functions AAL3/4 and AALS, when the DMA has the

same clock rate as the RISC processor.
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Figure 4.32: ATM Reassembly for AAL3/4 using DMA for data movement (the DMA
has the same RISC's clock rate)

51Mbps 155Mbp .622Mbp !1.2Gbps
WAALI/S 4.57 13.89 . 55.75 | 107.5§
ODMA MHz _4.57 _ 13.89 | 55.75

Figure 4.33: ATM Reassembly for AAL3/4 using DMA for data movement (the DMA
has the same RISC's clock rate)

Figures 4.34 and 4.35 presents the RISC processing clock rate in order to process the

ATM Reassembly for both functions AAL3/4 and AALS when the DMA has the double

clock rate as the RISC processor.
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Figure 4.34: ATM Reassembly for AAL3/4 using DMA for data movement (the DMA
has double RISC's clock rate)
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Figure 4.35: ATM Reassembly for AALS using DMA for data movement (the DMA has
double RISC's clock rate)
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In Segmentation function processing, it is clear that the RISC processing speed is
become less as we use the DMA with a higher speed (Triple RISC's clock) where all the
idle cycle associated with the RISC core processing has eliminated. The VHDL
simulation for the Segmentation unit of the network interface has shown that a 68 MHz
processor can support 2.4 Gbps lines, when the DMA speed is 213 MHz (triple RISC's
clock).

The VHDL simulation for the Reassembly unit of the network interface has shown
that an 8SMHz processor can support 1.2 Gbps lines supported by the 169 MHz DMA.
Clearly, a cost effective RISC core can be used to processes 1.2 Gbps transmission line.
Also it is clear that a higher RISC core clock rate could also be used to support higher
transmission speed with extra cost. In the next chapter we will see the RISC Architecture

that we used in the NI.
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Chapter S

Embedded Pipeline RISC Core for ATM Network
Interface

5.1 Introduction

During the VHDL simulation, two RISC cores have been used and supported with
DMA in order to process all the AAL3/4 and AALS function. The RISC with 85 MHz
has been found to be capable of supporting a network interface of 1.2 Gbps and 2.4 Gbps
for Reassembly and Segmentation function, respectively. A network interface with high
speed can still be supported with the use of the RISC core based NI by using a faster
RISC core. In this chapter, we will introduce our three-stage pipeline RISC architecture

and describe how it provides the requirements of high-speed ATM network interface.

5.2 Developing RISC core for ATM N I Processing.

The development of a specialized RISC core can generally be done in a short period
of time and at lower cost than a general-purpose core. The RISC core, required for ATM
interfaces design, is optimized for this application. Hence, some parts, which might be
used in RISC core to support the general-purpose applications, may not be required for
the ATM network interfaces design. For example, the Floating-Point Unit is not
necessary for network interfaces. Also, the use of the data cache is not required since it

will not help to improve the performance of the RISC core for this application. The
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elimination of these units will help to make the core simple to develop at a low cost. In
addition, the limited number of instructions that are required to support the ATM
interfaces processing can reduce the size of the control unit, improve the speed of such a
core, and reduce its complexity.

In order to be able to use the RISC core for differ~nt types of network interface, the
RISC core should be designed with the Hardware Description Language, VHDL, and that

will make such porting operations possible and easy.

5.3 VHDL-Based RISC core
5.3.1 RISC Pipeline

RISC pipelines divide the execution of an instruction into a number of steps, or
pipeline stages. The depth of a pipeline corresponds to the number of pipeline stages
(Figure 5.1). The schematic capture of the pipeline stages is shown in Appendix A
Figure A.7.

The NI RISC core has been designed to execute one instruction in three-pipeline stage:
a) Fetch an instruction from local memory (Fetch stage).

b) Decode/execute the instruction and registers read (Decode/Execute stage).

c) Store results back into the destination register (write back, or W/B, stage).

