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ABSTRACT

Fuzzy Logic implementation is becoming increasingly important, and finding
applications in diverse areas of current interest, such as control, pattern recognition,
robotics, and other decision making applications. Fuzzy decision process offer a
significant advantage over crisp decision process which is the ability to process different
levels of truth instead of only | or 0 levels. Fuzzy Logic does not require precise inputs, it
is inherently robust, and can process any reasonable number of inputs but system
complexity increases rapidly with more inputs and outputs. Distributed processors would
probably be easier to implement. Simple, plain-language IF X AND Y THEN Z rules are
used to describe the desired system response in terms of linguistic variables rather than
mathematical formulas. The number of these is dependent on the number of inputs,
outputs, and the designer’s control response goals.

The new Motorola 68HC12 MCU has an embedded fuzzy logic instruction set. Using this
instruction set, we can implement complex fuzzy logic systems using only a few hundred
bytes of ROM that cycle compute in less than a millisecond. Considering the fact that the
fuzzy logic instruction set of the 68HC 12, enables the use of fuzzy logic in mass-market
high-speed applications, such as car engine control, anti-skid brakes, traction control,
inter-vehicle dynamics control, hard disk drive control, servo motor control, and cellular
phones.

This thesis deals with the design of Automotive Airbag Control System a using Fuzzy

Logic based decision structure and implementation using the 68HC12 microcontroller.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Air bags are safety devices of proven value that supplement the protection provided by
seat belts. But air bags sometimes cause injuries when they inflate in low-speed collisions
and incidents in which air bags do not inflate when it seemed they should have. Virtually
all new cars have airbags, and theyTe saving lives. They are reducing driver deaths by

about 14 percent, and passenger bags reduce deaths by about |1 percent.

1.2 Construction and Design

Airbag assemblies consist of the airbag (made of Nylon), inflator modules, sensor

STEERING

ELECTRICAL WHEEL
CONNECTOR

Fig: 1 Airbag Construction

housing, electrical connectors (clock spring), airbag retainer and the cover. The driver’s



side bag is mounted in the center of the steering wheel while the passenger bag is
mounted in the top of the dash on the passenger side of the vehicle. In addition to the
front airbags, the car companies are putting Airbags in the doors for side impacts that are
not covered by the primary airbags. They are putting them in the seats for the drivers and
rear passengers as well. This increases the cost as well as the complexity of the

systems.[1]

1.3 What happens in a Collision

When there is a frontal collision a number of things happen very quickly. The sudden
deceleration of the vehicle causes 2 sensors to send an electrical signal to the diagnostic
module. The diagnostic module self tests to confirm that a crash event is taking place.
then it allows the signal to trigger the airbag deployment and when ignited, this
propellant produces nitrogen gas, which inflates the airbag. This process occurs very
quickly—in less than one-twentieth of a second that is faster than the blink of an eye.
Most air bags have internal tether straps that shape the fabric and limit the movement of
the bag. Vents in the rear allow the bag to deflate slowly to cushion the head as it moves

forward into the deploying air bag.[2]

Sensors deploy air bags only when deceleration exceeds a minimum threshold. If the
change in speed due to an impact is lower than the threshold, the air bag will not inflate.
In low to moderate speed collisions, the seat belt alone is usually sufficient to prevent
serious injury. In high-speed crashes, the seat belt may not be able to prevent the driver’s
head from striking the steering wheel or the passenger’'s head from hitting the dashboard.

Frontal air bags protect the head and upper body in frontal crashes.



A modern frontal airbag system consists of an electronic control unit (ECU) and one
airbag module or two. The sensor (and micro-machined accelerometer) continuously
monitors the acceleration and deceleration of the vehicle and sends this information to a
microcontroller. When the microcontroller "recognizes” the crash pulse from the sensor,

an electrical current is sent to the initiator in the airbag module.

1.4 Crash Sensors

Crash Sensors are the devices that work with the control module to discriminate between
crash and non-crash events. These sensors measure the severity of the impact. They are
set up so that sudden "negative acceleration” will cause the contacts to close, sending a
signal to the control module which checks for a signal from the rear sensor which must
arrive first to activate the airbag(s). It is important to note that at least 2 of these sensors

must signal a crash before airbag deployment.

1.4.1 Sensors Types

By function, there are 2 types of sensors, Impact sensors and Safing sensors. The forward
sensors are located in various locations forward of the passenger compartment. Some are
located inside the fenders, some are on the cowl and some are attached to the core

support in front of the radiator.

Rear sensors are also known as safing sensors as their function is to determine that a
crash has occurred. Rear safing sensors are located in various locations in the passenger
compartment depending on the manufacturer. Some are integrated with the

Control/Diagnostic Module.



The rear safing sensor must close before the forward sensors to avoid airbag deployment
in cases where the impact is not severe enough to cause deployment. When the vehicle is
parked with the ignition off, deployment is very unlikely because there is no power to the
circuits for deployment. This means that someone can hit the car and sound the alarm but

not deploy the airbags.

Roller (o tact Spring

> Terminal
Magnet ring Band
Frent Of Vehicle Sp Stey
—
Ball & Magnet Spring Band & Reller

Fig:2 APeek Inside Forward Sensor

1.5 Inflator Assembly

When the Control Module activates the airbag assembly, an electric current is sent to the
detonator, which ignites the Sodium Azide pellets. When it burns, it releases nitrogen gas

very quickly and in large quantities. This is what inflates the airbag.

) Dewnator Filter Screen
Sodium Azide

Fig:3 Typical Inflator Assembly Behind Streering Wheel



1.5.1 Sodium Azide

Sodium Azide is rocket fuel and is the fuel of choice for a number of reasons. It is a solid
propellant with a very high gas generation ratio. It is very stable in this application.
When Sodium azide bums, it’s major product is Nitrogen gas, which makes up around
78% of the Earth’s atmosphere. One of the other by-products is sodium hydroxide. This is
commonly known as Lye, which is a caustic compound. The quantities produced are very
small and present a very small risk of burns. The white powder residue seen after
inflation is common comn starch, used as a lubricant for expansion of the airbag. Testing

is underway with inflators that release argon gas.

1.6 Why Do Airbags Sometimes Cause Injuries?

In order to protect the head and upper body in high-impact crashes, air bags must inflate
so quickly, and with such force, that they can cause injuries. While most of these injuries
are minor, consisting only of bruises and abrasions, some are more serious, such as
broken arms. In extreme cases. such as when the head or chest is against the module

when it opens, fatal injuries can result.

People who sit close to the steering wheel are at higher risk of being injured by a

deploying air bag than those who sit further away.

1.7 Future of Airbag Systems

It is now mandatory for air bags to be installed in all vehicles. In the case of air bags. In

order to reduce the incidence of airbag induced injury.[3]



The probiem of serious inflation injuries isnt going to be with us forever. Future airbag
technologies will reduce the risk even among people who have moved forward before
airbags inflate. Sensors will detect rear-facing restraints and automatically switch off
passenger bags. Inflation rates will be tailored to crash severity. More advanced airbags
could recognize people’s positions just before inflating and reduce the force if someone is

in position to be harmed.

Motor vehicle manufacturers are developing “‘smart™ airbags. Already some possess two
thresholds of activation. one that is appropriate for a belted occupant and another, lower
threshold, for an unbelted person. The next generation of air bag systems will probably
have proximity sensors that gauge how close an occupant is to the air bag module and
will be equipped with warning systems that signal when someone is too close and

automatic systems may prevent the airbag from deploying.

1.7.1 Smart Systems

The Smart Airbag System of the future is not just the airbag, but a redesign of the
components in the current airbag systems. Features include:
e Weight Sensors: This is a new sensor for the passenger seat to classify the weight
and to determine what type of occupant is in the seat, i.e.; adult or child.
e Infrared Occupant Detection: This system will use Infra-red beams (just like in
a TV remote control) to detect the distance the passenger is from the airbag and
adapt the force of deployment accordingly.
e Capacitive Reflective Occupant Sensing: These sensors will be located in the

seat backs and in the dash to identify the distance of passengers from the



dashboard. These sensors will be able to discriminate between a human occupant
and inanimate objects like groceries. This alone will save thousands of dollars in
the cases where the driver is the only occupant in the front seat.

e Updated Sensors: The updated sensors will have the capabilities of deploying the
seatbelt pre-tensioners faster, so in a crash situation passenger will be in the best
position to benefit from the airbag deployment.

e Centralized Electronic Control Unit: The new control units will be able use all
the input from the new sensor technology and through new software deploy what

needed and when needed.[4]

1.8 Our Project Objective

To develop the technical bases for an airbag which will lead to the elimination of
fatalities and reduce the severity of the injuries resulting from aggressive airbag
deployment and optimizing the benefits to normally seated restrained occupants while

also restoring the full protection for unbelted adults in high severity crashes.

To avoid the deployment of airbags when the passenger seat is empty. This approach will

save the cost associated with recharging the airbag after unnecessary deployment.

To analyze the possibility of using fuzzy logic for this design approach and also try to

overcome the RAM constraints in the microcontrollers.

To incorporate the information about occupant’s weight and position into the airbag

module to adjust the deployment speed of the airbag.



CHAPTER 2

History of Fuzzy Logic

Fuzzy logic theory was proposed by Professor Lotfi Zadeh of University of California,
Berkeley in 1965.It was invented in the U.S. but engineered to perfection in Europe, and
was mass-marketed in Japan. There are hundreds of successful fuzzy logic applications in
today’s world and have proved the value of this technology. but still some scientists

condemn the concept.[6]
2.1 Industrial Applications

In 1970 Ebrahim Mamdani at Queen Mary College in London, England, used fuzzy logic
to control a steam generator that he could not get under control with conventional
techniques. Hans Zimmermann at the RWTH University of Aachen, Germany, used
fuzzy logic for decision support systems. Other names given to fuzzy logic were "multi-
valued logic"” or "continuous logic” and fuzzy logic could not get broad acceptance in

industry.[7]

Fuzzy logic gained more importance in decision support and data analysis applications in
Europe around 1980 and advanced fuzzy logic technologies were developed in
application and research projects. Most of these developments were modeled on human

decision and evaluation process.[8]



2.2 Japanese leading role

Japanese companies started using fuzzy logic in control engineering around 1980 after
inspiration from European fuzzy logic applications, the first. Fuzzy logic applications
were at water treatment plant by Fuji Electric in 1983 and a subway system by Hitachi,
which was opened in 1987. Most of the applications had dedicated fuzzy logic hardware
because of poor computational performance of first fuzzy logic algorithms on standard

hardware.[9]

Fuzzy logic supports the generation of a fast prototype and incremental optimization and
fuzzy logic system always remains plain and simple to understand. The "intelligence” of

a system is not buried in differential equations or source code.

As a result fuzzy logic is now used in about every application area for intelligent control
or data processing. Photo and video cameras use fuzzy logic to put photographer’s
expertise in their control. Mitsubishi announced the world’s first car where every control
system is based on fuzzy logic and most other Japanese car manufacturers use fuzzy logic
in some of their components. In factory automation, Omron Corp. Claims more than 350
patents and fuzzy logic control optimizes many chemical and biological processes. [20],

[28]

2.3 Europe Chases Japan

When European corporations realized that they have almost lost a key technology to

Japan, they started a major effort to promote fuzzy logic in their applications. Now a lot



of successful fuzzy logic mass market products have been launched in Europe and
uncounted number of industrial automation and process control applications are
successfully using fuzzy logic. The fuzzy logic enhanced products include home
appliances that realized mayor savings in energy and water consumption with no added
product costs as well as many automotive applications. The industrial automation
applications include chemical and biological process control, machinery equipment

control, and intelligent sensors.[27]

Due to the big commercial success of these applications, fuzzy logic is now considered a
"standard” design technique and has gained broad acceptance in the engineering
community. One of the supporting factors was the advent of advanced fuzzy logic
software design tools that supported all development stages of a fuzzy logic design. Some
of the fuzzy logic design tool software houses teamed up with major semiconductor and
industrial automation equipment manufacturers to provide seamless development

environment for most target hardware platforms.

2.4 Fuzzy Logic in the North America

Fuzzy logic has recently gained a lot of interest among companies who are in heavy
competition with both Asia and Europe. There are many factors that count. North
American manufacturers do not compete with the Japanese in entertainment electronics
manufacturing. Use of fuzzy logic in camcorders, cameras, and hi-fi is more a

competitive factor between Japanese corporations themselves. In Europe, most

10



applications are in industrial automation and automotive engineering. In other

applications, there is tough competition from both Europe and Japan.[28]

Fuzzy logic proved to be an excellent tool to build decision support systems. memory
cache and hard disk controllers as well as compression algorithms for speech and video.
Also, telecom applications such as echo cancellation, network routing, and speech
recognition benefit from fuzzy logic. All fuzzy logic experts agree that the clever
combination of neural network technologies and fuzzy logic will be the next logical step

in further developing the technology. [6]

11



CHAPTER 3

BASIC CONCEPTS OF FUZZY LOGIC

3.1 Fuzzy Expert Systems

In the real world there exists much fuzzy knowledge, i.e., knowledge that is vague.
imprecise, uncertain, ambiguous, inexact, or probabilistic in nature. Human thinking and
reasoning frequently involve fuzzy information. possibly originating from inherently
inexact human concepts and matching of similar rather then identical experiences. In
systems based upon classical set theory and two-valued logic, it is very difficult to
answer some questions because they do not have completely true answers. Humans.
however, can give satisfactory answers, which are probably true. Expert systems should
not only give such answers but also describe their reality level. This level should be
calculated using imprecision and the uncertainty of facts and rules that were applied.
Expert systems should also be able to cope with unreliable and incomplete information
and with different expert opinions. Fuzziness and uncertainty are the two distinct inexact
concepts employed in the system. The following sections will discuss the general theory
of both fuzziness and uncertainty, their implications on rule evaluation and algorithms

implemented for extracting exact values from fuzzy facts.[19]

12



3.2 Fuzziness

Fuzziness occurs when the boundary of a piece of information is not clear-cut. For
example, concepts such as young, tall, good, or high are fuzzy. There is no single
quantitative value which defines the term young. For some people. age 25 is young, and
for others, age 35 is young. In fact the concept young has no clean boundary. Age 1 is
definitely young and age 100 is definitely not young: however, age 35 has some
possibility of being young and usually depends on the context in which it is being
considered. The representation of this kind of information is based on the concept of
fuzzy set theory [10]. Unlike classical set theory where one deals with objects whose
membership to a set can be clearly described, in fuzzy set theory membership of an
element to a set can be partial, i.e., an element belongs to a set with a certain grade
(possibility) of membership. More formally a fuzzy set A in a universe of discourse U is

characterized by a membership function

Ha : U —-[0,1] (1)

which associates with each element x of U a number f{,(x) in the interval [0, /] which

represents the grade of membership of x in the fuzzy set A.

For example, the fuzzy term young might be defined by the fuzzy set in Table below.

13



Age Grade of Membership
25 1.0
30 0.8
35 0.6
40 0.4
45 0.2
50 0.0

Fuzzy Term young

Regarding equation (1), one can write

Uyoung(25) = 1, Lyoung (30) = 0.8, ..., Hyoung (50) = 0

Grade of membership values constitute a possibility distribution of the term young. The

table can also be shown graphically

”yuung

0.0

Fig: 4 Possibility distribution of young
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3.2.1 Uncertainty

Uncertainty occurs when one is not absolutely certain about a piece of information. The
degree of uncertainty is usually represented by a crisp numerical value on a scale from O
to 1, where a certainty factor 1 of 1 indicates that the expert system is very certain that a

fact is true, and a certainty factor of O indicates that it is very uncertain that a fact is true.

A fact is composed of two parts: the fact in the sense of standard and its certainty factor.

In general a fact takes the following form:
(fact) [CF certainty factor]

The CF acts as the delimiter between the fact and the certainty factor and [ ] indicates an
optional part. For example. (prediction sunny) CF 0.8 is a fact that indicates that the
weather will be sunny with a certainty of 80% . However, if the certainty factor is omitted,
(prediction sunny) then we assume that the weather will be sunny with a certainty of

100%.

3.3 Inference Techniques

Rule evaluation depends on a number of different factors, such as whether or not fuzzy
variables are found in the antecedent or consequent part of a rule, whether a rule contains
multiple antecedents or consequents, whether a fuzzy fact being asserted has the same

fuzzy variable as an already existing fuzzy fact (global contribution), and so on.

15



3.3.1 Simple Rules

Consider the simple rule of form

ifA then C CF,
A/ CF,
(od CF.

where:
A is the antecedent of the rule
A’ is the matching fact in the fact database
C is the consequent of the rule
C’ is the actual consequent calculated
CF . is the certainty factor of the rule
CF (is the certainty factor of the fact
CF_. is the certainty factor of the conclusion

Three types of simple rules are defined: CRISP_, FUZZY_CRISP, and FUZZY_FUZZY.
If the antecedent of the rule does not contain a fuzzy object, then the type of rule is

CRISP_ regardless of whether or not a consequent contains a fuzzy fact. If only the

16



antecedent contains a fuzzy fact, then the type of rule is FUZZY_CRISP. If both

antecedent and consequent contain fuzzy facts, then the type of rule is FUZZY_FUZZY.

