
NOTE TO USERS

This reproduction is the best copy available.

UMI

A RISC-based ATM Network Interface: processing,
architecture, scalability and performance

by

Mohamed Elbeshti

B. Sc. (Computer Science)

Bright Star University, 1987, Libya

Thesis

submiîted in partial fulfilhnent of the requirements for

the Degree of Master of Science (Computer Science)

Acadia University

Spring Convocation, 2000

Q by Mohamed Elbeshti, 2000

National Library BiMiothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 Wellington Street 395. ~ i e Weltingtm
OitawaûN K 1 A W OnawaON K l A W
canada CaMda

The author has granted a non-
exclusive licence ailowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microfonn,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts fiom it
may be printed or othenvise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/fiim, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

Table Of contents

...
List of Figures .. vm

. *
List of Tables ... xii

.. Abstract xvi

.. .. List of De finitions of Abbreviations xvu

Chapter 1 .. i
... Introduction 1

.. Chapter -5

Overview of ATM Network Interface ... 5

...................................... 2.1 Introduction .. 5

2.2 The Basic principles of ATM .. 7

2.3 ATlM Ce11 ... 8

... 2.3.1 ATM Cell format 8

2.3.1 . 1 Header Description ... 9

2.4 Virtual Connection .. 10

2.5 ATM Protocol Architecture ... 12

.. 2.5.1 ITUT-T 1.363 list for AAL service 15

2.5.1.1 AAL Classes 15

... 2.5.2 ATM adaptation layer 3 1 4 16

... 2.5 .2.1 Header Description of CS-PDU 17

.. 2.5.2.2 Header Description of AAL3/4 h e 19

... 2.6 Segmentation and Reassembly (SAR) 21

... 2.6. 1 Segmentation and reassembly for AAL3/4 21

2.6.2 Segmentation and reassembly for AALS .. 22

.. 2.7 Different ATM interface architectures 23

... 2.5 Conclusion 27

Chapter 3 ... 28

ATM Network Interface Simulation ... 28

3.1 Introduction 28

3.2 The Simulation .. 29

... 3.2.1 Buffers Description 32

.. 3.2.1.1 Circulation Buffer (CB) 32

3 2 . 1 -2 Host-NI Communication (HNIC) buffer ... 33

3 .2.1 -2 Content Addressable Memory (CAM) ... 35

3.3 Processing the Reassernbly Function .. 35

3.3.1 AAL3/4 .. 36

... 3 .3.1 -1 Data Movernent 37

.. 3.3.1.2 Linked List Mechanism 39

.. 3.3.2 Reassembly AALS 41

3.4 ATM Segmentation Function Processing .. 42

.. 3.4.1 Segmentation AAL3/4 43

3.4.2 Segmentation AAL 5 44

3.5 Simulation Results ... 45

... 3.6 Conclusion 53

..................... .. Chapter 4 ... 55

VHDL Simulation for ATM NI ... 55

4.1 Introduction ... 55

.. 3.2 ATM Network Interface Mode1 56

4.2. I Data Movement .. 59

... 4.2.2 Content Addressable Memory (CAM) .. 61

4.2.2.1 Linked list CAM VHDL based .. 62

.. 4.2.3 The NI'S FIFOs 64

... 4.2.4 The interface buffers 67

4.2.4.1 The Ce11 Receiver Buffer (CRB) and Cell Segmentation Buffer (CSB) .. 67

.. 4.2.4.2 Receiver and Transmission Line buffers G8

... 4.3 VHDL Simulation Results 69

... 4.3.1 Reassembly Function 70

4.3.2 Segmentation Function 84

4.4 NI Performance Evaluation ... 95

Chapter 5 ... 102

Embedded Pipeline RISC Core for ATM Nehvork Interface 102

... Introduction 102

Deveioping RISC core for ATM N 1 Processing ... 102

VHDL-Based RiSC core 103

.. 5.3.1 RISC Pipeline 103

... 5 .3.2 Instruction Representation 1 04

.. Anthmetic and logic operation instructions 105

.. Branch instructions 1 06

... Memory access instructions 1 07

5.3.3 Pipeline Hazard ... 1 1 1

5.5 The Component Needed With RISC cores 1 18

Chapter 6 .. i 19

Conclusion and Future work ... 1 19

Bibliography ... 12 1

.. Appendix A ... -124

vii

List of Figures

Figure 2.1 : Workstation architecture .. 5

Figure 2.2. Block diagram of a typicat NI .. 6

Figure 2.3. Typical NI using an interfaced-based processing ... 6

Figure 2.4. ATM Ce11 .. 9

Figure 2.5. VCI and VPI Connections in ATM ... 12

Figure 2.6. ATM Protocol Architecture .. 13

Figure 2.7 : Layers Description ... 14

Figure 2.8. CPCS-PDU format for M 3 / 4 .. 17

.. Figure 2.9. SAR Structure for AAL3/4 ce11 format 18

Figure 2.10. AALS CPCS-PDU frarne format .. 20

Figure 2.1 1 : AAL3/4 Segmentation and Reassembly (SAR) .. 22

Figure 2.12. AALS Segmentation and Reassembly (SAR) ... 23

Figure 3.1 : Simple NI simulator structure .. 31

Figure 3.2. Circulation Buffer (CB) architecture ... 32

Figure 3.3. Communication between host and NI Reassembly Embedded Processor 34

......... Figure 3 -4: Communication between the host and the NI Segmentation Embedded
Processor ... -34

... Figure 3.5. Prograrnmed VO approaches for data movement 37

Figure 3.6. DMA approzch for data movement with AAL3/4 ... 38

Figure 3.7. Linked list data structure .. 39

Figure 3.8. Linked list structure .. 41

Figure 3.9. ATM Segmentation .. 44

viii

Figure 3.10. Reassembly function processing .. 50

Figure 3.1 1 : Reassernbly with data movement using DMA .. 51

............................ Figure 3.12. Reassembly with data movement using prograrnmed VO 51

Figure 3.1 3 : Segmentation fûnction processing .. 52

Figure 3.14. SEP processing amount for Segmentation function and with DMA

initialization .. 52

Figure 3.15. Segmentation with data movement using programmed I/O 53

Figure 4.1 : ATM Network Interface Architecture .. 57

Figure 4.2. Block diagram of RISC-core with DMA ... 59

Figure 4.3. DMA structure .. 60

Figure 4.4. CAM Structure ... 6 2

.... Figure 4.5. CAM architecture with its linked Iist mechanism 63

Figure 4.6: The two FIFOs used to send the data fiom RISC processor to the host CPU-G5

................. Figure 4.7. The two FIFOs have a VCs / VID-MID and fiee pointer address 66

Figure 4.8: The F E 0 canies the information needed for Segment CPCS-PDU fiames .. 67

... Figure 4.9. The buffer architecture in RB1 68

... Figure 4.10. The SB1 architecture 69

Figure 4.1 1 :Total instruction for BOM of AALS is 26 inst .. 74

.. Figure 4.12.Total instruction for COM of AAL5 is 26 inst 75

... Figure 4.13. Total instruction for EOM of AALS is 28 inst 76

Figure 4.14. Total instruction for SSM of AALS is 26 inst ... 77

.. Figure 4.15. Total instruction for BOM of AAL3/4 is 30 inst 80

Figure 4.16. Total instruction for COM of AAL3/4 is 30 inst 81

Figure 4.17: Total instniction for EOiM of AAL3/4 is 30 inst .. 82

Figure 4.18: Total instruction for SSM of AAL3/4 is 29 inst - 83

Figure 4.19: ATM Segmentation for AALS processing scheme of BOM (Total i

instructions by BOM for A A L S is 10 inst) 88

Figure 4.20: ATM Segmentation for AALS processing scheme of COM (Total

instructions by COM for AAL5 is 10 inst) ... 89

Figure 4.2 1 : ATM Segmentation for AALS processing scheme of EOM (Total

instructions by EOM for AAL5 is 10 inst) ... 90

Figure 4.22: ATM Segmentation for AALS processing scheme of SSM (Total

instructions by SSM for AALS is 10 inst) ... 91

Figure 4.23: ATM Segmentation for AAL3/4 processing scheme of BOM (Total

instructions by BOM for AAL3/4 is 12 inst.) 92

Figure 4.24: ATM Segmentation for AAL3/4 processing scheme of COM (Total

instructions by COM for AAL3/4 is 1 1 inst) 93

Figure 4.25: ATM Segmentation for AAL3/4 processing scheme of EOM (Total

instructions by EOM for AAL3/4 is 12 inst) 94

Figure 4.26: ATM Segmentation for AAL3/4 processing scheme of S S M (Total

instructions by SSM for AAL3/4 is 13 inst)+.~......~-.......................... 95

Figure 4.27: ATM Segmentation for AAL3/4 and AALS using DMA for data

movement (the DMA has the same RISC's clock rate) ... 96

Figure 4.28: ATM Segmentation for AAL314 using DMA for data movement (the DMA

has double RISC's clock rate) .. 97

Figure 4.29: ATM Segmentation for AALS using DMA for data movement (the DMA

has double RISC's clock rate) ... 97

Figure 4.30: ATM Segmentation for AAL3/4 using DMA for data movement (the DMA

has triple than the RISC's clock rate) ... 98

Figure 4.3 1 : ATM Segmentation for AALS using DMA for data movement (the DMA

has triple RISC's clock rate) .. 98

Figure 4.32: ATM Reassembly for AAL3/4 using DMA for data movement (the DMA

lias the same RISC's clock rate) ... 99

Figure 4.33: ATM Reassembly for AAL3/4 using DMA for data movement (the DMA

.. has the same RISC's dock rate) 99

Figure 4.34: ATM Reassembly for AAL3/4 using DMA for data movement (the DMA

has double RISC's clock rate) .. 100

Figure 4.35: ATM Reassembly for AAL5 using DMA for data movement (the DMA has

double RISC's clock rate) .. LOO

.. Figure 5.1 : Structure of RISC instruction Pipeline 104

Figure 5.2. Anthmetic and logic instruction format 105

... Figure 5.3. Branch instruction format 106

.. Figure 5.4. Load/Store instruction format 108

Figure 5.5. LCAM instruction format .. IO9

............................. Figure 5.6. RISC instruction-set format for CAM operation (stcam) 110

.. Figure 5.7. Scheduling the branch-delay 112

Figure 5.8: Minimize Data Hazard by latching the output of the ALU to be read within

... next instruction (foward mechanism) 116

Figure 5.9. RISC register file .. 117

List of Tables

Table 2.1 : Payload Type (PT) description ... 10

Table 2.2. Traffic Classes and Cnteria ... 16

Table 2.3 : AAL3/4 type field description ... 19

Table 3.1 : The number of the Reassembly instructions needed to process an ATM

message for AAL3/4 ... 46

Table 3 -2: The nurnber of the Reassembly instructions needed to process an ATM

message for AALS ... 47

Table 3 -3: Contains the percentage of the processor power for ATM Reassembly 48

Table 3.4: The nurnber of the segmentation instructions needed to process an ATM for

AAL3/4 ... -48

Table 3.5. The number of the Segmentation instructions needed to process an ATM

message for AALS 49

Table 3 -6: Contains the percentage of the processor power for ATM Segmentation 49

Table 4.1 : number of instructions processed for Reassembly AALS and AAL3/4

messages (the DMA's clock has the same speed as RISC's clock) 70

Table 4.2: number of instructions processed for Reassembly AAL5 and AAL3/4

messages (the DMA's clock has double speed of RISC's clock) 71

Table 4.3: The main differences between the processing for A A L 5 and AAL3/4 for ATM

Reassembly ... 72

Table 4.4: Number of RISC instructions processed and the idle cycles for Segmentation

xii

messages (the DMA have the same clock cycle as the RISC) 84

Table 4.5: Number of RISC instructions processed and the idle cycles for Segmentation

messages (the DMA have the dock cycle double the RISC) 85

Table 4.6: Number of instructions processed and the Idle instmctions for Segmentation

messages where the DMA has triple the clock cycle of the RiSC 86

Table 4.7: The main differences between the AALS and AAL3/4 for ATM Segmentation

... 87

Table 5.1 : Type of RiSC Instructions. .. 104

Table 5.2: Occurrence of the conditional branch for AAL3/4 and AALS Reassembly . 1 13

Table 5.3: Occurrence of the Read After Write (R/W) hazard for & U S Reassernbly

Processing 1 15

Table 5.4: Occurrence of the Read After Write (WW) hazard for =3/4 Reassembly 1 15

Table 5.5. Register file size for Segmentation and Reassembly units 1 18

Table 5.6 : Shows the component needed for segmentation and Reassemb ly functions

Dedication

To the memones of mg family, specially to rny Mother

xiv

Acknowledgments

The decision to write a thesis represented a cornmitment to achieving academic

enrichment and persona1 development. The cornpletion of this thesis sigified a

milestone in achievement, of which 1 am proud. This would not have been possible

without the help of some others.

1 would like to cxtend my heartfelt gratitude to Dr. Ali Elkateeb for his assiduous

dedication to me arnidst his other pressing commitments. His steadfast faith and spirit

motivated me to achieve nothing but the highest standard of excellence. This thesis would

not have been possible without Elkateeb's support and encouragement. Thanks also

extend to Dr. E. Eberbach for being my intemal examiner and Dr. Hafizur Rahman for

being my external examiner.

A special thanks to the Libyan Educational Secretaries (Tripoli-Libya) for their

sponsorship.

Finally, 1 need to pay a special tribute to my farnily and friends. Also to Dr. Peter

SmaIe and Carol Luczak for helping. My parents have always believed in me, and

without them, this work would not have been possible.

Abstract

The question of whether to design the processing core o f a network interface (NI)

using a custom made hardware or an embedded processor for ATM Segmentation and

Reassembly function is certainly an important one that has been addressed by many NI

researches. The embedded processor core c m be very useful in providing the following

important features to network interfaces: simplicity, shorter developing cycle time, low cost,

and flexibility to support protocol changes and perhaps new protocols. However, it is not

clear what the scalability of NIs would be if their designs were based on embedded RISC

core to support different high-speed transmission lines.

This work investigates the ose of the Embedded IUSC core in the ATM M

design. A cycle accurate VHDL-based simulator has been developed to measure the

amount of processing required for ATM network interface design that support different

transmission line speeds. The results have shown that a simple and cost effective

embedded RISC core running under 85MHz c m be used as a processing eiement in a

high-speed ATM network interface. This core c m support a wide range of transmission

line speeds, up to 1.2Gb/s and 2.4Gb/s, for Reassembly and Segmentation functions

respectively. We believe that this research c m also be used as a guidance work for the

ATM NI design.

xvi

List of Definitions of Abbreviations

AAL

ATM

B-ISDN

BOM

CAM

CB

COM

CPCS

CRB

CS

CSB

DMA

EOM

HI

HNIC

IEEE

ITU-T

Li

iMID

MIPS

ATM Adaptation Layer

Asynchronous Transfer Mode

Broadband Integrated Services Digital Network

Begiming Of Message

Content Addressable Memory

Circulation Buffer

Continuation Of Message

Common Part Convergence Sublayer

Ce11 Reassembly Buffer

Convergence Sublayer

Ce11 Segmentation Buffer

Direct Memory Access

End Of Message

Host Interface

Host-Network Interface Communication

Institute of Electncal and Electronic Engineers

International Telecornmunication Union-Telecommunication Sector

Line interface

Message Identifier

Million Instructions per Second

xvii

NI

RB1

REP

RISC

SAR

SB1

SEP

Network Interface

Receiver Buffer Interface

Reassembly Embedded Processor

Reduce Instruction Set Computer

Segmentation And Reassembly

Sending Buffer interface

Segmentation Embedded Processor

SONET Synchronous Optical Network

SPIM MIPS spelt back work

SSM Single Segment Message

VC Virtual Circuit

VCI Virtual Channel Identifier

VHDL Very High Speed Integrated Circuit (VHSIC) Hardware Description Language

WDL)

VPI Virtual Path Identifier

xviii

Clrtrprer /: Introduction

Chapter 1

Introduction

In the past few years communication networks have been advancing rapidly in

providing new services, improving their bandwidth and integrating new technology.

Also, the network interfaces have been improved considerably. Such interfaces, capable

of providing above Gbps speed, have been researched for different network protocols

such as ATM, fibre channel and Gigabit Ethemet CLPete96, Desi97 and CGcorC)7].

Improvements to the network interfaces have led to support a new generation of

applications for videoconferencing, video telephone, multimedia, etc.

As the speed of the networks have exceeded the Gbps, the design and implementation

of high-performance Network Interfaces (NI) have become very challenging. One of the

main challenges is the processing core design that is required for network interface

protocols.

The approach of partitioning the processing of the protocol by allowing sorne

functions to be processed on the NI and leaving the others for the host processor has

reduced the amount of processing that the host processor usually does if NI is not used.

As an example, the lower-level of the ATM protocol such as Segmentation and

Reassembly (SAR) are processed on NI and the higher level protocols are leA to be

processed by the host. This approach was proposed and used in much researches

[ECoop91. DBm93. STraw93. CKim98, and RHosb991. Other approach allows the NI to

perfom al1 the protocol processing without the host processing involvement [ZDitt97].

Generally there are three possible methods that may be used to process the network

interface protocols:

1. GeneraI-purpose ernbedded processor [DBm93].

2. Fully customised logic [STraw93].

3. Progarnmable VLSI engines [CGeor97, CKim98, and RHosb991.

The general-purpose embedded processors may not provide the same level of

performance as the other method offered, but they have better flexibility and they could

easily accommodate protocol revision or even a new protocol. The wide availability of

these processors has contributed to the low developing cost for nehvork interfaces. Using

these processors in designing the network interface makes the data path very simple and,

hence makes their design simple too. An example of such network interface design is the

one developed at Bellcore that supports 622 Mbitkec ATM Network interface for DEC

TURBO channel whicli uses a pair of 33MHz Intel960 processor [DBniW].

In this thesis, we study and investigate the design of an ATM Network Interfaces

(ANI) based on the use of the specialized embedded processor of a Reduced Instruction

Set Computer (RISC) core type. Also, we have analyzed the amount of processing

required by the ATM interfaces for both outgoing and incoming messages.

The following steps have been taken in our work:

1. We simulate an ANI model to support both ATM adaptation layer3/4 and AALS

using S P M S20 simulator to process the ATM Se,omentation and Reassembly (SAR)

protocols [Patt98]. This simulation is used to measure the amount of processing

required for ATM protocols and data movement operations

2. We also simulated the ANI by using a high speed integrated circuit (VHSIC)

hardware description language (HDL) VHDL. The E E E 1164-1993 srarrdavci running

over the Xilinx foundation version 1.5 was used for our simulation to test our

architecturai model [Xili98, Xilinx991.

3. The RISC clock rate was measured for Segmentation and Reassembly protocol

processing supporting the AAL3/4 and A A . 5 .

4. The RISC architecture was investigated to includes the appropriate instruction set,

pipeline stage length and techniques to eliminate data and branch hazard.

5 . We used DMA to assist the data movement activities, while the RiSC was free to do

other required processing. The speed of the DMA was investigated.

This thesis is divided into 6 chapters. Chapter 2 gives a general description of the NI

design. The chapter also includes the protocol architecture of ATM network, ATM ceil

format and the concept of ATM Adaptation Layer (AAL). Finally, the chapter concluded

with overview of related work. Chapter 3 shows the SPIM simulator model for ATM

network and the SPIM simulator results. Chapter 4 described the VHDL Mode1

architecture for ATM M and the results for both AAL3/4 and AALS. The design issues

related to RISC core that specificaliy irnplemented for high-speed ATM host-network

interface applications such as the instruction types at the RISC core and the pipeline stage

are investigated in chapter 5. Finally the conclusion and the fùture works is discussed in

chapter 6 .