The RISC fetches instructions which are used to run the ATM protocol program from
local memory, Decoding and Executing stage is done to execute the running instruction
that has been fetched by the first stage of the pipeline. The last stage of the RISC's
pipeline is W/B, in which the data is written to the RISC's register. Some instructions

such as Store instruction terminate at Decode/Execute stage.
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I
Fetch Decode wW/B
Execute
J+1 Fetch Decode WwW/B
Execute
J+2 Fetch Decode wW/B
Execute

Figure 5.1: Structure of RISC instruction Pipeline

5.3.2 Instruction Representation

During the SPIM simulation, we learn about the suitable instructions that are required

for NI. These instructions have been represented in Table 5.1. The instruction format

contains the op-code in the first five most significant bits to represent the type of

instruction.
R - S

Instruction Functions op-code Comments

ADD 3 <-rl+r2 Of1tl Arithmetic addition

ADDI 3 <-- rl +imm 01110 Arithmetic addition immediate

SUB 3 <—rl-n2 00100 Arithmetic subtraction

AND r3 <--rl and r2/imm 00010 Logical AND

LOAD rl <-—-mem 00001 Load from memory

STORE rl --> mem 00101 Store to memory

STCAM rl-- >(CAM) 00111 Store value at Content Addressable
Memory (CAM)

BEQ rl =r2/imm ---> label 00110 Branch if equal

BGE rl >= r2/imm -> label 01000 Branch greater or equal

BLE rl <= r2/imm -> label 00011 Branch less or equal

LCAM rl = (CAM) -->12 01100 Find the match of r1 with CAM con-
tents and store the CAM data inr2

Table 5.1: Type of RISC Instructions.

104




Chapter 5: Embedded Pipeline RISC Core for ATM Network Interface

The description of code instructions group is as follows:

5.3.2.1 Arithmetic and logic operation instructions
They provide computational capabilities for processing numeric data. Logic
instructions provide the logical operation such as And, Ofr, .., etc. The format for

arithmetic and logic instruction is as follows:

31 27 26 2S5 2120 le 15 1110 0

Op-code F | DES SRR2 SRR1 X

a. Arithmetic/Logic instruction formation (Register-to-Register format)

31 27 26 25 21 20 16 1S5 0

Op-code F DES SRR1 IMM16

b. Arithmetic/Logic instruction formation (Immediate format)

Where: SRR1 source register 1
SRR2 source register 2
DES destination register
F function bit
IMM16 immediate value
X for future use

Figure 5.2: Arithmetic and logic instruction format

The arithmetic instructions, such as Add, is executed as follows: Add register SRR2
to register SRR1 and store the result into register DES. In the add immediate instruction
(addi), the register contents, to which SRR1 refers, will be added to the IMMI16 value.
The result is stored in register DES. These instructions can be written in the program as:

add r3,r2,rl ; Add r2 to rl and store the result in r3
addi r4,r3, 10 . Add 13 10 the value of 10 and then store the result in r4
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As read after write (RAW) data dependency could occur during the program
execution, the forwarding mechanism has been implemented to resolve such dependency.
For the two preceding instructions, the add instruction stores the result in register r3
where the addi instruction will use r3 as a source operand. During the Decode/Execute
stage of addi instruction, the r3 is not updated yet by the add instruction, and thus, an
error of calculation will occur. The use of the forwarding mechanism will solve this
problem from accruing [DPatt98 and JHen96]. To provide the support that is required by
the forwarding mechanism, an F bit is used in the instruction format to initiate the
forwarding mechanism if F is ‘1.” Otherwise no action will be taken. The F bit is set or
reset during the program compilation. The compiler can detect whether the forwarding

mechanism is required to be initiated or not (more details in section 5.3.3).

5.3.2.2 Branch instructions
Branch instructions are used to test the value of data or the status of a computation
before jumping to the label's address. There are three Branch instructions listed in Table

5.1 and all have the same instruction format (Figure 5.3).