3.3.2.1 CRISP_ Simple Rule

If the type of rule is CRISP_, then A” must be equal to A in order for this rule to fire. This
is a “normal” rule (actually A would be a pattern and A” would match the pattern
specification, but for simplicity we will not deal with patterns). In that case the

conclusion C’ is equal to C, and

CF.=CF ,*CF; 2)

3.3.1.2 FUZZY_CRISP Simple Rule
If the type of rule is FUZZY_CRISP. then A must be a fuzzy fact 1 with the same fuzzy

variable as specified in A for a match to occur and the rule to be placed on the agenda. In

addition. while values of the fuzzy variables A and A represented by the fuzzy sets F

and F’, do not have to be equal, they must overlap. For example. the fuzzy facts
(temperature high) and (pressure high) do not match because the fuzzy variables
remperature and pressure are not the same. However, given the fuzzy facts (pressure
low). (pressure medium), and (pressure high), as illustrated in Figure, clearly (pressure
low) and (pressure medium) overlap and thus match, while (pressure low) and (pressure

high) do not match.

17



Primary Terms of pressure

—_— (pressure low)

—_ (pressure medium)
1L

cee- Apressure high)

pressure

Fig: 5 Matching of fuzzy facts
For a FUZZY _CRISP rule, the conclusion Cis equal to C, and
CF . =CF *CF*S

where S is a measure of similarity between the fuzzy sets F 4 (determined by the fuzzy

pattern A) and F’ , (of the matching fact A”). The measure of similarity is based upon the

mcasure of possibility P and the measure of necessity N. It is calculated according to the

following formula [11], [32], [34]
S=P(F,IF ) it N(F ,1F’ ) >0.5

S=(N(F,IF ,)+0.5)*P(F ,IF ,) otherwise

18



where

P(F , | F’ ,)=max(min( uF ,(w.uF’ ,(u)) vu el

And
N(F LI F )= 1-(F IF ,)
F’ . is the complement of F . described by the following membership function

uF (w=1-uF , (u vue U

FUZZY_CRISP EXAMPLE

—_ tuzzy-tact tactl

\ _ fuzzy-fact fact2
! I }

0.0 2.0 4.0 6.0 8.0 10.0
FUZZY-FACT

m

Fig: 6 Fact and antecedent fuzzy sets

Therefore, if the similarity between the fuzzy sets associated with the fuzzy pattern (A)
and the matching fact (A’) is high the certainty factor of the conclusion is very close to
CF . * CF ssince S will be close to 1. If the fuzzy sets are identical then S will be | and

the certainty factor of the conclusion will equal CF , * CF . If the match is poor then

19



this is reflected in a lower certainty factor for the conclusion. Note also that if the fuzzy
sets do not overlap then the similarity measure would be zero and the certainty factor of
the conclusion would be zero as well. In this case the conclusion should not be asserted

and the match would be considered to have failed and the rule would not be placed on the

agenda.
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Fig:7 Similarity Calculation

First, the necessity is calculated as in Figure below.

Since the necessity is less than 0.5,
S=(N(F,IF’,)+0.5)*P(F,IF’,) (see Figure below)

Andthus  CF o= (0.7) * (0.8) * (0.6667) = 0.3733.
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Fig: 8 NECESSITY CALCULATION

3.3.1.3 FUZZY_FUZZY Simple Rule
[f the type of rule is FUZZY_FUZZY, and the fuzzy fact and antecedent fuzzy pattern
match in the same manner as discussed for a FUZZY _CRISP rule. then it is shown in

[16] that the antecedent and consequent of such a rule

are connected by the fuzzy relation
R=F,*F,
Where

F 4 is a fuzzy set denoting the value of the fuzzy antecedent pattern

F . is a fuzzy set denoting the value of the fuzzy consequent.
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In the current version of the system the membership function of the relation R is

calculated according to the formula.

Hplu.v) = min(Ug (u),up (v)), Y(u,v)e UxV
a ¢

Other algorithms for forming this relation can be found in [12]. The calculation of the
conclusion is based upon the compositional rule of inference [13], which can be

described as follows:
F'.=F'4°R

where F ¢ is a fuzzy set denoting the value of the fuzzy object of the consequent. The

membership function of F/C is calculated as follows [14]. [37]
“F(-‘(” = max, _ U('"i"(l'll-“a‘(“)' M plu. v)))
which may be simplified to

,ll,,—(_-(l‘) = min(:.upc(v))

where

I = maximinf U, {u). (u)))
ar{min(up w-ug
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The certainty factor of the conclusion is calculated according to

CF.=CF ,*CF;

A graphical illustration of the matching of the fuzzy fact with the fuzzy pattern and the
generation of the fuzzy conclusion is shown below in Figure 8. Note that this type of
inference method is commonly referred to as max-min rule of inference. The conclusion
set is simply clipped off at the z value. Figure shows the same results using a max-prod

rule of inference. In this case the conclusion has all of its membership values scaled by

the z value.
fact & anfecedent consequent asserted
fussy sets tuzzy set tuzzy set
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{
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Fig: 9 Compositional rule of inference imax-min)



3.3.4. Complex Rules

3.3.4.1 Multiple Consequents

The consequent part of the rule can only contain multiple patterns (C, , C; ... C; ) with the
implicit and conjunction between them. They are treated as multiple rules with a single

consequent. So the following rule:

if Antecedents then C; and C> and ... and C,
is equivalent to the following rules:

if Antecedents then C,

if Antecedents then C»

if Antecedents then C,
3.3.4.2 Multiple Antecedents

From the above, clearly, only the problem of multiple patterns in the antecedent with a
single assertion in the consequent needs to be considered. If the consequent assertion is
not a fuzzy fact, no special treatment is needed since the conclusion will be the crisp
(non-fuzzy) fact. However, if the consequent assertion is a fuzzy fact, the fuzzy value is

calculated using the following basic algorithm {15], [37].
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If logical and is used, one has

if Ay and A, then C CF,
A /| CF
A's CF
Cc’ CF.

where A’l and A’p_ are facts (crisp or fuzzy) that match the antecedents A} A3

respectively. In this case the fuzzy set describing the value of the fuzzy assertion in the

conclusion is calculated according to the formula

F/c = F,cl N Fea

where

M denotes the intersection of two fuzzy sets

F is the result of fuzzy inference for the fact A’| and the simple rule

if A then C

F’.> is the result of fuzzy inference for the fact A’ and the simple rule

if A; thenC
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In next figure we see the results of a rule in which both A, and A, are fuzzy patterns.

Note that if both A| and A5 were crisp (non-fuzzy) facts then the conclusion would just
be the fuzzy fact C since we would be dealing with two CRISP_FUZZY simple rules. If
one of the patterns is crisp (say A ) and the other is fuzzy then the conclusion is F'c)
since the CRISP_FUZZY simple rule would conclude C and the FUZZY_FUZZY simple

rule would conclude F.5. The intersection of these two would just be F'.,.

AL AL C.F./’

‘ Fc’ = Fcl' ™ Fcl’
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The certainty factor of the conclusion is calculated according to MYCIN’s model
CF.=min(CF’; ,CF'p) * CF ,

where min denotes the minimum of the two numbers and CF}; is the CF of the simple
rule if A ; then C given the matching fact A /) CF’,;; is the CF of the simple ruie if A> then

C given the matching fact A”>

The above algorithm can be applied repeatedly to handle any combination of antecedent

patterns. 1L.e..

F'.=F'.y " F's3...n F’,,

CF’. =min(CF”y , CF'p,, ..., CF'p,) * CF,
3.4 Defuzzification

The outcome of the fuzzy inference process is a fuzzy set, specifying a fuzzy distribution
of a conclusion. However, in some cases, such as control applications. only a single
discrete action may be applied. so a single point that reflects the best value of the set
needs to be selected. This process of reducing a fuzzy set to a single point is known as

defuzzification.

There are several possible methods, each one of which has advantages and disadvantages.
A method which has been widely adopted is to take the center of gravity (COG or

moment) of the whole set. This has the advantage of producing smoothly varying
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controller output, but it is sometimes criticized as giving insufficient weight to rule
consequents that agree and ought to reinforce each other. Another method concentrates
on the values where the possibility distribution reaches a maximum, called the mean of
maxima method. The mean of maxima (MOM) algorithm is criticized as producing less
smooth controller output, but has the advantage of greater speed due to fewer floating

point calculations.[6], [38], [39]

3.4.1 Center of Gravity Algorithm

The center of gravity method may be written formally as

f (x - flxeyydx

(re N

[ Ao

(vre )

X =

where x * is the recommended, defuzzified value, and the universe of discourse is U. The

integral then reduces to a simple summation, where x; ’is the local center of gravity, A; is

2 A
i=

the local area of the shape undemeath line segment (p ;.;, p ;). and n is the total number

of points.

For each shaded subsection in above figure, the area and center of gravity is calculated
according to the shape identified (i.e., triangle, rectangle or trapezoid). The center of

gravity of the whole set is then determined:
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3.4.2 Mean of Maxima Algorithm:

3.943

The MOM algorithm returns the x-coordinate (x’) of the point at which the maximum
membership (y) value of the set is reached. If the maximum y value is reached at more

than one point, then the average of all the x” is taken.[16], [6]

Fig: 12 Examples of MOM defuzzification
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3.4.3 Center of Maximum

we derive the centroid equation for the sum rule which illuminates the assumptions made

in deriving the defuzzification.

Let L,(y) be the original output membership function associated with rule i, where y is the
output universe of discourse. After applying rule i, this membership function will be

reduced to the value[16]

m,)=w L)

Where w; is the minimum weight found by applying rule i. The sum of these reduced

output membership functions over all rules is given by
N
M(¥)=> m(>)
=t

Where N is the number of rules.

_ [y (y)dy

Yo JM(y)My

The crisp output value yy is then given by the centroid of M(y) from the equation

[,= L)y
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Note that the centroid of membership function L{y) is given by

But

[.=]L ()

is just the area of membership function L y). Substituting the values. we get

JyL‘(,V)d.\' =c. 1,

So we can write the numerator as

[xM (v)v = f‘i w, L, (3)dy

=0

[xM (yHy = i [yw, L,(xMy

[ M (vMy = Z‘:, w.c. 1,
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Similarly the denominator can be written as

fm(yHy = Ii w, L, (3 )dy

IM (v My = 2: IW,L,()')",V

IM(yﬂy=gw.l,

So we can write the crisp output of fuzzy controller as

N
Z{ wcl,

y(,* N
g,w,l,

The above equation says that we can compute the output centroid from the centroids, c;.

of the individual output membership function.

We also note that the summation ts over all N rules. But the number of output
membership function ,Q, will in general, be less than the number of rules .N. That means
that there will be many terms that have the same value of ¢; and [f; For example, suppose
that rules 2, 3, and 4 in the sum all have the output membership function L* as the

consequent. This means that in the sum,

WzCz[:+W3C313+W4C414

32



the values c¢; and /; are the same values ¢* and I* because they are Just the centroid and
area of the krh output membership function. These three terms would contribute the value

t _k k k _k
(W1+W3+ wlc' I'=W'c'I
to the sum where

k

(W: +w,t w.)=W

is the sum of all weights from rules whose consequent is output membership function L.

This means that the equation for the output value, yy, can be written as

SWic'r
yoz ‘zlﬁ' i g
QW'

k=l

If the area of all output membership function I* are equal then the equation reduces to

?;.W‘ c

Yo =T
W

izl

Equations above show that the output crisp value of a fuzzy controller can be computed
by summing over only the number of output membership functions rather than over all
fuzzy rules. Also, if we want to compute the output crisp value, then we need to specify
only the centroids, C*, of the output fuzzy membership functions. This is equivalent to

assuming singleton fuzzy sets for the output.
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We use singleton fuzzy sets for the output represented by the centroids, C*. We also use
the MIN-MAX inference rule It should be clear that in this case the centroid Y, will still

be given where W is now the output array
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CHAPTER 4

68HC12 FEATURES

4.1 Introduction

The 68HC12 is a high-speed, 16-bit processing unit that has a programming model
identical to that of the industry standard M6S8HC 11 CPU. The 68HC2 instruction set is a
proper superset of the M68HC 1 1 instruction set, and M6SHC1 | source code is accepted

by 68HC12 assemblers with no changes.

The 68HC12 has fuli 16-bit data paths and can perform arithmetic operations up to 20

bits wide for high-speed math execution.5

Unlike many other 16-bit CPUs, the 68HC12 allows instructions with odd byte counts,
including many single-byte instructions. This allows much more efficient use of ROM

space.

An instruction queue buffers program information so the CPU has immediate access to at

least three bytes of machine code at the start of every instruction.

In addition to the addressing modes found in other Motorola MCUs, the 68HCI12 offers

an extensive set of indexed addressing capabilities including:

e Stack pointer can be used as an index register in all indexed operations
e Program counter can be used as an index register in all but auto inc/dec mode

e Accumulator offsets allowed using A, B, or D accumulators
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e Automatic pre- or post-, increment or decrement (by —8 to +8)
e 5-bit, 9-bit, or 16-bit signed constant offsets

e 1 6-bit offset indexed-indirect and accumulator D offset indexed-indirect addressing.

4.2 Memory Structure

The MC68HC912B32 has a large 32k byte flash EEPROM for program memory. 1k
bytes of static RAM. and 768 bytes of byte-erasable EEPROM. This is the first MCU to
include both flash EEPROM and byte-erasable EEPROM on the same chip. An external
12 volt supply is used to erase and program the flash memory, the byte-erasable
EEPROM uses only the normal 2.7 to 5.5 volt supply for programming and erase
operations. The MC68HC912B32 can be used in expanded mode systems but its

multiplexed 16-bit address/data bus is primarily intended for factory testing.

[ MC68HC812A4 [ MC68HC912B32
{16-bit CPU |[16-bit CPU
|2.7 - 5.5 Volt Operation 112.7 - 5.5 Voit Operation

{Programmable PLL or Xtal = 2x Bus Rate

J[Xtal = 2x Bus Rate

112 pins (up 1o 95 General Purpose O}
Key Wakeup on Three 8-Bit Ports

80 pins (up to 64 General Purpose 1/O)

Expanded Non-mmux Bus or Single Chip
16-Bit Wide or 8-Bit Narrow

Single Chip or Expanded Multiplexed Bus
16/16 Wide or [6/8 Nurrow

[Memory Expansion to >5 megabytes

{6 Programmable Chip Selects

J(

4K EEPROM
K SRAM
256 Byte Register Space

32K Flash EEPROM
768 EEPROM

IK SRAM

256 Byte Register Space

|8 Channel, 8-Bit A/D

"~ ][8 Channel. 8-Bit A/D

[8 Channel Timer

J|8 Channel Timer

{16-Bit Pulse Accumulator

J116-Bit Pulse Accumulator

l

~ |{4 Channel PWM

[2 Channels Asynchronous SCI

J{t Channel Asynchronous SCI

[I Channel Synchronous SPI

JIt Channel Synchronous SPI

L

[T Channcl 11850 Digital Serial

[Single-Wire BDM

J{Single-Wire BDM with Hardware Breakpoints

[COP Watchdog Timer and Clock Monitor

]ICOP Watchdog Timer and Clock Monitor

|Periodic Interrupt Timer

J|Periodic Interrupt Timer

S | W | U | | | O | O | | U {
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4.3 Arithmetic Logic Unit

68HCI12 has a 16-bit processor with an ALU that is as wide as 20 bits for some
operations. All data busses in the M68HC 12 are 16-bits and the external bus interface is
normally 16 bits. An instruction queue (similar to a pipeline) that caches program
information so that at least two more bytes of object code, in addition to the 8-bit op-
code, are visible to the CPU at the start of execution for all instructions so many
instructions can execute in a single cycle with no delays for fetching additional program
information. Program information is fetched into the instruction queue 16 bits at a time
but instructions can be any length from one byte to six bytes. This allows 68HC12 object
code to be more efficient. In the 68HC 12, all indexed instructions have an op-code, a
post-byte, and 0, 1, or 2 extension bytes to specify index offsets. The post-byte code
specifies which index register to use as the base reference and the type of indexed
addressing. It allows X, Y, SP, or PC to be used as the base index register and has seven

types of indexed addressing.

For offsets of -16 through +15, the 5-bit offset is included in the post-byte and has a
signed S-bit offset mode, a signed 9-bit offset mode, and a 16-bit offset mode so an
instruction like LDAA 4,X would be encoded into two bytes of object code. The
accumulator offset indexed mode allows 8-bit accumulators A or B or the 16-bit D
accumulator to be used as an additional offset that is added to the base index register to

form the effective address of the instruction’s operand.

The 68HC12 has a new form of auto- pre/post increment/decrement by -8 through +8.

For example, LDA ,X++ would adjust the index by one because the operand was a byte
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while LDX ,Y++ adjusted the index by two because the operand was a word. In the
68HC 12, we can say LDAA 5.SP- which loads a byte into accumulator A and then post-
decrements SP by 5. This flexibility allows the 68HC 12 to work very efficiently with
small data structures. Execution time for these instructions is the same as it would be for
the simple no-offset case (LDAA 5,+SP takes only three bus cycles). This sub-mode of
indexed addressing allows X. Y, or SP to be used as the base index register, but not PC
because that would interfere with the normal sequence of execution of instructions. These
instructions are especially useful with move instructions such as MOVW 2 SP+.2 X+
which pulls a word from the stack and stores it at 0,X and automatically post-increments

SP and X by 2 each.