Chapter 7: Overview of A TM Nenvork Inte@ace

CHAPTER 2

Overview of ATM Network Interface

2.1 Introduction

In every workstation, the Network Interface (NI) is usually connected to the

workstation's WO bus and delivers messages to the host. The NI also receives messages

from the host and then delivers them to the other end over the transmission h e (Figure

2.1).

Microprocessor iiO Bus

Figure 2.1 : Workstation architecture

The network interfaces usually have two parts. The first part is the Line Interface

which connects the workstation to the network line, The second part is the Bus Interface

which connects the NI to the host. The Bus interface serves as a buffer between the NI

and the host for receiving and transmitting messages.

Network
Interface

CNI)

Cache I

Host Memory

-

-

Clzclprer 2: Ovcrview of A TM Nehvork Intetjbce

The NI is generally designed to work for a specific nehvork. The complexity of the

NI design is basically dependent on transmission line speed and the protocol functions

processing. In cases where the transmission line is ninning at moderate speed and the

functions that are required to be processed by the NI are primitive, the M can be very

simple and does not need an interface-based processing because most of the processing

can be done on the host (Figure 2.2).

Host y 0 bus
NI (Adapter)

Figure 2.2: Block diagram of a typical M

In other cases, where the transmission Iine is running at high speed and the functions

processed by the host are large, performing ail processing by the host will reduce the host

capability of performing its normal job. Thus, an interface-based processing capability

tliat removes the burden from the host processing becomes very important (Figure 2.3).

NI (Adapter)

l rn

1 1 Network

Figure 2.3: Typical NI using an interfaced-based processing

Chaprer 2: Overview of ATM ffenvork lnterjfiace

As the focus of this research is on the ATM network interfaces design, we believe

that i t is important to start by reviewing the ATM standard. Such a review will familiarize

the reader with the ATM terms, concepts, and architecture. At the end of this chapter, a

literature survey and related works in section 2.7 wiI1 be presented.

2.2 The Basic principles of ATM

The Asynchronous Transfer Mode (ATM) was born out of a standardization effort

for Broadband ISDN (B-ISDN) which began in the CCITT in the mid 1980s. In the early

1990s, the data communications community saw the ATM standard as a promising

candidate for netsvorking in the local area. It was seen as a scalable method for the

provision of high-speed network connections to routers and hosts. Currently ITU-T has

steadily continued its work with respect to standardization of ATM, filling in the details

related to operations and the transmission~reception a block of user data, and traffic

characterization parameters.

There are many reasons why ATM is important for current and future networks.

Firstly ATM c m meet the bandwidth demands by oîTering a scalable range of

transmission rates, such as Tl/DS-1 (1.5 Mbls), T3/DS-3 (44.7 Mbls), OC-1

(5 lMbps), OC-3 (155 Mb/s), OC-12 (622 MWS), OC-24 (1.244 Gbps), OC-48 (2.4

Gbps) [ITU-93, LPete961. The standard for OC-192 (10Gbps) is already under

development [CGeor97, LPete961. Secondly there is the need for a single universal

network which must meet al1 the userfs requirements such as moving data, voice and

video over a single network. Thirdly, ATM allows multiple logical connections to be

multiplexed over a single physical link. For these proceeding and many other

reasons, ATM will continue to be a popular networking technology despite the rapid

progess in other network technologies such as Gigabit Ethemet.

2.3 ATM Ce11

ATM uses a 53-byte ce11 [ITUR93] to transport data. The 5 byte header is primarily

used for the association of cetls to virtual connections and traffic management whiIe the

48-byte payload of cells are canied transparently fiom the source to the destination.

There are a number of advantages to using fixed size packets in a communication

network rather than the more traditional approach of using variable length packets. First,

each ce11 will have a small amount of queuing delay which is usefùl for higher priority

cells to meet the high ATM speed rate at the switch or the end node [LPetegG, Comp981.

Second, packet lengths do not need to be calculated and the header does not need to carry

length information. Third, it is simple to discover the delineation of cells with the fixed

size cell.

2.3.1 ATM Cell format

ATM ce11 cornes in two different structure formats, user-network interface (UNI) and

network-network interface N I) . The UNI ce11 format is used when the transmission

cells are between user and network. The NNI ce11 format is used when transmission cells

are between switches.

The header includes information about the contents of the payload and the method of

transmission. The sections in the header are a series of bits that are recognized and

Chaprer 2: Overview of A TM Nenvork Inre~ace

processed by the ATM layer, except the CRC that is processed by the physical layer

iTray93, DBru93, RHosb99J.

Sections included in the header are: Generic Flow Control (GFC) which appears only

at UNI ivhile it is added to the VPI at NNI, Virtual Path Identifier (VPI), the Virtual

Channel Identifier (VCI), Ce11 Loss Priority (CLP), Payload Type (PT), and Header Error

Control (HEC). The payload portion of the ATM ce11 contains the data to be transmitted.

Figure 2.4 shows the ATM ce11 structure.

*

Data 48 byte (Payload)

Scncric Flow Control (GFQ

Virtual Path Identifier (VPI)

Header 5 byte

Vinual Path Idcntificr (VPI)

Virtual Channel Identifier (VCI)

irtucil Channel Idcntificr (VCI)

Information field
Data 48 bytes

O 1 2 3 4 5 6 7

Virtual Chmncl Idcntificr (VCI)

Virtual Channel Idcntificr (VCI)

tfsader e m r controI

Header

body

Payload TF (PT)

UNI frame

CLP

Figure 2.4: ATM Ce11

Hcadcr c m r contml

2.3.1.1 Header Description

The first four bits in the header for the UNI cell format include GFC presented as bits

in the ATM header to support flow control. This mechanism was proposed by the ITU-T

recommendation [ITUR93]. The VPI and VCI provide information on the path that the

ce11 will take during its transmission. The PT section contains three bits that indicate

Cliuprer 2: Overview ofATM Nerivork Inrejace

whether the payload contains user data or Iayer management information. User data is

data of any trafic type that has been packaged into an ATM cell. An example of

management information is involved in cal1 set-up. This field also notes whether the ce11

experienced congestion.

PayIoad Type FieId definition

User data celI,AAU=O congestion not experienced
User data cell,AAU=l congestion not experienced
User dam cei1,AAU-O congestion experienced
User data cell,AAU= 1 congestion experienced
OAM F5 segment associated ceII
OMA F5 end-to-end associate ce11
resource management ce11
reserved for future fiinction

Table 2.1 : Payload Type (PT) description

The CLP bit indicates the loss priority of an individual cell. Cells are assigned a value

of 1 or O to indicate that they are either high or low priority. A ce11 loss priority value of

zero indicates that the ce11 contents are of high priority. A ce11 that has value 1 in its CLP

is discarded if congestion occurs in the network. CeIIs with a high priority will only be

discarded afier al1 low priority ceils have been discarded. The last part of the ATM

header is an 8-bit header error control field that consists of error checking bits. This field

provides error checking only for the header field, not for the payload.

2.4 Virtual Connection

The ATM network service is connection-onented. This means that a comection must

be set up behveen hvo ATM hosts before user data c m be transmitted. In ATM

tenninology, the connection set-up is called signaling. Once two users accept the

Chaprer 2: Ovcrview ofA TM Nenvork Interjiace

connection, then the virtual comection is dedicated to the source and the destination.

ATM can operate one or more virtual connections over a single physical link. A Virtuai

Channel (VC) is used to describe the unidirectional transport of ATM cells associated by

a common identifier value specified by a 24-bit VC which is assigned at cal1 set-up

[ITUTgS]. This cornmon identifier is the VCINPI contained in the ATM ceIl header part

of each cell. The VPI is fixed to 8 or 12 bits long and supports 256 or 4096 virtual paths.

Each path can be composed of up to 64K Virtual Channel Identifier by its VCI [hfarti95].

A VCI value is used to distinguish VCs of a VP where these VCs allocate at the end

ATM point as well as within the network. Switches containing a routing table of switch

ports and comection identifiers are used to intercomect ATM hosts and networks. Each

ceIl is transported through the switch based on the c o ~ e c t i o n identifier in the cell's

header.

It should be noted that two VCs belonging to hiro different VPs could share the sarne

VCI value. Thus, VCI values are only significant within VPs. This concept is useful

when two users need to set-up a nurnber of separate connections to each other. In

addition, VCs demanding similar quality of services frorn the network can be multiplexed

together.

For example, video telephone could be sent over the neisvork. It would be divided

into three components: one VCI for voice, one for video and one for data (Figure 2.5).

Voice 1
Video 2 Virtual Path 1
Data 3

Figure 2.5: VCI and VPI Connections in ATM

2.5 ATM Protocol Architecture

The basic protocol architecture for a B-ISDN mode1 behveen user and network is

issued by the ITU-T, which is composed of three separate plans and four layers (Figure

2.6). The physical layer of the ATM protocol is divided into two sub-layen, the

Transmission Convergence (TC) sub-layer and the Physical Medium (PM) sub-layer. The

TC is responsible for the generation and verification of the header error control byte,

checking idle cells, and ce11 delineation.

Clroprer 2: Overview of A TM Nehvork Interface

Figure 2.6: ATM Protocol Architecture

The PM is concerned with converting the signal into electrical or optical output for

the transmission of data over a transmission media at different data rates. The ATM layer

operates independently of both the underlying physical layer and the AAL layer above it.

The ATM is responsible for a nurnber of functions involving the contents of the ce11

header. in the transmit messages from source, the Segmentation and Reassembly-

Protocol Data Unit (SAR-PDU) is accepted fiom the AAL and encapsulated in ATM ce11

payloads where the ATM layer generates various ce11 headers including VPI and VCI

fields. On the receiving side, the ce11 headers are extracted from their payIoad and the

payload part is passed to the AAL layer. Ce11 payloads are not manipulated at the ATM

layer. Other functions performed by the ATM layer are multiplexing and demultiplexing

of cells of different VC into a single ce11 Stream on a physical layer.

The AAL of the protocol reference mode1 accepts variable length PDUs frorn the

higher layer protocol and maps these into Fixed size ATM ce11 payloads. However,

different services require different &Us. The AAL layer is fiirther sub-divided into two

sub-layers: the Convergence sub-layer (CS) and the Segmentation and Reassembly

(SAR) sub-layer. The CS provides services which include the multiplexing of higher

Iayer messages and ce11 loss detectiodrecovery. The SAR sub-layer accepts the CS'S

frame and segments it into ATM ce11 payloads. Then the SAR sub-Iayer executes the

inverse operation of resembling the cells of a VC into data units to be delivered to the

higher layer. The CS is further sub-divided into a Common Part CS (CPCS) and a

Sewice Specific CS (SSCS). The function of the former is dependent upon the higher

layer services that are using the AAL. The CPCS performs functions such as padding and

adding headers and traders to the entire AAL fiame before passing to the underfing SAR

sub-layer. The SSCS may operate over the CPCS.

Layer IM

1 Convergcnçc Sublaycr (CS) . I

SAR PDUs

ATM Cclls

Ccll VPlNCI Tmslation
Cell Multiplcx/Demultiplcx

Fnme generation /rccovcry TC
Physical Ccll nte dccocting (idle cell)

Laycr
Bit Timing P M
Bit Encoding / Dccoding

Oit Strcarn

Figure 2.7 : Layers Description

Chapter 2: Overview o/A TM Nenvork Interface

AAL maps the user management PDU into small blocks to fit in the ATM ce11 of virtual

connection, and vice versa.

2.5.1 ITUT-T 1.363 iist for AAL service

The AAL services supported by 1.362, which represented B-ISDN ATM Adaptation

Layer (AAL) specification [ITUT93], standard are:

Handling of transmission error.

Segmentation and Reassembly. End ATM nodes c m transmit a large arnount of data

by breaking the data into small pieces to be fit in the small fixed ce11 and reassemble

them at the destination.

Handling of lost data condition.

Adding some fields to the ATM payload to allow the processor at the end node to

discover any cells missing fiom its sequence data.

2.5.1.1 AAL Classes

The services transported over ATM layers are classified into four classes shown in the

Table 2.2. Each of these classes has its own specific requirernents for the AAL. The

services are classified in three basic parameters for these four classes .

1- Time relation between source and destination.

2- Bit rate (variable or constant bit rate).

3- Connection mode (connection or connection-less).

Cliaprer 2: Overvinv o/A TM Nenvork Inteface

ITU-T defined one protocol type for each class of services narned Type1 through Type 5

and these are known as AAL1, AAL2, AAL3/4, and AALS.

Suppon conncctionsricntcd serviccs
AAL 1 rcquirc information to bc tnnsfcrrcd

bchvcen source and destination at a
constant bit ntc. (fixcd bit ratc video)

Constant I Connection Class A
Oriented

1s intcndcd for both connection-lcss and

variablc bit rate Connection-

supet conncction-oriented scrvices I u L 2 II that do not require constant bit ntes, but Variable
have i h i n g and dday requircmcnts 1 1 1 (Compressed video or sound)

I Supports conncction-oricntcd serviccs
that rcquire variable bit rates- Dclay md 1

Comection
0rienteb 1 1 1

timing arc not crucial. AALS is a
simpler than AAL3/4, rit thc cxpensc of
crror correction and automtic
rctnnsmission, but pays off with l e s
bandwidth overhcad and reduccd
implernentation complexity.

Variable n Connec tion
Oriented n

Table 2.2: Traffic Classes and Criteria

2.5.2 ATM adaptation layer 3 / 4

The main fùnction o f AAL314 is to allow bigger size messages, where the length of

these messages do not exceed 64 Kbytes, to be transported across the ATM network as a

series of fixed length ATM cells. The user information to be segmented involves two

di fferent formats. The first format is Cornmon Part Convergence Sublayer-PDU (CPCS-

PDU). Variable-length of CPCS-PDUs payload are encapsulated in the CPCS-PDU

frarne format (Figure 2.8).

Common Part lndicator (CPI) 1 octet
Bqinning Tag (BTag) I octet
Buffer Allocation Size (BASize) 2 octet

CPCS Payload 1 -65,535 octets
Padding (Prid) 0-3 octets

Alignment (AL) I octct
End Tag (ET@ 1 octct
Lcngth (Lm 2 octet

Figure 2.8: CPCS-PDU format for AAL3/4

2.5.2.1 Header Description of CS-PDU

The CPI is used to interpret the subsequent fields for the CPCS functions in t

CPCS-PDU header and trailer. It indicates which version of the CS-PDU format is in use.

Only the value 'O' is currently being used [ITUT93]. The Beginning Tag (BTag) field and

End Tag (ETag) fields allow the association of the first and the last SAR-PDUs of one

CPCS- PDU. Since variable length PDUs are encapsulated, the length of the CPCS

payload varies. These Tags also protect each PUD against the situation in which the loss

of the last ce11 of the current PDU and of the first ceil at the begiming of the next PDU to

be joined as one PDU at the destination.

The buffer allocation size (BASize) is used to indicate, to the receiver side, the max

buffer size required allocating the current CPCS-PDU. Padding (PAD) fields contain 0-3

octets, which are not part of the user information, positioned between the CPCS-PDU

payload and the 32-bit aligned CPCS-PDU. The alignment field should be set to 'O1.

Length field has two purposes. The assigrnent of the length of the CPCS-PDU payload

and to detect the loss or gain of information at the receiver side. The CPCS-PDU fiame is

passed to the SAR sub-layer where it is segmented into equal chunks.

The second stage format when the CPCS-PDU frame segments into small pieces. Each

piece with 44-byte of CPCS-PDU plus 4 bytes of header and trailer is carried with each

cell (Figure 2.9).

Scgmcnt Type (ST) 2 bits
Scqucncc numbcr (SN) 4 bits
Multiplcxing Idcntificr (MID) 10 bits
Length hdicator (LI) 6 bits
Cycle Rcdundancy Check (CRC) IO bits
SAR Payload 44 octets

Figure 2.9: SAR Structure for AAL3/4 ce11 format

Clrapter 2: Overvim of A TM Nenvork Intetface

2.5.2.2 Header Description of AAL314 frame

In the first field of the M 3 / 4 is Segment Type (ST) which used to indicate the

beginning of CPCS-PDU message (BOM), end of message (EOM), continuation of

message (COM), or single segment message (SSM). See the Table 2.3.

Value 1 Name 1 Meaning 1

Table 2.3: AAL3/4 type field description

BOM
COM
EOM
SSM

The next field is the sequence number (SN) which is used to recognize ce11 loss or a

disordenng cell. The multiplexing identifier (Mm) field is used to identiQ SAR-PDUs

belonging to paRicular SAR-SDU which c m be assigned to help different PDU on a

single connection. The two ends during the cal1 set-up negotiate the range value of the

MID field [ITUT95].

Beginning of message
Continuation of message
End of message
Single segment message

2.5.3 ATM Adaptation layer 5

In the AALS, the fiame of CS-PDU consists of the data portion, which is handed

down by the higher-layer protocol, and the eight-byte trailer. At the CS Sub-layer, the

AAL5 protocol does not specify any information for buffer allocation size, and CRC

checking is h l ly performed on the entire message at the CPCS Layer.

CPCS-PDU Payioad

CPCS Payioad > 65,535 octets
Padding (PAD) 0..47 octets
CPCS User-to user indication (UU) 1 octet
Comrnon part identifier (e l) 1 octet
Length 2 octets
Cyclic Redundancy Check (CRC) 4 octets

Figure 2.10: AALS CPCS-PDU frame format

The padding field (PAD) is located between the data and the trailer in the CPCS-

PDU, where PAD size can Vary fiom O - 47 octets, this ensures that the total size of a

CPCS-PDU is a multiple of 48 octets of SAR data. The second field is the user to user,

which contains one octet that is used to cany CPCS user information. The common part

identifier (CPI) contains zeros in its field, indicating that the CPCS PDU contains user

data. Other CPI values are for further study. The length field is used to indicate the

CPCS-SDU payload's length in the CPCS-PDU. It is necessary to figure out the actual

size of user data fiom its padding data.

The main feature missing in AAL 5 is multiplex identifier (MID) which has the

ability to send multiple SAR connections on a single ATM layer connection ce11 over an

active connection. Also, AALS uses the ST at ATM header to distinguish between the

last or single SAR segment and the rest of the segments. AALS sets the ST value of '1' to

identiQ the last ce11 of CPCS-PDU as a iast ce11 of the CPCS-PDU fiame. Al1 the other

cells such as BOM or COM will have value 'O1. This procedure can eliminate the two bits

ST field at AAL3/4 header.

2.6 Segmentation and Reassembly (SAR)

This mechanism allows the users to send a big message (less or equal 64 Kbytes)

through the protocol layers to the ATM network where AAL has it is ability to cut the

CS-PDU h e into small pieces as ATM payload. Furthemore, AAL c m send these

pieces to lower layer (ATM layer) which then completes the process by adding ATM

header, and sending the ce11 to the physical layer, then to the transmission line. The

Physical layer is responsible to add CRC at the fifth byte in the ATM header to help the

receiver side accept corrected header infonnation. This procedure is known as

Segmentation. The receiving side accepts the packet fiom lower level (afler extracting its

header from the packet) and then ressembles the fragments back together at the

destination. This is known as Reassembly. The general procedure is called Segmentation

and Reassembly (SAR).

2.6.1 Segmentation and reassembly for AAL314

The AAL3/4 header and trailer which contain 2 octets are added to the 44 byte

payload which is cut fiom the CPCS-PDU frame to be 48-byte and then sent it down to

the ATM layer which will add its header to be a complete ATM ce11 format. In the

receiving procedure the ATM layer will extract the ATM header and then pass the

Cilaper 2: Overview ofA TM hfenvork Interface

payload part to the AAL layer which extract the AAL header and trailer and pass the

remaining payload to its related message format (Figure 2.11).

User PDU I
CPCS

User
Layer

- - - -
Convergence
Subiaycr
(CS)

Segmentation
and Rcassembly
SAR

CS-Traiter -'Du

Figure 2.1 1 : AAL3/4 Segmentation and Reassembly (S M)

8 : .'., /.' i
r i : --.\ , '-.