31 27 26 25 21 20 16 12 11 0
Op-code F SRR2 SRRl |[X| M label
imm
Where: label address in memory (instruction memory)
imm immediate value
F function bit
M immediate/register select
X for future use

Figure 5.3: Branch instruction format.
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The M bit will be checked by the RISC’s controller to distinguish whether the second
source operand is an immediate value or a data register. In the case where the M =1, the
comparison should be done between SRR1 and the immediate value (value 10).
Otherwise, it should be done between SRR1 and SRR2. The F bit is used to control the
forwarding mechanism, one of the operand of the current instruction still in the W/B
stage of the previous instruction. The forwarding mechanism will be turn on when F is
set to 1, to prevent pipeline stalling. The F bit will be reset if no RAW dependency exist

between the branch and preceding non-branch instruction.

The branch instruction can be written as follows:
beq rl,r2, label ; Branch to label if contents of rl= contents of r2
beq rl,10, label ; Branch to label if contents of rl= 10
The PC will be updated to point to the label's address after checking that the value at
rl is equal to that at r2, or when rl equal to the immediate value which is 10. The use of
the immediate value with the Branch instruction is useful for ATM Payload Type
checking (in AAL3/4 the Payload Type is 2-bit, and in AALS only 1-bit), or checking if

the VCI of the arrived cell is equal value 5.

5.3.2.3 Memory access instructions
These instructions are used to move data between memory and the RISC core

registers and these instructions are as follows:
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a) Load/Store instruction: To load data from a local memory into a RISC's register, or

to store the data register into local memory, the instruction format is as follows:

31 27 25 2120 16 0

Op-code )4 SRR2 |SRRI Address

Where:  Address Memory address
SRR2 Holds the data that needed to store in local memory (if the
instruction is load ), in store instruction used as the
destination register (to store the data memory )
SRR1 memory address
X for future use

Figure 5.4: Load/Store instruction format.

For Load instruction, the value at address field and the contents of the SRR1 are
used to address the source address. The SRR2 is used as the destination register. The
same is applied for Store instruction where the memory address is calculated as in the
load instruction, while the SRR2 is used as the source register instead of the destination
register. The Laod/Store instruction can be written as follows:

Iw rl, address (r2) ; r1 = Memory[r2 + address]

sw r4, address (r2) ; Memory[r2+address] = r4

b) Load CAM (LCAM): This instruction is used to load data from the CAM after a
match for a certain data with the contents of the CAM is found. The instruction

format of LCAM is shown in Figure 5.5
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31 27 26 25 2120 16 0
Op-code S DES SRR1 X
Where : SRR1 holds the data match
DES store the loaded data from CAM
S bit signal to the RISC’s controller
X for future use

Figure 5.5: LCAM instruction format.

The contents of the SRR1 is used to be matched with the CAM contents, if the
match found, the CAM then returns the contents of that matched location. SRRI
contains either VC or VCI-MID which needed to be match with another active identifier
that stored in CAM content, if matched exist, then the Start or end Address will send out
from CAM. The RISC’s controller after reading the S bit, it sends a signal to the CAM 's
controiler (Start_end_signal) to either send the Start-address or End-address as data out
from the CAM to the RISC. DES is a distention register which used to store the CAM
output.

If the match is not found, the CAM sends a signal to the RISC (match = 0), the
RISC, considers this cell as a lost cell and discardes it. The LCAM instruction can be

written as:
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Ilcam r2,rl ; match what in rl, which could be VC or VCI-MID, with the contents of CAM.

; then reads CAM data output into r2.

c) Store CAM (STCAM): This instruction is used to store data in CAM. The instruction

format is shown in figure 5.6.