4.4 Addressing Modes

68HC 12 has two types of indexed-indirect indexing, D accumulator offset, and 16-bit
offset. These instructions use X, Y, SP, or PC as the base index register. form an
intermediate address by adding D or a 16-bit offset, fetch the 16-bit value from that
address. and finally use this fetched value as the effective address to access the operand
of the original instruction. This type of indexing can be used to program computed
GOTO type constructs, to access operands in a position independent way, or to program

some types of case or switch statements in C.

The enhanced indexed addressing is one of the strongest features of the 68HC12 for all
kinds of programmers, but the SP relative indexing is especially important for C-
compilers. The 68HC12 also added LEAX, LEAY, and LEAS instructions which provide

an easy way to do pointer arithmetic. For example a 5-, 9-, or 16-bit signed constant can
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be added to (or subtracted from) the index, A, B, or D can be added to the index (D may
be thought-of as a signed or unsigned value since it is the same width as the address bus),

or the index can be replaced by a value from memory (using indexed indirect modes).

4.4.1 Indexed Addressing Modes.

The 68HC12 has a general transfer/exchange instruction that uses a post-byte to choose
transfer or exchange and to specify which registers are involved. Some of these
combinations that involve transfer or exchange of an 8-bit register to a 16-bit register,

perform sign extension or zero extension as an added bonus.

It has bit manipulation instructions (BSET, BCLR. BRSET, and BRCLR) to make the
instruction set more. Register stacking instructions include instructions for pushing and

pulling CCR and D registers.

Since this is a full 16-bit CPU, so 68HC12 can do 8x8 or 16x16 multiply operations in
three bus cycles. Divide operations take |1 or 12 cycles depending upon which divide
instruction it is. There are also some specialty math instructions including a 16x16 to 32-
bit signed multiply-and-accumulate instruction and table lookup-and-interpolate

instructions for tables of 8- or 16-bit entries.

4.5 Instruction Set

Possibly the most unusual instructions in the 68HC12 are its four fuzzy logic instructions
which do membership function calculations, rule evaluation with weighted or unweighted
rules, and a fourth fuzzy logic instruction that calculates the sum-of-products and sum-of-

weights needed to do weighted average defuzzification. These fuzzy instructions allow a

39



complete fuzzy inference kernel to be programmed in about 50 bytes and execute in
about 60 microseconds. This is better than a 5:1 improvement in program size and better

than 10x improvement in speed when compared against a 4 MHz bus rate MC68HCI I.

68HC12 improvements continue with 8- and 16-bit memory-to-memory moves that work
with all practical combinations of immediate, extended, and indexed addressing modes.
These instructions are especially useful in a register-based architecture and allow data
movement without using up any CPU registers. The 68HC12 also has a complete set of
long branches for signed and unsigned conditional branching. And there is a new group
of loop primitive instructions (DBEQ, DBNE, IBEQ, IBNE, TBEQ, and TBNE) which
use A, B, D. X. Y. or SP as the loop counter. The loop counter is decremented,
incremented, or tested and then a branch is taken on the condition that the counter has

reached zero or has not reached zero.

Another group of instructions for doing MIN or MAX operations between an
accumulator (A or D) and a byte or word sized memory location. There are versions of
each that place (overwrite) the result into either the accumulator or the memory location.
This results in a total of eight instructions in this group (MINA, MINM, MAXA,

MAXM, EMIND, EMINM, EMAXD, and EMAXM).
4.6 Small Comprehensive Control Interfac

In development systems, smaller is better when it comes to the physical and resource
requirements to gain access to a target application system. In many products it is
unreasonable to connect a large umbilical connector that clamps over the main processor.

The desire to debug systems in their final packaged form has led to various schemes that
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rely on serial communication to minimize the number of connections to the target system.
Some of these systems also rely on some sort of background task that runs within the
target system to respond to requests and commands that were passed into the system
through a serial port. Typically the actual operation of debug commands and the real time

operation of the target application are mutually exclusive.

The M68HC12 takes this technology to a new level in both the reduction of the physical
interface and greater separation of debug and target application functions. The physical
interface for the background system in the 68HC12 is a single MCU pin that does not
share functions with any target application functions. Background access can be gained in
any 68HCI2 target application system by connecting a common ground and this single

communication wire. .[5], [40], [42]

With this trivial connection, the host can read or write any location in the 64 kbyte map
of the target MCU without stopping or slowing down the real time operations of the
target application. For other debug functions such as reading and writing CPU registers.
tracing single instructions in the application code, reading and writing whole blocks of
memory, and accessing other development features, the target application can be stopped

(forced to an active background debug mode) to wait for serial commands.

Products based on this MCU can be fully assembled before the on-chip flash memory is
programmed with target application code. The background debug interface can be used to
program or reprogram flash or byte-erasable EEPROM after final assembly. This
interface can also be used for maintenance modifications to application code or for

product troubleshooting in the field.
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CHAPTERSS

DESIGN CONCEPTS

5.1 Stochastic Uncertainty

Stochastic uncertainty deals with the uncertainty toward the occurrence of a certain event.

Consider the statement:

“The probability of hitting the target is 0.8"

The event itself -- hitting the target -- is well defined. The uncertainty in this statement is
whether the target is hit or not. This uncertainty is quantified by a degree of probability.
In the case of the statement, the probability is 0.8. Statements like this can be processed

and combined with other statements using stochastic mcthods.[6]

5.2 Lexical Uncertainty

Uncertainty also lies in human languages. the so-called lexical uncertainty. It deals with
the imprecision that is inherent to most words humans use to evaluate concepts and

LU

derive conclusions. Consider words such as "tall men”, "hot days", or "stable currencies”,
where no exact definitions underlie. Whether a man is considered "tall” hinges on many
factors. A child has a different concept of a "tall” man than an adult. Also the context and
the background of a person making an evaluation plays a role. Even for one single
person, an exact definition on whether a man is considered "tall” does not exist. No law

exists determines the threshold above which a man is conceived "tall”. This would not

make sense anyhow, since a law that defines all men taller than 6’ 4" to be "tall" would
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imply that a man with 6’ 3" is not tall at all. The science that deals with the way humans
evaluate concepts and derive decisions is psycholinguistics. It has been proven that
humans use words as "subjective category” to classify figures such as "height”,
“temperature”, and "inflation". Using these subjective categories, things in real world are

evaluated to which degree they satisfy the criteria.

Even though most concepts used are not precisely defined. humans can use them for quite
complex evaluations and decisions that are based on many different factors. By using
abstraction and by thinking in analogies, a few sentences can describe complex contexts

that would be very hard to mode! with mathematical precision. Consider the statement:

“We will probably have a successful financial year”™

On a first glance, second example is very similar than first. However. there are significant
differences. First, the event itself is not clearly defined. For some companies. a successful
financial year means that they deferred bankruptcy. for others it means to have surpassed
last years profit. Even for one company, no fixed threshold exists to define whether a
fiscal year is considered to be successful or not. Hence, the concept of a "successful fiscal

year" is a subjective category.

Another difference lies in the definition of expressing probability. While in statement 1,
the probability is expressed in a mathematical sense. second example does not quantify a
probability. If someone expresses that a certain type of airplane probably has problems,
the actual probability can well be lower than 10%, still justifying this judgement. If

someone expresses that the food in a certain expensive restaurant is probably good, the

43



actual probability can well be higher than 90%. Hence, the expression of probability in
statement 2 is a perceived probability rather than a mathematically defined probability as
in statement 1. In statement 2, the expression of probability is also a subjective category

just as "tail men".

5.3 Modeling Linguistic Uncertainty

Statemnents using subjective categories such as second example play a major role in the
decision making process of humans. Even though these statements do not have
quantitative contents. humans can use them successfully for complex evaluations. In
many cases the uncertainty that lies in the definition of the words we use, adds a certain

flexibility.

The flexibility that lies in words and statements we employ is made use of widely in our
society. In most western societies, the legal system consists of a certain number of laws,
that each describes a different situation. As not for each "real” case a specific law exists,
the judge has to combine all applying laws to derive a fair decision. This is only possible

due to the flexibility in the definition of the words and statements used in each law.

5.4 Fuzzy Logic as Human Logic

In reality, we cannot define a rule for each possible case. Exact rules (or laws) that cover
the respective case perfectly can only be defined for a few distinct cases. These rules are
discrete points in the continuum of possible cases and humans approximate between

them. Hence, humans combine the rules that describe similar situations. This



approximation is possible due to the flexibility in the definition of the words that

constitute the rules.

To implement human logic in engineering solutions, a mathematical model is required.
Fuzzy logic has developed such a mathematical model. It allows representing human
decision and evaluation processes in algorithmic form. There are limits to what fuzzy
logic can do. The full scope of human thinking, fantasy and creativity can not be
mimicked with fuzzy logic. However, fuzzy logic can derive a solution for a given case
out of rules that have been defined for similar cases. So, if we can describe the desired
performance of technical system for certain distinct cases by rules, fuzzy logic will

effectively put this knowledge to a solution.

5.5 Membership Functions

The degree to which the value of a technical figure satisfies the linguistic concept of the
term of a linguistic variable is called degree of membership. For a continuous variable,
this degree is expressed by a function called membership function (MBF). The
membership functions map each value of the technical figure to the membership degree
to the linguistic terms. The technical quantity is called the base variable. Usually. one

draws the membership functions for all terms in the same diagram.

The degree of membership in the figure p(x) of the weight x can be represented by a
continuous function. Note, that a weight of 184.5 Ibs. and a weight of 185.5 Ibs. are

evaluated differently, but just as a slight bit and not as a threshold.

45



w(X)

NS e T T T T

I;O s 130 138 130 138 :oin Weig}'lt
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Note that fuzzy sets are a true generalization of conventional sets. The cases u=0 and p=1
of the conventional indicator function is just a special case of the fuzzy set. The use of
fuzzy sets defined by membership functions in logical expressions is called "fuzzy logic".
Here, the degree of membership in a set becomes the degree of truth of a statement. For
example, the expression "the passenger is heavy weight” would be true to the degree of

0.65 for a weight of 185 lbs.

5.6 Linguistic Variables

The primary building block of any fuzzy logic system is the "linguistic variable”. Here,
multiple subjective categories describing the same context are combined. In the case of
weight, not only heavy weight but also light weight and medium weight, also exist. These

are called "linguistic terms” and represent the possible values of a linguistic variable. The
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next figure plots the membership functions of all terms of the linguistic variable fever

into the same graph.

A linguistic variable translates real values into linguistic values. This linguistic variable
now allows for the translation of a measured body temperature, given in Fahrenheit, into
its linguistic description. For example, a body temperature of 190 Ibs. would be evaluated

as "pretty much heavy weight".
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Fig: 14 Defining Linguistic Variable

5.7 Fuzzy Rules

The rules of a fuzzy logic system represent the knowledge of the system. They use
linguistic variables as vocabulary, for example to express the control strategy of a fuzzy
logic controller. Explaining Fuzzy Rules means to show how to calculate with linguistic

concepts. Thus fuzzy rules are explained in detail in the next pages.
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5.8 Computation of Fuzzy Logic Systems

5.8.1 Fuzzification
Fuzzification means using the Membership Functions of Linguistic Variables to compute

each term’s degree of validity at a specific operation point of the process.

Example:

Let "Distance” = 22 inches. The result of fuzzification would be:

far degree of validity = 0.1
medium degree of validity = 0.9
low degree of validity = 0.0
Zero degree of validity = 0.0

Linguistically, a distance of 22 inches could be expressed as almost medium, just slightly
far. Fuzzification is the first step in the computation of a fuzzy systemi and must be

performed for each input variable.

The result of fuzzification is used as input for the Fuzzy Rules

5.8.2 Fuzzy Rules

Most fuzzy-based systems use production rules to represent the relation among the
linguistic variables and to derive actions from the inputs. Production rules consist of a
condition (IF-part) and a conclusion (THEN-part). The [F-part can consist of more than

one precondition linked together by linguistic conjunctions like AND and OR.
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5.8.3 Fuzzy Rule Inference

The computation of fuzzy rules is called fuzzy rule inference. The inference is a calculus

consisting of two main steps: aggregation and conclusion.

Example Rule 1:

[F "Distance” = medium AND "Weight” = Light THEN "Power” = Lvi2

Example Rule 2:

IF "Distance” = far AND "Weight" = zero THEN "Power” = Zero

Example Rule 3:

IF "Distance” = medium AND "Weight" = zero THEN "Power"” zero

These fuzzy production rules consist of two preconditions linked together by an AND.
The first step of fuzzy inference -- aggregation -- determines the degree to which the
complete [F-part of the rule is fulfilled. Special fuzzy operators are used to aggregate the

degrees of validity of the various preconditions.

The heart of a fuzzy controller is the list of fuzzy rules. Fuzzy logic inference is used to
find a fuzzy output, given a fuzzy input and a list of fuzzy rules. In a fuzzy controller the
inputs are normally crisp, nonfuzzy values that must first be fuzzified. The output also
needs to be a crisp value used to control some device. Therefore, the fuzzy output

resulting from processing the fuzzy rules must be defuzzified. The way fuzzy rules are

49



processed is illustrated in next 2 figures where fuzzy sets are represented by their

membership functions m.
Fuzzy inference involves a set of fuzzy rules of the form
Ifx;isArand xi1s By, theny is L;. Rule 1
Ifx;isAzand x;is B, thenyis L;. Rule 2
Given the fact that

Xy isA” and X2 1S B” Fact
the problem is to find the conclusion

yis L’ Conclusion

In this representation of the problem, A,, A3, By, B, A’ and B’ are input fuzzy sets and
L, Ls, and L’ are output fuzzy sets. Fuzzy reasoning would form the union of the

intersection of A”’ and A

This is interpreted as being the maximum (union) of the minimum (intersection) of the
membership functions A” and A,. In figures below A’ is taken to be the singleton fuzzy
set x; = a. In Rule 1, the maximum of the intersection (minimum) of this singleton with
Aj;is the value w,. Similarly, the maximum of the intersection (minimum) of the singleton
x2 = b with B, is the value w>. The fact x; = @ and x, = b applied to the antecedent x, is A,
and x; is B is interpreted as the intersection (minimum) of w; and w>, that is, w5 for rule 1.

The conclusion of rule 1, y is L,, is found by taking the intersection (T-norm) of w; with
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L,. This ts normally the minimum operation which would truncate L, to the height w..
However, for fuzzy control it is sometimes advantageous to use a product T-norm for this
intersection which would have the effect of muitiplying L, by w> as shown in Rule 1.
Thus, Rule 1 will contribute the fuzzy set w>*L, to the conclusion fuzzy set L'. Similarly,
Rule 2 in figure will contribute the fuzzy set w, *L, to the conclusion fuzzy set L’ because
w; 1s the minimum of w; and w> for Rule 2. Note that if L, and L; are singletons (as is
normally the case), then there will be no difference in using the minimum T-norm or the

product T-norm.[16]
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Fig: 15 Fuzzy Interface
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The conclusion fuzzy set L’ is found by forming the T-conorm of w>*L; and w,*L,. This
is normally the maximum operation which is the one used by the 68HC12 REV
instruction as we will see below. However, sometimes better results are obtained by
taking the sum of w>*L, and w, *L;, as shown in the figure above. The difference

between these two approaches is shown in figure below.

If L, and L; are singletons (the normal case), then taking the maximum or sum of the two
rules shown in figure above will be the same as shown in figure below. In general, they
won’t be the same if more than one rule contribute to the same output fuzzy set L,. In this
case the maximum rule will keep only the maximum value while the sum rule will add

the contributions of each. The 68HC 12 REV instruction uses the maximum rule.

L L L'
A , ] , [ l I ,
yO yO yo
Maximum Sum Singlton
Fig: 16 Comparing The MAX Rule and SUM Rule
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The conclusion output L” is a fuzzy set shown by bold-line membership function in both
figures. To obtain a crisp output, defuzzification process is required. The most common

method is to compute the centroid of the area of L’

5.8.4 Fuzzy Operators

Operators AND for the minimum and OR for the maximum are often appropriate in small
control applications, but sometime other kinds of operators such as MIN and MAX
operators, GAMMA or MIN-AVG are needed to signify the relationship of the different

parts of the condition.

5.9 MAX-MIN Inference

The second calculation step of each production rule -- composition -- uses the validity of
the condition to determine the validity of the conclusion. In standard MAX-MIN or
MAX-PROD (sometimes called MAX-DOT) inference methods, the conclusion of a rule

is considered equally as true as the conclusion.

5.9.1 FAM Inference
Using standard MAX-MIN/MAX-PROD methods, rule base optimization often consists
of arbitrary rule addition/deletion. This method can result in a clumsy trial-and-error

approach as the individual importance of a rule can be expressed only asa 0 or 1.

If more than one rule produces the same conclusion (e.g. "Power” = small), the maximum

degree of validity of the conclusions is selected for all further processing.
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5.9.2 Rule Design
At start with fuzzy technologies, rules with a degree of support of only 0 and 1
(equivalent to MAX-MIN-/MAX-PROD inference) and if individual weighting of rules

during optimization is needed then degrees of support between O and 1 is used.

Inference methods like MAX-MIN and MAX-PROD are almost same in the beginning of
computation but differ from each other when the fuzzy rules resuit is mapped to the

output membership functions.

