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ABSTRACT 

Fuzzy Logic implementation is becoming increasingly important, and finding 

applications in diverse areas of current interest, such as control, pattern recognition, 

robotics. and other decision making applications. Fuzzy decision process offer a 

signi ficant advantagc over crisp decision process which is the ability to process different 

Ievels of truth instead of only 1 or O levels. Fuzzy Logic does not require precise inputs, it 

is inherently robust, and c m  process any reasonable number of inputs but system 

complexity increases rapidly with more inputs and outputs. Distributed processors would 

probably be easier to implement. Simple. plain-langage IF X AND Y THEN Z rules are 

uscd to describe the desired system response in terms of linguistic variables rather than 

mathematicai formulas. The number of these is dependent on the number of inputs, 

outputs, and the designer's control response goals. 

The new Motorola 68HC12 MCU has an ernbedded îüzzy logic instruction set. Using this 

instruction set. we can implement cornplex fuzzy logic systems using only a few hundred 

bytes of ROM that cycle cornpute in less than a millisecond. Considerin2 the fact that the 

fuzzy logic instruction set of the 68HC 12, enables the use of fuzzy logic in mass-market 

high-speed applications, such as car engine control, anti-skid brakes, traction control, 

inter-vehicle dynamics control, hard disk drive control, servo motor control, and cellular 

phones. 

This thesis deals with the design of Automotive Airbag Control System a using Fuzzy 

Logic based decision structure and implementation using the 68HC 12 microcontroller. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Air bags are safety devices of proven value that supplement the protection provided by 

seat belts. But air bags sornetimes cause injuries when they inflate in Iow-speed collisions 

and incidents in which air bags do not inflate when it seemed they should have. Virtually 

d l  new cars have airbags. and they're saving Iives. They are reducing driver deaths by 

about 14 percent, and passenger bags reduce deaths by about 1 1 percent. 

1.2 Construction and Design 

Airbag assemblies consist of the airbag (made of Nylon), inflator modules, sensor 

ELECTRI CAL e\,.SEzrG 
CON TRlM COVER 

Fig: 1 Airbag Construction 

housing, electricai connectors (clock spring), airbag retainer and the cover. The driver's 



side bag is mounted in the center of the steering wheel w b l e  the passenger bag is 

mounted in the top of the dash on the passenger side of the vehicle. In addition to the 

front airbags, the car companies are putting Airbags in the doors for side impacts that are 

not covered by the primary airbags. They are putting them in the seats for the drivers and 

rem prissengers as well. This increases the cost as well as the complexity of the 

systems. [ 1 ] 

1.3 What happens in a Collision 

When there is a frontal collision a number of things happen very quickly. The sudden 

deceleration of the vehicle causes 2 sensors to send an electricd signal to the diagnostic 

module. The diagnostic module self tests to confirm that a crash event is taking place. 

then it allows the signal to trigger the airbag deployment and when ignited, this 

propellant produces nitrogen gas, which inflates the airbag. This process occurs very 

quickly-in Iess than one-twentieth of a second that is faster than the blink of an eye. 

Most air bags have interna1 tether straps that shape the fabric and limit the movement of 

the bag. Vents in the rear allow the bag to deflate slowly to cushion the head as it moves 

forward into the deploying air bag.121 

Sensors deploy air bags only when deceleration exceeds a minimum threshold. If the 

change in speed due to an impact is lower than the threshold, the air bag will not inflate. 

In low to moderate speed collisions, the seat belt alone is usually sufficient to prevent 

serious injury. In high-speed crashes, the seat belt may not be abte to prevent the driver's 

head from striking the steenng wheei or the passenger's head from hitting the dashboard. 

Frontal air bags protect the head and upper body in frontal crashes. 



A modern frontal airbag system consists of an electronic control unit (ECU) and one 

airbag module or two. The sensor (and micro-machined accelerorneter) continuously 

monitors the acceleration and deceleration of the vehicle and sends this information to a 

microcontroller. When the rnicrocontroller "recognizes" the crash pulse from the sensor, 

an electrical current is sent to the initiator in the airbag module. 

1.4 Crash Sensors 

Crash Sensors are the devices that work with the control module to discriminate between 

crash and non-crash events. These sensors measure the severity of the impact. They are 

set up so that sudden "negative acceleration" will cause the contacts to close. sending a 

signal to the control module which checks for a signal from the rear sensor which must 

arrive first to activate the airbag(s). It is important to note that at least 2 of these sensors 

must signal a crash before airbag deployment. 

1.4.1 Sensors Types 

By  function, there are 2 types of sensors, Impact sensors and Safing sensors. The forward 

sensors are located in various locations forward of the passenger cornpartment. Some are 

located inside the fenders, some are on the cowl and some are attached to the core 

support in front of the radiator. 

Rear sensors are also known as safing sensors as their function is to determine that a 

crash has occurred. Rear safing sensors are iocated in various locations in the passenger 

cornpartment depending on the manufacturer. Some are integrated with the 

Con troVDiagnostic Module. 



The rear srrfing sensor must close before the forward sensors to avoid airbag deployment 

in cases where the impact is not severe enoush to cause deployment. When the vehicle is 

parked with the ignition off, deployment is very untikely because there is no power to the 

circuits for deployment. This means that someone cm hit the car and sound the alarm but 

not deploy the airbags. 

Fig:2 APeek Inside Fonvard Sensor 

1.5 Inflator Assembly 

When the Control Module activates the airbag assembly, an electric current is sent to the 

detonator, which ignites the Sodium Azide pellets. When it bums, it releases nitropen gas 

very quickly and in lape  quantities. This is what inflates the airbap. 

Fig:3 Typical Mator Assembiy Behïnd Streexing Wheel 



1.5.1 Sodium Azide 

Sodium Azide is rocket fuel and is the fuel of choice for a number of reasons. It is a solid 

propellant with a very high gas generarion ratio. Zt is very stable in this application. 

When Sodium azide burns, it's major product is Nitrogen gas, which makes up around 

78% of the Earth's atmosphere. One of the other by-products is sodium hydroxide. This is 

commonly known as Lye, which is a caustic compound. The quantities produced are very 

smsll ruid present a very small rkk of burns. The white powder residue seen after 

inflation is common corn starch, used as a lubricant for expansion of the airbag. Testing 

is underway with inflators that release argon gas. 

1.6 Why Do Airbags Sometirnes Cause Injuries? 

In order to protect the head and upper body in high-impact crashes, air bags must inflate 

so quickly, and with such force, that they can cause injuries. While most of these injuries 

are minor, consisting only of  bruises and abrasions, some are more serious, such as 

broken , m s .  In extreme cases. such as when the head or chesc is against the module 

when it opens, fatal injuries c m  result. 

People who sit close to the steering wheel are at higher risk of being injured by a 

deploying air bag than those who sit fùrther away. 

1.7 Future of Airbag Systems 

It is now mandatory for air bags to be installed in ail vehicles. In the case of air bags. In 

order to reduce the incidence of airbag induced injury.[3] 



The probiem of serious inflation injuries isn t going to be with us forever. Future airbag 

technologies will reduce the risk even arnong people who have moved forward before 

airbags inflate. Sensors will detect rear-facing restraints and automatically switch off 

passenger bags. Inflation rates will be tailored to crash severity. More advanced airbags 

could recognize people's positions just before inflating and reduce the force if someone is 

in position to be harmed. 