--,,,, , ,----,- ---------&- ----- ----------œ-----------

.f.

SAR PDUs ,/'* -..
\'%.

f \%..

'-. ,f'

a...
.
i : . . \

2.6.2 Segmentation and reassembly for AALS

In the ATM layer there is less overhead than in AAL3/4 where the payload part can

cany 48 bytes instead of 44 bytes. The improvement by decreasing the amount o f

processing at AAL layer makes AALS more efficient and attractive than AAL3/4 (Figure

2.12).

A T M
Layer

PAD CS-Header Uscr PDU

Chaprer 2: Overvierv ofA TM Nenvork Inrefluce

User PDU 1
User
h y c r

CPCS i

ATM Ccll

Figure 2.12: AALS Segmentation and Reassembly (SAR)

2.7 Different ATM interface architectures

Ir is very clear that using an embedded processor element on the NI will release the

host processor fiom most, if not all, of the processing that is required by NI. A cornrnonly

asked question concerns how large an amount of processing may be done if the M has no

processing element. In the case where such processing is large, the cost of adding an

embedded processor to the NI can be justified. Otherwise, the host can perform al1 the

processing required by the NI functions. Al1 the NIs that are used today have a certain

processing element inside the NI to reduce or eliminate the host processing required for

NI fiinctions.

In this section we will demonstrate some of the ATM interfaces that have been

designed to serve in ATM ends. Bnef surnrnaries about these important works are

presented in this section.

a) The STS-3c interface has been developed by Traw and Smith at the University of

Pe~sy lvan ia (UPenn) [STraw93]. They designed an interface for the R6000

workstation and does ATM segmentation and reassembly on the host network

interface's memory. This interface is created with pure hardware to operate at STS-3c

rate 155 Mbps to support AAL3/4 hnction. The protocol processing for SAR was

divided into di fferent components (such as VCI lookup controller, linked list

manager, and segmentation controller). These components operate concurrently to

give good performance for the Segmentation and Reassembly protocol processing,

where data has been pipelined to process fiom one to another component.

The on-board processor has been used to process the ATM protocol including the

SAR functions. The Reassembly messages are performed in a local buffer to reduce

interrupting the host CPU by each arriva1 cell. There is a necessity to change some of

its component in order to run different protocols or new version of the sarne protocol.

b) An STS-12 622 Mbps ATM SONET strearn interface has been developed by Davie

[DBru93] at Bellcore. This interface was designed to work with a TURBO channel

bus on a DEC station 5000 and processes the segment and reassembles messages

using host memory. The operations include SAR protocol processing for AAL3/4

(also suitable for AAL5) done by two intel 80960CA 33MHz microprocessors. These

rnicroprocessors give a great flexibility for deciding the transmitting and receiving of

different VC to or fiom the ATM network, where each decision is done within 23

instructions before the next ce11 arrives.

Each side (receiver and trammitter) operates independentfy. However, they still

need to cornmunicate, in some cases, with each other in order to make the

performance of receiving and transmitting data more efficient. DMA is used for data

trans fer.

This interface performed the processing needed for ATM and AAL layers by an

on-board processor. It uses the host memory for reassembling the message and

notifies the host after receiving a number of messages for a particular VCI (when

memory buffer is full). This approach has a smooth design for the interface but it is

not clear that if Intel 80960CA can sustain high-speed lines such as 1.2 Gbps and

higher rate.

c) A 155 Mbps ATM host interface controller (ASIC) was designed in Electronic and

Telecommunication Research Institute, Korea (CKirn981. This interface uses host

memory to store the arrived messages. The ATM Subscriber Access Handler -

Network Interface Controller (ASAH-MC) is composed of a segmentation and

reassembly engine to process SAR protocols related to AAL3/4 and AALS. The

segmentation engine requests the DMA to move a block of data ATM ce11 body fiom

the host memory and store it in the temporary buffer (FIFO) in the network interface

and then sent as a complete ATM ce11 to the transmission line. The reassembly

engine requests the DMA to store the received ceil body fiom interface's memory to

the host memory. This request provides some information, such as the host memory

Chapter 2: Overviav of A TM Nenvork Interface

address to which the data is stored, and the address of the local memory fiom which

the ce11 body should be read and higher rate.

d) A 700 Mbps interface was designed by Richard and Wang at the British Columbia

Advanced System Institute [RHosb99]. This interface uses a 32-bit embedded

processor core and Receive Control Unit (RCU), and Receive Data Transfer Unit

(RDTU) for the ATM, and SAR protocol processing for AALS reassembly. The

reassembly memory subsystem is composed of pages that c m be dynamically

allocated for variable sized PDU's. The address at the beginning of the transfer

sequence detemines the memory to which the current page shouId be written. A

special request is granted when the microprocessor determines that cornplete PDU

has arxived in the local memory. The DMA mechanism is used for data transfer. More

efficient data movement over 32-bit bus is enabled through 32-bit data paths.

Studying the previous ATM interfaces brought several issues to the foreground. The

first issue is the distribution of protocol fùnctions between the on-board processor in the

network interface and the host processor. Processing of higher-level protocol fwictions

should be performed by the host and the processing of ATM and AAL functions be

performed in the network interface.

Second, most of the interface designers are focusing on eliminating the number of

copying ce!ls inside the NI, and also providing a fast device for data movement. Using

the DMA in the area of the data movement is shown in the al1 previous works and also

is addressed in CGPart94 and AElkaOO].

Chapter 2: Overvimv ofA TM Nenvork Interface

Third, the M should reassernble the incoming cell to be a complete message (CPCS-

PDU frarne). One approach is to reassemble the message in the host memory, as shown

'b' and 'c,' or reassemble the message in the M buffer, implemented in 'a' and 'd.'

Fourtli, the architecture of NI should provide between the host and the nehvork

interface a flexible means of communication, which is useful in reducing the arnount of

interrupting time caused by the arriva1 cells. The NT should be designed not to intermpt

the host for each arriva1 ce11 [GPart94]. The commands between the host and the Ni c m

be passed through dual ported memory, as proposed in Purc931, or through the FIFO

queue buffer [Ckim98, RHosb99, AElka99 and AelkaOO]. Finally, the adapter should be

simple, scalable, small in size and low cost.

2.8 Conciusion

There is still little study on the impact of network interface design for gigabit

networks, specifically in the area of the processing capability for multiple gigabit

network interfaces. Such interfaces will require a high-speed processing unit to cope with

the increasing speed of the transmission rate.

Most often, the use of general-purpose cores within the network interface design is

very attractive due to their availability, short developing cost, and their simple NI design.

However, such cores are not used in high-speed network interface designs because no

clear indication whether such cores-based NI will be scalable, and because of that such

core are not optimising for NI applications.

Chapter 3: A TM network Inteace Simulation

Chapter 3

*4TM Network Interface Simulation

3.1 Introduction

Some of the challenges behind the building of ATM interfaces are: high-speed

transmissions, ATM ce11 structures, and the ATM and AAL protocol processing. As the

network speed increases, the time that is available to the M to process the arrived ce11

will decrease, and therefore the processing unit inside the NI should be fast enough to

finish the processing of one ce11 before the next one arrives. Since the ATM network uses

cells which are very small(53-byte), the network interface in the transmission side should

partition the original message into ATM cells. The whole message may require many

cells to be sent out, one after the other, in order to transmit a complete message to the

receiver. Fragmenting the original message into ATM cells is known as Segmentation

function. At the receiver side, the original message will be constmcted from these small

cells. The reconstruction processing at the receiver is called Reassembly function.

Segmentation and Reassembly (SAR) fùnctions have put more challenges on the

processing part of the ATM Ni, especially where these cells belong to different messages

of different applications. Other fwictions that NI should process are:

The ATM header.

The AAL header and trailer.

Chapter 3: A TM nerwork Interface Simulation

a Virtual Channel (VC).

* Data movement.

* Communication with host processor.

In order to understand and evaluate the processing which canied out by the NI, a

simulation process will be required for NI model. Building a sirnulator for a model that

has components used in reaI M is a time consuming task; therefore, we decided to

evaluate the processing by using a simple simulator. Our strategy was to estimate the NI

fiinctions processing requirement by using this simple simulator. Such estimation will

Iielp to decide whether the cost effective embedded RiSC core is possible to be used in

such applications.

The rest of this chapter describes our model and the simulation process. The chapter

concludes with the results we obtained for both AAL3/4 and AAL 5 protocol processing.

3.2 The Simulation

In order to simulate the NI fùnction in a very short period of time, we decided to use

the SPIM 520 simulator [DPatt98]. It runs programs for the MIPS R2000/R3000 RISC

microprocessors where it c m read and immediately execute files containing assembly

language. The simulator is a self-contained system for running these programs and

contains a debugger and interface for a few operating system services [SPIM97].

The SPIM simulator is used in this work to process the ATM NI hc t ions . Since in

real ATM NI, the Segmentation and Reassembly functions are generally processed in two

Chapter 3: A TM nehvork Inter$ace Simulation

different processors and both are run in parallel, the simulation for the Segmentation

function has been performed independently fiom the Reassembly function.

Two methods are possible for data movement and can be used in our simulation

approach [LPete96, DPatt981. The first method is programmed WO (PYO). In this

method, the embedded processor takes the complete responsibility for moving the data

portion from one place to another. The second method is to use DMA. The DMA will

take responsibility for moving data from one place to another and eliminate the need for

an embedded processor intervention to do that function. As the SPIM simulator does not

have a DMA unit, we only let the embedded processor core simulate the initialization of

the control information for the DMA controller and not the data movement itself. That

has made the simulation processing very close to reality where the processor needs only

to initialize DMA.

The simple simulator that we present in this chapter has used the R2000/R3000 to

process the NI'S functions and the simulator's memory to hold al1 NI buffers (Figure 3.1).

These buffers are:

The Line Interface (LI) buffer to store the amval cells from the network line.

The Host-NI communication (HNIC) buffer which is used to exchange control and

status messages between the host and NI.

0 The Host Interface (HI) buffer that is used for storing cells temporanly.

The Circulation Buffer (CB) which is used to store al1 the address pointers for the

free space that exists inside the HI buffer.

Chapter 3: A TM nenvork Inteface Simulation

Clearly in real NI the LI, HI, and HNIC bufEers are hardware components and we

chose to place them in the simulator's memory. The Content Addressable Memory

(CAM) that is required for holding the active identifiers and the support for the link-list

mechanism, as will be described later, is aIso implemented inside the memory simulator.

In the real NI, the CAM is implemented as a separate memory.

1 / Simulator - - .

Host Interface 0
buffer

Line Interface (Li)
buffer

Circulation Buffer
W B)

Content Addressable
Memory (CAM)

Host - NI
Communication

m I C) buffer

Memory sirnulator

Figure 3.1 : Simple NI simulator structure.

Al1 the above buffers are used for Reassembly functions processing

Segmentation function processing requires only HI, LI, and HNIC buffers.

where the

Chaprer 3: A TM nenvork Interface Simularion

3.2.1 Buffers Description

3.2.1.1 Circulation Buffer (CB)

The ATM cells are fixed in length and the reassembly process is required to

reconstmct the amival cells in the HI biiffer to a whole message and then deliver it to the

host. The HI buffer is basically partitioned into smaller buffers, each of these buffers is

equal to the size of an ATM cell. The CB is used to store al1 the pointers of there small

buffers in order to monitor al1 the buffers within HT. The Reassembly Ernbedded

Processor (REP) uses two 32-bit registers to control the CB. These registers hold the

head-of-the-CB pointer and the tail-of-the-CB pointer. The head-of-the-CE3 pointer refers

to the first available space on the CB that can be used to reassemble the incoming cells,

where the tail-of-the-CB pointer is used to indicate the location of the last available space

inside the CB (Figure 3.2).

Rcsd registcr a k r rcccivc erich cc11

\

Iierid+f-the-CB
repistcr

4
Updatc the hcad-of-thc-list
afier r a d onc pointer

Rerissembly - -.'
.. ;. Embedded
- . Processor - -

Updaic Lhe uii-of-ihe-
(REPI lisi registct rificr adding

a ncw pointer w
TaiI-of-LheCB

Circulation Buffer (CB)

Figure 3.2: Circulation Buffer (CB) architecture.

Chaprer 3: A TM nenvork hteflace Sirnulution

The REP used for reassembly fûnctions processing will update the head-of-the-CB

register whenever a new ce11 amves. Moreover, it updates the tail-O f-the-CB register

whenever the host reads the message from the HI.

3.2.1.2 Host-NI Communication (HNIC) buffer

The NI has to communicate with the host to organize sending and receiving messages

and exchange control and status information. Ln the Reassembly unit, the HNIC is split

into two sections to store the control and status information (Figure 3.3). The first section

of HNIC is used to store information, which is sent by the REP for the host. The REP,

after stonng the complete CPCS-PDU fiame inside the HI buffer, sends the Start-address

and VCI-MID (for AAL3/4) or VC (for AALS) to the HNIC buffer. The host reads the

Start-address and VCI-MID or VC, and then starts processing the CPCS-PDU fiame. The

second half of the HNIC buffer will be used by the host to store its information to the NI.

The host processes the reassembled messages then returns the pointer (the cell's address

inside the HI) of each ce11 body to the HNIC buffer to be reused again by another

message. The REP will fetch these pointers and then store them at the tail-of-the-CB.

The host is responsible for accepting new connections afier it negotiates with other

hosts. These connections have their own VCI-MID or VC and the REP in the NI should

be inforrned about these new connections. These information will be deIivered to the NI

through the second half of HNIC.

In case the host CPU is busy doing other processing while different cells keep

arriving fiom the network the REP could send a buffer status message to the host when

that the HI buffer is getting fùll.

Cltnpter 3: A TM nenvork Inteflace Simulation

I Communication
Buffer statu (HMC)Buffer

I
VC or VCI-MIDI &Sun-addm of
CPCS-PDU# n

message
@

Reassembly :+, 4 Ernbedded "?'
.Zr-, Processor 0 % %

(R W

Figure 3.3: Communication between host and NI Reassembly Ernbedded Processor

In the segmentation unit, the HNIC buffer will be used when the host decided to

sends a block of data to the other ATM hosts. The host CPU sends the CPCS-PDU frame

to the HI buffer follows with other information required to process the fiame. This

information includes VCI, VPI, and fkame location inside the HI. The Segmentation

Embedded Processor (SEB) must get the information fiom the W C in order to process a

Fini Half of HNlC
1 I

Frec pointer #n

VC or VCI-MID(for n m connechon)

Second hjlf of HNIC
l

Host-NI

CPCS-PDU (Figure 3.4).

To the Host

From thc host

CPCS-PDU # n u
I I Host Interface (HI)

Al1 the nccessary
information about CPCS-

Host-NI Communication i

(-p.< Segmentation ... 1
Processor

Figure 3.4: Communication between the host and the NI Segmentation Embedded Processor

Clzapter 3: A TM nenvork Interface Simulation

3.2.1.2 Content Addressable Memory (CAM)

ATM network is comection oriented. The comection is set up between two hosts

with specific identifiers (Le. VCI and VPI). The cells that transmit over a comection

should have the same identifiers. The receiver side can recognize al1 the arrival cells that

Iiave the same identifier are related to the same message and it should be reassernbled

together. In this case, the receiver must multiplex the arrival cells to its related message

according to the cell's identifier. The REP should know about al1 the identifiers that the

host has made in order to match it with the identifier of the arrival cells. The Reassembly

unit is then enabled by Content Addressable Memory (CAM) to store al1 these identifiers;

VCI-MID for AAL3/4 CDBru93, STraw93 and Ahme941 and VCI and VPI [Desi95,

CKim98 and RHosb991. With each identifier, the CAM also stores the location (Start-

address and End-address) of each message inside the HI buffer to help the REP link

together the arrival cells which have the same identifier by using a linked list mechanism

to reconstruct the messages. We will describe the linked list mechanism later.

We chose a part of the NI'S memory to represent CAM where finding a match with

the CAM-base memory was achieved by fetching each location and then comparing it

with the arrived cell's identifier until a match was made.

3.3 Processing the Reassembly Function.

The main function for the receiver section of the NI is to reassemble the arriving cells

into a complete message by linking together the cells that have the same identifier in the

HI buffer. Each ce11 has its own header(s) to carry the cell's information. The header

includes information such as Payload Type (PT), which helps the receiver side to

Chapter 3: A TM network Inre$ace Simulation

recognize the ce11 type if it is the Beginning Of Message (BOM), or Continuation Of

Message (COM), or End Of Message (EOM) of the CPCS-PDU, or maybe a Single

Segment Message (SSM) of the CPCS-PDU.

Other useful information carried by the ATM ceII header is the ce11 identifiers. The

REP reads the arriva1 cell's identifiers to be able to distinguish to which CPCS-PDU

frame that the arriva1 cell should reassembled with. For AAL3/4, the 26 bit identifiers

VCI and MID, which are located in ATM and AAL headers respectively, will be checked

with the CAM entries in order to multiplex the arrived ce11 to its related CPCS-PDU. The

AAL 5 has 24-bit identifier VC (VPI and VCI), located in the ATM header, that needs to

be matched with the CAM entries that contain the active VC.

3.3.1 AAL3/4

As soon as the ATM ce11 arrives at the NI, the ATM header, AAL header, and AAL

trailer will be processed. The 26-bit VCI and MID are masked from the ATM header and

AAL header, respectively, in order to match these identifiers with the CAM entries. After

the match is found, the REP reads the head of the CB in order to get the address for a free

location inside the HI for the arrived cell's body. The two bits of the PT field inside the

AAL header check to determine if the type of the anived ce11 is BOM, COM, EOM, or

SSM of a CPCS-PDU. Afier getting a match and the type of the cell, the REP then needs

to move the ce11 body from the LI to the M buffet.

Cliaptcr 3: A TM network Interface Simulation

3.3.1.1 Data Movement

In the Programmed y0 method, the REP handles al1 the procedures for moving the

ce11 payload fiom LI buffer to HI buffer. Every single clock cycle, the processor loads

32-bit to its register and then during the next cycle, store these 32-bit to a specific place

inside the HI buffer until al1 44 bytes have been moved to the HI buffer (Figure 3.5).

Host Interface (HI)

Circulation Buffer
CB

Content Addressable
Memory (CAM)

Host - NI
Communication (HNIC)

bu ffer

NI'S Memory

Figure 3.5: Prograrmned UO approaches for data movement.

In the other method, Le. we use the DMA approach for data movement, the DMA is

initiated by embedded processor to move the ce11 payload while the embedded

processor remains in halt mode. The initiation of DMA needs two instructions. The first

Chaprer- 3: A TM nenvork Inre$ace Simularion

instruction includes the address fiom where the data has to be read, and the second

instruction to inform the DMA about the destination location where the ce11 payload

should be store (Figure 3.6). The amount of data that has to be transfer is not required

since it is known in NI application.

DMA
initiation Loûd the cell
c o m n d body from the L I

Send the ce11 body

- - - -

Line Interface (LI)
bu ffer

Bus Interface
bu ffer

Circulation Buffer
CB

Content Addrcssable
Memory (CAM)

Host-N1 Communication
(HNIC)Buffer

I J

NI'S Memory

Figure 3.6: DMA approach for data movement with AAL3/4

After moving the ce11 body fiom the LI to the HI buffer, the REP then needs to link

the arrived ce11 to its reIated CPCS-PDU fiame which is considered as a part of that

frame. Our approach for reconstmcting the message is using a link-list mechanism.

Chaprer 3: A TM nehvork Interfece Simulation

3.3.1 -2 Linked List Mechanism.

The multiplexing of the cells can be done according to VCI-MID, where each amval

ce11 which has the same VCI-MID should be linked together to get a complete message.