The first step of computation in both methods is the maximum operation (i.c., the most

valid rule is chosen for the final result if different rules result in the same output term).

The second step combines the output values with the output variable’s membership

functions and clipping (MAX-MIN) or scaling (MAX-PROD) is used for inference.

Scaling: - Membership functions of all terms respective to their degree of validity are

multiplied.

Clipping:-, Minimum of membership degree and the fuzzy result of the inference is

computed.

These inference methods can be used more-or-less interchangeably, depending on
defuzzification method used and they do not differ if we use the Center-of-Maximum

defuzzification method.

At the end of the total inference process, all system output variables are associated with a

fuzzy value.
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593 Rule Definition

Actual system behavior is defined in the individual rules of the fuzzy system. To
prototype an appropriate set of rules, we begin by creating rules which represent
unambiguous controller strategies at specific operation points. Once these rules have been

established, a step-by-step construction of the rule set can proceed.

Using the matrix rule editor, the rules of a fuzzy system are established with the

following steps.

Select the first output variable on the upper axis (horizontal) of the rule matrix. Select the
input variable with the most influence on the system on the left axis (vertical) of the rule

matrix.

For each combination of input variables not selected on the left axis (select them in the
list boxes), find the term which best suits the output variable. Define only those rules

with a degree of truth of O or 1.

Repeat second step for all output variables on the horizontal axis.

For some combinations of input variables, there is no one exact term, which expresses the
desired output value. In this case, do not change the membership function definitions.

I[nstead, use FAM to express the ambiguities.

5.9.4 FAM Rules
If a unique conclusion for a given combination of input variables cannot be found, FAM

can be used to express ambiguities.
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One approach is to define a new term for mostly zero but somewhat nearly zero. This
approach, however, could result in an excessive amount of terms and membership
functions. A further drawback is that system structure becomes unnecessarily complex

and difficult to survey.

5.10 Uniqueness of a Solution

The goal of fuzzy development is to determine a good solution, which fulfils the
technical requirements for the process behavior. But because fuzzy systems are heuristic

solutions to real-world technical problems, there are always multiple solutions.

The result of fuzzy rule inference is used as input for Defuzzification.

5.10.1 Defuzzification

The result produced from the evaluation of fuzzy rules is, of course, fuzzy. Naturally, a
machine cannot interpret a linguistic command. Membership functions are used to
retranslate the fuzzy output into a crisp value. This re-translation is known as

defuzzification and can be performed using several methods.[6]

CoM The Center of Maximum method is used for most fuzzy logic applications.

Fast CoA The Center of Area method is similar to CoM and the

MoM Mean of Maximum defuzzification method is used for pattern recognition

applications.
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MoM BSUM and CoA BSUM are variants of MoM and CoA, which have been

optimized for efficient VLSI implementation.

Hyper CoM s used for fuzzy applications, for which not only positive experience in
the form of recommendations is of importance, but also negative experience in the form

of warnings and prohibitions.

The result of the fuzzy logic inference is the value of a linguistic variable. The conversion

of a linguistic result to a real value representing the outcome is called defuzzification.

5.10.1.1 Requirements {or Defuzzification Methods

The objective of a defuzzification method is to derive a non-fuzzy (crisp) value, that best
contains the fuzzy value of the linguistic output variable. Similar to the different
membership function types, different methods for defuzzification exist. To select the
proper defuzzification method, we need to understand the linguistic meaning that

underlies the defuzzification process.

One defuzzification method to find the best compromise is the Center-of-Maximum.
CoM first determines the most typical value for each term and then computes the best
compromise of the fuzzy logic inference result. To obtain the best compromizing value
for the result of the fuzzy logic inference as a real number, the inference results are
considered "weights" at the positions of the most typical values of the terms. The best

compromise is where the defuzzified (crisp) value balances the weights.

In some cases, this defuzzification approach does not work. In such cases, the result of

the fuzzy logic inference is that no evidence exists. If we would use the Center-of-
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Maximum method for defuzzification, a compromise of between two good solutions can

lead to a bad result.

Here. the best compromize is clearly not the method of choice. In example we rather
want the "most plausible result”. One defuzzification method that delivers the "most
plausible result” is the "Mean-of-Maximum" method MoM. Rather than balancing out the

different inference results, MoM selects the typical value of the term that is most valid.

5.10.1.2 Center-of-Area Defuzzification Method

The first closed-loop control application of fuzzy logic uses a different defuzzification,
the so-called Center-of-Area (CoA) method, sometimes called Center-of-Gravity. This
method first cuts the membership function at the degree of validity of the respective term.
The areas under the resulting functions of all terms are then superimposed. Balancing the

resulting area gives the compromising value.

There are some tmplausibilities with the Center-of-Area method. Another disadvantage
of the Center-of-Area defuzzification method is its high computational effort. The center
of area is computed by numerical integration that can take up to 1000 times longer than
the computation of the center of maximum, depending on the resolution and type of
processor. For these reasons, most software development tools and fuzzy logic processors
use an approximation of CoA, the so-called fast-CoA. Fast-CoA computes the individual
areas under the membership functions during compilation to avoid numerical integration
during run time. This approach neglects the overlapping of the areas. Hence it is only an

approximation of the "real” CoA. [37]
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There are also variants of the Mean-of-Maximum defuzzification method. They differ

from MoM by the computation of the most typical value of a membership function.

5.10.2 Continuity of Defuzzification

If an arbitrary small change of an input variable can never cause an abrupt change in any

output variable. Then defuzzification method is continuous.

CoM and CoA/CoG methods are continuous while MoM/LoM/RoM are discontinuous.
This is due to the fact that the "best compromise” can never jump to = different value for
a small change of the inputs. On the other hand. there is always a point where the "most
plausible solution” jumps to a different value. There will be a point, where an arbitrary

small change in the inputs wiil cause the decision to turn to the other side.

5.10.3 Defuzzification Method Selection

The continuity property is important for most closed-loop control applications. If the
output of a fuzzy logic system directly controls a variable of the process, jumps in the
output variable of a fuzzy logic controller can cause instabilities and oscillations. Hence,
most closed-loop control applications use CoM defuzzification. Only when the output of
the fuzzy logic system proceeds to an integrator first, MoM is a possible alternative. In

this case. the integrator keeps the control variable continuous.

Pattern recognition applications mostly use MoM defuzzification. If we want to identify
objects by classification of a sensor signal, we are interested in the most plausible result.

Some applications even do not use any defuzzification at all. The vector of membership
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degrees for the output linguistic variable is the result of the classification as it gives the

similarity of the signal to the objects.

In decision support systems, the choice of defuzzification method depends on the context
of the decision. Use CoM for quantitative decisions, such as budget allocation or project
prioritization. Use MoM for qualitative decisions, such as credit card fraud detection or

credit worthiness evaluation.

5.10.4 Information Reduction by Defuzzification
Mathematically. defuzzification is the mapping of a vector (value of the linguistic
variable) to a real number (crisp value). This mapping is not unique, that is, different

values of a linguistic variable can map to the same defuzzified crisp value.

In practical applications, the only difference between defuzzification methods is, whether
theyv deliver the best compromise (CoM, CoA, and CoG) or the most plausible result

(MoM, LoM, and RoM).[

Within these groups. no relevant differences exist that cannot be equalized by modifying
membership functions or rules. Complex membership function shapes do not deliver
better results for output variables. CoM and MoM defuzzification methods only use the

maximum of the membership functions anyway.

In closed-loop control, only use CoM defuzzification. Exceptions are, if the output of the

fuzzy logic system proceeds to an integrator.
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The wide spread use of CoA/CoG defuzzification has historical reasons. Depending on
the overlap and different areas of the membership functions, CoA/CoG can deliver

implausible results. Use CoM instead.

Some applications use CoA defuzzification with singleton membership functions. This is

completely the same as CoM defuzzification with any membership function type.

Fast-CoA that is used in most software tools and a fuzzy logic processor is equal to a

weighted CoM defuzzification.

5.11 Testing and Simulation

5.11.1 Off-Line Optimization

The next step in development process is to simulate and test the prototype designed. We
either use pre-recorded data from the process or a process simulation written in a
programming language. All techniques used in the second development step are off-line,

that is, we work on the PC with no connection to a process in real-time.[ 18]

5.11.2 On-Line Optimization

For many closed loop control systems we cannot use simulation techniques because no
good mathematical model for the process exist. The use of pre-recorded process data is of
limited use, as the reaction of the system in real-time to the fuzzy logic controller output
is not feed back into the process. In this case, we can use on-line optimization techniques

that support "on-the-fly” modifications on a running system.[18]
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CHAPTER 6

IMPLEMENTATION

We can implement the fuzzy logic system on target hardware platform after completion.

Depending on the target hardware, different implementation techniques exist.

6.1 FUZZY LOGIC AND 68HC12 SUPPORT

A fuzzy inference kernel for the 68HC12 requires one-fifth as much code space. and
executes fifteen times faster than a comparable kernel implemented on a typical midrange

microcontroller

The 68BHC 12 includes four instructions that perform specific fuzzy logic tasks. In
addition, several other instructions are especially useful in fuzzy logic programs. The
overall C-friendliness of the instruction set also aids development of efficient fuzzy logic

programs.

The four fuzzy logic instructions are MEM, which evaluates trapezoidal membership
functions; REV and REVW, which perform unweighted or weighted MIN-MAX rule
evaluation; and WAV, which performs weighted average defuzzification on singleton

output membership functions.

Other instructions that are useful for custom fuzzy logic programs include MINA,
EMIND, MAXM, EMAXM, TBL, ETBL, and EMACS. For higher resolution fuzzy

programs, the fast extended precision math instructions in the 68HC12 are also
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beneficial. Flexible indexed addressing modes help simplify access to fuzzy logic data
structures stored as lists or tabular data structures in memory. A microcontroller based

fuzzy logic control system has two parts.[5], [40], [42]

The first part is a fuzzy inference kernel which is executed periodically to determine
system out-puts based on current system inputs. The second part of the system is a

knowledge base which contains membership functions and rules.

The knowledge base can be developed by an application expert without any
microcontroller programming experience. Membership functions are simply expressions
of the expert’s understanding of the linguistic terms that describe the system to be
controlled. Rules are ordinary language statements that describe the actions a human

expert would take to solve the application problem.

Rules and membership functions can be reduced to relatively simple data structures (the
knowledge base) stored in nonvolatile memory. A fuzzy inference kernel can be written
by a programmer who does not know how the application system works. The only thing
the programmer needs to do with knowledge base information is store it in the memory

locations used by the kernel.

The design process begins by associating fuzzy sets with the input and output variables.
These fuzzy sets are described by membership function of the type shown in figure
below. These fuzzy set values are labeled. The shape of the membership functions are, in

general, trapezoids that may have no top (triangles) or may have no vertical sides.
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A functional diagram of a fuzzy controller is shown in the following figure.

INPUTS

!

Maps to fuzzy Sets

get_inputs()

FUZZY RULES

if AAND B then L fire_rules()

Defuzzification find_output();
OUTPUT
Fig: 17 Functional Diagram of a Fuzzy Controller

The fuzzy controller shown above consists of three parts. The fuzzification of inputs. the
processing of rules, and the defuzzification of the output. The inputs to a fuzzy controller
are assigned to the fuzzy variables with a degree of membership given by the
membership functions. After applying all of the fuzzy rules to a given set of input
variables, the output will belong to more than one fuzzy set with different weights. The
weighted output fuzzy sets are combined in a manner to be described below and then a

centroid defuzzification process is used to obtain a single crisp output value.



Following figure is a block diagram of fuzzy logic system.

SYSTEM
KNOWLEDGE
INPUTS
BASE ! UZZY
* INFERENCE
INPUT KFERNEL
MEMBERSHIP | FUZZIFICATION
FUNCTIONS
y FUZZY INPUTS
llll.'i.lllll N RAM)
RESULT p»| RULEEVALUATION
I l l T l ] I FUZZY OUTPUTS
«ee (N RAM)
Y
OUTPUT
MEMBERSHIP —$= DEFUZZIFICATION
FUNCTION
Y
SYSTEM OUTPUTS
Fig: 18 Block Diagram of Fuzzy Logic System

6.2 Fuzzification of inputs

During the fuzzification step, the current system input values are compared against stored

input membership functions to determine the degree to which each label of each system

input is true. This is accomplished by finding the y-value for the current input value on a

trapezoidal membership function for each label of each system input. The MEM

instruction in the 68HC12 performs this calculation for one label of one system input. To

perform the complete fuzzification task for a system, several MEM instructions must be

executed, usually in a program loop structure. There is a RAM location for each fuzzy

input i.e., for each label of each system input.
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6.2.1 MEM Instruction

When the fuzzification step begins, the current value of the system input is in an
accumulator of the 68HC 12, one index register points to the first membership function
definition in the knowledge base, and a second index register points to the first fuzzy
input in RAM. As each fuzzy input is calculated by executing a MEM instruction the
result is stored to the fuzzy input and both pointers are updated automatically to point to
the locations associated with the next fuzzy input. The MEM instruction takes care of
everything except counting the number of labels per system input and loading the current

value of any subsequent system inputs.[16], [38], [39]

One execution pass through the fuzzy inference kernel generates system output signals in
response to current input conditions. The kernel is executed as often as needed to
maintain control. If the kernel is executed more often than needed, processor bandwidth
and power are wasted; delaying too long between passes can cause the system to get too
far out of control. Choosing a periodic rate for a fuzzy control system is the same as it

would be for a conventional control system.

Each membership function can be defined by the four parameters w/, u2, 13, and w4,
shown in Figure. The MEM instruction requires that the values «/ and w4 be 8-bit values
between $00 and $FE. The weight values also range from $00 to $FF where $FF

represents a weight value of 1.0
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The MEM instruction does not use the parameters «/, u2, u3, and u4 to define the
membership function, Rather it uses u/ (point_1) and u4 (point_2) together with the

values of the two slopes, slope_1 and slope_2.

Fig: 19 Defining a Membership Function

The value of slope_1 is $FF/(u2 - ul) and the value of slope2 is SFF/u4 - u3). These
values can range from $0/ to $FE. If ul = u2 or u3 = u4 then the slope is really infinite.
In this case the values of slope_I and/or slope_2 are taken to be $00 in as much as this
value is not used otherwise. A special case is a singleton, or *““crisp,” membership

function. This can be defined by setting ul = u4 and slope_1I = slope_2 = 300.

The MEM instruction requires accumulator A to contain the input value x; and index
register X to point to a data structure containing the two points and slopes that define the
membership function. Index register Y points to the element of the array corresponding to

membership function.[5], [40], [42]
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A Xi
weight(j)
X=> point_1 Y
point_2
Slop2_1 Y+1 >
slope_2
X+4 >
Fig: 20 Data Structure Used by the 68HC12 MEM Instruction

The MEM instruction will compute the weight value at the input value x; based on the
membership function whose parameters are pointed to by X. The computed weight value
(SOO—SFF) is stored in the byte pointed to by Y. After the MEM instruction is executed
X will have been incremented by 4 and Y will have been incremented by 1. If the four
parameters of all membership functions for a single input are stored in adjacent bytes of
memory. then X will he pointing to the parameters of the next membership function.

Similarly. Y will be pointing to the next element in the array.[16], [[38]. [39]

Suppose that an input has the four membership functions then we can store the
parameters associated with these four membership functions in the data structure shown

below.
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pfa 4 # mem
wt pointer to weight
X > 0 point_1
72 point_2
slope_1
slope_2
48 point_1
116 point_2
slope_1
slope_2
104 point_1
152 point_2
slope_1
slope_2
140 point_1
208 point_2
slope_1
slope_2
Fig: 21 Data Structure for Storing Membership Function Parameters

The first 16-bit word at address pfa contains the number of membership functions. The
second 16-bit word contains the address of the array. The next 16 bytes contain the 4-byte
parameters for each of the five membership functions. Values for each membership
function are indicated by the point_I and point_2. The slope_1I and slope_2 values have

been left empty. A subroutine will compute these values and store them in memory.
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Note that the pfa is first popped from the data stack into Y and the value of X, is popped
from the data stack into B. The value of Y is transferred to X and then loaded with the
address of the array. The next three statements will load the number of membership
functions into B, store x; in A, and leave X pointing to the first byte of the parameters
associated with the first membership function. This is the setup needed for the MEM

instruction to execute.

The MEM instruction is then executed B times (four in this example) by using the looping
instruction DBNE B.FW/|. This instruction will decrement B and branch to FW/ if B is
not equal to zero. The net result will be that the five weight values associated with the

five membership functions for this particular input value, x;, will be stored in the array.

The end result of the fuzzification step is a table of fuzzy inputs representing current

system conditions.

6.3 Rule Evaluation

Rule evaluation is the central element of a fuzzy logic inference program. This step
processes a list of rules from the knowledge base using current fuzzy input values from
RAM to produce a list of fuzzy outputs in RAM. These fuzzy outputs can be thought of
as raw suggestions for what the system output should be in response to the current input
conditions. Before the results can be applied, the fuzzy outputs must be further processed,
or defuzzified, to produce a single output value that represents the combined effect of all

of the fuzzy outputs.
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6.3.1 Instructions for Fuzzy Inference

The 68HC 12 offers two variations of rule evaluation instructions. The REV instruction
provides for unweighted rules (all rules are considered to be equally important). The
REVW instruction is similar but allows each rule to have a separate weighting factor
which is stored in a separate parallel data structure in the knowledge base. In addition to
the weights, the two rule evaluation instructions also differ in the way rules are encoded

into the knowledge base.