Motor vehicle manufacturers are developing "smart" airbags. Already some possess two 

thresholds of activation. one that is appropriate for a belted occupant and another, lower 

threshold, for an unbelted person. The next generation of air bag systems wilI probably 

have proxirnity sensors that gauge how close an occupant is to the air bag module and 

will be equipped with warning systerns that signal when someone is too dose and 

automatic systems may prevent the airbag from deploying. 

1.7.1 Smart Systems 

The Smart Airbag System of the future is not just the airbag, but a redesign of the 

components in the current airbag systems. Features include: 

Weight Sensors: This is a new sensor for the passenger seat to classify the weight 

and to determine what type of occupant is in the seat, Le.; adult or child. 

Infrared Occupant Detection: This system will use infra-red bearns (just like in 

a TV remote control) to detect the distance the passenger is from the airbag and 

adapt the force of deployment accordingly. 

Capacitive Reflective Occupant Sensing: These sensors will be located in the 

seat backs and in the dash to identify the distance of passengers from the 



dashboard. These sensors wiII be able to discriminate between a human occupant 

and inanimate objects like goceries. This alone will Save thousands of dollars in 

the cases where the driver is the only occupant in the front seat. 

Updated Sensors: The updated sensors will have the capabilities of deploying the 

seatbelt pre-tensioners faster, so in a crash situation passenger will be in the best 

position to benefit from the airbag deployment. 

Centralized Electronic Control Unit: The new control units will be able use ail 

the input from the new sensor technology and through new software deploy what 

needed and when needed.[4] 

Our Project Objective 

To deveIop the technical bases for an airbag which will lead to the elimination of 

fatalities and reduce the severity of the injuries resulting from aggressive airbag 

deployment and optimizing the benefits to normally seated restrained occupants while 

also restoring the full protection for unbelted adults in high severity crashes. 

To avoid the deployment of airbags when the prissenger seat is empty. This approach will 

save the cost associated with recharging the airbag after unnecessary deployment. 

To analyze the possibility of using fuzzy logic for this design approach and also try to 

overcome the  RAM constraints in the microcontrollers. 

To incorporate the information about occupant's weight and position into the airbag 

module to adjust the deployment speed of the airbag. 



History of Fuzzy Logic 

Fuzzy logic theory was proposed by Professor Lotfi Zadeh of University of California, 

Berkeley in 1965.1t was invented in the U.S. but engineered to perfection in Europe, and 

was mass-marketed in Japan. There are hundreds of successful fuzzy lo,oic applications in 

today's world and have proved the vaiue of this technology. but still some scientists 

condemn the concept.[6] 

2.1 Industrial Applications 

In 1970 Ebrahim Mamdani at Queen Mary College in London. England. used fuzzy logic 

to control a stearn generator that he could not get under control with conventional 

techniques. Hans Zimmermann at the RWTH University of Aachen, Gerrnany, used 

fuzzy logic for decision support systems. Other narnes given to fuzzy logic were "multi- 

valued logic" or "continuous logic" and fuzzy logic could not get broad acceptance in 

industry. [7] 

Fuzzy logic gained more importance in decision support and data analysis applications in 

Europe around 1980 and advanced fuzzy Iogic technologies were developed in 

application and research projects. Most of these developments were modeled on human 

decision and evaluation process.[8] 



2.2 Japanese ieading role 

Japanese companies started using fuzzy logic in control engineering around 1980 after 

inspiration from European fuzzy logic applications, the first. Fuzzy logic applications 

were at water treatment plant by Fuji EIectric in 1983 and a subway system by Hitachi, 

which was opened in 1987. Most of the applications had dedicated fuzzy logic hardware 

because of poor cornputational performance of first fuzzy logic aigorithms on standard 

hardware.[9] 

Fuzzy logic supports the generation of a fast prototype and incremental optimization and 

fuzzy logic system always remains plain and simple to understand. The "intelligence" of 

a system is not buried in differentiai equritions or source code. 

As a result fuzzy logic is now used in about every application area for intelligent control 

or data processing. Photo and video cameras use fuzzy togic to put photographer's 

expertise in their control. Mitsubishi announced the world's first car where every control 

system is based on fuzzy logic and most other Japanese car manufacturers use fuzzy logic 

in some of their components. In factory automation, Omron Corp. Claims more than 350 

patents and fuzzy logic control optimizes many chemicd and biological processes. [20], 

CW 

2.3 Europe Chases Japan 

When European corporations realized that they have aimost lost a key technology to 

Japan, they started a major effort to promote fuzzy logic in their applications. Now a lot 



of successful fuzzy logic m a s  market products have been launched in Europe and 

uncounted n u m k r  of industrid automation and process control applications are 

successfulIy using fuzzy logic. The fuzzy logic enhanced products include home 

appliances that reaiized mayor savings in energy and water consumption with no added 

product costs as well as many automotive applications. The industrid automation 

applications include chernical and biological process control, machinery equipment 

control, and intelligent sensors.[27] 

Due to the big commercial success of these applications, fuzzy logic is now considered a 

"standard" design technique and has gained broad cicceptance in the engineering 

community. One of the supporting factors was the advent of advanced fuzzy logic 

software design tools that supported al1 development stages of a fuzzy logic design. Some 

of the fuzzy logic design tool software houses tearned up with major semiconductor and 

industrial automation equipment manufacturers to provide seamless development 

environment for most target hardware platfonns. 

2.4 Fuzzy Logic in the North America 

Fuzzy logic has recently gained a lot of interest arnong companies who are in heavy 

cornpetition with both Asia and Europe. There are many factors that count. North 

Arnericrin manufacturers do not compete with the Japanese in entertainment electronics 

manufacturing. Use of fuzzy logic in carncorders, cameras, and hi-fi is more a 

cornpetitive factor between Japanese corporations themselves. in Europe, most 



applications are in industrial automation and automotive engineering. In other 

applications, there is tough cornpetition from both Europe and Japan.[28] 

Fuzzy logic proved to be an excellent tool to build decision support systems. memory 

cache and hard disk controllers as well as compression algorithms for speech and video. 

Also, telecom applications such as echo cancellation, network routing, and speech 

recognition benefit from fuzzy logic. Al1 fuzzy Iogic experts agree that the clever 

combination of neural network technologies and fuzzy logic will be the next logical step 

in further developing the technology. [6] 



BASIC CONCEPTS OF FUZZY LOGIC 

3.1 Fuzzy Expert Systems 

In the real world there exists much fuzzy knowledge, i.e., knowledge that is vague. 

imprecise, uncertain, arnbiguous. inexact, or  probabilistic in nature. Human thinking and 

reasoning frequently involve fuzzy information. possibly originating from inherently 

inexact human concepts and matching of similar rather then identical experiences. In 

systems based upon classical set theory and two-valued logic. it is very difficult to 

answer some questions because they do not have completely tnie answers. Humans. 

however, can give satisfactory answers. which are probably tme. Expert systems should 

not only give such answers but aiso describe their redity level. This Ievel should be 

calculated using imprecision and the uncenainty of facts and rules that were applied. 