Each VCI-MID in the CAM entries provided with two pointers, a head of the linked list

pointer which holds the address of the first arrived cell, and the iail pointer which holds

the address of the last ce11 that mived for the specific VCI-MID. The linked list is useful

for reconstructing the message from the ATM cells to a list of nodes, where each node

has a ce11 body and pointer to next node (Figure 3.7).

CAM

dic ncsi nodc

BOiM -
Ccll body #2 Poinicr m

ihc ncxt nodc 1
CO AM

V ihc ncxt ntxic

S U U

1

VCI MID #n
cntry

SSM

- -

CAM- based
memory

Figure 3.7: Linked list data structure.

w

Ccfl body S

EOM

AAer inserting a new entry in the CAM, al1 pointers (Start-address and End-address)

are zeros. Changing these pointers depends on the processing that the arriva1 ce11 needs

because each arrival ce11 may require different processing in the linked list approach than

Chapter 3: A TM nenvark Interjiace Simularion

others, depending on its Segment Type (ST). In some cases, the ST indicates that the

arrived ce11 is BOM (ST='1O7). The REP then needs to create a new linked list for this

CPCS-PDU fiame by inserting the Start address and End-address in the CAM with this

VCI-MID. The Start-address refers to a head of the linked list (the address which is

loaded from CE3 for this cell). The End-address refers to the tail of the linked list which is

the Null's address (Node's pointer), located at the end of the ce11 body. Thus, the linked

list with one node was created for the amved VCI-MID. The procedure of adding the

new nodes (ce11 body and its pointer) at the end of the existing linked list after the match

between VCI-MID of the arriva1 ce11 and the one in the CAM entries is as follows: Make

the old node pointer point to the current node, and the current node pointer point to

NULL, then store the NULL's address of the current node at the CAM refemng to the

new end of the list.

We have discussed the idea of adding a COM (where the ST = '00') in the existing

linked list, now let us see how the sarne approach can be applied in the HI buffer. The

End-address in CAM, which is refemng to Nul1 value of the previous cell, is read by REP

and then stores the address of the current ce11 in the saine place where the NULL value is

of the previous cell. In this case the current ce11 was attached to the previous ce11 for the

same VCI-MID, then store the NULL value at the end of the current node (Figure 3.8).

Finally the NULL's address is stored in the CAM with the same VCI-MID which refers to

the End-address of this VCI-MID.

When the ST refers to EOM (ST ='01'), we also need to add this node at the end of

the list following procedure which we used for COM. With EOM there is no need to

extend

Chaprer 3: A TM network Interjiuce Simulation

the linked list fiirther because it is the last ceIl of the VCI-MID, and there is no need to

store the End-address in the CAM. When the PT refers to SSM (ST='ll') which indicates

that there is only one ce11 for the VCI-MID, move the ce11 body fiom LI to the HI buffer .

Finally store the NULL value at the end of the cell body where there is no need to update

the End-address or Start-address at CAM because no more cells will be arriving after this

cell.

EOM

HI-based Memory

Figure 3.8: Linked list structure

3.3.2 Reassembly A A L S

The Reassembly function for AALS needs only to process the ATM header where the

AAL header and AAL trailer do not exist for an ATM ce11 of type AALS [1TUT93].

Extract 24-bit VC (VPI and VCI) from ATM header and match it with CAM entnes

which contain the active VC [Desi95, CKim98 and RHosb99J. The ATM ceIl header

Chaprer 3: A TM network Inte$ace Simulation

holds the PT field which is usefiil to find whether the type of amival ce11 is first, middle,

last, or a single ce11 in a CPCS-PDU. When the PT is 'O,' this indicate that the arriva1 ce11

is BOM or COM. otherwise EOM or SSM. The REP uses the Start-address located in the

CAM to differentiate between the BOM and COM. If the PT is '0' and the Start address

is '0' too, then this message is BOM. Otherwise, it is COM. The same approach wiIl be

applied for SSM and EOM.

The linked list data structure for AALS ReassembIy fùnction for anived cells is

processed in the same manner as for AAL3/4. For the data movement, the main

difference between AAL3/4 and A L 5 is the size of the ce11 body. AAL5 has 48 bytes in

its ce11 body which needs 12 cycles (48 Byte / 32-bit bus width) to move a complete ce11

body from one location to another. As the AAL5 h a no AAL header and trailer, the

processing requirement for AAL5 is less than to AAL3/4.

3.4 ATM Segmentation Function Processing

As the host transmit a CPCS-PDU fiame to the other end, it moves the frarne to the

HI buffer of the Segmentation unit. Also, other necessary information is required to be

sent by the host, such as the VCI and the location of the CPCS-PDU frame inside the HI

buffer of the Segmentation unit, Le. the start and end address. This information should be

sent to HNIC for each CPCS-PDU fiame.

Chaprer 3: A TM nehvork fnre$ace Simularion

3.4.1 Segmentation AAL3/4

The SEP reads the information which is available in the HNIC in order to start

generating the first four bytes of ATM header (for the particular CPCS-PDU) and to

calculate the size of the CPCS-PDU in order to detennine the PT and sequence number

(SN} fields in the AAL header. AAer the ATM header and AAL header have been

generated, they are written into the SEP's register to be sent with each segment part of the

CPCS-PDU fkme (each segment is 44 byte). The SEP needs to change the PT and the

SN for each leaving ce11 (i.e. the PT of the BOM is 'O l', COM is '00' and SN should be

incremented for each leaving ce11 that have same VCI-MID).

For data movements using the programmed U0, the embedded processor moves 44

bytes (as ATM ce11 body for AAL3/4) from the HI to the LI. In addition, the headers will

be transferred fiom the SEP's register to LI. After moving the headers and the ce11 body,

the SEP then generates the last byte of the AAL tniler which contains the actual length of

the ce11 body, and then sends the trailer from the SEP's register to the LI (Figure 3.9).

For data movement using the DMA, the Embedded processor initiates the DMA to

rnove the 44 bytes from the HI buffer to the LI buffer. The ATM ce11 header and trailer

are moved from the SEP's register to the LI buffer. The initiation of DMA needs two

instructions as discussed previously.

Clzaptcr 3: A TM nenvork Znretjiuce Simulation

4 -
From
the host

4
____L/

Host Interfacc (HI)
buffer 1

Load the Ce11 body

Line InMace (LI)

A T M ceIl (ATM headcr +

~ ~ 1 - d)

Store ihc ATM cell

Host-NI Level of ~mbedded
Communication (HNIC) I I
buffer

Al1 the n c c c s q
information about
CPCS-PDU fnm #n

Figure 3.9: ATM Segmentation

3.4.2 Segmentation AAL 5

The SEP needs to generate the ATM header for the CPCS-PDU frame and that header

will be sent with each outgoing cell. Also there is no need to calculate the sequence

number and the size o f body for each leaving cell. Each BOM, COM, EOM or SSM ce11

needs to change the PT field in the ATM header to either '0' or '1' ('O' for BOM and COM,

Clrapter 3: A TM network hterface Simulation

'1' for EOM and SSM). The only different between AAL 5 and AAL3/4 for data

movements is the payload size of AAL 5 which is 48 bytes. With less headers and trailer,

AALS requires less processing cycles than AAL3/4.

3.5 Simulation Results

During the simulation, we have measured the amount of processing required for ATM

network interface protocols and for data movement, Different ATM cells have been

deiivered to the simulator and the number of instructions required for the Reassernbly

functions processing is rneasured for AAL3/4 and AAL5 (Table 3.1 for AAL3/4 and

Table 3.2 for AALS). After the embedded processor finishes processing one ATM cell, it

then fetches the new connection identifier or a pointer that was sent by the host through

the HNiC. Also, the NI needs to send the VC or VCI-MID with its Start-address to the

HNIC afier reassembling the CPCS-PDU fiame in the HI. The amount of the execution

that the processor takes for different types of operations for ATM Reassembly has been

analyzed dunng this simulation (Table 3.3). The percentage measurement was taken

when the processor execute the EOM, Le. the result show the upper band of the execution

rate since the EOM is required more processing than other type of messages.

Cliupter 3: A TM nenvork Inteflace Simulation

Instruction

Load

Load

Load

Load

Load

Load

Store

Store

Store

store

Store

Ari thme tic

Loçic

Branch

Total

First ceIl Last ceIl Description

Load the ATM header. AAL header, and AAL û-ailer fiom
LI buffer.

Load a space for the incoming message inside the HI
buffer by reading the head of the CB .

Load a VCI-MID from CAM to match it with incoming VCI
- MID .

Load the start-address from CAM to be stored in HNIC
Buffer.

Load the End-address from the CAM to get the PUZJLL's
address

Load the pointer or VCI-MID from HNIC buffer

Update the CAM by two entries a head and tail of the
linked list

Store the VC and start and End-address to the HNIC

Store the address of incoming message in the previous
message to be a pointer to the incorning message.

Store Nul1 value at the end of node.

Store the new pointer in the tail of the list of the CB. or
store VCI-MID in the CAM

adci, addi

and

Condition branch

Table 3.1: The number of the Reassembly instructions needed to process an ATM
message for AAL,3/4.

Chapter 3: A 73-f nenvork h r e ~ a c e Simularion

Instruction

Load

Load

Load

Load

Load

Load

Store

Store

Store

Store

Store

Arithmetic

Logic

Branch

Total tt

First cell

- -

Last ce11 Description

- .

Load the ATM header from LI buffer

Load a space for the incominç message inside the HI buffer
by reading the head of the CB.

Load the Start-address from the CAAM to be stored in HNlC
Buffer.

Load the End-ad&ess from the CAM to get NULL's address

Load a VCI-MID from CAM to match it with incoming
VCI-MID

Load the pointer or new VC frorn HNIC buffer.

Store the VC and Start-address to the HNIC buffer.

Update the head and tail of the Iist in side the CAM.

Store the address of incoming message in the previous
message to be a pointer to the incominç message.

Store Nul1 value at the end of current ceIl.

Store the new pointer in the tail of the list of the CE. Or
Store the Ioaded VC in CAM

add, addi

and

Condition branch

Table 3.2: The number of the Reassembly instructions needed to process an ATM
message for AALS.

Chapter 3: A TM network Ira terface Simulation

Operation type

Load

Store

Arithmetic and logic operation

Conditional branch

Readinglwriting frordto HNIC

The Iiked list data structure

* Load, store and arithmetic instmctions are involted

Processing Percentage rate
AAL3/4 AALS

1

Table 3.3: Contains the percentage of the processor power for ATM Reassembly.

The number of instructions involved in processing the Segmentation hnctions is

shown in Table 3.4 and Table 3.5. Table 3.6 shows the percentage of each instruction

used in the Segmentation function processing. Such result are measured for the

processing of BOM which required more processing than any other message type, since

its required to generate the ce11 headers and trailer for each BOM. That is, the upper

bound of the processing rate is shown in Table 3.6. Also no data movement is involved in

this calculation.

Instruction

Store

Arithmetic

Logic op

Branch

Total instruction

First ce11 Comment

Movuig ATM header, AAL header and AAL
tniler data from rnicroprocessor 's register to
nenvork Iine.

add, addi

and

Table 3.4: The number of the Segmentation instructions needed to process an ATM for AAL314

38

Chapter 3: A TM network /nret$uce Simulation

Branch

Comment

1 1

Moving ATM header from microprocessor 's
register to network line

add, and

Condition bnnch

4 Total instruction

Table 3.5: The number of the Segmentation instructions needed to process an ATM
message for AALS.

9

Operation type

-

Store

Generation ATM header

Generation AAL header

Generation AAL trailer

Arithrnetic and logic operations

Conditional Branch

Processing percentage rate

AAL3 14 AALS

* Arithrnetic and loçic operations are involved
- - - -

Table 3.6: Contains the percentage of the processor power for ATM Segmentation

After calculating the amount of processing required by REP to process each ATM

cell, we have rneasured the amount of processing that the REP should be performed in

order to support different transmission line speed.

Chaptm 3: A TM nenvork Inte$ace Simulation

Figure 3.10 shows these results in million Instruction per Second (MIPS). Hence the

REP is considered to be a RISC core, every instruction can be processed in one cycle.

Therefore, the results shown in Figure 3.10, can be represent the required speed of the

RiSC core in terrns of MHz. As we measured the upper bound processing for ATM cells,

the results we present in Figure 3.10 represents the maximum REP dock rate to process

different transmission lines.

Figure 3.10: Reassembly function processing

If the REP is involved in the DMA controller initialization, the results are very close

to that without data movement and specifically when the transmission Iine speed is low

(below 622MWs) Figure 3.1 1. However, as the speed of the transmission lines get higher,

the arnount of processing required for initialization of the DMA controller becomes

signi ficant.

Chaprer 3: A TM nenvork Interface Simula rion

Figure 3.1 1 : Reassembly with data movement using DMA

We have simulated the amount of protocol processing with the data rnovements

using the programmable V 0 technique. We found that the REP processing is become

higher than that in the previous simulation where the DMA initialization is used (Figure

3.12).

Figure 3.12: Reassembly with data movement using prograrnmed U 0

Chaprer 3: A TM network Interjiace Simulation

The amount of processing for Segmentation Function that the SEP should execute is

cdculated in the sarne manner as for Reassembly Functions (Figure 3.13). Clearly the

RISC core clock rate is less than that for Reassembly function since the amount of

processing for Segmentation function is less than that for Reassembly.

Figure 3.13: Segmentation function processing

Figure 3.14 shows the amount of processing that is needed for ATM Segmentation

where the SEP process the DMA initialization.

Figure 3.14: SEP processing amount for Segmentation huiction and with DMA
initialization

Chapter 3: A TM nemork Interface Simulation

As we process the data movement using programmable I/O technique, in addition to the

processing of segmentation functions, the number of instruction processed by SEP is

increased significantly (Figure 3.15).

Figure 3.15: Segmentation with data movement using prograrnmed I/O

3.6 Conclusion

The Segmentation Function requires less processing than Reassembly function

because of the nature of the function, which is simpler than Reassembly. Generally, the

Embedded processor core mming on a lower clock rate will be more usefùl for the

network interface where the cost of such core will be low. Hence, the Embedded

processor core should be supported with a DMA controller. The processor that use a

prograrnmed I/O approach for data movements will process about 33 % more than the

one using the DMA technique for data movements.

It is clear from the simulation result that a 1.2 Gbps ATM network interface can be

achieved by using an embedded processor running at 74 MHz for Reassembly fùnction

processing, and 60 MHz for Segmentation function processing. These result are applied

Chapter 3: A TM nework lnte$ace Simulation

for supporting AAL3/4. The processing requirements for AALS are much Iess than with

AAL3/4, about 63MHz and 32MHz for Reassembly and Segmentations respectively.

Chapter 4: VHDL Simulation for ATM Ni.

Chapter 4

VHDL Simulation for ATM NI

4.1 Introduction

The amount of processing required for the ATM network interface supporting

different transmission line speeds was investigated. We found that the use of an

embedded RISC core, run at 74 MHz, in ATM NI design could support up to 1.2Gbps

transmission line. We know that a SPM-based simulator gives an estimate of that

processing, since the simulator does not simulate the real hardware that is usually used

with NI design. This gives us an incentive to investigate a detailed simulator that

simulates a real ATM NI. Such simulator uses the RISC core and other components that

are required in the interface design such as the DMA, Content Addressable Memory

(CAM), FIFO, CB, the transmission line interface, and the host interface buffer. With

such a simulator, we can find the accurate results for IUSC dock rate, RiSC processing,

and NI structure. We decided to use VHDL in Our simulator because it is suitable and

powerful to capture complex digital system design for both simulation and synthesis

[KSKAgG, DPERR981. VHDL also has many features appropnate for descnbing the

behavior of components ranging from simple logic gates to complete microprocessors

and custom chips. The IEEE 1164-1 993 standard running over the Xilinx foundation

version 1.5 was used in our simulation [Xilin98, Xilin991

Cltaprer 4: V H D L Simularion for A TM NI.

The VHDL-based model for Segmentation and Reassembly fùnction of both AAL3/4

and AALS, is developed and described in this chapter. The NI components and their

operation will also been described in details. The chapter concludes with the VHDL

simulator results.

4.2 ATM Network Interface Mode1

The NI model we proposed is partitioned into three parts: the communication line

interface, the processing core, and the host bus interface (Figure 4.1). The processing

core performs the NI functions such as Segmentation and Reassembly, the PD&, VCI

and VPI for AALS, VCI and MID for AAL3/4, linked list scheme, cells copying and

bu ffering.

The model has the architecture that can support high-speed lines for both AAL 314 and

AAL 5 and it provides several features:

Data movement using DMA.

Two RISC-cores, one per direction (one for Segmentation unit and the other for

reassembly unit), perfonn al1 functions related to the AAL3/4 and AALS.

Using Content Addressable Memory (CAM) for virtual channel traffic [Goregi,

STraw931, the CAM contains the active VC or VCI-MID connections to help the RISC in

the Reassembly unit to reconsh-uct incoming cells to their PDU using the link-list

scheme.

Chapter 4: W D L Simulation for A TM NI.

F m
ATM
ncîworL

r M

Cell Reassernbly
Buffer(CRi3) el - I

A

\

- - -

Reassembly Unit

Tu i
ATM i ATH Cd1

Ib" . - , h Segmentation
Buffer (CSB)

ATM cd1
hfTa 2

Segmentation Unit

FIFOI: To carry VC or VCI-MlD and Start address for each received a signal@ cell.
FIF02: To carry VC or VCI-MID and Start address for each received PDU.
FIF03: To cany a new VC or VCI-MID to the receiver WSC.
FIF04: To carry the free pointer space to the receiver RISC
FIFOS: To carry the necessary information such as VCI to the Transmitter RiSC
DMA : Direct Mernory Access

CAM : Contains Addressable Mernory

Figure 4.1 : ATM Network Lnterface Architecture

Chaprer 4: VHDL Simulation for A TM NI.

To provide high flexibility in terms of exchange information between these RiSC-

cores and the host through the First-In-First-Out (FIFO) buffer. These FIFOs

performed the foIlowing tasks:

F E 0 1 carries information to the host such as VC or VCI-MID and a Start-

address for each signaling message received.

FIF02 carries important information to the host such as VC or VCI-

MID and a Start-address for each received PDU.

FIF03 canies the new VC or VCI-MID fkom the host to the

RISC core at the Reassembly unit.

FIF04 carries the fiee pointer fkom the host to the RISC core at the

Reassembly unit.

F E 0 5 canies information to the RISC core at the Segmentation unit, that

needed to generate an ATM header andlor AAL header.

NI buffers

Receiver Buffer Interface (RBI) is used to buffer two arriva1 cells and to deliver them to

their destination

Ce11 Reassembly Buffer (CRB) is storing ATM cells (The payload part only).

Sending Buffer Interface (SBI) is similar to the RB1 and it used to buffer up to two ATM

cells until they delivered to the nehivork.

Cell Segmented Buffer (CSB) is used to hold the PDU that it is received fiom the

host. Such PDU will be segmented by the SEP and delivered to the SBI.

Chaprer 4: VHDL Simulation for A TM NI.

4.2.1 Data Movement

In the Programmed VO, the RISC core retains control of the bus while data is moved.

Progarnmed VO is slow because there is too much unnecessary overhead for small

transferç. There are also drawbacks to this approach, such as the RISC core being tied up

moving data to or fkom the network interface. This affects the performance of the RISC

by keeping the RISC core unavailable for other activities.

The use of DMA in NI is more efficient for NI applications than the programmed i/O.