Complete rules are stored in the knowledge base as a list of pointers or addresses of fuzzy
inputs and fuzzy outputs. In order for the rule evaluation logic to work, there needs to be
some means of knowing which pointers refer to fuzzy inputs. and which refer to fuzzy
outputs. There also needs to be a way to know when the last rule in the system has been

reached.

Method of organization used in the 68HC12, is to mark the end of the rule list with a
reserved value, and separate antecedents and consequents with another reserved value.
This permits any number of rules, and allows each rule to have any number of
antecedents and consequents, subject to the limits imposed by availability of system

memory.

Each rule is evaluated sequentially, but the rules as a group are treated as if they were all
evaluated simultaneously. Two mathematical operations take place during rule
evaluation. The fuzzy and operator corresponds to the mathematical minimum operation

and the fuzzy or operation corresponds to the mathematical maximum operation. The
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fuzzy and is used to connect antecedents within a rule. The fuzzy or is implied between
successive rules. Before evaluating any rules, all fuzzy outputs are set to zero (meaning
not true at all). As each rule is evaluated, the smallest (minimum) antecedent is taken to
be the overall truth of the rule. This rule truth value is applied to each consequent of the
rule (by storing this value to the corresponding fuzzy output) unless the fuzzy output is
already larger (maximum). If two rules affect the same fuzzy output. the rule that is most
true governs the value in the fuzzy output because the rules are connected by an implied

fuzzy or.

6.3.1.1 REYV Instruction

Unweighted Rule Evaluation (REV) implements basic min-max rule evaluation. X and Y
index registers are used as index pointers to the rule list and the fuzzy inputs and outputs.
The accumudator A is used for intermediate results calculation and must be set to SFF
initially (the largest 8-bit value). For subsequent rules in the list, A is automatically set to
$FF. when an instruction detects the $FE marker character between the last consequent

of the previous rule, and the first antecedent of a new rule.[5]. [40], [42]

The V condition code bit is used as an instruction status indicator to show whether
antecedents or consequents are being processed. Initially, the V bit is cleared to zero to
indicate antecedents are being processed. The instruction LDAA #3FF clears the V bit at

the same time it initializes A to SFF.

The fuzzy outputs (working RAM locations) need to be cleared to $00 before executing

the REV instruction.
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The X index register is set to the address of the first element in the rule list (in the
knowledge base). The Y index register is set to the base address for the fuzzy inputs and
outputs (in working RAM). Each rule antecedent and consequent are unsigned 8-bit

offset from base address to the referenced fuzzy input and fuzzy output respectively.

The 8-bit acciwnuelator A is used to hold intermediate calculation results during execution
of the REV instruction. During this process, A starts out at $FF and is replaced by any
smaller fuzzy input that is referenced by a rule antecedent (MI/N). During consequent
processing. A holds the truth value for the rule. This truth value is stored to any fuzzy
output that 1s referenced by a rule consequent. unless that fuzzy output is already larger

(MAX).

The final requirement to clear all fuzzy outputs to $00 is part of the MAX algorithm. Each
time a rule consequent references a fuzzy output, that fuzzy output is compared to the
truth value for the current rule. If the current truth value is larger, it is written over the
previous value in the fuzzy output. After all rules have been evaluated, the fuzzy output
contains the truth value for the most-true rule that referenced that fuzzy output. After
REYV finishes. A will hold the truth value for the last rule in the rule list. The V condition
code bit should be one because the last element before the $FF end marker should have
been a rule consequent. If V is zero after executing REV, it indicates the rule list was

structured incorrectly.
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Y > Light O] Weight wt pfa #rules rules
Bavg 1 -- Out0
Avg 2 -- X _..> 0 | Light
Hvy 3 -- 5 Far
Near 4| Distance wt FE
Far 5 -- 10 | Lvi2
Empty 6 -- FE
7 4 Out0 3 | Hvy
Nil 8 0 Out 4 Near
Lvl 9 0 5 5
Lvi2 10 0 11
Lvi3 11 0 A =SFF FF | end of rules
Fig: 22 Setup Required for REV Instruction.[16], [(38], [39]
6.3.1.2 REVW Instruction

The Weighted Rule Evaluation (REVW) is a weighted variation of MIN-MAX rule
evaluation. Before applying the truth value to the consequents for the rule, the value is
multiplied by a fraction from zero (rule disabled) to one (rule fully enabled). The

resulting modified truth value is then applied to the fuzzy outputs.
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The rule structure for REVW is made up of /6-bit elements rather than 8-bit elements as
in REV instruction. Each antecedent and consequent is represented by the full /6-bit

address of the corresponding fuzzy input and fuzzy output respectively.

The /6-bit markers SFFFE separates the antecedents from consequents and the end of the

last rule is marked by the reserved 16-bit value $SFFFF.

X and Y index registers are used as index pointers to the rule list and the list of rule
weights. The 8-bit accumulator A is used to hold intermediate calculation results during
execution of the REVW instruction and must be set to $FF initially. During antecedent
processing. A starts out at $FF and is replaced by any smaller fuzzy input that is
referenced by a rule antecedent. The V condition code bit is used as an instruction status
indicator that shows whether antecedents or consequents are being processed. Initially the
V bit is cleared to zero to indicate antecedents are being processed. The C condition code
bit is used to indicate whether rule weights are to be used (1) or not (0). If rule weights
are enabled by the C condition code bit equal one, the rule truth value is multiplied by the
rule weight just before consequent processing starts. The fuzzy outputs (working RAM
locations) is cleared to $00. These values must be tnitialized before REVW instruction is

executed to avoid errors in the result.

The X index register is set to the address of the first element in the rule list (in the
knowledge base). After the REVW instruction finishes, X will point at the next address
past the $FFFF separator word that marks the end of the rule list. The Y index register is

set to the starting address of the list of rule weights.
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Each rule weight is an 8-bit value which is driven by multiplying the minimum rule
antecedent value (300-$FF) by the weight plus one ($00/-$100). The weighted result is
the truncated upper 8 bits of the 16-bit result,. This method of weighting rules allows an

8-bit weighting factor to represent a value between zero and one inclusive.

During consequent processing, A holds the truth value (possibly weighted) for the rule.
This truth value is stored to any fuzzy output that is referenced by a rule consequent,
unless that fuzzy output is already larger (MAX).Accumulator A is automatically set to
SFF when the instruction detects the $FFFE marker word between the last consequent of

the previous rule, and the first antecedent of a new rule.

Once the REVW instruction starts, the C bit remains constant and the value in the V bit is

automatically maintained as $FFFE separator words are detected.

The final requirement to clear all fuzzy outputs to $00 is part of the MAX algorithm. Each
time a rule consequent references a fuzzy output, that fuzzy output is compared to the
truth value (weighted) for the current rule. If the current truth value is larger. it is written
over the previous value in the fuzzy output. After all rules have been evaluated. the fuzzy

output contains the truth value for the most-true rule that referenced that fuzzy output.

After REVW finishes, A will hoid the truth value (weighted) for the last rule in the rule
list. The V condition code bit should be one because the last element before the $FFFF
end marker should have been a rule consequent. If Vis zero after executing REVW, it

indicates the rule list was structured incorrectly.
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Fig: 23

Lvi 9
Lviz 10

Lvi3 11

Weight wt

O| O] ©|] ©] &

pfa

#rules

Out0

X o>

Out0

Out

A = $FF

FFFE

10

FFFE

rules

Light

Far

Lvi2

Hvy

11

FFFF

Near

end of rules

Setup Required for REVW Instruction.[16], [[38]. [39]

6.4 Defuzzification

The end result of the rule evaluation step is a table of suggested or “raw” fuzzy outputs in

RAM. These values were obtained by plugging current conditions (fuzzy input values)

into the system rules in the knowledge base. The raw results cannot be supplied directly

to the system outputs because they may be ambiguous. For instance, one raw output can

indicate that the system output should be medium with a degree of truth of 50% while, at

the same time, another indicates that the system output should be low with a degree of

truth of 25%. The defuzzification step resolves these ambiguities.
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The final step in the fuzzy logic program combines the raw fuzzy outputs into a
composite system output. Unlike the trapezoidal shapes used for inputs, the 68HC12
typicaily uses singletons for output membership functions. As with the in-puts, the x-axis
represents the range of possible values for a system output. Singleton membership
functions consist of the x-axis position for a label of the system output. Fuzzy outputs

correspond to the y-axis height of the corresponding output membership function.

The WAV instruction calculates the numerator and denominator sums for weighted

average of the fuzzy outputs according to the following formula:

Before executing WAV, an accumulator must be loaded with the number of iterations (n).
one index register must be pointed at the list of singleton positions in the knowledge base,
and a second index register must be pointed at the list of fuzzy outputs in RAM. If the
system has more than one system output, the WAYV instruction is executed once for each

system output. .[16], {[38], [39]

6.4.1 WAYV Instruction

It performs weighted average calculations on values stored in the memory and uses

indexed (X) addressing mode to reference one source operand list, and indexed (Y)
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addressing mode to reference a second source operand list. Accumulator B is used as a

counter to control the number of elements to be included in the weighted average.

For each pair of data points, a 24-bit Sum Of Products (SOP) and a 16-bit Sum Of
Weights (SOW) is accumulated in temporary registers. When B reaches zero (no more

data pairs), the SOP is placed in ¥Y:D. The SOW is placed in X.

To arrive at the final weighted average, divide the content of Y:D by X by executing an
EDIV after the WAV. This instruction can be interrupted. If an interrupt occurs during
WAV execution. the intermediate results (six bytes) are stacked in the order SOW [/5:0],

SOP [15:0], 300:SOP [23:16] before the interrupt is processed.
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CHAPTER 7

AIRBAG

7.1 Project Description

Linguistic Input Variables =

Linguistic Output Variables 1

Intermediate Variables 0

Rule Blocks 1

Rules 72

IMcmbership Functions 16
Project Statistics

7.2 System Structure

The system structure identifies the fuzzy logic inference flow from the input variables
to the output variables. The fuzzification in the input interfaces translates analog
inputs into fuzzy values. The fuzzy inference takes place in rule blocks which contain
the linguistic control rules. The output of these rule blocks are linguistic variables.

The defuzzification in the output interfaces translates them into analog variables.
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The following figure shows the whole structure of this fuzzy system including input

interfaces, rule blocks and output interfaces. The connecting lines symbolize the data

flow.

AUTOMOTIVE AIRBAG CONTROL SYSTEM

INPUTS RULES BLOCK OUTPUT

E,’F Beltn

Wi Distance
[l }\ Betn M

Distance R
Rel_speed Firpwr ———{ Firpwr AN

Weight ‘
lT /" Rel_speed Max
I-T‘\' i ; ’- Weight

Fig: 24 Structure of the Fuzzy Logic System
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ADULT

- WEIGHT IN POUNDS IN RELATION TO HEIGHT FOR

MEN AND WOMEN, 25 YEARS OR OLDER

'‘Men Medium Frame |

'Women Medium Frame

Height Height
Ft | In. Range [Midpointl Ft | iIn. Range [Midpoint
- - 4 = 8 93--104 . 98.5
4 9 . 95---107: 101
4 10 - 98---110: 104
4 11 ' 101---113° 107
; i 5 0 104---116. 110
5 1 113---124' 1185 5 107---119: 113
5 2 116---128. 122 5 2 ©110---123  116.5
5 3 1119---131° 125 5 3  113---127 120
5 4 122---134. 128 5 4 - 117---132 . 1245
5 S :125---138° 131.5 5 5 - 121---136 .  128.5
5 b 1129---142: 135.5 5 6 - 125---140 132.5
5 7 133---147° 140 5 7 129---144 136.5
5 8 137---151 144 5 8 133---148 140.5
5 9 - 141---155 148 5 9 137---152 1445
5 10 145--160 153 5 0  141---156 1485
5 11 :149---165. 157
6 0 153---170 161.5
6 1 157-—-175. 166
6 2 '1162---180° 171
6 3 1167---185: 176 |

Adopted from the Metropolitan Insurance Company Statistical Bulletin

Table: 1
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AGE-SPECIFIC WEIGHT-FOR-HEIGHT
TABLES®

(GERONTOLOGY RESEARCH CENTER)

Weight Range (lbs) for Men and

; Women

Height by Age (Years)

(ft in) 25 35 45 55 65

4 10 84__ 111 92_ 119 99_ 127 107__135 | 115__ 142
4 11 87__115 95_ 123 103__ 131 } 111_ 139 | 119_ 147
5 0 90__ 119 98_ 127 106__135 | 114143 | 123___152
5 1 93 123 101__ 131 110_140 | 118__148 | 127__157
5 2 96__ 127 105_ 136 | 113_ 144 | 122_ 153 | 131_ 163
5 3 99_ 131 108140 | 117__149 | 126__158 | 135__168
5 4 102__ 135} 112__145 | 121__154 | 130__ 163 | 140_ 173
5 5 106__140 | 115__149 | 125 159 | 134_ 168 | 144 179
5 6 109__144 | 119 154 | 129 164 | 138_ 174 | 148_ 184
5 7 112__ 148 | 122__ 159 | 133__169 | 143 179 | 153_ 190
5 8 116__ 153 | 126_ 163 | 137__174 | 147 184 | 158__ 196
5 9 119_ 157 | 130_168 | 141__ 179 | 151_ 190 | 162_ 201
5 10 122162 | 134 173 | 145_ 184 | 156_ 195 | 167_ 207
5 11 126__167 | 137__178 | 149__190 | 160_ 201 | 172_ 213
6 O 129_ 171 | 141_ 183 | 153_ 195 | 165_ 207 | 177_ 219
6 1 133__176 | 145_ 188 | 157__200 | 169 213 | 182 225
6 2 137__181 | 149_ 194 | 162__ 206 | 174_ 219 | 187 232
6 3 141_ 186 | 153_ 199 | 166__ 212 | 179__ 225 | 192_ 238
6 4 | 144 191 [ 157_205 | 171__218 | 184 231 | 197244

Table: 2
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Distance Between Instrument Panel and
Passenger Side Back of the Seat

Model | PushedForward | Pushed Backward

Centimeters

Ford

Grand Marquis 53 : 76

Taurus 51 ' 74

Mustang 53 76

Cougar 53 76

Windstar ‘ 56 74

General Motors i

GMC Truck : 56 ' 76

I—E—n“voy 51 : 71

Montana ? 56 76

Regal 4 51 76

Chrysler :

Neon ! 53 76

Cirrus 51 : 74

Intrepid 56 79

Caravan 56 79

Table: 3
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7.3 Linguistic Variables

The following table lists all linguistic variables of the system and their term names.

[Variable Name Term Names
Beltn Unbkl, Bkid
Distance Near, Far, Empty
Rel_speed Cty. Hiwy. Ospd

eight Light, Bavg, Avg, Hvy
Inf_Speed INil. Lvil, Lvi2. Lvi3

Linguistic Variables

The properties of all base variables are listed in the following table.

Variable Name Min Max [Default [Unit

Beltn 0 1 1 Units

Distance 50 80 65 Cm

Rel_speed 40 150 95 Kms

[Weight 50 100 75 Kgs

Inf_Speed 0 200 100 Kmph
Table: 4 Base Variables

The default value of an output variable is used if no rule is firing for this variable.
Different methods can be used for the defuzzification, resulting either in to the ‘'most

plausible result’ or the best compromise’.
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The best compromise’is produced by the methods:

CoM (Center of Maximum)

CoA (Center of Area)

CoA BSUM, a version especially for efficient VLSI implementations

The 'most plausible result is produced by the methods:

MoM (Mean of Maximum)

MoM BSUM, a version especially for efficient VLSI implementations

The following table lists all variables linked with an interface as well as the respective

fuzzification or defuzzification method.