Expert systems should dso be able to cope with unreliable and incomplete information 

and with different expert opinions. Fuzziness and uncertainty are the two distinct inexact 

concepts employed in the system. The following sections will discuss the general theory 

of both fuzziness and uncertainty, their implications on mle evaluation and dgorithms 

implemented for extracting exact values frorn fuzzy facts.[l9] 



3.2 Fuzziness 

Fuzziness occurs when the boundary of  a piece of information is not clear-cut. For 

example, concepts such as y u m g ,  tall, good. or high are fuzzy. There is no single 

quantitative value which defines the term young. For some people. age 25 is yourig, and 

for others, age 35 is yoimg. In fact the concept yoring has no clean boundary. Age 1 is 

definitely Young and age 100 is definitely not young: however. age 35 has some 

possibiiity of being yorrng and usudly depends on the context in which it is k i n g  

considered. The representation of this kind of information is based on the concept of 

fuzzy set theory [10]. Unlike classical set theory where one deds  with objects whose 

membership to a set c m  be clearly described, in fuzzy set theory membership of an 

elernent to a set can be partial, Le., an element belongs to a set with a certain grade 

( possibility) of membership. More forrndly a fuzzy set A in a universe of discourse U is 

charricterized by a membership function 

which associates with each element x of U a number ,f&(x) in the interval [O, I ]  which 

represents the grade of membership of x in the fuzzy set A. 

For example, the fuzzy term yourtg might be defined by the fuzzy set in Table below. 



Fiizzy Tcrm ?ou rig 

Regarding equation (1 ), one c m  write 

Grade of membership values constitute a possibility distribution of the terrn yourrg. The 

table can also be shown graphically 

10 20 30 40 50 60 70 80 
AGE 

Fig : 4 Possi biiity distribution of yotrng 



3.2.1 Uncertainty 

Uncertainty occurs when one is not absolutely certain about a piece of information. The 

degree of uncertainty is usually represented by a crisp numericd value on a s a l e  from O 

to 1, where a certainty factor 1 of 1 indicates that the expert systern is very certain that a 

fact is true, and a certainty factor of O indicates that it is very uncertain that a fact is true. 

A f x t  is composed of two parts: the fact in the sense of standard and its certainty factor. 

In general a fact takes the following form: 

(fact) [CF certainty factor] 

l'he CF acts as the delimiter between the fact and the certainty factor an( ] indicates an 

optional part. For exarnple. (prediction sunny) CF 0.8 is a fact that indicates that the 

weather will be sunny with a cenainty of 80%. However, if the certainty factor is omitted, 

(prediction sunny) then we assume that the weather will be sunny with a certainty of 

100%. 

3.3 Inference Techniques 

Rule evaluation depends on a number of different factors, such as whether or not fuzzy 

variables are found in the antecedent or consequent part of a rule, whether a rule contains 

multiple antecedents or consequents, whether a fuzzy fact being asserted has the same 

fuzzy variable as an already existing fuzzy fact (globai contribution), and so on. 



3.3.1 Simple Rules 

Consider the simple rule of  form 

where: 

A is the antecedent of the rule 

A' is the matching fact in the fact database 

C is the consequent of the rule 

C' is the actual consequent calculated 

CF. is the certainty factor of the rule 

CF is the certainty factor of the fact 

CFc is the certainty factor of the conclusion 

Three types of simple rules are defined: CRISP-, FUZZY-CRISP, and FUZZY-FUZZY. 

If the antecedent of the ruIe does not contain a fuzzy object, then the type of rule is 

CRISP- regxdless of whether or not a consequent contains a funy  fact. if only the 



antecedent contains a fuzzy fact, then the type of d e  is FUZZY-CRISP. If both 

antecedent and consequent contain fuzzy facts, then the type of rule is FUZZY-FUZZY. 

3.3.2.1 CRISP- Simple Rule 

If the type of rule is CRISP-, then A' must be equal to A in order for this rule to fire. This 

is a "normal" nile (actually A would be a pattern and A' would match the pattern 

specification, but for sirnplicity we will not ded with patterns). In that case the 

conclusion d is equal to C. and 

3.3.1.2 FUZZY-ClUSP Simple Rule 

If the type of rule is FUZZY-CRISP. then A must be a fuzzy fact 1 with the same fuzzy 

variable as specified in A for a match to occur and the mle to be placed on the agenda. In 

addition. while values of  the fuzzy variables A and A represented by the fuzzy sets F a  

and F r ,  do not have CO be equal, they must overlap. For example, the fuzzy facts 

(ter7tperutrire high) and (pressrtre high) do  not match because the fuzzy variables 

rctrzprrtrrurc. and pressrtre are not the sarne. However, given the fuzzy facts (pressrtre 

[oit.). (pl-essrire nzeclr'ritn), and (presslire high), as illustrated in Figure, clearly (pressure 

lorv) and (presswe medirtrn) overlap and thus match, while (pressrtre iow) and (pressrire 

/iigh) do not match. 



Fig: 5 hIstching of fm_v facts 

For a FUZZY-CRISP mle. the conclusion d is equal to C, and 

where S is a measure of sirnilarity between the fuzzy sets F a  (deterrnined by the fuzzy 

pattern A )  and P a  (of the matching fact A'). The measure of similarity is based upon the 

mcasure of possibility P and the measure o f  necessity N. It is calculated according to the 

following formula [ I  11, [32], [34] 

if N(F,IF'J>O.S 

othewise 



where 

And 

N(F,IF',)= I - ( F J F / , ~  

F' , is the complement of F , described by the following rnembership function 

P F ; ( U ~  1 - p  F,(u) vu i5 U 

Fig: 6 Fact and antecedent fuzzy sets 

Therefore, if the similarity between the fuzzy sets associated with the fuzzy pattern (A) 

and the matching fact (A ') is high the certainty factor of the conclusion is very close to 

CF , * CF since S will be close to 1 .  If the fuzzy sets are identical then S will be 1 and 

the certainty factor of  the conclusion will equal CF. * CF,-. If the match is poor then 



this is reflected in a lower certainty factor for the conclusion. Note also that if the fuzzy 

sets do not overlap then the similarity measure would be zero and the cenainty factor of 

the conclusion would be zero as well. In this case the conclusion should not be asserted 

and the match would be considered to have failed and the rule would not be placed on the 

agenda. 

Fig: 7 Similarity C alculation 

First, the necessity is calculated as in Figure below. 

Since the necessity is less than 0.5, 

S = ( N (Fa 1 F',) + 0.5) *P(F, / F',) 

And thus CF = (O. 7) ' (0.8) * (0.6667) = 0.3 733. 

(see Figure below) 



funy-fact fact I 

 fir=^\'- fuc-r JctcI  crmtldcv~ienc 

minimums 

nlaxiniurn uf niininii~ms 

FUZZY-FACT X = I - P = 0.3233 

Sf FJF,') 

Fig: 8 SECESSITY CAI-CU LATIOh' 

3.3.1.3 FUZZY-FUZZY Simple Rule 

If the type of rule is FUZZY-FUZZY, and the fuzzy fact and antecedent fuzzy pattern 

match in the same manner as discussed for a FUZZYCRISP rule. then it is shown in 

[ 161 that the antecedent and consequent of such a rule 

are connected by the fuzzy relation 

Where 

F , is a fuzzy set denoting the value o f  the fuzzy antecedent pattern 

F ,  is a fuzzy set denoting the value of the fuzzy consequent. 



In the current version of the system the membership function of the relation R is 

calculated according to the formula. 

Other dgorithms for foming this relation c m  be found in [12]. The caiculation of the 

conclusion is based upon the cornpositional mle of inference [ 131, which c m  be 

described follows: 

where F > is a fuzzy set denoting the value o f  the fuzzy object of the consequent. The 

membership function of F', is calculated as follows [14]. [37] 

where 



The certainty factor of  the conclusion is cdculated according to  

A graphical illustration of the matching of  the fuzzy fact with the fuzzy pattern and the 

generation of the fuzzy conclusion is shown below in Figure 8. Note that this type of 

inference method is comrnonly referred to as max-min rule of inference. The conclusion 

set is simply cfipped off at the z value. Figure shows the sarne results using a max-prod 

rule of inference. In this case the conclusion has al1 of its membcrship values scaled by 

the z value. 