Therfore, a DMA is used in Our simulator for data movemnet function [ECoop91,

DBru93, CKim98 and RHosb991. The DMA moves data fiom one location to another

using its data register. The data moved from a source to the DMA's register and then

storing it in its appropriate location Figure 4.2-

Siom ihe
data fmm Lod the
DMA's dam frorn
registcr to the RB1 into
ihc CRI3 DMA 's

register

I Noie: In transmission appmch DMA lads from CSB and store it in SB1

Figure 4.2: BIock diagram of RISC-core with DMA

4- nehvork

Chaprer 4: VHDL Simulation for A TM NI-

AS the block of data is required to move between the RB1 and the CRB, or between

CSB and SBI, the RlSC core will initiate and control the DMA. Since the local bus of the

Reassembly and the Segmentation units is shared between the DMA and the RISC core,

the RISC core will have to release the local bus to DMA to perform the data block

transfer. Each transfer of a word consumes two cycles. In the first cycle, the DMA read

the source buffer to get the word to the DMA's register. During the second cycle, the

word will be moved fiom the DMA's register to the destination buffer. The DMA state

machine will provide the read and write signals to source and destination buffers. AIso it

increments the address for the next location, where the next data is located, and store it

in the appropriate location in the destination buffer (Figure 4.3). The schematic capture

of the DMA stucture is showrn in Appendix A Figure A.3.This process will continue until

the whole cell will be completed. The VHDL based DMA has the state machine that

required the foilowing information:

(a) Block length (number of words to transfer).

(b) Direction (from CSB to SBI) / fiom RB1 to CRB).

Adilrerr in a i t

D M A ~ W
RlSC REQ I) machine

controller

NI Bus

Figure 4.3: DMA structure

Chaprer 4: VHDL Simulation for A TM NI:

4.2.2 Content Addressable Memory (CAM)

CAM needs to contain the network addresses of al1 the active connections that the

host has made with other hosts. Thus, the RISC can reconstruct the CPCS-PDU frame

from the arriva1 cells using the addresses contained in the CAM. The VHDL based CAM

was simulated as a Look-Up table for VC or VCI-MID (VC for A A L S and VCI-MID for

AAL3/4). With each CAM entry there are two pointers, a Start-address (head of the link-

list) and End-address (the tail of the Iinked k t) . Figure 4.4 shows the CAM structure.

The schernatic capture of the CAM loction in the NI is shown in the Appendix A Figure

A.4.

VHDL based CAM is implemented to have two kinds of processing. If there is any

new entry needed to be stored in CAM, the first kind of processing is used to insert the

new entry in the CAM. The write signal "1" is sent through the Sel-CAM signal bus by

the RiSC's controllor to replace data (adding new entry) in the CAM. The processor

starts searching for the first location filled with Zeros (blank location) at any place in

CAM and then replaces the first entry that has Zeros with the new address. The second

kind of processing is used to find a match of the input data with the one in the CAM

entries. If no entries of the CAM match the input data, a "miss" signal 'O' is asserted to

RISC. The WSC then considers the arriva1 ce11 as a lost ce11 (is not related to this host). If

any entries of the GAZI mateh thc input data, the CAM produces a signal '1' indicating

that the match was found. After finding the match, the processing continues reading the

other signals to figure out the next procedure. There are two procedures after finding the

match, either reading or writing the data fiom or to the CAM. In the first procedure, if the

W-Data is 'l', either the Start or end address is sent out according to the signal of

Cllapter 4: VHDL Simulation for A TM NI.

SartEnd-Add. If it is '1' the Start-address is sent out. Otherwise, the End-address is sent.

In the second procedure, if the W-Data is '0,' the CAM writes either the Start or End-

address according to the Sart-End-Add signal. If it is '1,' then The CAM writes the Start-

address (where the match was found) otherwise writes the End-address.

Removing the CAM entries c m be implemented simply by searching the match that

is needed to remove from the CAM, and when it is found, replace it with Zeroes. We did

not implement the removing entry from the CAM. Our intention is to calculate the

amount of processing that is needed for each ce11 if the connection was active.

Sel-CALI signal -
W-Data signal

Figure 4.4: CAM Structure

San-End-Add
b

4.2.2.1 Linked list CAM VHDL based

10101111100011000100lOOl
I I I I IO01 10001 lOOOlOOIOOl
lOlOlillll00llOOOlOOlOOl

1OlOlOOllOOOllOOOl00lOOl

0 0 0 0 0 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0
00000000000000000000O

The linked list mechanism is similar to that used with SPIM simulator. The Start

address and End-address were implemented to be in the same entry with the VC (if

AALS is used) or the VCI-MD (if the AAL3/4 is used) (Figure 4.5). The Start and End

Address are updated differentiy based on processing that is required to be performed by

the NI and as the following:

Start-add
Start-add

Strirt-add

Start-dd

signal

End-Add
End-Add

r
End-Add

EndAdd Output
SUFI or h d oddrcss

10101001 1 1 1 I I l 1 1 1100lOOl Start-dd End-Add

Chapter 4: YHDL Simulation for A TM Ni.

1. Read the End-address from the CAM to find the end of the linked list (if we need to

add a new node at the end).

2. Write the End address in CAM after receiving BOM and COM.

3. Write Start-address in CAM after receiving the first ce11 of CPCS-PDU. AAer

receiving the last ce11 of the same CPCS-PDU, this start address will be read and sent

to the FIF02. That will tell the host a specific CPCS-PDU h e is reassembled.

When the host reads that h e , the Start address will tell where the kame is in the NI

local memory.

4. The PT for AALS can not tell if the arrived message is first or a continuation of

message, because both have the same value "0." Therefore, the Start-address is used

to distinguish whether the type of arrived ce11 is COM or BOM. I f the Start-address

equals "O" then the arrived ce11 is BOM. Otherwise, it is COM. The Start-address is

also implemented in the case of SSM or EOM where both have value " 1" in their PT.

Therefore, if the Start-address is "0," the message is SSM. Otherwise, it is EOM.

BOM Addrcss ceIl2

COM

C0.M Ad<irrss cc11 N NULL I
A 1 1 EOM

CAM

Figure 4.5: CAM architecture with its linked list mechanism

Cf~apter 4: VHDL Simulation for A TM NI.

4.2.3 The NI'S FIFOs

The NI cornmunicates with the host through five F E 0 buffers. These FIFOs were

implemented as memory-based and the pointer of each FIFO is stored in the RISC's

register. The RISC is able to reach any FIFO afier reading its address.

However, the intempt mechanism that happens during the exchange of information

may effect the overall performance of NI or the host CPU. Intempting the host CPU or

RISC cores (SEP or REP) during their processing time will cost a certain amount of tirne

in processing the interrupting task. The interruption of the host costs at least 15

microseconds on Sun SPARC station for line speed 155Mbps with the EUSC speed is 50

MHz [ECoop9I]. These intermpts reduce the performance of the processing power of

the Host CPU.

In Our simulator, we have eliminated the overhead processing of the host CPU caused

by the above interrupt. This has been achieved by the following:

1. Znstead of interrupting the host upon the arriva1 of each ce11 (i.e. 680 ns if the line

speed is 622 Mbps), the EUSC core will send the VC or VCI-MID and the Start-

address to FIF02. AAer accumulating the complete CPCS-PDU fiame, the host then

reads FIF02. The host CPU starts fetching the CPCS-PDU frame from CRB for that

specific VC or VCI-MID read from FIF02 (Figure 4.6). The host then starts reading

the first ce11 body until it reaches its pointer, which is placed at the end of the ce11

body. This pointer is important to locate the next ce11 in the CRB. The reading of the

next cells will continue until the NULL value, which is placed at the last cell of the

frame is located. By doing so, the use of the intemipt is eliminated and the associted

time is saved.

Chapter 4: VHDL Simulation for ATM NI.

The signalling messages will arrive at the M and the NI should pass these messages

to the host immediately. The Start address and VC or VCI-MID are sent to the FIFOl and

pIace the ce11 body in the CRB (Figure 4.6).

FlFO 1 FIFO 1 : h s VCI and Star[-addrcss
of cach receivcd ceIl signaling

A 32 bit .
/

FIF02 FIFOI: has VC or WC-M ID and
St;trt-address for each received PDU

Local bus

1 /

Figure 4.6: The two FIFOs used to send the data from RISC processor to the host CPU-

2. The intempt is used in our mode1 in only one core when the host will be intempted

if the number of cells at the CRB occupy 90% or more of the CRI3 space. This

intempt will force the host processor to read some of the arrived messages in order to

leave a space inside the CRI3 for other incoming cells.

There are no interrupts used when the host sends information to the NI. Al1

information is delivered to NI through three FIFOs. Such delivering information to the NT

can be described as foilowing:

1. The host negotiates with other hosts whenever a new connection is required. AAer the

connection is established between two hosts, there is a specific VC or VCI-MID will

be allocated for specific connection. Either one should be used by the M when a ce11

send to the other end. This VC or VCI-MID should be delivered on the ce11 header(s)

where the NI processing them to multiplex the cells to its related VC or VCI-MD.

Chaprer 4: VHDL Simulation for ATM NI.

The host will use F E 0 3 to deliver VC or VCI-MID to the M. As the cells arrive to

the NI, the CAM entries will be updated by storing the VC or VCI-MID that was

fetched from F E 0 3 (Figure 4.7). The embedded RISC at the Reassembly unit will

check the PIF0 f i e r finishing the Reassembly processing of each ATM ce11 (i.e.

every 353 nonsescond, if the NI connected to line 1.2 Gbps)

2. After the host finishes reading the ReassembIed message, the host sends the cell's

address to the NI through the FIF04. The M will then read the free pointer address

after finishing the processing required for the current ATM cet1 and then store the

pointer back in the Circulation Buffer (CB) for later use.

I Local bus

-
FIFO 3

/ 1

Figure 4.7: The two FIFOs have a VCs / ViD-MID and free pointer address

FIF03: h~ the VCS or VCI-~MIDs
32 bit

3. When the host moves the PDU to the CSB, the host should notiQ the sender RISC by

sending to FIFO 5 the location of the PDU fiame, VC or VCI-MID, and other

necessary information needed for segmented the CPCS-PDU h e (Figure 4.8).

Fm rn /
thc tiost /

FiFO 4
FIF04: has the free pointer address

Chapter 4: VHDL Simulation for A TM NI.

Local bus

32 bit

FIFO 5 FIFOS: has thc necessxy
the Host information needed for a CPCS-

PDU fnmc

Figure 4.8: The F E 0 carries the information needed for Segment
CPCS-PDU fiames

4.2.4 The interface buffers

4.2.4.1 The Cell Receiver Buffer (CRB) and Cell Segmentation Buffer (CSB)

The Ni has a CRB which is used to reassemble the ce11 bodies amiving fiom the

network and store them until host is ready to process thern. Each ce11 is represented in

the buffer as 12 locations of memory, each with 32-bit word (44-byte and the pointer

location) for AAL3/4, or 13 locations, each with 32-bit (48-byte and the pointer iocation)

for AAL5. The size of the CRI3 buffer is 256 Kbytes. This buffer c m hold of 4 CPCS-

PDU payload where each payload may contain 64 Kbytes. Obviously, more payloads can

be held if they are smaller than 64 Kbytes

The CSB stores the PDUs frames which are sent by the host to be segrnented and

sends them to the network line as ATM cells after adding its header(s) and/or trailer. This

buffer can also hold 3 CPCS-PDU frames (each frame has 64 Kbytes for CPCS-PDU

payload), in addition to the trailer andor header for CPCS-PDU.

Chaprer 4: VHDL Simulation for A TM NI.

4.2.4.2 Receiver and Transmission Line buffers

When a ce11 arrives at the RBI, the FSM in the RB1 will one of the two b

locations to hoid the serial bits arrived fiom the transmission line. A FSM will enable one

buffer and c m switch to another buffer after interrupting the RISC-core in the

Reassembly unit. The WSC core will start processing the ATM ce11 header which is

located at the top of its body (Figure 4.9). The RB1 VHDL based is shown in Figure AS

in appendix A.

i RB1

Figure 4.9: The buffer architecture in RB1

Local Bus

The SB1 contains two buffers each of which hold one ATM cell. The sequential

machine controls the SB1 and alJows only one buffer to be active and to receive data at a

given time. The buffer will remain enabled until the complete ATM ce11 has been stored

(Figure 4.10). The SB1 VHDL based is shown in Figure A.6 in appendix A

The sequential machine will then allow the stored data to be sent out while it filis the

other buffer.

Ce11 Headcr

Cell Body
Fmm SOSET

fnmrr

t
Ccll Header

1

1

Ce11 Body

Chnpter 4: VHDL Simulation for A TM M.

Figure 4.10: The SB1 architecture

h l Bus

4.3 VHDL Simulation Results

Three stages pipelined RISC core, CAM, DMA, RBI, SBI, FKFOs, CRB, SCB, and

CB have been used to simulate the ATM line interface. After testing the VHDL mode1 of

each component, a complete NI has been designed based on the mode1 that presented

before. Al1 NI components are comected together with al1 the necessary connections,

busses, and control lines (Figure A.1 in the appendix A). A testing process has been

performed to check the functionality of the NI and to perform the performance

evaluation that required for this research. We believe that by processing ATM cells with

such RISC core based NI, we can measure the amount of WSC processing for different

transmission line speeds.

Ce11
Buffer 1

I

TO

1

1
Buffer2

Ce11

Cliapter 4: VHDL Simulation for A TM NI.

4.3.1 Reassembly Function

By delivering different ATM cells to the simulated mode1 and by investigating the

waveform generated from the sirnulator, we are able to find the number of instructions

needed to process a complete ATM ce11 for both AAL314 and AALS. The results

presented in Table 4.1 is for the NI when the DMA has the same RISC 's clock speed.

The number of instructions is dependent on the type of the cell, Le. BOM, EOM, COM,

and SSM. The DMA needs 22 (1 1 Load and t 1 store) WSC instructions in order to move

one payload body for AAL3/4 and 24 (12 load and 12 store) N S C cycle for AALS.

However, some of the RISC processing instructions needed to use the local bus, in order

to send the NULL value at the end of the ce11 body during the processing of the link list

mechanism. In this situation the RISC has to wait for several cycles until the DMA

completes its job. The RISC wait cycles will reduce the NI performance by extending the

execution time for each ATM cells by number of the RiSC's wait cycles (Table 4.1).

No. of idle cycles

AALS Am314
Type of cells

Single Segment Message (SSM)

No. of instructions

AALS AAL3/4

Beginning Of Message (BOM)

38 40

Continuation Of Message (COM)

Table 4.1 : number of instructions processed for Reassembly AALS and AAL314
messages (the DMA's clock has the same speed as RISC's clock).

12 10

38 41

End Of Message (EOM)

1 1 9

38 41 12 9

40 41 12 1 1

Chapter 4: VHDL Simulation for A TM NI.

To eliminate the RISCfs idle cycles, we forced the DMA to finish its processing cycle

in a shorter penod of tirne than the first approach where the DMA has the same RISC's

clock cycle. Therefore, the DMA clock rate is increased to mn faster than RISC to allow

the local bus to be available fio both DMA and RISC core. The DMA mns double the

RISCfs clock to complete moving 44 byte within I l cycles and 12 cycles for 48 byte

(Table 4.2). In this case, we eliminate al1 the idle cycles which could take almost 25% of

the RISC's power.

Type of cells

Single Segment Message (SSM)

No. of instructions

AALS AAL314

Table 4.2: number of instructions processed for Reassembly AALS and AAL3/4
messages (the DMA's clock has double speed of RISCfs clock).

No. of idle cycles

AALS AAL3/4

26 29

O O

O O

I

End Of Message (EOM)

Clearly, the number of instructions required to process the AALS is less than that for

AAL3/4. This has made the RISC core process more cells/sec for AALS than for

AAL3/4. With the AALS, there is no need to load and process the AAL header and AAL

trailer. Table 4.3 shows the main difference between the processing of the ATM cells for

both AAL3/4 and AAL 5 cells.

O O

Begiming Of Message (BOM)

Continuation Of Message (COM)

26 30

26 30

28 30 O O

Chapter 4: VHDL Simulation for A TM NI.

Opention

Read AAL header from RBI

Mask VC (for AAIS) or VCI-MID (for AAL3/4) information needed
for data matching

Read AAL trailer from RB1

Mask only VCI for signaling test I " L

I

Instmctions
For

AAL3/4

1

Nurnber of the cornparison needed to recognize the PT of the current ce11 1

Instmctions
For
AALS

O

1

Additional cornparison needed to figure out the type of the current ceil
besides checking the Payload Type (PT) I O

O

Table 4.3: The main differences between the processing for AALS and AAL314 for
ATM Reassembly

To make clear about how we get the results in Table 4.1 and Table 4.2 , it is important

to describe the details of processing for every ATM cells. Figure 4.1 1 shows the total

number of instructions that the RISC will process if the type of the incoming ce11 is BOM

for AALS. The RISC starts by loading the ATM header from RBI. Then it reads the head

of the CB that contains the pointer space. The RISC initiates the DMA to move the ce11

body from the RB1 to the pointer space inside the CRB, The highlighted area shows the

instructions that the RISC can process during the data movement (the DMA's clock in

this case has double RiSC's clock). The DMA needs 12 RISC cycles (each cycle 32-bit)

to finish transfemng one ATM ce11 payload (48 bytes). During the data movements, the

Chapter 4: VHDL Simulation for A TM NL

RISC can execute instmctions, such as finding a CAM match, updating the CAM entries,

or calculating the available space inside the CB before the DMA finishes its job. Aller the

DMA finishes its job, the RiSC processor takes control of the bus. Then the RISC

processes the linked list mechanism or reads the FIF03 which contains new VC to be

stored in CAM, and F E 0 4 which contains a pointer to be stored in CB. Figure 4.12

shows the total instructions that RISC needs to process for one ATM ce11 type of COM.

The number of instructions in the COM is the sarne as the BOM, but the COM has a

slightly different mannerism than BOM. In the processing of the COM there is no need to

update the CAM entries by the Start-address (this instruction exists in BOM processing).

In the COM, processing is needed to update the previous cell's pointer (this instruction

does not exist in BOM processing). Figure 4.13 shows the total instnictions that are

needed by the N S C processor to process EOM. The EOM has a higher number of

instmctions than BOM and COM because the RISC, at this point, needs to noti@ the host

CPU that the PDU frame was received and is stored in the CRB. The notification to the

CPU can be done by sending the Start-address of the location for the PDU frame inside

the CRB and the VC that is related to this PDU fiame to the FIFO 2. Figure 4.14 shows

the total instructions that are needed by the RISC processor to process the SSM ce11 type.

This message is a unique cell, which notifies that there are no more cells arriving for this

VC. The RiSC, after processing the SSM, sends the Start-address and VC host CPU

through FE02. The SSM has the same mannerism as EOM, but the SSM shows fewer

instructions than EOM because the SSM does not need any processing related to link-list

mechanism and updating (Le. reading the Start-address) the CAM.

linst 1 inst.

Type of insinictiotis tliat arc processed by RlSC iii ordcr IO pioccss BOM for ATM Rensseinhly for AAL5
wliere the NF03 atid 1W04 ;ire not empty

I f iioI scnd
sipiiirl la Ilw
Iicisl

f m c t Iniiiaic '7- h n r hl iiww

hcrkr cclt
MY
fw111
HI)I to
CRB

('hcch
whcikr
ihis cc11
i s I\Ohl,
('OM,
I;Ohl.
SSM

I:iiid IIIC
hhich of
VC wiiti
the oiic iii
CAM

1

1 inst. I inst. 2 insis. 2 instr. I inst. linst. I i ~ i r t 3 insis, 1 inst. 2 Insts. l insi. I inst. 2 iosir. 1 inrt. I insi. 3 insts.

Processing
needed before
moving ccll
body
= 4instnictioiis

12 insiniciioti hat tlir KISC corc
cati proctss. ciiit'iiig tIw cialri

movenicnl,

Note: The DMA iicetis 1 1 KISC
cycle to niovc 48-byte

10 insts are processed afier moviiig the payload
Sortie of the above iiists. necd to iisc tlic local bus to
m v e data .

Figure 4.1 1 :Total iristriiciioii for BOM of AALS is 26 irist.