31 27 25 2120 16 0
Op-code S SRR1 SRR2 L X
Where : SRR1 holds the data, such as VC or VCI-MID
SRR2 holds the stored data (Start or End address)
S bit signal to the RISC’s controller
L type of data that needed to store it in CAM
X for future use

Figure 5.6: RISC instruction-set format for CAM operation (stcam).

The register SRR1 could hold the value for VC or VCI-MID that is required to be
stored as new entry in the CAM. After a match is found, the instruction can be used to
store the Start or End-address. The SRR2 contains the data that the RISC needs to store
in CAM, i.e. the Start-address or the End-address. The RISC’s controller will send a
signal to the CAM’s controller to store the data as a Start or End address, or to store the

new entry (see section 4.2.2). If the S=1and L =0 then store a new entry in CAM, in
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the hand if the s = 0 and L = 1 this means store Start-address, if it is 00 then store End

address. An example of the SCAM instruction as follows:

stcam r9, r3 ;Store the contents of 9 in CAM where r3 has the value of CAM entry to be
; matched such as VC or VCI-MID.

5.3.3 Pipeline Hazard

In the instruction stream, hazard is the prevention of the next instruction from being
executed during its designated clock cycle. Clearly, hazard reduces the RISC
performance. Hazard types include:
I- Control hazards.

2- Data hazards.

The Control hazard could occur during the condition branch instruction execution.
The decision about whether the branch is taken or not taken does not occur until the result
of the comparison is completed (in Decode/Execute pipeline stage). The fetched
instruction after the condition branch instruction will be flashed from the pipeline if the
branch is taken. Such operation is called branch penalty. Clearly, the branch penalty will
reduce the pipeline performance. The branch-delay technique is used to reduce such

problems and is as follows:
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i and rl, r7, 0x00000000
i+1 add r6, r2, r3
i+2 beq r6,r4, label

a: Before scheduling the branch-delay slot

i add r6, r2, r3
i+1 beq r6,r4, label
i+2 and rl, r7, 0x00000000

b: After scheduling the branch-delay slot

Figure 5.7: Scheduling the branch-delay

In Figure 5.8 (a) shows the code before scheduling where add instruction will execute

before the branch instruction. The add instruction in Figure 5.8 (a) is considered as

independent instruction. In Figure 5.8 (b) the add instruction is used as a delay slot which is

scheduled to be executed after the branch instruction. In this case, the and instruction will be

executed in either way (if the branch is taken or not) and that will not affect the pipeline's

performance.

The frequency of occurrence for conditional branches for Reassembly unit for both

AAL3/4 and AALS is shown in Table 5.4. The branch-delay slot technique can be used to

eliminate the effect of performance degradation due to conditional branch instructions. We
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found that a useful instruction can be managed for every conditional branch instruction for

the processing of both AAL3/4 and AALS.

Message type | AAL3/4 AALS
SSM 8 8
BOM 9 8
COM 9 8
EOM 7 8

Table 5.2: Occurrence of the conditional branch for AAL3/4 and AALS Reassembly
Processing

The data hazards could occur when an instruction being executed in the current pipeline
stage requires a result that still unavailable of an instruction executed in an earlier
pipeline stage. The following portion of the ATM protocol is an example where there is

a data hazard:

] Iwrd, 0(rl) ; load a free pointer from the CB

i+/ and rl, r6, 0x000ffI10 : Mask VCI from ATM header (r6) and store the result in rl
i+2 blerl, S, signaling ; Check if the current cell is signaling,

i+3 and r3,r6,0x0000000E ; Mask the PT from ATM header (r6) and store the result in r3

i+4 beq r3, 0x00000002, EOM ; Check if the current cell is the EOM/SSM cell of
; CPCS-PDU by checking the R3’s value
i+5 and r§, ré, 0xOffrfiro 3 Mask The VC (VCI,VPI) from ATM header (r6) and store the
: result in RS

The and instruction, at i+/, writes the value of rl in the W/B pipeline stage, where
the ble instruction at i+2 reads the value during its Decode/Execute stage. Clearly, the
ble instruction will have the data hazard problem. Unless precautions are taken to
prevent it, the ble instruction i+2 will read the wrong value of the r1. Data hazard also

happen between i+3 and i+4 instruction, when i+4 is trying to use r3 for the comparison.
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Clearly, this data hazard happened quite often in the NI codes. A support should be
provided for NI design in order to reduce its impact. Otherwise, a severe reduction in
performance will occur.