3.3.1. Complex Rules 

3.3.4.1 Multiple Consequents 

The consequent part of the rule c m  only contain multiple pattems (Ci . Cz ... Cn ) with the 

implicit and conjunction between them. They are ueated as multiple rules with a single 

consequent. So the folIowing rule: 

if Antecedents then Ci and C7 and ... and C, 

is equivalent to the  following rules: 

if Antscedents then Cl 

if Antecedents then Ct 

if Antecedents then Cn 

3.3.3.2 Multiple Antecedents 

From the above, clearly. only the problem of multiple pattems in the antecedent with a 

single assertion in the consequent needs to be considered. If the consequent assertion is 

not û fuzzy fact. no special treatment is needed since the conclusion will be the crisp 

(non-fuzzy) fact. However. i f  the consequent assertion is a fuzzy fact. the fuzzy value is 

calculated using the following basic aigorîthm [15], [37]. 



If logicai aad is used, one hris 

where A I i  and A ', are hcts (crisp or fuzïy) that match the antecedents Ai A? 

respectively. In this case the fuzzy set describing the value of the fuzzy assertion in the 

conclusion is calculated riccording to the formula 

w here 

ri denotes the intersection of two fuzzy sets 

FqC1 is the result of fuzzy inference for the fact A'! and the simple rule 

if Al then C 

F',? is the resuIt of fuzzy inference for the fact A'- and the simple mle 

if Al then C 



In next figure we see the results of a mle in which both Al and A2 are fuzzy patterns. 

Note that if both Ai and A2 were crisp (non-fuzzy) facts then the conclusion would just 

be the fuzzy fact C since we would be dealing with two CRISP-FUZZY simple mies. If 

one of the patterns is crisp (say Ai  ) and the other is fuzzy then the conclusion is F'c2 

since the CRISP-FUZZY simple rule wouId conclude C and the FUZZY-FUZZY simple 

nile would conclude F:2. The intersection of these two would just be FL2. 

.Ai. A, '  

Fig: 10 Compositional mie for multiple anteïeâenLs 



The certainty factor of the conclusion is calcuiated according to MYCIN's mode1 

CFc = min(CF>/I ,CF b) * C F ,  

where min denotes the minimum of the two numbers and CF), is the CF of the simple 

rule if A 1 then C given the matching fact A CF> is the CF of the simple rule if A- then 

C given the matching fact A / 

The above algorithm can be applied repeatedly to handle any combination of antecedent 

patterns. Le.. 

CF', = rnin(~F'>, , CF b, ... , CF >.) * CF, 

3.4 Defuzzification 

The outcome of the fuzzy in ference process is a fuzzy set, specifying a fuzzy distribution 

of a conclusion. However, in some cases, such as control applications. only a single 

discrete action may be applied. so a single point that refiects the best value of the set 

needs to be selected. This process of reducing a fuzzy set to a single point is known as 

defirurficatiotz . 

There are several possible methods, each one of which has advantages and disadvantages. 

A method which has k e n  widely adopted is to take the center of gravity (COG or 

moment) of the whole set. This has the advantage of producing smoothly varying 



controller output, but it is sometimes criticized as giving insufficient weight to rule 

consequents that agree and ought to reinforce each other- Another method concentrates 

on the vaiues where the possibility distribution reaches a maximum, called the mean of 

rnnxirmz rnethod. The mean of maxima (MOM)  algorithm is criticized as producing Iess 

smooth controller output, but has the advantage of greater speed due to fewer floating 

point calculations.[6], [38], [39] 

3.4.1 Center of Gravity Algorithm 
4 

Thc center of gravity mrthod may be written formally as 

where .r ' is the recommended, defuzzified value, and the universe of discourse is U. The 

/ integral then reduces to a simple sumination, where -ri is the local center of gravity, Ai is 

x; * A; 

= i = 1 
n 

Z Al 

i = l  

the local area of the shape underneath line segment @ i-1 , p i ), and r i  is the total number 

of points. 

For each shaded subsection in above figure, the area and center of gravity is calculated 

according to the shape identified (i.e., triangle, rectangle or trapezoid). The center of 

gravity of the whole set is then deterrnined: 



3.4.3 Mean of Maxima Algoritbrn: 

The MOM algorithm returns the x-coorùinate (x") of  the point at which the maximum 

membership (y) value o f  the set is reached. If the maximum y v d u e  is reached at more 

than one point, then the average o f  al1 the x" is taken.[l6], [6]  

S' x' 

Fig: 12 Extunples of h-IOM defunification 



3.4.3 Center of Maximum 

we derive the centroid equation for the sum mle which illuminates the assumptions made 

in deriving the defuzzification. 

Let L,(y) be the original output membership function associated with rule i, where y is the 

output universe of discourse. After applying rule i, this membership function will be 

reduced to the value[l6] 

Where 1t.l is the minimum weight found by applying rule i. The sum of these reduced 

output membership functions over al1 rules is given by 

Where N is the number of d e s .  

The crisp output value is then given by the centroid of M(y) from the equation 



Note that the centroid of rnembership function Ldy) is given by 

But 

is just the area of membership function Ldy). Substituting the values. we get 

So we c m  write the numerator ris 



Sirnilarly the denominator can be written as 

So we can write the crisp output of fuzzy controller as 

The above equation says that we c m  compute the output centroid frorn the centroids, cl. 

of the individual output membership function. 

We also note that the sumrnation is over dl N rules. But the number of output 

membership function ,Q, will in general, be iess than the number of rules ,N. That means 

that there will be many tenns that have the same value of cl and 1,. For exarnple, suppose 

that rules 2. 3. and 4 in the surn al1 have the output mernbership function L~ as the 

consequent. This means that in the sum, 



the values cf and Il are the same values ck and f because they are just the centroid and 
area of the krh output membership function. These three t e m s  would contribute the value 

to the sum where 

is the sum of al1 weights from rules whose consequent is output membership function L ~ .  

This means that the equation for the output value, M, c m  be writtcn as 

If the ürea of al1 output membership Function f are equal then the equation reduces to 

y,, = "' 
f w 6  

Equations above show that the output crisp value of a fuzzy controller c m  be computed 

by summing over only the nurnber of output membership functions rather than over al1 

fuzzy rules. Also. if wr want to compute the output crisp value, then we need to specify 

only the centroids. 6. of the output fuzzy membership functions. This is equivalent to 

assuming singleton fuzzy sets for the output. 



We use singleton fuzzy sets for the output represented by the centroids, C<. We also use 

the Mm-MAX inference rule It should be clear that in this case the centroid Y, will still 

be given where is now the output array 



CHAPTER 4 

68HC12 FEATURES 

4.1 Introduction 

The 68HC 12 is a high-speed, 16-bit processing unit that has a programming mode1 

identical to that of the industry standard M68HC i 1 CPU. The 6SHC 12 instruction set is a 

proper superset of the M68HC 1 1 instruction set, and lM6SHC 1 1 source code is accepted 

by 68HC 12 assemblers with no changes. 

The 68HC 1 2 has full 16-bit data paths and can perform arithmetic operations up to 20 

bits wide for high-speed math execution.5 

LinIike many other 16-bit CPUs, the 68HC 12 allows instructions with odd byte counts, 

including many single-byte instructions. This allows much more efficient use of ROM 

sprice. 