ATM Rc;isscnil)ly Ibr AAL5 processing sclicrne of COM
wlicrc tlic FIF03 aiid HF04 are iiot cnlpty

k l l d
ihc
nuic h
of VC
wiih
iIiC t inc

in
CAM

Store
Sirn rûûr
ri ik t i ~ d
ilf th?
prrvioui
ccll

Entraci
t hc
vu1
fnm
ATM
h u k r

1 insi. 1 insi. 1 insi 2 insis. 2 insis. I insis. I insi. l iiisl. 3 iiisis. 1 inst. 1 inst.

Proccssing
nccdcd berore
moving cell
hot! y
-; 4 his?rticiioi~

12 iiisiruciions ilie RIS(' coic cuir
proccss duriiig the data iiicn~c.inciit

IO insiniciions arc proccsscd aficr moving ihc
poylos(1
Sonic of flic abavc insrs. ncctl to use the Icwiel bus io
Il iOVC cl010 .

Figure 4.12:Toiiil insiritciion for COM of AAL5 is 26 insi.

ATM Rcnssciiil~ly for AAL5 processing schenie of EOM
whcre the FI FO3 and FIF04 are rio1 cmpty

Clicck
whcihcr
ihis ccll
is DOM,
COht,
IOM,
SSM

Iiiiiiric
ik
DMA
IO

Il ln\'C

ihc
ccll
MY
froni
RB1 IO

CHD

Find
ihc
h l i i t l i
o f \'C
wiih
ihc unc
in
CAhl

Chcch
irlhc
Sian.
rddr
(in
C'Ah!)
i s noi
000
Lord
sian
rddr

Inanil.
cnl Ihc
Iicad o f
('1)
l inktd
Iist iii
sidc
iI1c
('Rn

Scnd rian
o id end
addr. And
VC Io
FIFO. This
ntcd II for
<'IW IO fiiid
flic sirn o f
('S.I'I>\ I
and ils VC

Chcch i f ihcrc
is any ncw
CUIIIKCI.. hy
rcrd ing the
rcpistcr
rcprcsciiting
staius of
FlFOJ L

I~IIKIC IS i

n t w
conncciion
1-nad thc
VC. and
lllcn S l ~ I C

IIHIII in
CAhl

i'licch
i f ikn
arc rny
frtc
pnnitn
a ~ u l a h l
c in
H F 0 4

I.ord ihc
fnt
p i in i t r
iiico
WlWl
ic#iiicr

Siorc ihc
fnc
pinter in
thtCR
and
W'Jtc
lhc Ull of
ihc Iiii

Rtad
ATM
hcrdcr

Rcad
tht
h c ~ d or
C.B.
for
r fnc
pointer

Eatract
VCI
fioni
ATM
hcadcr

1 inst. 2 insts. 1 inst, 3 iiists. 1 inst. 1 inst, 1 inst. 2 insis. 3 insts. inst 1 inst, 1 inst. 1 inst, 2 insis. 2 insts. 2 itists. I inst.

1- -

Processing 12 insirucrion the RlSC corc can
needed before proccss during the data riiovcnicnt
moving cell
body Note: l'lic DMA nceds 12 KlSC
= 4 instruction cycle IO movc 48- byte

Tlicse insts are proccsçcd after nioving the püyload
Some of thc above iiists. nced IO iisc the local biis io
niovc data .

Niinihcr of instnictions
iicedcd i s : 12 I i is

Figiirc 4.13: Total instriictioii for EOM of AAL5 is 28 iiist.

Rcad
ATM
hcrdcr

Rcrd
lht
hcd of
C.B.
for
r fwc
poinicr
spxc

l inst 1 inst.

E ~ m l
VCI
from
ATM
hcrdcr

--
1 inst.

ATM Rcnsscii~bly lor AAL5 processiiig sclicinc of SSM
wlicre the HF03 and FIF04 are not ernpty

Inilialc
the
DhlA
10

m v c
tlw
ccll
M y
fmnl
un1 IO

CRB

signal Io
hosi

CIiccL i f III
cumni
iiuswgc i s
sipaling.

thimci IIK

VC froill
Al'hl
lieder

Clieck

Cohl, with
liOh1,

CAM

Inricm
nl ihc
I i c d of
CD
Iinktd
lis1 iii
sidc
ihc
('HI)

Ckeck il
tlic CHI1
(SKAhl.
'?FI
s11Il tiaw
I O O i frcc
spacc

Srnd
Null
viluc
il ik
end

o f
cumnl
ccll

Chcch i f lticrc
is any ncw
coniicci . Ijy
rcading ihc
registcr
rcprcscniiiig
slaliis of
I I f O J

I f tkrc i r i
IICII'
Conrircllon
1.04 ihc
VC, and
01ci1 S i W C

11ici11 in
('AM

l inst. 2 inst2. 2 insts. 1 inst. 1 insts. 1 inst. 3 iiists. 1 insl. 1 insîs. 1 inst. 1 inst. 1 inst. 2 insts.

Check i f
lhcn art
i ny ficc
)*31111rn

rt ulrhlc
in FIFO4

S1m lhc

puiirier in
the c'.R

thc iril of
lhc Il51

1 inst. 3 insis.

Processing
needed before
maving cell
body
= 4 instruclions

12 insrtuctions the RISC corc can
process diiriiig the data ~iio\~cnicnî

Nok: Tlic DMA nec& I 1 KISC
cycle to iiiovc 48 bytes

10 instructions are processcd after moving the
pa yloüd
Sotiie o f i l ic above iiisis. iieed io iisc the local hiis io
iiiovc data .

Figure 4.14: Totitl inshiiction for SSM of AAL5 is 26 inst.

Chap ter 4: VHDL Simulation Result for A TM NI.

Figure 4.15 shows thows the total amount and the type of the stnictions that the RISC

processor needs to process the BOM for AAL3/4. The RiSC starts reading the ce11

headers and trailer. These headers contain the information (Le. VCI, MID and PT) that

help the RISC find the match for VCI-MID and to recognize the type of incoming cell.

This information will keep the RTSC busy during the data movements which take 11

cycles (44 bytes, each cycle is 32-bit). The local bus is busy dunng the data movement so

RISC does not access it. The RISC does not need the local bus during the execution of

the instructions including: finding a CAM match or tracing the CB size. While the ce11

body has already been moved fiom RB1 to the CRB, the RISC controls the local bus and

is able to execute the linked list mechanism and can also read from F E 0 3 and FIF04.

Figure 4. tu shows the instructions needed by the RISC processor to process one ATM

ce11 type COM for AAL3/4. Figure 4.1 7 shows the total instructions that are needed to

process EOM cell, the RISC with this type of message needs to send the VCI-MID and

the Start-address to the FF02. There is no need to update the CAM entnes. Figure 4.18

shows the total amount and the type of the instructions needed for ATM ce11 type SSM.

The processing time needed is less for SSM than it is for BOM, COM and EOM where

there is no need to update the CAM entries (Start- and End-address) or to process the

linked list functions.

R c d
A T M
k m i t r
AAi.
hclJrr
AAI.
m~kr

l i i i i nc i
iln
VCI fnim
Al'hl
I icrrkt

Inii ir ie
ihc
[)MA
10

tllO\'C
lhc
ccll
MY
fniiii
H l l l Io
('HI1

ATM Rcassciiil)ly for AAL3/4 proccssiiig sclieiiic of DOM
wticrc tlic F1F03 iiild F lF04 i1i.C not cnipty

If i l c i l scnd a

l i r ~ r a c i
h l l D
from
AAl. II
Chcck i f
ihc
C U r n l l l

itwswgc
i s
rignrlitig

('licck
w l i c i l ~ r
it i ir ccll
ir DOM.
COM.
liOh1.
SShl

I:iiiJ tlic
nutcti o f
VCI M I D
wiih iIu
onc i n
C h h l

I i i c i r i i~r i i l
tlic Iicad
of C I i
Iiiikcd Iirt
iii sidc
tlic I ' H I I

3insi I insi. 1 insi. I inst. 3 insts. 4 inst, 1 inst. 1 inst. 3 iiis(s. 1 i ~ i s i .

Sçiid ciid
rddrcsa r t id
ttic s1;irt
rddrrss to
CA hl. n l i ic l i
is nccdcd f i ~ r
RIS(' io fiiid
ihc sian mi
ciid o f
IIKSSJKC

!knd
Nul l
valw
ri IIIC
clid

o f
cuncni
ccll

Chcck if
tlicrc i s i n y
rie W

conncciion

I ~ Y
rcading
ihc
rcgisicr
sirlits
1:11:03

If ilitn i s
t K W

roiitwciion.
I oaJ the
vcia
h l l 0 . thcn
siore ilicni
in CAhl

LoaiJ 1
frcc
p i n i c r
itito r
H l Sc's
rcgisicr

Stoir fmc ihc

p in te r in
IhcC H
r id

the iril of
the lis1

I inst. I inst. 1 inst. 3 insis.

4 *4 DMA trrinsfcr cyclc
Proccssing 13 insiructioiis arc proccsscd aficr moving the
necdcd beforc pa yload
moving ccll Sonic o f i l ic above i i is is . iiccd ta use ihc local bus to
body movc data .
=6 instnic~ion

I I iristnictions thc KlSC corc can
proccss diiring the data iiiovciiiciit

Noic: 'flic DMA riccds 1 1 KlSC
cyclc io niovc 44byic

Figiirc 4.1 5: Total iiisiriiclion for UOM of AALY4 is 30 hisi.

ATM Rcassciiil~ly for A A L314 proccssing scliciiic of COM,

k u k r
8 frrc

3insts 1 inst.

E~mcl
ik
\TI fomi
ATM
l ieder

Inii ir le
ihc
I)hlA
(0

nw\c
t hc
ccll
MY
~IOII~

RIBI IO

CI#

k w i c t
hlll)

(Iicch i f
ille
rurrciil
illcisagc
1%

sigiiding

Ctieck
whcthcr
illis ccll
is I I O M
Cohl,
IiQM.
SShf

wliere flic FI F03 niid HF04 arc iioi crnpty

Iiiitcnriil
iliç ticrtl
o f ('Il
liiihcd liii
iii sidc
~ I i c ('KI1

1 inst 1 inst. 3 insis. Iinsi. Iinst. 3 ins I -.

Add r u r l
addr 4 1
Iiw.riioiis

Soid cnd
addr IO

('Ah1
~liirl i 13

nccdcd for
RIS(' 10

find itie
ciid of
iiicstauc

I inst. I insi.

ClJnCII I

ccll

I insi. 1 inst, I insi. 2 insts. 1 insi. 1 inst.

Siorr ihc
Arc
p l I I i l C l Ill

ik (' I f
rnû

ihr r r i l c i l
thc l a t

3 insis.

Processing
needed before
moving cell
body
= 6 inst

1 1 inst the RlSC core can process
during the data niovement

13 insts arc processcd after moved data sonie of
tlicse insts. need IO use the local bus to move data .

Figiirc 4.1 O: l'oiul inst 1-iiciiori for COM of AAL314 is 30 irist.

Rcrd
ATM
hc rk r
AAL
h c r k
A AL
mikr

Rcrd
ihc
hcrd of
C.B.
fw
i Tm
pointcr
spcc

E ~ t n c i ihc
VCI froin
ATM
luadCr

Initia#
thc
I Ih lA
lu

nwvc
lhc
ccll
MY
fmnt
HtN 10
CR

l iwact
hllD
AAL II
î'licck i f
IIIC
rumi i l
rlKsUI(C
is
si~iialing

ATM Reassciiibly Cor AAL314 processing schenie of EOM
wliere the 1:11:03 üiid FIF04 are not cnipty

If i io l .rciitl n sigiiril I o

t'licck
w Iiithcr
ilils ccll
is ROM.
Cohl,
IOM,
SShl

I inst. 1 inst. 1 inst.

FinJ IIIC
li~l~ll llf
VCI h l l l)
witli IIIC
oie i c i
('Ah1

t i i isl.

I
('hcch i f
Ilic ('KI1
(SHAh1
.l')ln!)
si i I I Iir$c
I O % frcc
sprcc

1 insi. 3 irist.

Clicck
i f iticrr
i s r i iy
tuw

C<ilillt.

1 inst. 2 insis 2 insts. 1 inst, 2 insts.

('ticch i f
thcrc aiiy

p"Il"m
rii~ldilc
III I W O 4 7
I inst. I insi. 3 insis.

Proccssing
necded before
nioving ccll
body
= 6 instructions

1 1 instruction the RlSC core can
proccss duririg tlic data nioveriiciit

13 instructions processed ûfter nioviiig thc püyload,
Sonic ol'thc ûhove insts. tieed to ilse the locül bus to
iiiovc cliltu .

Figure 4.17: Total iiisiriiciioii for EOM of AAL314 is 30 iiisl.

Rcad
lhc
hcad of
C.0,
for
i f n c

pointcr

rprcc

E~tnct iIw
VCl from
ATM
hrrdci

l in tnct
MI11
froni
A A L Il
Ctuch i f
IIK
cuncnl
nussagc
ir
sigiriling

ATM Rcasseiiibly lbr AAL314 processiiig sclicnie of SSM,
wlicre the FIF03 and FIF04 arc not ernpty

Check
~hcihcr
ihis cc l l
ir DOhl,
Cohl,
EOhf,
SSM

--

3insts 1 inst. 1 inst. 1 i i isl. 3 insts. 3 insts. I inst. 1 inst.

-- -
!hd
Null
vrluc
il thc
t nd
o f
cumnl
c r l l

~p

Chcck i f
thcrc ir any
M W

Connecl..
hy rcoding
the
tegister
rcprcssing
s131us.

I f ilirrc ir
b l l C I V

C011111

I.oad the
VCI&
hlll) ,
itrcn siorc
i l i c i t i iii
TAM

i'hcck II
ihrrc i t c
ariy fret
piinirn
i\iilitilr
in F I l 0 4

3 insts 1 it ist. 2 iiists. 1 inst. 1 inst. 2 insts. 1 inst. 1 inst.

Processing
needed beforc
n i o v i n g cell
body
= 6 instructions

1 I i ns in ic i ions the RlSC co rc ca i i
proccss t iu r ing ilic data i i iosc i i i c i i t

12 i i is t r i ic t ions proccsscd after n i o v i n g the payloüd.
Somc o f t l icsc iiists, iiecd IO iisc t l i c local b i ts IO

ilii>\lt! tiüiü.

Figure 4.18: Totiil iiislniciion for SSM of AAL3/4 is 29 inst.

Chaprer 4: A host Interface Architecture for A TM Network

4.3.2 Segmentation Function

Segmentation firnction simulation using the DMA's clock at the same speed as the

RISC 's clock means the DMA needs 22 cycles to move one ce11 body fiom CSB to SB1

for AAL3/4, where it needs 24 cycle for AALS. While moving data, the DMA controls

the local bus to move the ce11 body fkom CSB to the SBI. The RISC also needed to send

the ATM ce11 header (if the tram fer ce11 is AALS type) or send the ATM header, the

AAL header and the AAL trailer (if the transfer ceIf is AAL3/4 type) fiom RiSC's

register to the SBI. In this case, the RISC has to wait until the DMA completes the data

movement. Then, the RISC is able to control the local bus and transfer the data register to

the SBI. The total instructions that were needed for Segmentation fùnction, where the

DMA's dock is the same RISC's clock cycle are shown in Table 4.4. The RISC has

several idle cycles during the data movements and obviously is not able to send any of its

data registers on the local bus.

1 For AAL314 and AALS I I

Type of cells for
Total instructions

AALS AAL3/4

No. of idle cycls

AALS AAL3/4

17 13
I
I 1

Single Segment Message (S SM)

Begiming Of Message (BOM)

Table 4.4: Number of FUSC instructionsprocessed and the idle cycles for Segmentation
messages (the DMA have the same clock cycle as the RISC)

26 26

22 18
1

End Of Message (EOM)

26 26

Continuation Of Message (COM)

18 14

26 26

26 26 21 17

Cltaper 4: A hosr Inie<ace Architecture for A TM Nenvork

The number of idle cycles is quite high and the RISC wastes almost 70 O h of its

power. We tried to eliminate the number of idle cycles by increasing the DMA's clock

speed to be double that of the RISC's, thus forcing the DMA to finish its job by moving

the ce11 body within 11 instructions for AAL314 and 12 instruction for AAL5 (Table 4.5).

Type of cells

For AAL 5 and AAL3/4
Single Segment Message (SSM)

Begiming Of Message @OM)

Total instructions

AALS AAL3/4

14 15

Continuation Of Message (COM)

Table 4.5: Number of RISC instructions processed and the idle cycles for Segmentation
messages (the DMA have the clock cycle double the RISC)

No. of idle cycles

AALS AAL3/4

5 2

14 15

The performance of the processing gets better, but there is a loss of about 40940 the

RISC's power. We tned to improve Our processing performance by pushing the DMA's

dock to be triple that of the RISC core's clock (Table 4.6).

6 3

14 15

9 6
1

10 7

End Of Message (EOM) 14 15

Chapter 4: A hosr Interjiace Architecture for A TM Nenvork

1

Type of cells

For AALS and AAL3/4
Single Segment Message (SSM)

Beginning Of Message (BOM)

Total instructions

A A L S k4L3/4

10 13

Continuation Of Message (COM)

Table 4.6: Number of instructions processed and the Idle instructions for Segmentation
messages where the DMA has triple the clock cycle of the RiSC

No. Of idle cycles

A A t S AAL314

1 O

10 12

End Of Message (EOM)

For the Segmentation part of the network interface, we found that using a DMA

controller faster than the RISC core will improve the performance. Because the RiSC

core can pe~orrn little processing while the DMA controller is moving the payload from

the Ce11 Segmentation Buffer (CSB) to the Send Buffer Interface (SBI), the RISC core is

forced to be idle for a few cycles until the DMA completes the payload transfer.

Therefore, using a faster DMA will help to eliminate al1 idle cycles of the RISC core. The

differences in the instructions that executed by AAL3/4 and AALS are shown in Table

4.7.

2 O

10 11 4 2

10 11 5 3

Cliaprer 4: A host lnrerface Architecture for A TM Nenvork

Operation
Instruction for

AAL3/4

1 Send AAL header from CSB to SB1 O

1 Send AAL trailer from CSB to SB1 1 1 1 O

Calculate the length of the AAL miler
l * I 0

Change the Sequence Number (SN) for each leaving ce11

- --

Table 4.7: The main differences between the AALS and AAL3/4 for ATM Segmentation

1 *

Generate the A 4 L header

* Irisrnicrion erecufed during rhe moving dara.

To make clear how we get the results in Table 4.4, Table 4.5 and Table 4.6, it is

important to describe the processing details. The focus is given on the case where the

DMA's dock mns at triple the dock cycle of the NSC. When the host decides to send a

block of data to the other ATM host, the host CPU sends the CPCS-PDU frame to the

CSB. The host CPU also sends al1 the information needed to transmit this fi-arne through

FIFOS, including VCI, VPI, and the location of the M e inside the CSB. Figure 4-19

shows the number of instructions required for ATM Segmentation fiinction for BOM for

AALS. In order to generate the ATM header and calculate the PDU size, the RISC starts

by reading al1 the information related to the PDU fiame.

O

2* O

Chnpter 4: A host /nte$ace Architecture for ATM Nehvork

I

iinst 4 inst. 1 inst. 1 inst. . 1 inst. 1 inst. 1 inst.
I

? b

1

Rcad thc nccesury Ininau Add sw Test the new NSC NSC Send
information rcIaied to the ~ddrcss swnaddrcssis

the PDU. This DSIA byvs greatcr th3n the ATM

b 1 Prepnre for
U
r.

I S tart transmission
I

transmissrnision

inforniion includcs
VCI. VPI and the
location of the PDU in-
side chc CSB*

Processing 8 inst. the RISC core can process t. during 1 inst to
needed the data movement rnove the
before ATM header
moving ce11 Note: The DMA needs 8 RISC cycle to from FUSC'
body rnove 48 bytes (the DMA has triple the register to
= 1 inst clock cycle of the RISC) SB1

Figure 4.19: ATM Segmentation for AALS processing scheme of BOM
(Total instructions by BOM for AALS is 10 inst)

!