There are different techniques that can be used to reduce or even eliminate the
performance reduction due to the data hazard (or dependency). One technique is
forwarding or injecting. By using the injecting technique a useful instruction will be
placed before instruction that required an information where the needed information still
not provided yet by the proceeding instruction. In our work, we decided to use the
injection of a useful instruction to avoid the hazard. The same code in the previous

example could be written as follows:

i  (i+1 previously) and rl, ré, 0x000ffff0 : Mask VCI from ATM header (r6) and store the result in
irl

i+1 (i previously)  Iw rd, 0(r1) ; load a free pointer from the CB

[+.2 blerl, 5, signaling ; Check if the current celi is signaling,

+3 and r3,r6,0x0000000E ; Mask the PT from ATM header (r6) and store the
; result in R3.

i+4 (i+5 previously) and rS, ré, OxOffTffI0  ; Mask The VC (VCL VPI) from ATM header (16)
; and store the result in rS.

i+5 (i+4 previously) beq r3, 0x00000002, EOM ; Check if the current cell is the EOM/SSM cell
; of CPCS-PDU by checking the r3’s value

By using the injecting technique to avoid the data dependency problem, the pipeline
then will not forced to stall during the NI code execution. The frequency of data hazard
occurrence for both AAL3/4 and AALS Reassembly is shown in Table 5.2 and 5.3.
Although the occurrence appears to be minor, the impact or reduction of performance is

significant. After rescheduling the program that has been written for ATM Reassembly, we
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still have one RAW hazard for AAL5 within BOM and COM out of the total cycle required
for the BOM (where the total instruction needed is 26 cycles). One RAW within SSM for

AAL3/4 is also required for the BOM (where the total instruction needed is 30 cycles).

AALS message type RAW Hazard

BOM and COM 1
SSM and EOM 0

Table 5.3: Occurrence of the Read After Write (R/W) hazard for AALS Reassembly
Processing

AAL3/4 message type| RAW Hazard
BOM, COM, EOM 0
SSM 1

Table 5.4: Occurrence of the Read After Write (R/W) hazard for AAL3/4 Reassembly
Processing

Since most independent instructions are used to avoid the control hazard, we unable
to find a useful instruction to be injected after these instructions cause the hazard. Still,
adding the forward mechanism in our simulator is important to eliminate the data hazard
that may occur [DPatt98 and JHen96]. An example of the forward mechanism used in our

simulator is as following:

! sub r3,rl, r2 ; Addrl to r2 and store result in r3
forwnrd R3
I+1} begr3, 5, send signal ; If the r3 is equal to value 5 then jump to the send

; signal locations
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Latch the result of the ALU (rl - r2), and then send the latched data at register (r3) to
the ALU to compare it with value S (during the Decode/Execute of the current
instruction). The schematic capture for the forwarding mechanism is shown in Appendix
A, Figure A.8. The forwarding hardware receives a signal from the RISC’s controller
indicating that the current instruction needs the latched data of the previous instruction.

The latched data is sent to the Decode/Execute stage of the current instruction (Figure

5.9).
sub r3,rl, r2 Fetch Decode Write
(D Execute back
r3
Fetch | Decode Write
beg r3, 5, send signal Execute back

(I+1)

Figure 5.8: Minimize Data Hazard by latching the output of the ALU to be
read within next instruction (forward mechanism).