An instruction queue buffers program information so the CPU has immediate access to at 

least three bytes of machine code at the start of every instruction. 

In addition to the addressing modes found in other Motorola MCUs, the 68HC12 offers 

an extensive set of indexed addressing capabilities including: 

Stack pointer c m  be used as an index register in al1 indexed operations 

Program counter c m  be used as an index register in d l  but auto inddec mode 

Accumulator offsets allowed using A, B, or D accumulators 



Automatic pre- or post-, increment or decrement (by -8 to +8) 

5-bit, 9-bit, or 16-bit signed constant offsets 

16-bit offset indexed-indirect and accumulator D offset indexed-indirect addressing. 

4.2 Mernory Structure 

The MC68HC9 12B32 h a  a large 32k byte flash EEPROM for program memory. 1 k 

bytes of static RAM. and 768 bytes of byte-ersable EEPROM. This is the first MCU to 

include both flash EEPROM and byte-erasable EEPROM on the same chip. An extemal 

12 volt supply is used to e r a e  and program the flash memory, the byte-erasable 

EEPROM uses only the normal 2.7 to 5.5 volt supply for programrning and erase 

operations. The iMC68HC9 12B32 can be used in expanded mode systems but its 

rnultiplexed 16-bit addresddata bus is primarily intended for factory testing. 
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4.3 Arithmetic Logic Unit 

68HC12 has a 16-bit processor with an ALU that is as wide as 20 bits for some 

operations. Al1 data busses in the M68HC 12 are 16-bits and the externd bus interface is 

nomally 16 bits. An instruction queue (similar to a pipeline) that caches prograrn 

information so that at least two more bytes of object code, in addition to the 8-bit op- 

code, are visible to the CPU at the start of execution for dl instructions so many 

instructions can execute in a single cycle with no delays for fetching additional prograrn 

information. Prograrn information is fetched into the instruction queue 16 bits at a time 

but instructions can be any length from one byte to six bytes. This allows 68HC 12 object 

code to be more efficient. In the 68HC12, al1 indexed instructions have an op-code, a 

post-byte. and 0, 1, or 2 extension bytes to specify index offsets. The post-byte code 

specifies which index register to use as the base reference and the type of indexed 

addressing. It allows X, Y, SP, or PC to be used as the base index register and has seven 

types of indexed addressing. 

For offsets of - 16 through + 15, the s'-bit offset is included in the post-byte and h a  a 

signed 5-bit offset mode, a signed 9-bit offset mode, and a 16-bit offset mode so an 

instruction like LDAA 4,X would be encoded into two bytes of object code. The 

accumulator offset indexed mode allows 8-bit accumulators A or B or the 6 b i t  D 

accumulator to be used as an additional offset that is added to the base index register to 

form the effective address of the instruction's operand. 

The 68HC 12 has a new form of auto- pre/post increment/decrement by -8 through +8. 

For exarnple, LDA ,X++ would adjust the index by one because the operand was a byte 



while LDX ,Y++ adjusted the index by two because the operand was a word. In the 

68HC 13. we cm say LDAA 5.SP- which loads a byte into accumulator A and then post- 

decrements SP by 5. This flexibility allows the 68HC 12 to work very efficiently with 

smd l  data structures. Execution time for these instructions is the same as it would be for 

the simple no-offset case (LDAA 5,+SP takes only three bus cycles). This sub-mode of 

indexed addressing allows X. Y, or SP to be used as the base index register, but not PC 

because that would interfere with the norrnd sequence of execution of instructions. These 

instructions are especialIy useful with move instructions such as MOVW 2,SP+,2.X+ 

which pulls a word from the stack and stores it at 0,X and automatically post-increments 

SP and X by 2 each. 

4.4 Addressing Modes 

68HC 12 has two types of indexed-indirect indexing, D accumulator offset, and 16-bit 

offset. These instructions use X, Y, SP, or PC as the base index register. form an 

intermediate address by adding D or  a 16-bit offset, fetch the 16-bit value from that 

address. and finally use this fetched value as  the effective address to access the operand 

of the original instruction. This type of indexing can be used to program computed 

GOTO type constructs, to access operands in a position independent way, or to program 

some types of case or switch statements in C. 

The enhanced indexed addressing is one of the strongest features of the 68HC 12 for d l  

kinds of prograrnmers, but the SP relative indexing is especidly important for C- 

compilers. The 68HC 12 also added LEAX, LEAY, and LEAS instructions which provide 

an easy way to do pointer arithmetic. For example a 5-,9-, or 16-bit signed constant c m  



be added to (or subtracted from) the index, A, B, or  D can be added to the index (D may 

be thought-of as a signed or unsigned value since it is the same width as the address bus), 

or the index can be replaced by a value from memory (using indexed indirect modes). 

4.4.1 lndexed Addressing Modes. 

The 6SHC 13 has a general transfer/exchange instruction that uses a post-byte to choose 

transfer or exchange and to specify which registers are involved. Some of these 

combinations that involve transfer o r  exchange of an 8-bit register to a 16-bit register, 

perform sign extension or  zero extension as an added bonus. 

It ha'; bit manipulation instructions (%SET, BCLR. BRSET, and BRCLR) to make the 

instruction set more. Register stacking instructions include instructions for pushing and 

pulIing CCR and D registers. 

Since this is a full 16-bit CPU, so 68HC12 can do 8x8 or 16x16 multiply operations in 

three bus cycles. Divide operations take 1 I or 12 cycles depending upon which divide 

instmction it is. There are also some specialty math instructions including a 16x 16 to 32- 

bit signcd multiply-and-accumulate instruction and table lookup-and-interpolate 

instmctions for tables of 8- or 16-bit entries. 

4.5 Instruction Set 

Possibly the most unusuai instructions in the 68HC 12 are its four fuzzy logic instructions 

which do membership function calculations, rule evaluation with weighted or unweighted 

rules, and a fourth fuzzy logic instruction that calculates the sum-of-products and sum-of- 

weights needed to do weighted average defuzzification. These h z z y  instructions allow a 

39 



complete fuzzy inference kernel to be programmed in about 50 bytes and execute in 

about 60 microseconds. This is better than a 5:  1 improvement in program size and better 

than 10x improvement in speed when compared against a 4 MHz bus rate MC68HC 1 1. 

68HC 12 improvements continue with 8- and 16-bit memory-to-memory moves that work 

with al1 practical combinations of immediate, extended, and indexed addressing modes. 

These instructions are especially useful in a register-based architecture and allow data 

movement without using up any CPU registers. The 68HC 12 d s o  has a complete set of 

long branches for signed and unsigned conditional branching. And there is a new group 

of loop primitive instructions (DBEQ, DBiW. TBEQ. BhT, TBEQ, m d  TBNE) which 

use A. B, D, X. Y. or SP as the loop counter. The loop counter is decremented, 

incremented, or tested and then a branch is taken on the condition that the counter has 

reached zero or ha not reached zero. 

Another group of instructions for doing MIN or MAX operations between an 

accumulator (A or D) and a byte or word sized memory location. There are versions of 

each that place (overwnte) the result into either the accumulator or the memory location. 

This results in a total of eight instructions in this group (MINA, MINM, MAXA. 

iMAXM, EMIND, EMINM, EMAXD, and EMAXM). 