U)

movc
the
cc11
MY
fmm
CSB io
SUI

The RISC initiates the DMA to move the 48 bytes fiom the CSB to the SBI. The

liighlighted boxes show the RiSC instructions that are executed during the data movement.

Tliese instructions include the generating of the ATM header and checking if there are more

ATM cells to be sent for the same VC. After the DMA finishes its job by sending 48 bytes

from the CSB to the SB1 which needs 8 RISC cycle (the DMA's dock in this case has triple

RISC's clock), the RISC sends the ATM header to the SBI. Figure 4.20 shows the total

instructions needed by COM for AALS. The RISC will be idle several cycles while waiting

end addrcss of
this m g c
byte

Idie Idle Header

Chapter 4: A host Interface Architecture for ATM Nehvork

for the DMA to finish. It is clear that the RISC has more idle cycles in COM than BOM

because, in this stage, the RISC has no need to generate the ATM header again (it already

exists in the EUSC's register).

1 inst 1 inst. 1 inst. 1 inst. . 1 inst. 1 inst. 1 inst. 1 inst. 1 inst

Init~atc
llic
DMA
IO

nioïc
die
ccll

Processing
needed
before
moving ce11
body
= 1 inst

8 inst the RISC core can process during the
data movement

froni

Add snn
i d h

bflcs

1 inst to
move the
ATM header
from RiSC
register to
SB1

Figure 4.20: ATM Segmentation for AALS processing scheme of
COM (Total instructions by COM for AALS is 10 inst)

Test the new
start a d d m if it
is gratcr than
the end add-
of this message
byic ?

Figure 4.21 shows the total instructions needed by EOM for M L 5 Segmentation

function. The RISC has one more instruction than the COM, because the RISC needs to

change the PT in ATM header Erom 'O' to '1,' thus indicating that this ce11 is the iast ce11 of

the PDU fiame.

RISC

Idle

RISC

Ide

RISC

Idle

RlSC

Idle

RiSC

Ide

RISC

Idle

'

Send
ATM
Header

Cliaprer 4: A hosr Inrerjiace Architecture for A TM Network

Test the new
swrt address if it
is grcaler th3n
the end addrcss
of this message
byte

Iniiiatc
tiic
DL1 A
10

nwvc
tiic
cc11
body
(rom
cm3 10
SB 1

Add

48 b y w

-- --

1 inst, . 1 inst 1 inst, 1 inst. 1 k t . 1 inst 1 inst.

Change
the
Pa~load
type of
ATM

1
1 inst

Processing
needed before
moving ceil
body
= 1 inst

RiSC

Idle

8 inst. the RiSC core c m process some k t .
during the data rnovement

1 inst to
rnove the
ATM header
from EUSC'
reçister to
SB1

RISC

Idle

Figure 4.2 1 : ATM Segmentation for AAL5 processing scheme of
EOM (Total instructions by EOM for AALS is 10 inst)

Figure 4.22 shows the total instruction by SSM for AALS. The RXSC was busy dunng the

data movement and there is one idle cycle shown because the RiSC was finsheing its job

before the DMA finishing its task.

FUSC

Ide

RISC

Idle

Chapier 4: A hosr Intetjiace Archiiecntre for A TM Nenvork

R a d ihc nec-ry
in f o m t i o n rclated to
thc PDU. This
information include
VCI. VPI and the
location o f the PDU in-
side Lhc CSB,

11 inst. 4 inst. 1 inst. 1 ùist. I inst. 1 inst. 1 inst.

Add sari
d k s s
48byrcJ

I

Prepare for I

S m transmission
transmission

Test the ncw
s m addrrss if it
is grrater iiun
the end a d d m s
of this mcss;rgc

8 inst the RISC core can process during the
Processing data movement
needed
before
moving
ceil body
= 1 inst

1 inst to
move the
ATM header
€rom RISC'
register to
TB1

Figure 4.22: ATM Segmentation for AALS processing scheme of SSM (Total
instructions by SSM for AAL5 is 10 inst)

Figure 4.23 shows the total instruction that the RISC needs to process the Segmentation

function for BOM ce11 type for AAL3/4. AAer reading the necessary information from

FIF05, the RISC starts to generate the ATM header and AAL header based on the

information that the RISC reads fiom FIFOS. AAer the DMA finishes transfemng the cell

body fiom the CSB to SBI, the RISC starts sending the ce11 headers and trailer to the SBI.

Chapter 4: A host Interface Archirecrure for A TM Network

in* 2insts 4 insts 2 kit. 1 inst. 1 inst. 1 uist

F

Rcad the necesary
infomution relatcd io
the PDU. This
information include
VCI. VPI. MID and the
location of the PDU in-
sidc the CSB.

Prepare for ! Start transmission
transmission

7 inst the fUSC core can
Processing process during the data 3 inst. to move the
needed movement ATM H, AALH, and
be fore AAL T from RISC'
rnoving ce11 Note: The DMA needs 7 RISC register to SBI.
body cycle to move 44- byte (the And 1 inst to cornplete
= 1 inst DMA has triple the dock cyde generate M L header

of the RISC)

I

,,,,~i;i&
the
DMA
lo

ch'
ccll
body
fmm
mi0
Ta1

Figure 4.23: ATM Segmentation for AAL3/4 processing scheme of BOM (Total
instructions by BOM for AAL3/4 is 12 inst.)

Figure 4.24 shows the total instruction that the RISC needs by COM for AAL3/4. The

idle cycles are more than the BOM because the RISC in this stage has no need to generate

the ATM header, but the RiSC needs to change the PT and SN inside the AAL header from

' 1 0' to '00.'

Test the
sizc

G t m i c
I ~ A M
hadcr

Cienma*
ML
-' Send

ATM
Header

Send
AAL
Header

Send
AAL
Tniler

Chaprer 4: A host fnrerjiuce Archirecture for A TM Nenvork

frum gt01 1
1 inst 1 inst. 1 inst.

Add smn
Initiate ad-

DXlA
bYV

~ O V C

Cilagc thc
scquence
No.

Tes the ncw
start Y f d r ~ ~ if
i t is greater
i b n ihc end
addrcss o f this

Change
the
Payload
type

1 inst. . 1 k t . 1 inst. 1 inst. 1 inst. 1 inst

RISC

Idle

1 inst 1 inst

RISC

Idle

Scnd
ATM
Ficadcr

Processing
needed
be fore
moving ce11
body
= 1 inst

Scnd
A D 1
Headcr

7 inst. the RISC core c m process during the
dam movement

RISC

Ide

I

3 inst to move
the ATM Fi,
AAL H and
AAL T from
RISC' register to
SB1

',,,,
A T M
Hcadcr

Figure 4.24: ATM Segmentation for AAL3/4 processing scheme of COM (
instructions by COM for AAL3/4 is 1 1 inst)

Figure 4.25 shows the total instruction that RISC needs for Segmentation function by

EOM for AAL3/4. The RiSC in this stage needs to calculate the actual data size inside the

ce11 body (BOM and COM the ce11 bodies are fixed 44 bytes (ITUT93)).

Cliaprer 4: A hosr Inrerfnce Architecrure for A TM Nenvork

1 inst 1 inst. 1 i n s ~ 1 k t . . 1 k t . 1 inst. 1 ins t 1 inst. 1 inst 1 inst I inst

Send Scnd

Processing
needed
before
movinç cell
body
= 1 inst

the
DSIA
IO

niove
ilic

ccll

bocfs
fmrn
CTB io
SB I

7 inst the RISC core can process during the
data movement

3 inst to move
the ATM H,
AAL H and AAL
T from MSC'
register to SB1

44 bytes
10th~
Siart
address

Figure 4.25: ATM Segmentation for AAL3/4 processing scheme of EOM (Total
instructions by EOM for AAL3/4 is 12 inst)

Figure 4.26 shows the total instruction by SSM for AAL3/4. The RISC was busy

dunng the data movement and there was no idle cycle shown because the RISC was busy

generating the ce11 header and trailer.

the size hc
Seq-c
No.

1

Payload type the AAL
tnilcr . ldle ldle

ATM
Headcr

ATM
CIcader

ATM
CIcader

Clmprer 4: A host Interjkce Architecture for A TM Netwurk

Rcad the ncccssary
rnfomrion related to
the PDU. This
i n b m t i o n include
VCI. VPI. MID and thc
location of the PDU in-
sidc the CSB.

Prepare for
transmission

-
I n i r k i c
lhc
D.UA
IO

movc
the
cc11
body
fmm
m m
S B 1

Tniler
ATM
Header Header Tmiler

1 inst. 2inst 4 inst. 2 inst. 1 inst. 1 inst. 1 inst
b

b

Start transmission

3 inst to move the
ATM H. AALH. and

Processing 7 inst the RiSC core can
needed before process during the data
moving ce11 movement
body
= 1 inst

AAL T from RISC'
register to SB1

Figure 4.26: ATM Segmentation for AAL314 processing scheme of SSM (Total
instructions by SSM for AAL3/4 is 13 inst)

4.4 NI Performance Evaluation

The VHDL simulator gives more details and more accurate results than the SPIM

Simulator. We have completed this simulator for AAL314 and AALS using Xilinx FPGA

tool version 1.5. The reason for using Xilinx fkamework is that it provides a good

Chaprer 4: A hosr Infeflace Archirecrure for ATM Nenvork

environment for simulation and testing the VHDL model. Our intention was not to use

FPGA as a target chip for our future irnplementation.

We have used the M simulation to measure the amount of processing required for

different transmission line speeds. For the Segmentation section of the network interface,

a RISC core supported by a DMA having the same clock as the RlSC can support

1.2Gbps transmission lines for AAL3/4 and AAL5 with 74 MHz, where a 147 MHz is

required to support 2.4 Gbps line (Figure 4.27).

Figure 4.27: ATM Segmentation for AAL314 and AALS using DMA for data
movement (the DMA has the sarne EUSC's clock rate)

Figures 4.28 and 4.29 show the RlSC processing speed for the AALS and AAL3/4

for segmentation function when the DiVA has double clock speed than the previous rate.

Chapter 4: A host /ntet$uce Architecture for ATM Network

Figure 4-25: ATM Segmentation for AAL3/4 using DMA for data movernent (the DMA
has double EUSC's clock rate)

Figure 4.29: ATM Segmentation for &5 using DMA for data movement (the DMA
has double RISC's clock rate)

Figures 4.30 and 4.31 show the RISC processing rate that is needed for ATM

Segmentation for AAL 3/4 and AALS, when the DMA has triple speed than the RISC

core. Clearly, as the DMA getting faster, the RISC core will not need to be waiting, Le.,

executing no operation instructions, while the NI local bus is busy due to the DMA

moving data operation.

C/~opfer 4: A host Zrrterface Arc/iifecture for A TM ffenvork

Figure 4.30: ATM Segmentation for AAL314 using DMA for data movement (the DMA
has triple than the RiSC's clock rate)

Figure 4.3 1 : ATM Segmentation for AALS using DMA for data movement (the DMA
has triple NSC's clock rate)

Figures 4.32 and 4.33 will present the RISC processing rate needed in order to process

the ATM Reassembly for both fiinctions AAL3/4 and AALS, when the DMA has the

sarne dock rate as the RISC processor.

Chaprer 4: A host fnrerface Architechue for A TM Nenvork

Figure 4.32: ATM Reassembly for AAL314 using DMA for data movement (the DMA
has the same RISC's clock rate)

Figure 4.33: ATM Reassembiy for AAL3/4 using DMA for data movement (the DMA
has the same RISC's clock rate)

Figures 4.34 and 4.35 presents the RiSC processing clock rate in order to process the

ATM Reassembly for both fimutions AAL3/4 and AALS when the DMA has the double

clock rate as the RiSC processor.

Chaprer 4: A host Inter$ace Architecture for A TM Nehvork

Figure 4.34: ATM Reassembly for m 3 1 4 using DMA for data movement (the DMA
has double RISC's clock rate)

- -..-. -
*m- rr. -

Figure 4.35: ATM Reassembly for AALS using DMA for data movement (the DMA has
double RïSC's ciock rate)

Chaprer 4: A host Inte$ace Architecture for A TM Nenvork

In Segmentation function processing, it is clear that the RISC processing speed is

become less as we use the DMA with a higher speed (TripIe RISC's clock) where a11 the

idle cycle associated with the RISC core processing has eliminated. The VHDL

simulation for the Segmentation unit of the network interface has shown that a 68 MHz

processor can support 2.4 Gbps lines, when the DMA speed is 213 MHz (triple RISC's

clock).

The VHDL simulation for the ReassembIy unit of the network interface has shown

that an 85MHz processor can support 1.2 Gbps lines supported by the 169 MHz DMA.

Clearly, a cost effective RISC core can be used to processes 1.2 Gbps transmission line.

Also it is clear that a higher RISC core dock rate could also be used to support higher

transmission speed with extra cost. In the next chapter we will see the RiSC Architecture

that we used in the NI.

Chapter 5: Embedded Pipeline RlSC Core for ATM Network Interface

Chapter 5

Embedded Pipeline RISC Core for ATM Network
Interface

5.1 Introduction

During the VHDL simulation, two RISC cores have been used and supported with

DMA in order to process al1 the AAL3/4 and AAL5 function. The RlSC with 85 MHz

has been found to be capable of supporting a network interface of 1.2 Gbps and 2.4 Gbps

for Reassembly and Segmentation function, respectively. A network interface with high

speed can still be supported with the use of the RISC core based NI by using a faster

RISC core. In this chapter, we will introduce our three-stage pipeline RISC architecture

and descnbe how it provides the requirements of high-speed ATM network interface.

5.2 Developing RISC core for ATM N 1 Processing.

The development of a specialized RlSC core c m generally be done in a short period

of time and at lower cost than a general-purpose core. The RISC core, required for ATM

interfaces design, is optimized for this application. Hence, some parts, which might be

used in RISC core to support the general-purpose applications, may not be required for

the ATM network interfaces design. For example, the Floating-Point Unit is not

necessary for neiwork interfaces. Also, the use of the data cache is not required since it

will not help to improve the performance of the RISC core for this application. The

Chapter 5: Embedded Pipeline fUSC Core for ATM Network interface

elimination of these units will help to make the core simple to develop at a low cost. In

addition, the limited number of instructions that are required to support the ATM

interfaces processing c m reduce the size of the control unit, improve the speed of such a

core, and reduce its complexity.

In order to be able to use the RTSC core for diffscnt types of network interface, the

RISC core should be designed with the Hardware !Jescription Language, VHDL, and that

wiil make such porting operations possible and easy.

5.3 VHDL-Based RISC core

5.3.1 RISC Pipeline

RiSC pipelines divide the execution of an instruction into a nurnber of steps, or

pipeline stages. The depth of a pipeline corresponds to the number of pipeline stages

(Figure 5.1). The schematic capture of the pipeline stages is shown in Appendix A

Figure A.7.

The NI RISC core has been designed to execute one instruction in three-pipeline stage:

a) Fetch an instruction from local memory (Fetch stage).

b) Decode/execute the instruction and registers read (Decode/Execute stage).

c) Store results back into the destination register (write back, or W B , stage).

The RISC fetches instructions which are used to run the ATM protocol program from

local memory, Decoding and Executing stage is done to execute the mnning instruction

that has been ktched by the first stage of the pipeline. The last stage of the RISC's

pipeline is W B , in which the data is written to the RiSC's register. Some instructions

such as Store instruction terminate at DecodeExecute stage.

Chapter 5: Embedded Pipeline RISC Core for ATM Network interface

r
Fetch

r+ 1

1+2 Wn3

Figure 5.1 : Structure of RISC instruction Pipeline

5.3.2 Instruction Representation

During the SPiM simulation, we learn about the suitable instructions that are required

for M. These instructions have been represented in Table 5.1. The instruction format

contains the op-code in the first five most significant bits to represent the type of

instruction.

Instruction

ADD

ADDl

SUT3

AND

LOAD

STORE

STCAM

BEQ

BGE

BLE

LCAM

r3 <-- r 1 + r2

r3 C- r l + irnrn

r3 <- r 1 - r2

r3 C-- r I and rUirnm

r 1 C-- mem

r 1 -> mem

r 1 - >(CAM)

rl = r2/imm --> label

rl >= r2/imm -> label

r i <= r2/imm -> label

r l = (CAM) --> r2

op-code Comments
- - -- --

Arithmetic addition

Arithrnetic addition immediate

Arithmetic subaction

Logical AND

Load from memory

Store to memory

Store value at Content Addressable
Memory (CAM)

Branch if equal

Branch greater or equd

Bnnch less or cqual

Find the match of rI with CAM con-

tents and store the CAM data in r2

Table 5.1 : Type of RISC Instructions.

1 O4

Chapter 5: Embedded Pipeline RISC Core for ATM Network Interface

The description of code instructions group is as follows:

5.3.2.1 Aritbmetic and logic operation instructions

They provide computational capabilities for processing nurneric data. Logic

instructions provide the logical operation such as And, Or, .., etc. The format for

arithmetic and Iogic instruction is as follows:

a. Anthmetic/Logic instruction formation (Register-to-Register format)

Op-code

b. ArithmetidLogic ïnstniction formation (h e d i a t e format)

SRRl

Op-code

Where: SRRl source register 1
SRR2 source register 2
DES destination register
F function bit
IMM16 immediûte value
X for future use

X F

Figure 5.2: Anthmetic and logic instruction format

DES SRR2

F

The arithrnetic instructions, such as Add, is executed as follows: Add register SRR2

DES SRRl 1 MM 16

to register SRRl and store the result into register DES. In the add immediate instruction

(addi), the register contents, to which SRRl refers, will be added to the MM16 value.

The result is stored in register DES. These instructions can be wntten in the program as:

add r 3 , r 2 , r l ; Add r2 CO rI and store the result in r3

addi r4, r3, 10 ; Add r3 to the value of 10 and then store the result in r4

Chapter 5: Embedded Pipeline RiSC Core for ATM Network interface

As read after write (RAW) data dependency could occur during the program

execution, the forwarding mechanism has been implemented to resolve such dependency.

For the two preceding instructions, the add instruction stores the result in register r3

where the addi instruction will use r3 as a source operand. Duxing the DecodeExecute

stage of addi instruction, the r3 is not updated yet by the add instruction, and thus, an

error of calculation wiII occur. The use of the forwarding mechanism will solve this

problern fiom accruing [DPatt98 and JHen9q. To provide the support that is required by

the forwarding mechanism, an F bit is used in the instruction format to initiate the

fonvarding mechanism if F is '1 .' Otherwise no action will be taken. The F bit is set or

reset during the prograrn compilation. The compiler can detect whether the forwarding

mechanism is required to be initiated or not (more details in section 5.3.3).

5.3.2.2 Branch instructions

Branch instructions are used to test the value of data or the status of a computation

before jumping to the label's address. There are three Branch instructions listed in Table

5.1 and al1 have the same instruction format (Figure 5.3).

Where: label address in rnemory (instruction memory)
imrn imrnediate value
F fiinction bit
M immediatdregister select
X for fiiture use

Figure 5.3: Branch instruction format.

label Op-code SRRL F

irnm

SRR2 X M

Chapter 5 : Embedded Pipeline RISC Core for ATM Network Interface

The M bit will be checked by the RiSC's controller to distinguish whether the second

source operand is an imrnediate value or a data register. in the case where the M =1, the

cornparison should be done between SRRl and the immediate value (value 10).

Otherwise, it should be done between SRRl and SRR2. The F bit is used to control the

fonvarding mechanism, one of the operand of the current instruction still in the WA3

stage of the previous instruction. The forwarding mechanism will be turn on when F is

set to 1, to prevent pipeline stalling. The F bit will be reset if no RAW dependency exist

between the branch and preceding non-branch instruction.