Variable Name Type Fuzzification/Defuzzification
Belin [nput ICompute MBF
Distance Input Compute MBF
Rel _speed [nput Computc MBF
(Weight [nput Compute MBF
Inf_Speed Output ICoM
Table: 5 Interfaces
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7.3.1 Input Variable ""Beltn"

1.0 ————
0.4 l S
0.2 [T T T T e e s e s
0.00.!0 = S —-1~—q
Fig: 25 MBF of "Beltn”

Term Name ’Shape/Par. [Definition Points (x, y)

Unbkl lincar (0, 1) 0.0) (1,0)

Bkld lincar 0.1 0.6.1) (. n

Tale: 6 Definition Points of MBF "Beltn”
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7.3.2 Input Variable ''Distance"

[Term Name Shape/Par. RDeﬁnition Points (x, y)

Near linear (50, 1) (35. 1) (60. 0)
(80.0)

Far linear (50, 0) (55.0 61.25. 1)
(68.75, 1) (75,0) (80.0)

Empty lincar (50, 0) (70,0) (775. 1)
(80. 1)

Table: 7 Definition Points of MBF "Distance’
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7.3.3 Input Variable ''Rel_speed"”

1.0]

0.8
06|

02|
00

89

Term Name Shape/Par. {Definition Points (x, y)

Cty lincar (40. 1) (50. 1) (70. 0)
(150, 0)

Hiwy lincar (40. 0) (60. 0) (80. 1)
(110. 1) (130.0) (150,0)

Ospd lincar (40, 0) (115,0) (125, 1)
(150, 1)

Table: 8 Definition Points of MBF '"Rel_speed"




7.3.4 Input Variable ""Weight''

T .“ PR __\Kg“; T LS T T o
Fig: 28 MBF of '""Weight"

[ Term Name Shape/Par. [Definition Points (x.y)

[Light lincar (50, 1) (52.6, 1) (60.6. 0)
(100.0)

Bavg lincar (50,0) (55.2,0) (63.2, 1)
(71. 1) (79, 0) (100. 0)

Avg lincar (50, 0) (71,0) (76.4, 1)
(84.2, 1) (92.2,0) (100, 0)

Hvy lincar (50, 0) (84.2, 0) 922. 1)
(100, 1)

Table: 9 Definition Points of MBF ""Weight”



7.3.5 Output Variable "Inf_Speed"
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[Term Name Shape/Par. [Deﬁnition Points (x, y)

Nil lincar (0, 1) (20, 1) (60, 0)
(200. 0)

Lvl] lincar (0. 0) (20.0) 30. 1)
(80, 1) (120, 0) (200.0)

Lvi2 lincar KO, 0) (80.0) (120. 1)
(150, 1) (180.0) (200, 0)

|Lvi3 linear (0, 0) (150, 0) (180, 1)
(200, 1)

Table: 10 Definition Points of MBF "Inf_Speed"’




7.4 Rule Blocks

7.4.1 Parameter

Aggregation: MINMAX

Parameter: 0.00

Result Aggregation: MAX

Number of Inputs: 4

Number of Outputs: l

Number of Rules: 72

7.7.2 Rules
IF THEN

Beltn Distance Rel_speed Weight DoS Inf_Speed
Unbkl Near Cry Light 1.00 Lvll
Unbkl Near Cuy Bavg 1.00 Lvll
Unbkl Near Cty Avg 1.00 Lvi2
Unbkl Near Cuy Hvy 1.00 Lvi2
Unbkl Near Hiwy Light 1.00 Lvi2
Unbkl Near Hiwy Bavg 1.00 LvI2
Unbk! Near Hiwy Avg 1.00 Lvi2
Unbkl Near Hiwy Hvy 1.00 Lvi2
Unbkl Near Ospd Light 1.00 Lvi2
Unbkl Near Ospd Bavg 1.00 Lvi3
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Unbki Near Ospd Avg 1.00 LvI3
Unbkl Near Ospd Hvy 1.00 Lvi3
Unbkl Far Ciy Light 1.00 Lvi3
Unbkl Far Cry Bavg 1.00 Lvi3
Unbkl Far Cty Avg 1.00 Lvi3
Unbkl Far Ciy Hvy 1.00 LvI3
Unbkl Far Hiwy Light 1.00 Lvi3
Unbkl Far Hiwy Bavg 1.00 Lvi3
Unbkl Far Hiwy Avg 1.00 Lvi3
Unbkl Far Hiwy Hvy 1.00 Lvi3
Unbkl Far Ospd Light 1.00 Lvi3
Unbkl Far Ospd Bavg 1.00 LvI3
Unbkl Far Ospd Avg 1.00 LviI3
Unbkl Far Ospd Hvy 1.00 Lvi3
Unbkl Empty Cty Light 1.00 Nil
Unbkl Empty Cuy Bavg 1.00 Nil
Unbkl Empty Ciy Avg 1.00 Nil
Unbkl Empty Cuy Hvy 1.00 Nil
Unbkl Empty Hiwy Light 1.00 Nil
Unbkl Empty Hiwy Bavg 1.00 Nil
Unbkl Empty Hiwy Avg 1.00 Nil
Unbkl Empty Hiwy Hvy 1.00 Nil
Unbkl Empty Ospd Light 1.00 Nil
Unbkli Empty Ospd Bavg 1.00 Nil
Unbkl Empty Ospd Avg 1.00 Nil
Unbkl Empty Ospd Hvy 1.00 Nil
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Bkld Near Cty Light 1.00 Nil

Bkid Near Cry Bavg 1.00 Nil

Bkid Near Cry Avg 1.00 Lvil
Bkid Near Cry Hvy 1.00 Lvll
Bkld Necar Hiwy Light 1.00 Lvil
Bklid Near Hiwy Bavg 1.00 Lvil
Bkid Near Hiwy Avg 1.00 LvI2
Bkld Near Hiwy Hvy 1.00 Lvi2
Bkld Near Ospd Light 1.00 Lvi2
Bkld Near Ospd Bavg 1.60 LvI2
Bkid Ncar Ospd Avg 1.00 Lvi2
Bkld Necar Ospd Hvy 1.00 Lvi2
Bkld Far Cty Light 1.00 Lvi2
Bkld Far Cuy Bavg 1.00 Lvi2
Bkld Far Cuy Avg 1.00 Lvi3
Bkld Far Cry Hvy 1.00 Lvi3
Bkld Far Hiwy Light 1.00 Lvi3
Bkld Far Hiwy Bavg 1.00 Lvi3
Bkld Far Hiwy Avg 1.00 LvI3
Bkid Far Hiwy Hvy 1.00 LvI3
Bkid Far Ospd Light 1.00 Lvi3
Bkld Far Ospd Bavg 1.00 LvI3
Bkld Far Ospd Avg 1.00 Lvi3
Bkld Far Ospd Hvy 1.00 Lvl3
Bkid Empty Cty Light 1.00 Nil

Bkid Empty Cry Bavg 1.00 Nil
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7.5 List of Abbreviations

Compute MBF

CoM

8SUM
MIN
MAX
GAMMA

PROD

Lv
MBF
RB

Compute Membership Function (Fuzzification Method)

Center of Maximum (Defuzzification Methode)

Bounded Sum Fuzzy Operator for Result Aggregation
Fuzzy Operator for AND Aggregation

Fuzzy Operator for OR Aggregation

Compensatory Operator for Aggregation

Fuzzy Operator for Composition

Linguistic Variable

Membership Function

Rule Block
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Bkld Empty Cy Avg 1.00 Nil
Bkid Empty Cy Hvy 1.00 Nil
Bkid Empty Hiwy Light 1.00 Nil
Bkld Empty Hiwy Bavg 1.00 Nil
Bkid Empty Hiwy Avg 1.00 Nil
Bkld Empty Hiwy Hvy 1.00 Nil
Bkid Empty Ospd Light 1.00 Nil
Bkld Empty Ospd Bavg 1.00 Nil
Bkld Empty Ospd Avg 1.00 Nil
Bkid Empty Ospd Hvy 1.00 Nil
Table:11 Rules of the Rule Block "RB1"
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CHAPTER 8

SUMMERY AND CONCLUSION

This thests is concerned with the design techniques for fuzzy logic and its
implementation in the automotive airbag control system. It should be noted that the
techniques used here lend themselves to the flexibility of designing virtually any type of
decision structure based on human linguistic variables. In chapter 1. we discussed the
mechanism of airbag and also discussed the areas where they need improvement. In
chapter 3 we discussed fuzzy logic concepts and decision structure bases for conclusion,
reasoning and mathematical models for each technique. Due to the new series of
microcontrollers 68HC12, which has dedicated instructions for programming and
implementation of fuzzy logic it has become easy to write a smaller code which can
overcome the memory constraints of earlier versions of microcontrollers. Automotive
industry had been using 68HC11 for long time and it could handle fuzzy logic techniques
tfor embedded systems too but the code for 68HC12 is one fifth in size and about fifteen
times faster than its predecessors. Chapter 4 has an overview of the 68HC 2, its memory
structure. addressing modes and basic features including key improvements over

68HCI 1. Chapter S further discusses the fuzzy logic concepts in more detail and we saw
that how an clement belongs to the set with a degree of membership between 0 and 1. We
showed that a fuzzy controller consists of three parts, input section, inference section and
defuzzification section in which a fuzzy output is converted to a crisp output. In chapter

6, we have discussed the instruction set for fuzzy logic in detail. We showed how MEM
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instruction can be used to perform the mapping of inputs to fuzzy set, rule evaluation by
REV and REVV instructions and WAYV instruction for defuzzification. The FuzzyTECH
design software has made it very easy to design a control system using fuzzy logic. The
reference manual for the microcontroller also advises to use some design tools for
implementation and after trying different other tools, we realized its importance and
preferred to use it. To ensure the stability and time response of the system. we generated
a pattern file and observed its response on the 3-D graphs with different combinations of
inputs. The output graph clearly shows different output levels and calculates defuzzified

output result at the bottom.

This design approach using tuzzy logic is practically feasible and many other applications
are open venues for further research and future work. There is a potential for future work

for an ASIC, FPGA or custom chip design to perform these tasks.
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APPENDIX A

Design of Fuzzy Logic Linguistic Variables.

Computer Program
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PROJECT {
NAME = AIRBAG.FTL;
TITLE  =Airbag:

AUTHOR = Tariq M. Mian;

DATEFORMAT =M.D.YYYY:

LASTCHANGE = 12.10.1999;
CREATED =11.18.1999;
SHELL =MCU_HCI2:

SHELLOPTIONS {

ONLINE_REFRESHTIME = 55;

ONLINE_TIMEOUTCOUNT = 1100:

ONLINE_CODE = OFF;

ONLINE_TRACE_BUFFER = (OFF, PAR(0)):

COMMENTS = ON;
FTL_BUFFER = (OFF, PAR(1)):
PASSWORD = OFF;
PUBLIC_IO = ON;
FAST_CMBF = OFF;
FAST_COA = OFF:
FILE_CODE = OFF:

BTYPE = 8_BIT;

C_TYPE = ANSI;

} /% SHELLOPTIONS */
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MODEL {
VARIABLE_SECTION ({
LVAR {

NAME = Beltn;

BASEVAR = Units:

LVRANGE = MIN(0.000000). MAX(1.000000).
MINDEF(0), MAXDEF(255).
DEFAULT_OUTPUT(1.000000):

RESOLUTION = XGRID(0.100000), YGRID(1.000000),
SHOWGRID (ON), SNAPTOGRID(ON):

COLOR =RED (0), GREEN (128), BLUE (0):

TERM {

TERMNAME = Unbkl:
POINTS = (0.000000, 1.000000),
(0.000000, 0.000000),
(1.000000. 0.000000):
SHAPE =LINEAR;
COLOR =RED (255), GREEN (0), BLUE (0):
}
TERM {
TERMNAME = Bkld;
POINTS =(0.000000, 1.000000),

(0.600000, 1.000000),
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(1.000000, 1.000000):
SHAPE =LINEAR:
COLOR =RED (0), GREEN (0), BLUE (255);

}

} /¥ LVAR */
LVAR {

NAME = Distance:

BASEVAR =Cm:

LVRANGE = MIN(50.000000). MAX(80.000000),
MINDEF(0), MAXDEF(255).
DEFAULT_OUTPUT(65.000000);

RESOLUTION = XGRID(0.125000). YGRID(1.000000),
SHOWGRID (ON), SNAPTOGRID(ON);

COLOR =RED (0), GREEN (128), BLUE (0):

TERM {

TERMNAME = Near:

POINTS = (50.000000, 1.000000),
(55.000000, 1.000000),
(60.000000, 0.000000),
(80.000000, 0.000000);

SHAPE =LINEAR;

COLOR =RED (0), GREEN (128), BLUE (0);

111



TERM {

TERMNAME = Far;

POINTS = (50.000000, 0.000000),
(55.000000, 0.000000),
(61.250000, 1.000000),
(68.750000, 1.000000),
(75.000000, 0.000000).
(80.000000. 0.000000):

SHAPE =LINEAR;

COLOR =RED (0). GREEN (0), BLUE (255);

}
TERM {

TERMNAME = Empty:

POINTS = (50.000000. 0.000000),
(70.000000, 0.000000),
(77.500000. 1.000000),
(80.000000, 1.000000):

SHAPE =LINEAR;

COLOR =RED (128), GREEN (0), BLUE (0);

}
} /*LVAR */
LVAR {

NAME = Rel_speed;
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BASEVAR = Kms;
LVRANGE = MIN(40.000000), MAX(150.000000),
MINDEF(0), MAXDEF(255),
DEFAULT_OUTPUT(95.000000):
RESOLUTION = XGRID(0.500000), YGRID( 1.000000).
SHOWGRID (ON), SNAPTOGRID(ON):
COLOR = RED (0). GREEN (0). BLUE (255):
TERM {
TERMNAME = Cty;
POINTS = (40.000000, 1.000000),
(50.000000, 1.000000).
(70.000000, 0.000000),
(150.000000, 0.000000) : OPEN (40.000000, 150.000000):
SHAPE = LINEAR:
COLOR =RED (255), GREEN (0), BLUE (0);
}
TERM {
TERMNAME = Hiwy;
POINTS = (40.000000, 0.000000),
(60.000000, 0.000000),
(80.000000, 1.000000),
(110.000000, 1.000000),

(130.000000, 0.000000),
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(150.000000, 0.000000) : OPEN (40.000000, 150.000000);
SHAPE =LINEAR;
COLOR =RED (0), GREEN (128), BLUE (0);
}
TERM {
TERMNAME = Ospd:
POINTS = (40.000000. 0.000000).
(115.000000. 0.000000),
(125.000000. 1.000000).
(150.000000. 1.000000) : OPEN (40.000000, 150.000000):
SHAPE =LINEAR;
COLOR =RED (0). GREEN (0). BLUE (255);
}
} /* LVAR */
LVAR {

NAME = Weight:

BASEVAR =Kgs;

LVRANGE = MIN(50.000000), MAX(100.000000).
MINDEF(0), MAXDEF(255),
DEFAULT_OUTPUT(75.000000);

RESOLUTION = XGRID(0.200000), YGRID(1.000000),
SHOWGRID (ON), SNAPTOGRID(ON);

COLOR =RED (255), GREEN (0), BLUE (0);
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TERM {

TERMNAME = Light;

POINTS = (50.000000, 1.000000),
(52.600000, 1.000000),
(60.600000, 0.000000).
(100.000000, 0.000000);

SHAPE =LINEAR;

COLOR =RED (255). GREEN (0). BLUE (0);

}
TERM {

TERMNAME = Bavg:

POINTS = (50.000000. 0.000000),
(55.200000, 0.000000),
(63.200000, 1.000000),
(71.000000, 1.000000).
(79.000000, 0.000000),
(100.000000, 0.000000):

SHAPE =LINEAR:

COLOR =RED (0), GREEN (128), BLUE (0):

}
TERM {

TERMNAME = Avg:

POINTS = (50.000000, 0.000000),
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(71.000000, 0.000000),
(76.400000, 1.000000),
(84.200000, 1.000000),
(92.200000, 0.000000),
(100.000000, 0.000000);
SHAPE =LINEAR;
COLOR =RED (0). GREEN (0), BLUE (255):
}
TERM {
TERMNAME = Hvy:
POINTS = (50.000000. 0.000000),
(84.200000, 0.000000).
(92.200000. 1.000000),
(100.000000, 1.000000):
SHAPE =LINEAR:
COLOR =RED (128), GREEN (0), BLUE (0);
}
} /* LVAR */
LVAR {
NAME  =Inf_Speed:
BASEVAR = Kmph;
LVRANGE = MIN(0.000000), MAX(200.000000),

MINDEF(0), MAXDEF(255),

I16



DEFAULT_OUTPUT(100.000000);
RESOLUTION = XGRID(1.000000), YGRID(1.000000),
SHOWGRID (ON), SNAPTOGRID(ON);
COLOR = RED (128), GREEN (0), BLUE (0);
TERM {
TERMNAME = Nil;
POINTS = (0.000000. 1.000000).
(20.000000, 1.000000),
(60.000000, 0.000000),
(200.000000. 0.000000);
SHAPE =LINEAR:
COLOR = RED (255), GREEN (0), BLUE (0):
}
TERM {
TERMNAME = Lvll;
POINTS = (0.000000, 0.000000),
(20.000000. 0.000000),
(50.000000, 1.000000).
(80.000000, 1.000000),
(120.000000, 0.000000),
(200.000000, 0.000000);
SHAPE = LINEAR;

COLOR =RED (0), GREEN (128), BLUE (0);
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}
TERM {

TERMNAME = Lvi2;
POINTS = (0.000000, 0.000000),
(80.000000, 0.000000),
(120.000000, 1.000000).
(150.000000, 1.000000),
(180.000000. 0.000000),
(200.000000. 0.000000):
SHAPE =LINEAR:
COLOR =RED (128). GREEN (0), BLUE (0):
}
TERM {
TERMNAME = Lvli3;
POINTS = (0.000000, 0.000000),
(150.000000. 0.000000),
(180.000000, 1.000000),
(200.000000. 1.000000):
SHAPE =LINEAR;
COLOR =RED (128), GREEN (0), BLUE (0):
}
} 7/ LVAR */

} /* VARIABLE_SECTION */
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OBJECT_SECTION ({

INTERFACE {
INPUT = (Weight, CMBF):
POS =-201. 135:

}

INTERFACE {
INPUT = (Distance. CMBF);
POS = -205. 10

}

INTERFACE {
INPUT = (Rel_speed, CMBF);
POS =-203, 75:

}

INTERFACE {

OUTPUT = (Inf_Speed, COM);

POS = 196, 40:

)

INTERFACE {
INPUT = (Beltn, CMBF);
POS =-203, -58;