4.6 Small Comprehensive Control Interfac 

In development systems, smalter is better when it cornes to the physical and resource 

requirements to gain access to a target application system- In many products it is 

unreasonable to connect a large umbilical connector that clamps over the main processor. 

The desire to debug systems in their final packaged form has led to various schemes that 



rely on serial communication to minimize the number of connections to the target system. 

Some of these systems aiso rely on some sort of background task that nins within the 

target system to respond to requests and cornmands that were passed into the system 

through a serial port. Typically the actual operation of debug commands and the real time 

operation of the target application are mutually exclusive. 

The .M6SHC12 takes this technology to a new level in both the reduction of the physicd 

interface and greater separation of debug and t q e t  application functions. The physical 

interface for the background system in the 68HC12 is a single MCU pin that does not 

share functions with any target application functions. Background access can be gained in 

any 68HC 1 3 target application system by connecting a cornmon ground and this single 

communication wire. . [ 5 ] ,  [40], [42J 

With this trivial connection, the host can read or write any location in the 64 kbyte map 

of the target MCU without stopping or slowing down the real time operations of the 

target application. For other debug functions such as reading and writing CPU registers. 

tracing single instructions in the application code, reading and writing whole blocks of 

memory, and accessing other development features, the target application can be stopped 

(forced to an active background debug mode) to wait for serial commands. 

Products based on this MCU can be fuliy assernbled before the on-chip flash memory is 

programmed with target application code. The background debug interface c m  be used to 

program or reprogram flash or byte-erasable EEPROM after final assembly. This 

interface c m  also be used for maintenance modifications to application code or  for 

product troubleshooting in the field. 



CHAPTER 5 

DESIGN CONCEPTS 

5.1 Stochastic Uncertainty 

Stochastic uncertainty deals with the uncertainty toward the occurrence of a certain event- 

Consider the statement: 

"The probability of hitting the target is 0.8' 

The evcnt itself -- hitting the target -- is well defined. The uncertainty in this statement is 

whether the target is hit or not. This uncertainty is quantified by a degree of probability. 

In the case of the statement, the probability is 0.8. Staternents like this cm be processed 

and combined with other statements using stochastic mcthods.[6] 

5.2 Lexical Uncertainty 

Uncertainty also lies in human languriges. the so-called lexical uncertainty. It deals with 

the imprecision that is inherent to most words humans use to evaluate concepts and 

derive conctusions. Consider words such as "tall men", "hot days", or "stable currencies", 

where no exact definitions underlie. Whether a man is considered "tdl" hinges on rnany 

factors. A child has a different concept of a "tall" man than an adult. Also the context and 

the background of a person making an evaluation plays a role. Even for one single 

person, an exact definition on whether a man is considered "tall" does not exist. No iriw 

exists deterrnines the threshold above which a man is conceived "tall". This would not 

make sense anyhow, since a law that defines al1 men taller than 6' 4" to be "tall" would 



impiy that a man with 6'3" is not tail at d l .  The science that deals with the way humans 

evaluate concepts and derive decisions is psycholinguistics. It has k e n  proven that 

humans use words as "subjective categocy" to classify figures such as "height", 

"temperature", and "inflation". Using these subjective categories, things in real world are 

evaiuated to which degree they satisfy the criteria. 

Even though most concepts used are not precisely defined. humans c m  use them for quite 

complex evaluations and decisions that are based on mmy different factors. By using 

abstraction and by thinking in analogies, a few sentences c m  describe complex contexts 

that would be very hard to mode1 with mathematical precision. Consider the statement: 

"We wifl probably have a successful tïnancial year" 

On a first glance. second example is very similar than first. However. there are significant 

differences. First, the event itself is not clearly defined. For sorne companies. a successful 

financial year rneans that they deferred b a n h p t c y .  for others it means to have surpassed 

Iast years profit. Even for one Company, no fixed threshold exists to define whether a 

fiscal year is considered to be successful or not. Hence, the concept of a "successful fiscal 

year" is a subjective category. 

Another difference lies in the definition of expressing probability. While in statement 1. 

the probability is expressed in a mathematical sense. second example does not quantify a 

probability. If someone expresses that a certain type of airplane probably has problems, 

the actuai probability can well be lower than 10%. still justifying this judgement. if 

someone expresses that the food in a certain expensive restaurant is probably good, the 



actuai probability c m  well be higher than 90%- Hence, the expression of probability in 

statement 2 is a perceived probability rather than a mathematically defined probability as 

in statement 1. In statement 2, the expression of probability is also a subjective category 

just as "ta11 men". 

5.3 Modeling Linguistic Uncertainty 

Statements using subjective categories such as second example play a major role in the 

decision making process of humans. Even though these statements do not have 

quantitative contents. humans can use them successfully for complex evaluations. In 

many cases the uncertainty that lies in the definition of the words we use, adds a certain 

tlexibility. 

The tlexibility that lies in words and statements we employ is made use of widely in Our 

society. In most western societies, the legal system consists of a certain number of laws. 

that each describes a different situation. As not for each "reai" case a specific law exists, 

the judge has to combine al1 applying laws to derive a fair decision. This is only possible 

due to the flexibiiity in the definition of the words and statements used in each Law. 

5.4 Fuzzy Logic as Hurnan Logic 

In reality, we cannot define a rule for each possible case. Exact mles (or laws) that cover 

the respective case perfectly c m  only be defined for a few distinct cases. These rules are 

discrete points in the continuum of possible cases and humans approximate between 

them. Hence, humans combine the rules that describe similar situations. This 



approximation is possible due to the flexibility in the definition of the words that 

constitute the niles. 

To  implement hurnan logic in engineering solutions, a mathelnatical model is required. 

Fuzzy logic has developed such a mathematical model. It allows representing human 

decision and evaluation processes in algonthmic form. There are lirnits to what fuzzy 

logic can do. The full scope of human thinking, fantasy and creativity c m  not be 

mimicked with fuzzy logic. However, fuzzy logic can derive a solution for a given case 

o u t  of rules that have been defined for similar cases. So, if we can describe the desired 

performance of technical system for certain distinct cases by rules, fuzzy logic will 

effectively put this knowledge to a solution. 

5.5 Menibership Functions 

Thc degree to which the value of a technical figure satisfies the linguistic concept of the 

term of a linguistic variable is cdled degree of membership. For a continuous variable, 

this degree is expressed by a function called membership function (MBF). The 

membership functions rnap each value of the technical figure to the mernbership degree 

to the linguistic terms. The technical quantity is cdled the base variabte. Usually. one 

draws the membership functions for d l  terms in the same diagram. 

The de jree of membership in the figure p(x) of the weight x can be represented by a 

continuous function. Note, that a weight of 184.5 Ibs. and a weight of 185.5 Ibs. are 

evaluated differently, but just as a slight bit and not as a threshold. 



Note that fuzzy sets are a true generalization of conventional sets. The cases p=O and p= 1 

of the conventional indicator function is just a special case of the fuzzy set. The use of 

fuzzy sets defined by rnernbership functions in logical expressions is called "fuzzy logic". 

Here. the degree of membership in ri set becomes the degree of tmth of a statement. For 

example, the expression "the passenger is heavy weight" would be true to the degree of 

0.65 for a weight of 185 Ibs. 

5.6 Linguistic Variables 

The primary building block of any fuzzy Iogic system is the "linguistic variable". Here, 

muitiple subjective categories describing the same context are combined. In the case of 

weight, not only heavy weight but also light weight and medium weight, also exist. These 

are called "linguistic terms" and represent the possible values of a linguistic variable. The 



next figure plots the mernbership functions of al1 terms of the linguistic variable fever 

into the same graph. 