The branch instruction c m be wntten as follows:

beq r l ,r2 , label ; Branch to labcl if contents of rI= contents of r t
beq r l , IO, label ; ranch to [abcl if contcnts of r I = I O

The PC will be updated to point to the label's address afier checking that the value at

r i is equal to tliat at r2, or when rl equal to the irnmediate value which is 10. The use of

the immediate value with the Branch instruction is useful for ATM Payload Type

checking (in AAL3/4 the Payload Type is 2-bit, and in A A L S only l-bit), or checking if

the VCI of the arrived ce11 is equal value 5.

5.3.2.3 Memory access instructions

These instructions are used to move data between memory and the RlSC core

registers and these instructions are as follows:

Chapter 5: Embedded Pipeline RISC Core for ATM Network interface

a) Load/Store instruction: To load data fiom a local memory into a RISC's register, or

to store the data register into local memory, the instruction format is as follows:

Address

Where: Address Memory address
S W Holds t!e data that needed to store in local memory (if the

instruction is load), in store instruction used as the
destination register (to store the data rnemory)

SRRI memory address
X for future use

Figure 5.4: Load/Store instruction format.

For Load instruction, the value at address field and the contents of the SRRl are

used to address the source address. The SRR2 is used as the destination register. The

same is applied for Store instruction where the memory address is calculated as in the

load instruction, while the SRR2 is used as the source register instead of the destination

register. The Laod/Store instruction can be written as follows:

lw rl , address (r2) ; r 1 = Mernorylrt + address]

sw r4, address (r2) ; Memory[r2+address] = r4

b) Load CAM (LCAM): This instruction is used to load data from the CAM afier a

match for a certain data with the contents of the CAM is found. The instruction

format of LCAM is shown in Figure 5.5

Chapter 5: Embedded Pipeline RISC Core for ATM Network Interface

Where : SRRl holds the data match
DES store the loaded data from CAM
S bit signal to the RISC's controller
X for fiiture use

Figure 5.5: LCAM instruction format.

X

The contents of the SRRl is used to be matched with the CAM contents, if the

match found, the CAM then retums the contents of that matched location. SRRl

contains either VC or VCI-MID which needed to be match with another active identifier

that stored in CAM content, if rnatched exist, then the Start or end Address will send out

from CAM. The RiSC's controller afier reading the S bit, it sends a signal to the CAM 's

controiler (Start-end-signal) to either send the Start-address or End-address as data out

from the CAM to the RiSC. DES is a distention register which used to store the CAM

output.

I f the match is not found, the CAM sends a signal to the IUSC (match = O), the

RISC, considers this ce11 as a lost ce11 and discardes it. The LCAM instruction can be

written as:

Op-code S DES SRRl

Chapter 5: Embedded Pipeline RISC Core for ATM Network Interface

lcam r2,rI ; match what in r l , which couId be VC or VCI-MID, with the contents of CAM.

; then reads CAM data output iato r2.

C) Store CAM (STCAM): This instruction is used to store data in CAM. The instruction

format is shown in figure 5.6.

Where : SRR1 holds the data, such as VC or VCI-MID
SRR2 holds the stored data (Start or End address)
S bit signal to the RiSC's controller
L type of data that needed to store it in CAM
X for future use

Figure 5.6: RISC instruction-set format for CAM operation (stcam).

Op-code

The register SRRl could hold the value for VC or VCI-MID that is required to be

stored as new entry in the CAM. After a match is found, the instruction can be used to

store the Start or End-address. The SRR2 contains the data that the RiSC needs to store

in CAM, i.e. the Start-address or the End-address. The RISC's controller will send a

signal to the CAM'S controller to store the data as a Start or End address, or to store the

new entry (see section 4.2.2). If the S = 1 and L = O then store a new entry in CAM, in

SRRZ S L SRRl X

Chapter 5: Ernbedded Pipeline RISC Core for ATM Network interface

the hand if the s = O and L = 1 this means store Start-address, if it is 00 then store End

address. An exarnple of the SCAM instruction as follows:

stcarn 1-9, r3 ;Store the contents of r9 in CAM where r3 has the value of CAM entry to be
; matched such as VC or VCI-MID.

5.3.3 Pipeline Hazard

In the instruction Stream, hazard is the prevention of the next instruction fiom being

executed during its designated dock cycle. Cleariy, hazard reduces the RiSC

performance. Hazard types include:

1- Control hazards.

2- Data hazards.

The Control hazard couid occur during the condition branch instruction execution.

The decision about whether the branch is taken or not taken does not occur until the result

of the cornparison is completed (in DecodeExecute pipeline stage). The fetched

instruction afier the condition branch instruction will be flashed from the pipeline if the

branch is taken. Such operation is called branch penalty. Clearly, the branch penalty will

reduce the pipeline performance. The branch-delay technique is used to reduce such

problems and is as follows:

Chapter 5: Embedded Pipeline RISC Core for ATM Network Interface

1 and r l , r7 , OxOOOOOOOO

i+ 1 add 1-6, r2, r3

i+2 beq r6,r4, label

a: Before scheduling the branch-delay slot

1 add r6, r2, r3

i+ 1 beq r6,r4, label

i +2 and r l , r7, 0x00000000

b: After scheduling the branch-delay slot

Figure 5.7: Scheduling the branch-delay

In Figure 5.8 (a) shows the code before scheduling where add instruction will execute

before the branch instruction. The add instruction in Figure 5.8 (a) is considered as

independent instruction. In Figure 5.8 (b) the add instruction is used as a delay do t which is

scheduled to be executed after the branch instruction. in this case, the and instruction will be

executed in either way (if the branch is taken or not) and that will not affect the pipeline's

performance.

The frequency of occurrence for conditional branches for Reassembly unit for both

AAL3/4 and AALS is shown in Table 5.4. The branch-delay slot technique can be used to

eliminate the effect of performance degradation due to conditional branch instructions. We

Chapter 5: Embedded Pipeline RiSC Core for ATM Network interface

found that a usehl instruction can be managed for every conditional branch instruction for

the processing of both AAL314 and AALS.

COM
I - 1 -

19 1 8 1

Message type
SSM
BOM

Table 5.2: Occurrence of the conditional branch for M 3 / 4 and AALS Reassembly
Processing

The data hazards could occur when an instruction being executed in the current pipeline

AAL314
8
9

stage requires a result that still unavailable of an instruction executed in an earlier

AALS
8
3

pipeline stage. The following portion of the ATM protocol is an exarnple where there is

a data hazard:

1 % ~ r4,O(rl) ; load a free pointer from the CB
and r l , r6, O~ooOCfffO ; Mask VCI from ATM header (r6) and store the result in r l

ble t-1, S, signahg ; Check if the curent ce11 is signaling,

and r3,r6,0x0000000E ; Mask the PT from ATM header (r6) and store the result in r3

beq r3, 0~00000002, EOM ; Check if the current ceIl is the EOM/SSM ceIl of
; CPCS-PDU by checking the R3's value

and rS, r6, O~OffffffO ; Mask The VC (VC1,VPI) from ATM header (r6) and store the
; result in R5

The and instruction, at i + l , writes the value of r l in the W/B pipeline stage, where

the ble instruction at i+2 reads the value during its DecodeExecute stage. Clearly, the

ble instruction wiIl have the data hazard probIem. Unless precautions are taken to

prevent it, the ble instruction i+2 will read the wrong value of the r l . Data hazard also

happen between i+3 and i+4 instruction, when i+4 is ûying to use r3 for the cornparison.

Chapter 5: Embedded Pipeline RISC Core for ATM Network interface

Clearly, this data hazard happened quite often in the M codes. A support should be

provided for NI design in order to reduce its impact. Otherwise, a severe reduction in

performance will occur.

There are different techniques that can be used to reduce or even eliminate the

performance reduction due to the data hazard (or dependency). One technique is

forwarding or injecting. By using the injecting technique a usefûl instruction will be

placed before instruction that required an information where the needed information still

not provided yet by the proceeding instruction. In Our work, we decided to use the

injection of a usehl instruction to avoid the hazard. The same code in the previous

example could be written as follows:

i (i+ / previously) and rf, r6, 0 ~ 0 0 0 ~ ; Mask VCI from ATM header (r6) and store the result in
; rl

i+ / (i previously) IW r4,O(rl) ; load a free pointer from the CB
i+2 ble rl, 5, signaling ; Check if the current celi is signaling,
i+3 and r3,r6,0x0000000E ; Mask the PT from ATM header (6) and store the

; result in R3.
i+4 (i+5 prcviousiy) and r5, r6, OxOfmfflO ; Mask The VC (VC1,VPI) from ATM header (r6)

; and store the result in r5.
j+s (ii-4 previotrsiy~ beq r3,0x00000002, EOM ; Check if the current ceIl is the EOM/SSiM ce11

; of CPCS-PDU by checking the r3's value

By using the injecting technique to avoid the data dependency problem, the pipeline

then will not forced to stall during the NI code execution. The frequency of data hazard

occurrence for both AAL3/4 and AALS Reassembly is shown in Table 5.2 and 5.3.

Although the occurrence appears to be minor, the impact or reduction of performance is

significant. AAer rescheduling the program that has been written for ATM Reassembly, we

Chapter 5: Ernbedded Pipeline RISC Core for ATM Network Interface

still have one RAW hazard for AALS within BOM and COM out of the total cycle required

for the BOM (where the total instruction needed is 26 cycles). One RAW within SSM for

AAL3/4 is also required for the BOM (where the total instruction needed is 30 cycles).

AALS message type 1 RAW Hazard
1

Table 5.3: Occurrence of the Read After Write (R N) hazard for A A L S Reassembly
Processing

I

AAL3l4 message type1 RAW Hazard
BOM.COM. EOM 1 O

BOM and COM
S S M and EOM

S S M 1

1
O

TabIe 5.4: Occurrence of the Read After Write (RlW) hazard for AAL3/4 Reassembly
Processing

Since most independent instructions are used to avoid the control hazard, we unable

to find a usefiil instruction to be injected after these instructions cause the hazard. Still,

adding the forward mechanism in our simulator is important to elirninate the data hazard

that may occur [DPatt98 and JHen961. An example of the forward mechanism used in our

simulator is as following:

1 ; Add r l to r2 and store resuIt in r3

o m r d R3

I+I 1 beg r3,5, send signal 1 ; If the r3 is equal to value 5 then jump to the send
; signal locations

Chapter 5: Ernbedded Pipeline RISC Core for ATM Nenvork interface

Latch the result of the ALU (rl - r2), and then send the latched data at register (r3) to

the ALU to compare it with value 5 (during the DecodeExecute of the current

instruction). The schematic capture for the forwarding mechanism is shown in Appendix

A, Figure A.8. The forwarding hardware receives a signal from the RISC's controller

indicating that the current instruction needs the latched data of the previous instruction.

The latched data is sent to the DecoddExecute stage of the current instruction (Figure

5.9).

beg r3, 5 , send signal
(I + I)

Figure 5.8: Minimize Data Hazard by latching the output of the ALU to be
read within next instruction (forward mechanism).

5.4 RISC's Registers

In our implementation, the RISC's instruction format has three register operands. We

will need to read two data words fiom the register file and write one data word into the

register file for each instruction. For each data word to be read from the registen, we

need an input to the register file that specifies the register number to be read and an

output from the register file that will carry the value that has been read from the registers.

TO wnte a data word, we need two inputs. The first input needed specifies the register

number to be written. The second input supplies the data to be written into the register.

Chapter 5: Ernbedded Pipeline RISC Core for ATM Network interface

Thus, we need a total of four inputs (three for register number and one for data) and two

outputs (both for data) (Figure 5.10). The register files VHDL based is shown in

Appendix A Figure A.9. The register file always outputs the contents of whatever register

numbers are on the Read register inputs. Read registers is controlled by a specific signal,

called R(RI,RZ), which must be asserted a read cornmand to the specified register. The

wnte register is controlled by a specific write control signal, called Wwor W/B register),

which must be asserted by RISC's controller to write data into certain register.

Register
numbers

Datain -
ControI -
signal -

SeIect R 1
Output 1

Select R2

SeIect Write back

R (R 1 . W
W(for W/B register)

Data
Out

Figure 5.9: RISC register file

The register number inputs are 5 bits wide to speciQ 1 of existing registers, whereas

the data input and two data outputs are each 32 bit wide. The size of the register files

differ between the Reassembly and Segmentation fùnctions. The sizes of register files for

the Reassembly unit and for the Segmentation unit are shown in Table 5.5. Clearly, the

register file within RISC processor in the Reassembly unit is larger than the

Segmentation unit because the Reassembly function has extra registers just needed to

hold the specific information (during the setup operation). This information includes two

Chapter 5: Embedded Pipeline RiSC Core for ATM Network intedace

registers to hold the CB's pointers (the head and tail of CB). The other registen to hold

the address of the FFOs (FIFOI, 2 ,3 and 4).

1 Functions unit 1 &gisfer size 1

Table 5.5. Register file size for Segmentation and Reassembly units

Reassembly
Segmentation

5.5 The Component Needed With RISC cores.

-
28 register
20 register -

Both RiSC cores may need other components helping with SAR processing. Table 5.6

shows the component needed for each side.

Reassembly

Requùed

Processing core
Performance

D m

C.4M

Segmentation

Required

Local bus

Nurnber of FIFO(s) 1 1

Required

32-bit word bus 1 32-bit word bus

Circulation Buffer

Required for the Active comection

1 I

1 1

Table 5.6 : Shows the component needed for segmentation and Reassembly

Not required

SRAM Ce11 buffer

func t ions

Required to Store the free pointer
spaces

Required Required

Chapter 6

Conclusion and Future work

We have presented cornputer simulation to measure the amount of processing required

by the ATM network interface for both AAL 314 and AAL 5 . The VHDL simulator has

shown that the processing requirements for the data movement of the Segmentation and

Reassembly units c m be reduced by using DMA controller. Such controlier must runs at

two to three times the speed of the embedded FüSC could eliminate al1 RiSC's idle cycles.

Also, the simulation results have shown that a cost effective embedded RISC core c m

efficiently provide network interface with the processing that required to support a wide

range of transmission line speed. A 70MHz RISC core c m support the segmentation unit

processing for up to 2.4Gbps transmission speed, while a core running at 85MHz is found

to be suitable for the Reassembly unit processing for up to 1.2Gbps line speed. These

results are based on the use of a specialized RISC core that we developed and simulated

for ATM NI applications. Such core has three stages pipeline supported with forwarding

mechanism, instruction set of only 1 1 instructions, a register file of 20 register for

Segmentation and 28 for Reassembly.

As the fbture work for this thesis, we would like to investigate the support for AAL1

and AAL2 by our NI model. Such support will require the protocol fûnctions

modification and not the NI architecture. Also, the ATM NI can be extended to process

the upper layer of the ATM protocol the Convergence Sub-layer (CS) layer. Such

support can be useful to have direct network-to-device communication with minimum

interfering fiom the host processor.

The use of the RISC processing core, for other type of network interface c m also be

investigated in the future.

Bibliography

[AElka99I A. Elkateeb and M. Elbeshti, "An Evaluation of the ATM Protocols Processing

Requirements for Network Interfaces Design", proceeding of the 1999 symposium

on Performance Evaiuation of Computer and Telecommunication Systems,

Chicago, July 1999. PP. 13- 16.

[AElkaOO] A. Elkateeb and M. Elbeshti, " A Study of the Use of the RISC-Core for ATM

Network Interfaces", Computer Communications Journal, Vol. 23 No. 2,

FebmarylMarch 2000.

[DBrn93] Bruce S Davic " The Architecture and Implementation of a High-Speed Host

Interface" IEEE Journal on Selected Area in Communication, Vol. 1 1 No. 2,

Febmary 1993

ICKim9SI C. Kim and et al. " Design and Implementation of A High-Speed ATM Host

Interface Controller", Proceedirtg of ICOiN, 1 998 PP 525-5 S8

[Cornp9S] Computer Architecture News " A QoS Communication Architecture for

Workstation Clusters" Vol. 26, No. 3 - June 1998

[ZDit97] Dittia Zubin D, Parulkar Guru M and Cox Jerome R "The APIC

Approach to High Performance Network Interface Design: Protected DMA

and Other Techniques," To appear in the Proceedings of IEEE I~rfacorn 1997

[DPatt98 J D. Patterson and J. Hemessy, Cornputer Organization and Design the

Hardware/Sof~are interface, Morgan Kau finam Publisher Inc ., 1 998.

[ECoop9 11 Eric Cooper, Onat Menzilcioglu, Rebert Sansom and Francois Bitz " Host

Interface Design for ATM LAW' IEEE 199 1

[CGcor97] C. Gcorgiou and C. Li, "Scalable Protocol Engine for High-Bandwidth

Communications " Proceedings of the 1997 IEEE international Conferences

on communications, Montreal June 1997. PP 1 12 1 - 1 126

[GPart94] Graig Partridage "Gigabit Network" 1 994 by Addison- Wesley Publishing

Company

[ITUR93] ITUT-T Recommendation 1.361 was revised by the ITW-T Study Group

XVIII (1988- 1993) and was approved by WTSC (Helsinki, March 1- 12,

1 993).

[ITUT95] ITU-T Study Group XVIII, "Recommendation 4.293 1 - Broadband ISDN

- B-ISDN application protocols for access signaling", ITU, 1995

[ITUT93] ITU-T Study Group XVIII, "Recommendation 1.363 - B-ISDN ATM

Adaptation Layer (AAL) Specification", ITU, March 1 - 12, 1993

[ITU-931 ITUT-T Recommendation 1.432 was revised by the [TU-T Study Group

XvIII (1988-1993) and was approved by WTSC (Helsinki, March 1-12,

1993).

[JHen96] J. Hemessy and D. Patterson and, Cornputer Architecture a Quantitative

Appronch Morgan Kaufmann Publisher Inc., 1996

[LPete96] Lamy Peterson and Bruce S. Davie " Computer network " A system

Approach 1996

[PMart95] Martin de Pryc ker " Asynchronous Transfer Mode Solution for Broadbnnd

/SDN' Printed and bound in Great Britain 1995

[RHosb99] Richard F. Hosbson, P.S. Wong " A Parallel Embedded-Processor

Architecture for ATM Reassembly" IEE E/ACM T'ans. On Networkirrg, Vo i.

7 , No. 1 February 1999

[STranv93] S. Traw and Jonathan Smith " Hardware/Software Organization of a hi&

performance ATM Host interface" IEEEJSAC Vol. 11 , No. 2 Feb 1993.

[KSka96] Keven Skahill "VHDL for Progrumrnuble Logic" 1996 b y Addision-Wesley

Publishing

[DpedB] Douglas Ferry " VHDL third editio~r" 1998 published b y McGraw-Hill

Companies.

[Xilin99] Xilinx home page (http://www.xilinx.com)

[Xilin98] Xilinx foundation series software ver 1.5 1 998/1999

Appendù A

VHDL Simulation Diagrams

In this Appendix, the schematic diagrams for every unit of the network interface have

been presented.

Figure A.1 VHDL based ATM Network interface architecture

Figure A.2: Location of the DMA controller in the NI architecture.

Figure A.4: CAM stmcture

Figure AS: Receiver Buffer Interface (RBI)

Figure A.6: Sending Buffer Interface (SBI)

Figure A.7: Stnicture of RXSC instruction VHDL based pipeline

DkTi-3UY3: Gi

Data ana m n y s ïœ he SECENEFI SlDE

Figure A.8: Minimite Data Hazard by latching 1
hardware (U12) to be read within next instmct

he output of the ALU by forwarding
Ion (forward mechanism).

Figure A.9: RISC register file

Project FIGURES 1
Sheet: figures3

(t e r Sei] ~cadiabate: 0111 111 O0

(IO 1 11 12 (13 ! 14 1 15 16

-

Figure A. 10: WSC register file structure format