}
RULEBLOCK {
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NAME =RBI;
INPUT = Belwn. Distance, Rel_speed. Weight:
OUTPUT = Inf_Speed:
AGGREGATION = (MIN_MAX, PAR (0.000000)):
RESULT_AGGR = MAX;
POS =-18, 12:
RULES {
[F Beltn = Unbkl
AND Distance = Near
AND Rel_speed = Cty
AND Weight = Light
THEN Inf_Speed = Lvll WITH 1.000:
[F Beltn = Unbkl
AND Distance = Near
AND Rel_speed = Cty
AND Weight = Bavg
THEN Inf_Speed = Lvil WITH 1.000:
[F Beltn = Unbkl
AND Distance = Near
AND Rel_speed = Cty
AND Weight = Avg
THEN Inf _Speed = LvIl2 WITH 1.000;

[F Beltn = Unbkl
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AND Distance = Near

AND Rel_speed = Cty

AND Weight = Hvy
THEN Inf_Speed =Lvi2 WITH 1.000;
[F Beltn = Unbkl

AND Distance = Near

AND Rel_speed = Hiwy

AND Weight = Light
THEN Inf_Speed = Lvi2 WITH 1.000:
[F Beltn = Unbkl

AND Distance = Near

AND Rel_speed = Hiwy

AND Weight = Bavg
THEN Inf_Speed = Lvl2 WITH 1.000;
[F Beltn = Unbkl

AND Distance = Near

AND Rel_speed = Hiwy

AND Weight = Avg
THEN Inf_Speed = Lvl2 WITH 1.000:
I[F Beltn = Unbkl

AND Distance = Near

AND Rel_speed = Hiwy

AND Weight = Hvy
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THEN Inf_Speed = LvI2
[F Beltn = Unbkl

AND Distance = Near

AND Rel_speed = Ospd

AND Weight = Light
THEN Inf_Speed = Lvi2
[F Beltn = Unbkl

AND Distance = Near

AND Rel_speed = Ospd

AND Weight = Bavg
THEN Inf_Speed = LvI3
IF Beltn = Unbkl

AND Distance = Near

AND Rel_speed = Ospd

AND Weight = Avg
THEN Inf_Speed = Lvi3
[F Beltn = Unbkl

AND Distance = Near

AND Rel_speed = Ospd

AND Weight = Hvy
THEN Inf_Speed = Lvi3
[F Beltn = Unbkl

AND Distance = Far

WITH 1.000:

WITH 1.000;

WITH 1.000:

WITH 1.000;

WITH 1.000;



AND Rel_speed = Cty

AND Weight = Light
THEN Inf_Speed = Lvi3 WITH 1.000;
[F Beltn = Unbkl

AND Distance = Far

AND Rel_speed = Cty

AND Weight = Bavg
THEN Inf_Speed =LvI3 WITH 1.000:
IF Beltn = Unbkl

AND Distance = Far

AND Rel_speed = Cty

AND Weight = Avg
THEN Inf_Speed = Lvi3 WITH 1.000:
[F Beltn = Unbkl

AND Distance = Far

AND Rel_speed = Cty

AND Weight = Hvy
THEN Inf_Speed = Lvi3 WITH 1.000;
[F Belin = Unbkl

AND Distance = Far

AND Rel_speed = Hiwy

AND Weight = Light

THEN Inf_Speed = Lvi3 WITH 1.000;
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[F Beltn = Unbkl

AND Distance = Far

AND Rel_speed = Hiwy

AND Weight = Bavg
THEN Inf_Speed =Lvl3 WITH 1.000:
IF Beltn = Unbkl

AND Distance = Far

AND Rel_speed = Hiwy

AND Weight = Avg
THEN Inf_Speed =Lvi3 WITH 1.000:
[F Beltn = Unbkl

AND Distance = Far

AND Rel_speed = Hiwy

AND Weight = Hvy
THEN Inf_Speed = LvI3 WITH 1.000:
IF Beltn = Unbkl

AND Distance = Far

AND Rel_speed = Ospd

AND Weight = Light
THEN Inf_Speed = LvIi3 WITH 1.000;
[F Beltn = Unbkl

AND Distance = Far

AND Rel_speed = Ospd



AND Weight = Bavg
THEN Inf_Speed = Lvi3 WITH 1.000:
[F Beltn = Unbkl

AND Distance = Far

AND Rel_speed = Ospd

AND Weight = Avg
THEN Inf_Speed = Lvi3 WITH 1.000:
[F Beltn = Unbkl

AND Distance = Far

AND Rel_speed = Ospd

AND Weight = Hvy
THEN Inf_Speed = Lvl3 WITH 1.000:
[F Beltn = Unbkl

AND Distance = Empty

AND Rel_speed = Cty

AND Weight = Light
THEN Inf_Speed = Nil WITH 1.000;
[F Beltn = Unbkl

AND Distance = Empty

AND Rel_speed = Cty

AND Weight = Bavg
THEN Inf_Speed = Nil WITH 1.000;

[F Beltn = Unbkl



AND Distance = Empty

AND Rel_speed = Cty

AND Weight = Avg
THEN Inf_Speed = Nil WITH 1.000;
IF Beltn = Unbkl

AND Distance = Empty

AND Rel_speed = Cty

AND Weight = Hvy
THEN Inf_Speed = Nil WITH 1.000:
[F Beltn = Unbkl

AND Distance = Empty

AND Rel_speed = Hiwy

AND Weight = Light
THEN Inf_Speed =Nil WITH 1.000:
IF Beltn = Unbkl

AND Distance = Empty

AND Rel_speed = Hiwy

AND Weight = Bavg
THEN Inf_Speed =Nil WITH 1.000:
I[F Beltn = Unbkl

AND Distance = Empty

AND Rel_speed = Hiwy

AND Weight = Avg
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THEN Inf_Speed = Nil WITH 1.000;
[F Beltn = Unbkl

AND Distance = Empty

AND Rel_speed = Hiwy

AND Weight = Hvy
THEN Inf_Speed = Nil WITH 1.000:
[F Beltn = Unbkl

AND Distance = Empty

AND Rel_speed = Ospd

AND Weight = Light
THEN Inf_Speed = Nil WITH 1.000:
[F Beltn = Unbkl

AND Distance = Empty

AND Rel_speed = Ospd

AND Weight = Bavg
THEN Inf_Speed = Nil WITH 1.000;
[F Beltn = Unbkl

AND Distance = Empty

AND Rel_speed = Ospd

AND Weight = Avg
THEN Inf_Speed = Nil WITH 1.000:;
[F Beltn = Unbkl

AND Distance = Empty



AND Rel_speed = Ospd

AND Weight = Hvy
THEN Inf_Speed = Nil WITH 1.000;
IF Beltn = Bkid

AND Distance = Near

AND Rel_speed = Cty

AND Weight = Light
THEN Inf_Speed = Nil WITH 1.000:
[F Beltn = Bkid

AND Distance = Near

AND Rel_speed = Cty

AND Weight = Bavg
THEN Inf_Speed = Nil WITH 1.000;
[F Beltn = Bkld

AND Distance = Near

AND Rel_speed = Cty

AND Weight = Avg
THEN Inf Speed = Lvll WITH 1.000:
[F Beltn = Bkid

AND Distance = Near

AND Rel_speed = Cty

AND Weight = Hvy

THEN Inf_Speed = Lvll WITH 1.000;



[F Beltn = Bkid

AND Distance = Near

AND Rel_speed = Hiwy

AND Weight = Light
THEN Inf_Speed = Lvil WITH 1.000:
[F Beltn = Bkid

AND Distance = Near

AND Rel_speed = Hiwy

AND Weight = Bavg
THEN Inf_Speed = Lvil WITH 1.000;
I[F Beltn = Bkld

AND Distance = Near

AND Rel_speed = Hiwy

AND Weight = Avg
THEN Inf_Speed = Lvi2 WITH 1.000:
IF Beltn = Bkld

AND Distance = Near

AND Rel_speed = Hiwy

AND Weight = Hvy
THEN Inf_Speed = Lvi2 WITH 1.000:
[F Beltn = Bkld

AND Distance = Near

AND Rel_speed = Ospd



AND Weight = Light
THEN Inf_Speed = Lvi2 WITH 1.000:
I[F Beltn = Bkid

AND Distance = Near

AND Rel_speed = Ospd

AND Weight = Bavg
THEN Inf_Speed = Lvi2 WITH 1.000:
[F Beltn = Bkld

AND Distance = Near

AND Rel_speed = Ospd

AND Weight = Avg
THEN Inf_Speed = Lvi2 WITH 1.000:
I[F Beltn = Bkld

AND Distance = Near

AND Rel_speed = Ospd

AND Weight = Hvy
THEN Inf_Speed = Lvi2 WITH 1.000;
[F Beltn = Bkld

AND Distance = Far

AND Rel_speed = Cty

AND Weight = Light
THEN Inf_Speed = Lvl2 WITH 1.000;

I[F Beltn = Bkld
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AND Distance = Far

AND Rel_speed = Cty

AND Weight = Bavg
THEN Inf_Speed = Lvi2 WITH 1.000:
IF Beltn = Bkld

AND Distance = Far

AND Rel_speed = Cty

AND Weight = Avg
THEN Inf_Speed = Lvi3 WITH 1.000;
[F Beltn = Bkld

AND Distance = Far

AND Rel_speed = Cty

AND Weight = Hvy
THEN Inf_Speed = Lvl3 WITH 1.000:
[F Beltn = Bkid

AND Distance = Far

AND Rel_speed = Hiwy

AND Weight = Light
THEN Inf_Speed = Lvi3 WITH 1.000;
[F Beltn = Bkld

AND Distance = Far

AND Rel_speed = Hiwy

AND Weight = Bavg
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THEN Inf_Speed = Lvi3 WITH 1.000;
[F Beltn = Bkid

AND Distance = Far

AND Rel_speed = Hiwy

AND Weight = Avg
THEN Inf_Speed = Lvi3 WITH 1.000;
[F Beltn = Bkid

AND Distance = Far

AND Rel_speed = Hiwy

AND Weight = Hvy
THEN Inf_Speed = Lvi3 WITH 1.000:
[F Beltn = Bkid

AND Distance = Far

AND Rel_speed = Ospd

AND Weight = Light
THEN Inf_Speed = Lvi3 WITH 1.000:
IF Beltn = Bkid

AND Distance = Far

AND Rel_speed = Ospd

AND Weight = Bavg
THEN Inf_Speed = Lvi3 WITH 1.000;
IF Beltn = Bkid

AND Distance = Far
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AND Rel_speed = Ospd

AND Weight = Avg
THEN Inf_Speed = Lvi3 WITH 1.000:
[F Beltn = Bkld

AND Distance = Far

AND Rel_speed = Ospd

AND Weight = Hvy
THEN Inf_Speed = Lvi3 WITH 1.000:
I[F Beltn = Bkld

AND Distance = Empty

AND Rel_speed = Cty

AND Weight = Light
THEN Inf_Speed = Nil WITH 1.000:
[F Beltn = Bkid

AND Distance = Empty

AND Rel_speed = Cty

AND Weight = Bavg
THEN Inf_Speed = Nil WITH 1.000;
IF Beltn = Bkld

AND Distance = Empty

AND Rel_speed = Cty

AND Weight = Avg

THEN Inf_Speed = Nil WITH 1.000;
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[F Beltn = Bkid

AND Distance = Empty

AND Rel_speed = Cty

AND Weight = Hvy
THEN Inf_Speed = Nil WITH 1.000:
[F Beltn = Bkld

AND Distance = Empty

AND Rel_speed = Hiwy

AND Weight = Light
THEN Inf_Speed = Nil WITH 1.000:
I[F Beltn = Bkld

AND Distance = Empty

AND Rel_speed = Hiwy

AND Weight = Bavg
THEN Inf_Speed = Nil WITH 1.000;
[F Beitn = Bkld

AND Distance = Empty

AND Rel_speed = Hiwy

AND Weight = Avg
THEN Inf_Speed = Nil WITH 1.000;
[F Beltn = Bkid

AND Distance = Empty

AND Rel_speed = Hiwy
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AND Weight = Hvy
THEN Inf Speed = Nil WITH 1.000:
[F Beltn = Bkld

AND Distance = Empty

AND Rel_speed = Ospd

AND Weight = Light
THEN Inf_Speed = Nil WITH 1.000:
IF Beltn = Bkld

AND Distance = Empty

AND Rel_speed = Ospd

AND Weight = Bavg
THEN Inf_Speed = Nil WITH 1.000:
[F Beltn = Bkld

AND Distance = Empty

AND Rel_speed = Ospd

AND Weight = Avg
THEN Inf_Speed = Nil WITH 1.000:
IF Belitn = Bkid

AND Distance = Empty

AND Rel_speed = Ospd

AND Weight = Hvy
THEN Inf_Speed = Nil WITH 1.000;

} /*# RULES #/
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} /* RULEBLOCK */
REMARK {
TEXT = AUTOMOTIVE AIRBAG CONTROL SYSTEM:
POS = -189, -170:
FONTSPEC = -24, 700, 0, 0, 0. 34. 0;
FONTNAME =Arial:
COLOR = RED (0). GREEN (0), BLUE (0):
}
REMARK (
TEXT = INPUTS:
POS =-194. -113:
FONTSPEC = -19. 400, 0, 0, 0. 34. 0:
FONTNAME =Arial:
COLOR = RED (0), GREEN (0), BLUE (0);
}
REMARK {
TEXT = RULES BLOCK;
POS =-26, -111;
FONTSPEC =-19, 400, 0, 0. 0, 34, O;
FONTNAME =Arial;

COLOR = RED (0), GREEN (0), BLUE (0);

REMARK {
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TEXT = OUTPUT;
POS = 208, -110;
FONTSPEC =-19, 400, 0, 0, 0, 34, 0;
FONTNAME =Arial;
COLOR = RED (0), GREEN (0). BLUE (0):
}
) /* OBJECT_SECTION */
} /* MODEL */
} /* PROJECT */
ONLINE {
TIMESTAMP = 19991210085058UT:

} /* ONLINE */ .

NEUROFUZZY {
LEARNRULE =RandomMethod:
STEPWIDTHDOS =0.101563:
STEPWIDTHTERM = 1.000000:
MAXDEVIATION = (50.000000, 1.000000, 0.750000):
AVGDEVIATION = 0.100000:
MAXSTEPS = 100:
NEURONS =1
DATASEQUENCE = RANDOM;

UPDATEDBGWIN = OFF; } /* NEUROFUZZY */
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Appendix B1
Code Generator: C Source Code

Header File
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# K

/* fuzzyTECH 5.30 MCU-HC11/12 Edition */
/* License Number: FT U 00061 O1 HS */

/*- */

/* Code Generator: C Source Code */
/*-==eeeee——--- Code Generation Date: Fri Dec 10 03:54:36 1999 -——--————-%/

/* --- Fuzzy Logic System: AIRBAG */

/% */

R (c) 1991-1999 INFORM GmbH. Pascalstr. 23, D-52076 Aachen -------

/* */
/% */

/- export interface of project AIRBAG */
/% */

A */

r* typedefs */

/* */

#ifndef FUZZYDEFINED

[Fommmomaeee type of data for computation of fuzzy logic system --------—- */
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typedef unsigned char FUZZY;
#define FUZZYDEFINED

#endif

#ifndef FLAGSDEFINED

[*-==mneeee-- type of return value of fuzzy controller --------------- */
typedef unsigned char FLAGS:

#define FLAGSDEFINED

#endif

/* data only used by fuzzyTECH */

extern FUZZY * const pcvairbag:

[*- */

/*- use the following #defines to write the inputs to the fuzzy controller */

/% */

#dcfine Beltn_airbag (*(pcvairbag+ 0)) /* 0000H .. OOFFH */
#define Distance_airbag (*(pcvairbag+ 1)) /* O000H .. 0OFFH */
#define Rel_speed_airbag (*(pcvairbag+ 2)) /* 0000H .. 0OFFH */
#define Weight_airbag (*(pcvairbag+ 3)) /* O000H .. 00FFH */
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r* */

/* use the following #defines to read the outputs from the fuzzy controller */

/* *f
#define Inf_Speed_airbag (*(pcvairbag+ 4)) /* 0000H .. OOFFH */
/* */

/* function prototypes */

/* */

L for starting up the generated fuzzy logic system, call once ----- */

FLAGS airbag(void):
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APPENDIX B2

ANSI C code for 68HC12
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/* */

* fuzzyTECH 5.30 MCU-HC11/12 Edition */

/* License Number: FT U 00061 01 HS */

/* */

/* Code Generator: C Source Code */
[*-—emme-u——- Code Generation Date: Fri Dec 10 03:54:36 1999 -—-----—--*/

/* Fuzzy Logic System: AIRBAG */

* */

e (c) 1991-1999 INFORM GmbH, Pascalstr. 23. D-52076 Aachen ------- */

& */

#define FTLIBCS8
#include "ftlibc.h"”
#define FUZZYDEFINED
#define FLAGSDEFINED

#include "airbag.h"”

static FUZZY crispio[4+1];

static FUZZY fuzvals{12+4+0];

FUZZY * const pcvairbag = crispio;
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static const FUZZY tpts[48] = {