5.4 RISC's Registers

In our implementation, the RISC's instruction format has three register operands. We
will need to read two data words from the register file and write one data word into the
register file for each instruction. For each data word to be read from the registers, we
need an input to the register file that specifies the register number to be read and an
output from the register file that will carry the value that has been read from the registers.
To write a data word, we need two inputs. The first input needed specifies the register

number to be written. The second input supplies the data to be written into the register.
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Thus, we need a total of four inputs (three for register number and one for data) and two
outputs (both for data) (Figure 5.10). The register files VHDL based is shown in
Appendix A Figure A.9. The register file always outputs the contents of whatever register
numbers are on the Read register inputs. Read registers is controlled by a specific signal,
called R(R/,R2), which must be asserted a read command to the specified register. The
write register is controlled by a specific write control signal, called W(for W/B register),

which must be asserted by RISC's controller to write data into certain register.

o~
Select R1

Output 1 ﬁ Data
Register Select R2 Out
numbers

Outpu[z ﬁ

N, Select Write back

Datain Data_in
Control R (R1,R2)
signal W( for W/B register)

Figure 5.9: RISC register file

The register number inputs are 5 bits wide to specify | of existing registers, whereas
the data input and two data outputs are each 32 bit wide. The size of the register files
differ between the Reassembly and Segmentation functions. The sizes of register files for
the Reassembly unit and for the Segmentation unit are shown in Table 5.5. Clearly, the
register file within RISC processor in the Reassembly unit is larger than the
Segmentation unit because the Reassembly function has extra registers just needed to

hold the specific information (during the setup operation). This information includes two
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registers to hold the CB's pointers (the head and tail of CB). The other registers to hold

the address of the FIFOs (FIFOI, 2, 3 and 4).

Functions unit

Register size

Reassembly 28 regi_ster
Segmentation 20 register

Table 5.5. Register file size for Segmentation and Reassembly units

5.5 The Component Needed With RISC cores.

Both RISC cores may need other components helping with SAR processing. Table 5.6

shows the component needed for each side.

Processing core Segmentation Reassembly
Performance

DMA Required Required

CAM Required Required for the Active connection
Local bus 32-bit word bus 32-bit word bus

Circulation Buffer

Not required

spaces
Number of FIFO(s) 1 4
SRAM Cell buffer Required Required

Table 5.6 : Shows the component needed for segmentation and Reassembly

functions
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Chapter 6

Conclusion and Future work

We have presented computer simulation to measure the amount of processing required
by the ATM network interface for both AAL 3/4 and AAL 5. The VHDL simulator has
shown that the processing requirements for the data movement of the Segmentation and
Reassembly units can be reduced by using DMA controller. Such controller must runs at
two to three times the speed of the embedded RISC could eliminate all RISC’s idle cycles.

Also, the simulation results have shown that a cost effective embedded RISC core can
efficiently provide network interface with the processing that required to support a wide
range of transmission line speed. A 70MHz RISC core can support the segmentation unit
processing for up to 2.4Gbps transmission speed, while a core running at 85MHz is found
to be suitable for the Reassembly unit processing for up to 1.2Gbps line speed. These
results are based on the use of a specialized RISC core that we developed and simulated
for ATM NI applications. Such core has three stages pipeline supported with forwarding
mechanism, instruction set of only 11 instructions, a register file of 20 register for

Segmentation and 28 for Reassembly.
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As the future work for this thesis, we would like to investigate the support for AAL1
and AAL2 by our NI model. Such support will require the protocol functions
modification and not the NI architecture. Also, the ATM NI can be extended to process
the upper layer of the ATM protocol the Convergence Sub-layer (CS) layer. Such
support can be useful to have direct network-to-device communication with minimum
interfering from the host processor.

The use of the RISC processing core, for other type of network interface can also be

investigated in the future.
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Appendix A

VHDL Simulation Diagrams

In this Appendix, the schematic diagrams for every unit of the network interface have

been presented.
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Figure A.1 VHDL based ATM Network Interface architecture
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