A linguistic variable translates real values into linguistic values. This linguistic variable 

now ailows for the translation of a measured body temperature, given in Fahrenheit. into 

its linguistic description. For example, a body temperature of 190 Ibs. would be evaluated 

as "pretty much heavy weight". 

Fig: 14 Defining Linguistic Variable 

5.7 Fuzzy Rules 

The niles of a fuzzy logic system represent the knowledge of the system. They use 

linguistic variables as vocabulary, for example to express the control strategy of a fuzzy 

logic controller. Explaining Fuzzy Rules means to show how to caiculate with linguistic 

concepts. Thus fuzzy rules are explained in detail in the next pages. 



5.8 Computation of Fuzzy Logic Systems 

5.8.1 Fuzzification 

Fuzzification means using the Membership Functions of Linguistic Variables to compute 

each term's degree of validity at a specific operation point of the process. 

Example: 

Let "Distance" = 22 inches. The result of fuzzification would be: 

für degree of validity = O. I 

medium degree of validity = 0.9 

low degree of validity = 0.0 

zero degree of validity = 0.0 

Linguisticaily, a distance of 22 inches could be expressed as almost medium, just siightly 

far. Fuzzification is the first step in the computation of a fuzzy systeni and must be 

performed for each input variable. 

The result of fuzzification is used as input for the Fuzzy Rules 

5.8.2 Fuzzy Rules 

iMost fuzzy-based systems use production rules to represent the relation among the 

linguistic variables and to derive actions from the inputs. Production rules consist of a 

condition (IF-part) and a conclusion (THEN-part). The F-part c m  consist of more than 

one precondition linked together by linguistic conjunctions like AND and OR. 



5.8.3 Fuzzy Rule Inference 

The computation of fuzzy rules is cdled fuzzy rule inference. The inference is a calculus 

consisting of two main steps: aggregation and conclusion. 

Example Rule 1: 

IF "Distance" = medium AVD "Weight" = Light THEN "Power" = Lv12 

Exarnplc Rule 2: 

IF "Distance" = far AND "Weight" = zero 

Example Rule 3: 

THEN "Power" = Zero 

IF "Distance" = medium AND "Weight" = zero THEN "Power" zero 

These fuzzy production rules consist of two preconditions linked together by an AND. 

The first step of fuzzy inference -- aggregation -- determines the degree to which the 

complete IF-part of the mle is fulfilled. Specid fuzzy operators are used to aggregate the 

degrees of validity of the various preconditions. 

The heart of a fuzzy controller is the list of fuzzy rules. Fuzzy logic inference is used to 

find ri fuzzy output, given a fuzzy input and 3 list of fuzzy rules. In a fuzzy controller the 

inputs arc norrnally crisp, nonfuzzy values that must first be fuzzified. The output also 

needs to be a crisp value used to control some device. Therefore, the fuzzy output 

resulting from processing the fuzzy niles must be defuzzified. The way fuzzy rules are 



processed is illustrated in next 2 figures where fuzzy sets are represented by their 

membership functions m. 

Fuzzy inference involves a set of fuzzy rules of the form 

If xl is AI and X? is BI, then y is LI. Rule 1 

If xr is Az and x- is B2, then y is Lr. 

Given the fact that 

x, is A " and xr is B" 

Rule 2 

Fac t 

the problem is to find the conclusion 

is L I  Conclusion 

In this representation of the problem. A A-. BI, BZ, A', and B" are input fiizzy sets and 

LI .  4. and  a are output fuzzy sets. Fuzzy reasoning would forrn the union of the 

intersection of A " and Ai. 

This is intcrpreted as being the maximum (union) of the minimum (intersection) of the 

membership functions  and A,. in figures below A /  is taken to be the singleton fuzzy 

sets, = a. In Rule 1, the maximum of the intersection (minimum) of this singleton with 

A i  is the value r-VI. Similarly, the maximum of the intersection (minimum) of the singleton 

- Y  = b with BI is the value LVZ. The fact X J  = a urld .r_l= b applied to the antecedent X J  is Al 

and .YZ is BI is interpreted as the intersection (minimum) of w, and r-VZ, that is, w t  for rule 1. 

The conclusion of rule 1, y is LI, is found by taking the intersection (T-nom) of wz with 



LI .  This is normally the minimum operation which would truncace LI to the height w z .  

However, for fuzzy control it is sornetimes advantageous to use a product T-nom for this 

intersection which would have the effect of multiplying LI by t v ~  as shown in Rule 1. 

Thus. Rule 1 will contribute the fuzzy set w2*LI to the conclusion fuzzy set L'. Similady, 

Rule 2 in figure wi1l contribute the fuzzy set r-VI *L2 to the conclusion fuzzy set L '  because 

rc.1 is the minimum of \VI and r-t.2 for Rule 2. Note that if LI and L2 are singletons (as is 

normally the case), then there will be no difference in using the minimum T-nom or the 

product T-norm.[ 161 

Y0 
Fig: 15 Fuzzy Interface 



The conciusion fuzzy set L' is found by forming the T-conorm of w * L 1  and wl *Lz. This 

is normally the maximum operation which is the one used by the 68HC12 REV 

instruction as we will see below. However, sometimes better results are obtained by 

taking the sum of w2*LI and bol *L2, as shown in the figure above. The difference 

between these two approaches is shown in figure below. 

If LI and Lr are singletons (the normal case), then taking the maximum or sum of the two 

rules shown in figure above will be the sarne as shown in figure below. In general, they 

won't be the same if more than one rule contribute to the sarne output fuzzy set L,. In this 

case the maximum rule will keep only the maximum value while the surn rule wilI add 

the contributions of each. The 68HC12 REV instruction uses the maximum rule. 

YO 
Sum 

YO 
Singlton 

Fig: 16 Comparing The MAX Rule and SUM Rule 



The conclusion output ~ ' i s  a fuuy set shown by bold-line membership function in both 

figures. To obtain a crisp output, defuzzification process is required. The most common 

method is to compute the centroid of the area of L'. 

5.8.4 Fuzzy Operators 

Operators AND for the minimum and OR for the maximum are often appropriate in smdl  

control applications, but sometime other kinds of operators such as MIN and MAX 

operators. GAMMA or MIN-AVG are needed to signify the relationship of the different 

parts of the condition. 

5.9 MAX-MIN Inference 

The second calculation step of each production nile -- composition -- uses the vdidity of 

the condition to determine the validity of the conclusion. In st'mdard MAX-MIN or 

MAX-PROD (sometimes called MAX-DOT) inference methods, the conclusion of a rule 

is considered equally as true as the conciusion- 

5.9.1 FAiM Inference 

Using standard MAX-MIN/MAX-PROD methods, rule base optimization often consists 

of arbitrary mle additioddeletion. This method c m  result in a clumsy triai-and-error 

ripproach as the individual importance of a rule c m  be expressed only as a O or 1 .  

If more than one rule produces the sarne conclusion (e-g.  "Power" = small), the maximum 

degree of vdidity of the conclusions is selected for d l  further processing. 



5.9.2 Rule Design 

At start with fuzzy technologies. rules with a degree of support of only O and 1 

(equivalent to IMAX-MIN-/MAX-PROD inference) and if individual weighting of rules 

during optimization is needed then degrees of support between O and 1 is used. 