0x00. 0x00, 0x00, 0x00,
0x00, 0x00, OxFF, OxFF,
0x00, 0x00, 0x2B, 0x55,
0x2B. 0x60, 0x9F, 0xDs5.
0xAA, OxEA, OxFF, OxFF,
0x00. 0x00, Ox 17, 0x46,
0x2E, 0x5D, 0xA2, 0xD1,
OxAE. 0xC5, OxFF, OxFF,
0x00. 0x00, 0x0D, 0x36.
0x1B, 0x43, 0x6B, 0x94,
0x6B, 0x87, OxAE, 0xD7,

OxAE. 0xD7, OxFF, OxFF}:

static const FUZZY xcom[4] = {

0x0D. 0x53, OxAC, OxF2};

static const BYTE n0[434] = {
0x48, 0x00,
0x03, 0x01, 0x02, 0x0S, 0x08, 0x0D,
0x03, 0x01, 0x02, 0x0S, 0x09, 0x0D,

0x03, 0x01, 0x02, 0x05, 0xOA, OxOE,
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0x03, 0x01, 0x02, 0x05, 0x0B, OxOE,
0x03, 0x01, 0x02, 0x06, 0x08, OxOE,
0x03, 0x01, 0x02, 0x06, 0x09, OxOE,
0x03, 0x01, 0x02, 0x06, 0x0A, OxOE,
0x03, 0x01, 0x02, 0x06, 0x0B, OxOE,
0x03, 0x01, 0x02. 0x07. 0x08, OxOE,
0x03, 0x01, 0x02, 0x07, 0x09, OxOF,
0x03. 0x01, 0x02, 0x07, 0x0A, OxOF,
0x03, 0x01, 0x02, 0x07, 0x0B, OxOF,
0x03, 0x01, 0x03, 0x05. 0x08, OxOF,
0x03, 0x01. 0x03, 0x05, 0x09. OxOF,
0x03, 0x01, 0x03, 0x05, 0x0A, 0xOF,
0x03, 0x01, 0x03, 0x05, 0x0B, 0xOF,
0x03. 0x01, 0x03, 0x06, 0x08, OxOF,
0x03. 0x01, 0x03, 0x06, 0x09. OxOF,
0x03, 0x01, 0x03, 0x06. 0x0A, OxOF,
0x03, 0x01, 0x03, 0x06, 0x0B, OxOF,
0x03, 0x01, 0x03, 0x07, 0x08, 0xOF,
0x03, 0x01, 0x03, 0x07, 0x09, OxOF,
0x03, 0x01, 0x03, 0x07, Ox0A, OxOF,
0x03, 0x01, 0x03, 0x07, 0x0B, 0xOF,
0x03, 0x01, 0x04, 0x05, 0x08, 0x0C,

0x03, 0x01, 0x04, 0x05, 0x09, 0x0C,
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0x03, 0x01, 0x04, 0x05, 0x0A, 0x0C,
0x03. 0x01, 0x04. 0x05, 0x0B. 0x0C.
0x03, 0x01, 0x04, 0x06, 0x08, 0xOC,
0x03, 0x01, 0x04, 0x06, 0x09. 0x0C,
0x03. 0x01, 0x04, 0x06, 0x0A, 0x0C,
0x03. 0x01. 0x04, 0x06. 0x0B, 0x0C,
0x03. 0x01, 0x04. 0x07, 0x08. 0x0C,
0x03. 0x01, 0x04, 0x07, 0x09, 0x0C,
0x03, 0x01. 0x04, 0x07, Ox0A, 0x0C,
0x03. 0x01, 0x04, 0x07, 0x0B, 0x0C.,
0x03, 0x01, 0x02, 0x05, 0x08, 0x0C,
0x03. 0x01, 0x02. 0x05, 0x09, 0x0C,
0x03, 0x01, 0x02, 0x05, 0x0A, 0x0D,
0x03, 0x01, 0x02, 0x05. 0x0B, 0x0D,
0x03. 0x01. 0x02, 0x06, 0x08, 0x0D,
0x03. 0x01, 0x02, 0x06, 0x09, 0xOD,
0x03, 0x01, 0x02, 0x06, 0x0A, OxOE,
0x03. 0x01, 0x02, 0x06, 0x0B, 0xOE,
0x03, 0x01, 0x02, 0x07, 0x08, OxOE,
0x03, 0x01, 0x02, 0x07, 0x09, OxOE,
0x03, 0x01, 0x02, 0x07, Ox0A, OxOE,
0x03, 0x01, 0x02, 0x07, 0x0B, 0xOE,

0x03, 0x01, 0x03, 0x05, 0x08, OxOE,
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0x03. 0x01, 0x03, 0x05, 0x09, OxOE,

0x03, 0x01, 0x03, 0x05, 0x0A, OxOF,
0x03, 0x01, 0x03, 0x05, 0x0OB, OxOF,
0x03, 0x01, 0x03, 0x06, 0x08, OxOF,

0x03. 0x01, 0x03, 0x06. 0x09, 0xOF,

0x03. 0x01, 0x03, 0x06. Ox0A, 0xOF,
0x03. 0x01. 0x03, 0x06. 0xOB. OxOF.
0x03. 0x0!. 0x03. 0x07. 0x08. OxOF.

0x03. 0x01. 0x03. 0x07, 0x09, OxOF,

0x03. 0x01. 0x03. 0x07, 0xOA. O0xOF,
0x03. 0x01. 0x03. 0x07. 0xOB. 0xOF,
0x03, 0x01. 0x04, 0x0S, 0x08. 0x0C,
0x03, 0x01, 0x04, 0x05, 0x09. 0xO0C,
0x03, 0x01, 0x04, 0x05, 0x0A, 0x0C,
0x03. 0x01, 0x04, 0x05. 0x0B, 0x0C,
0x03, 0x01. 0x04, 0x06, 0x08. 0x0C.
0x03. 0x01, 0x04, 0x06, 0x09, 0x0C,
0x03. 0x01, 0x04, 0x06, 0x0A, 0x0C,
0x03, 0x0tf, 0x04, 0x06, 0x0B, 0x0C,
0x03, 0x01, 0x04, 0x07, 0x08, 0x0C,
0x03, 0x01, 0xC4, 0x07, 0x09, 0x0C,

0x03, 0x01, 0x04, 0x07, 0x0A, 0x0C,

0x03, 0x01, 0x04, 0x07, 0x0B, 0x0C};
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static const FRAT fratO[3] = {

0x0002, 0x00D8, 0x00D8 };

FLAGS airbag(void) {
fuzptr = (PFUZZY) fuzvals;

tpptr = (PFUZZY) tpts:

crisp = crispio{0};
bTNum = 2:

fims():

crisp = crispio[1];
bTNum = 3;

flms():

crisp = crispio[2];
bTNum = 3;

flms():

crisp = crispio[3];
bTNum = 4;

flms();
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pfuzvals = (PFUZZY) fuzvals:
riptr = (PFTBYTE) rntO:

fuzptr = (PFUZZY) &fuzvals[0];
fratptr = (PFRAT) fratO:

bTNum =2

Min(): /* mun aggregation */

invalidflags = 0;
fuzptr = &fuzvals[12];

xcomptr = (PFUZZY) xcom;

crispio[4] = 0x80:
bTNum =4;
defuzz = &crispio[4]:

com():

return invalidflags;

void initairbag(void) {

for (fuzptr = &fuzvals[12];

fuzptr < &fuzvals[16];
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*fuzptr++ = 0);

| Memory I RAM | ROM |

| Fuzzy Logic System | 21 (0015H) | 494 (OIEEH) |

| Total I 21 (00ISH)!| 494 (OIEEH) |

%/
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APPENDIX C1
Code for HIWARE for 68HC12

Header File
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r* */

I* fuzzyTECH 5.30 MCU-HC1 1/12 Edition */

r* License Number: FT [U 00061 Ol HS */

/* */

* Code Generator: C Source Code */

[ emmmmmeeeeee Code Generation Date: Fri Dec 10 03:55:25 1999 -——----———-—- */

/* Fuzzy Logic System: AIRBAG */

r* */

R (c) 1991-1999 INFORM GmbH, Pascalstr. 23, D-52076 Aachen ------- */

/* */

/%~ */

/* export interface of project AIRBAG */
/* */

/* */

/* typedefs */

/* */

#ifndef FUZZYDEFINED

[F e type of data for computation of fuzzy logic system ----—------*/
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typedef unsigned char FUZZY:
#define FUZZYDEFINED

#endif

#ifndef FLAGSDEFINED
[F e type of return value of fuzzy controller --------------- */

typedef unsigned char FLAGS:

#define FLAGSDEFINED

#endif

/% */

/* Toolkit: HIWARE */
/* */

extern FLAGS _invalidflags:

extern FUZZY _Beltn_airbag; /* 0000H .. OOFFH */
extern FUZZY _Distance_airbag; /¥ 0000H .. OOFFH */
extern FUZZY _Rel_speed_airbag: /* O000H .. OOFFH */
extern FUZZY _Weight_airbag; /* O000H .. OOFFH */
extern FUZZY _Inf_Speed_airbag; /* O000H .. OOFFH */
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/% */

/*- use the following #defines to write the inputs to the fuzzy controller */

/* */
#define Beltn_airbag _Beltn_airbag

#define Distance_airbag _Distance_airbag
#define Rel_speed_airbag _Rel_speed_airbag
#define Weight_airbag _Weight_airbag

/* */

/* use the following #defines to read the outputs from the fuzzy controller */

/* */

#define Inf_Speed_airbag _Inf_Speed_airbag

/* */

/% function prototypes */

/% */

e for starting up the generated fuzzy logic system, call once -----*/

void _initairbag(void);

#define initairbag _initairbag
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e for calling the generated fuzzy logic system —------——---*/
FLAGS _airbag(void);

#define airbag _airbag
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APPENDIX C2

Code for HIWARE for 68HC12
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fuzzyTECH 5.30 MCU-HC1/12 Edition

License Number: FT U 00061 01 HS

Code Generator: Assembler Source Code

XDEF

XDEF

_airbag

_initairbag

XDEF

XDEF

XDEF

XDEF

_Beltn_airbag
_Distance_airbag
_Rel_speed_airbag

_Weight_airbag

Toolkit: HIWARE

MCU: 12

input/output interface of controller

;O0H .. FFH
;O0H .. FFH
;00H .. FFH

;O0H .. FFH
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XDEF _Inf_Speed_airbag :00H .. FFH

external functions of fuzzy library

XREF flms

XREF com

external variables of fuzzy library

XREF fuzptr

XREF _invalidflags
XREF itent

XREF tpptr

XREF crisp

XREF otcnt

ftData: SECTION 1

RAM i/o-vars
fuzvals: 12+4+40
fvs:

_t_Beltn_airbag: ds.b 2
_t_Distance_airbag: ds.b 3

_t_Rel_speed_airbag: dsb 3
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_t_Weight_airbag: ds.b 4

_t_Inf_Speed_airbag: dsb 4

crispio:

_Beltn_airbag:

ds.b 1

_Distance_airbag: ds.b 1

_Rel_speed_airbag: ds.b |

_Weight_airbag: ds.b 1

_Inf_Speed_airbag: ds.b 1

ftCode: SECTION 2

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

standard term definition (x1. x2, x3, x4) -=~-—emcemmeamev

$00, $00, S00, $00
S00, S00. SFF, SFF
$00. $00, $2B, $55
$2B, $60. S9F, SD5
SAA, SEA, SFF, SFF
S00, S00, S17, S46
S2E, $5D, SA2, SD1
SAE, SCS, SFF, SFF
$00, S00, S0D, $36

S1B, $43, $6B, $94
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dc.b

dc.b

$6B, $87, SAE, $D7

SAE, SD7, SFF, SFF

xcom table (defuzzification)

Xxcom:

dc.b

SOD, 853, SAC, SF2

rule table(s)

rt0:

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

$0, $2. 85, S8, SFE
SD. SFE
$0, 82, 85, 89, SFE
SD, SFE
S0. $2. 85, SA, SFE
SE. SFE
$0. 82, 85, $B, SFE
SE. SFE
$0. $2, $6, S8, SFE
SE, SFE
S0, $2, $6, $9, SFE
SE, SFE
$0, $2, $6, $A, SFE

$E, SFE
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de.b 30, $2, $6, $B, SFE
dc.b SE, SFE
dc.b S0, $2, $7, S8, SFE
dc.b SE, SFE
dc.b S0, $2. §7, 89, SFE
dc.b SF. SFE
de.b S0, 52,87, SA, SFE
dc.b SF.SFE
dc.b S0, S2, $7. SB, SFE
dc.b SF.SFE
dc.b S0, S3, S5, S8, SFE
dc.b SF, SFE
dc.b S0, 83, S5, 89, SFE
dc.b SF, SFE
dc.b S0, 83, 85, SA, SFE
dc.b SF, SFE
de.b SO, 83, $5, $SB, SFE
dc.b SF. SFE
de.b S0, $3, 36, S8, SFE
dc.b SF, SFE
dc.b S0, $3, S6, $9, SFE
dc.b SF, $SFE

de.b 30, $3, $6, SA. $SFE
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dc.b

dc.b

dcb

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

$F, SFE
$0, $3, $6, SB, SFE
$F. SFE
$0. $3, 87, $8, SFE
$F, SFE
$0, $3. 87, 89, SFE
SF. SFE
$0. $3, 87, SA, SFE
SF, SFE
S0, $3, $7, SB. SFE
SF. SFE
$0, $4, S5, $8. SFE
$C, SFE
$0, $4, $5. 9. SFE
SC, SFE
50, $4, 85, SA, SFE
$C, SFE
80, $4. $5, SB, SFE
SC, SFE
$0, $4, $6, $8, SFE
SC, SFE
$0, $4, 56, $9, SFE

$C, SFE



dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

$0, $4, $6, SA, SFE
$C, SFE
$0. $4, $6, $SB, SFE
SC, SFE
80, 34, $7, S8, SFE
SC, SFE
$0, $4, $7, 89, SFE
$C, SFE
$0, $4, $7. SA, SFE
SC, SFE
$0. $4, $7, SB, SFE
SC, SFE
$1, 82, 85, S8. SFE
SC. SFE
$1,82, 85, 89, SFE
SC. SFE
S1. 82, 85, SA, SFE
SD, SFE
$1, 82, 85, $B, $SFE
SD, SFE
$1, 82, $6, $8, SFE
$D, SFE

$1, 82, 36, $9, $FE

163



dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

de.b

dc.b

dc.b

dc.b

dc.b

dc.b

$D, SFE
S1, $2, $6, $A, SFE
SE. SFE

S1. $2. $6, SB. SFE
SE, SFE

S1, 52, $7. $8. SFE
SE, SFE

S1,$2. $7. 59, SFE
SE. SFE

S1.52.57, SA. SFE
SE. SFE

S1.$2, 57, $B, SFE
SE, SFE

S1.$3, S5, $8, SFE
SE. SFE

$1,$3, S5, $9, SFE
SE. SFE

S1.S3,S5, SA, SFE

SF, SFE

$1,$3, S5, SB, SFE
SF, SFE

S1,$3, $6, S8, SFE

SF, SFE
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dcb

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

$1, $3, $6, $9, SFE
SF, SFE
$1, 83, $6, SA, SFE
SF, SFE
$1, $3, $6, SB, SFE
SF, SFE
S1.83.57.S8. SFE
SF, SFE
S1.$3,87.39, SFE
SF. SFE
$1, 83, 87, SA, SFE
SF. SFE
S1,8$3.87, SB. SFE
SF, SFE
S1, $4. 85, $8, SFE
SC, SFE
$1, 84, 85. 89, SFE
$C. SFE
S1, $4, 85, SA, SFE
SC, SFE
$1, 84, 85, SB, SFE
$C, SFE

$1, $4, $6, $8, SFE
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dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dcb

dc.b

dc.b

dc.b

dc.b

$C, SFE

$1, $4, $6, 89, SFE

$C, $FE

$1.84, $6, SA, SFE

$C.SFE

$1, $4, $6, $B, SFE

SC, SFE

$1.54, 87, $8. SFE

$C, SFE

$C, SFE

S1, $4, 87, 89, SFE

S1, 34,57, SA, SFE

SC, SFE

$i. 54,87, $B, SFE

SC, SFF

_airbag:

Idy
1dd

std

#fuzvals
#ipts

tpptr

fuzzification
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ldab
stab
ldab
stab

jsr

ldab
stab
ldab
stab

jsr

Idab
stab
ldab
stab

jsr

ldab
stab
ldab
stab

jsr

#32

itcnt
_Beltn_airbag
crisp

flms

#33

itcnt
_Distance_airbag
crisp

flms

#S3

itcnt
_Rel_speed_airbag
crisp

flms

#34

itcnt
_Weight_airbag
crisp

fims
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inference init

rule block 0
Idx #_rt0
Idy #fuzvals
Idaa #255
rev :min aggregation

defuzzification
clr _invalidflags

Idy #fuzvals + SC

ldx #xcom + SO

Idab #S4
stab otcnt
jsr  com

bcc  outOvalid
ldab #S80

outOvalid: stab _Inf_Speed_airbag

idab _invalidflags

rts ;end of fuzzy controller
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initairbag

_initairbag:
Idy #S4
ldaa #0
begin:

staa fuzvals + $SB.y
dey
bne begin

rts

:data size knowledge base (bytes):

:RAM: 21 O00O15H

:ROM: 412 0019CH

:TOTAL: 433 O00IBIH

end
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