Inference methods like MAX-MIN and MAX-PROD are dmost  sarne in the beginning of 

computation but differ from each other when the fuzzy rules result is mapped to the 

output mernbership functions- 

The first step of computation in both methods is the maximum operation (i-e., the most 

valid mle is chosen for the final result if different rules result in the same output term). 

The second step combines the output values with the output variable's membership 

functions and clipping (MAX-MIN) or  scaling (MAX-PROD) is used for inference. 

Scalino: - Membership functions of al1 terms respective to their degree of  validity are 

multiplied. 

C1ipping:-, Minimum of membership degree and the fuzzy result of the inference is 

computed. 

These in ference methods c m  be used more-or-less interchangeably, depending on 

defuzzification method used and they do  not differ if we use the Center-of-Maximum 

defuzzification method. 

At the end of the total inference process, al1 system output variables are associated with a 

fuzzy value. 



5.9.3 Rule Definition 

Actual system behavior is defined in the individuai mles of the fuzzy system. To 

prototype an appropriate set of rules, w e  begin by creating mles which represent 

unambiguous controller strategies at  specific operation points. Once these rules have been 

established, a step-by-step construction o f  the rule set can proceed. 

Using the rnatrix rule editor, the d e s  of a fuzzy system are established with the 

following steps. 

SeIect the first output variable o n  the upper axis (horizontal) of the nile matrix. Select the 

input variable with the most influence on the system on the left m i s  (vertical) of the rule 

matrix. 

For each combination of input variables not selected on the left axis (select them in the 

list boxes), find the term which best suits the output variable. Define only those rules 

with a degree of tmth of O o r  1. 

Repeat second step for al1 output variables on the horizontal axis. 

For some combinations of  input variables, there is no one exact tenn, which expresses the 

desired output value. In this case. d o  not change the membership function definitions. 

Instead, use FAM to express the arnbiguities. 

5.9.4 FAM Rules 

If a unique conc1usion for a given combination of input variables cannot be found, FAM 

c m  be used to express ambiguities. 



One approach is to define a new term for mostly zero but sornewhat nearly zero. This 

approach, however. could result in an excessive amount of terms and mernbership 

functions. A further drawback is that system structure becomes unnecessarily complex 

and difficult to survey. 

5.10 Uniqueness of a Solution 

The goal of fuzzy development is to determine a good solution, which fulfils the 

technical requirements for the process behavior. But because hzzy systems are heuristic 

solutions to real-world technical problems, there are alwriys multiple solutions. 

The resuIt of fuzzy rule inference is used as input for Defuzzification. 

5.10.1 Defuzzification 

The resuit produced frorn the evaluation of fuzzy d e s  is, of course, fuzzy. Naturally, a 

machine cannot interpret a Iinguistic command. Membership functions are used to 

retranslate the fuzzy output into a crisp value. This re-translation is known as 

defuzzification and can be perforrned using several methods.[6] 

CoM The Center of Maximum method is used for most fuzzy Iogic applications. 

Fast CoA The Center of Area method is similar to CoM and the 

MoM Mean of Maximum defuzzification method is used for pattern recognition 

applications. 



MoM BSUM and CoA BSUM are variants of MoM and CoA, which have been 

optirnized for efficient VLSI implementation. 

Hyper CoM is used for fuzzy applications, for which not only positive experience in 

the form of recornmendations is of importance, but d s o  negative experience in the form 

of warnings and prohibitions. 

The result of the fuzzy logic inference is the value of a linguistic variable. The conversion 

of ri linguistic result to a real value representing the outcorne is called defuzzification. 

5.10.1.1 Requirernents for Defuzzification Methods 

The objective of a defuzzification method is to derive a non-fuzzy (crisp) value, that best 

contains the fuzzy value of the Iinguistic output variable. Sirnilar to the different 

membership function types, different methods for defuzzification exist. To select the 

proper defuzzification method, we need to understand the linguistic meaning that 

underlies the defuzzification process. 

One defuzzification method to find the best compromise is the Center-of-Maximum. 

CoM first determines the most typical value for each tenn and then computes the best 

compromise of the fuzzy logic inference result. To obtain the best compromizing value 

for the result of the fuzzy logic inference as a real number, the inference results are 

considered "weights" at the positions of the most typical values of the ierms. The best 

compromise is where the defuzzified (cnsp) value balances the weights. 

In some cases, this defuzzification approach does not work. In such cases, the result of 

the fuzzy logic inference is that no evidence exists. If we would use the Center-of- 



Maximum method for defuzzification, a compromise of between two good solutions can 

lead to a bad result. 

Here. the best compromize is clearly not the method of choice. In example we rather 

want the "most plausible result". One defuzzification rnethod that delivers the "most 

plausible result" is the "Mean-of-Ma..imumW method MoM. Rather than baiancing out the 

different inference results, MoM selects the typical value of the term that is most vaiid. 

5.10.1.2 Center-of-Area Defuzzification Method 

The first closed-loop control application of fiizzy logic uses a different defuzzification, 

the so-called Center-of-Area (CoA) method, sometimes cdled Center-of-Gravity. This 

method first cuts the membership function at the degree of validity of the respective term. 

The areas under the resulting functions of al1 terms are then superirnposed. Balancing the 

resul ting area gives the cornprornising value. 

There are some implausibilities with the Center-of-Area method. Another disadvantage 

of the Center-of-Area defuzzification method is its high computational effort. The center 

of area is computed by numerical integration that can take up to 1000 times longer than 

the computation of the center of maximum, depending on the resolution and type of 

processor. For these reasons, most software development tools and fuzzy logic processors 

use an approximation of CoA, the so-cailed fast-CoA. Fast-CoA cornputes the individual 

areas under the membership functions during compilation to avoid numerical integration 

during run time. This approach neglects the overlapping of the areas. Hence it is only an 

approximation of the "real" CoA. [37] 



There are also variants of the Mean-of-Maximum defuzzification method. They differ 

from MoM by the computation of the most typical value of a mernbership function. 

5.10.2 Continuity of Defuzzification 

If an arbitrary small change of an input variable cm never cause an abrupt change in any 

output variable. Then defuzzification method is continuous. 

CoM and CoNCoG methods are continuous while MoM/Lo,WoM are discontinuous. 

This is due to the fact that the "best compromise" can never jurnp to :: different value for 

a smrill change of the inputs. On the other hand. there is always a point where the "most 

plausible solution" jumps to a different value. There wili be a point, where an arbitrary 

small change in the inputs wiil cause the decision to turn to the other side. 

5.10.3 Defuzzification Method Selection 

The continuity property is important for most closed-loop control applications. If the 

output of a fuzzy logic system directly controls a variable of the process, jumps in the 

output variable of a fuzzy logic controller can cause instabilities and oscillations. Hence, 

most closed-loop control applications use CoM defuzzification. Only when the output of 

the h z z y  logic system proceeds to an integrator first, MoM is a possible alternative- in 

this case. the integrator keeps the control variable continuous. 

Pattern recognition applications rnostly use MoM defuzzification. If we want to identify 

objects by classification of a sensor signal, we are interested in the most plausible result. 

Some applications even do not use any defuzzification at dl. The vector of membership 



degrees for the output linguistic variable is the result of the classification as it gives the 

sirnilarity of the signal to the objects. 

In decision support systems, the choice of defuzzification method depends on the context 

of the decision. Use CoM for quantitative decisions, such as budget allocation or project 

prioritization. Use MoiM for qualitative decisions, such as credit card fraud detection or 

credit worthiness evaluation. 

5.10.4 Information Reduction by Defuzzification 

IMathematically. defuzzification is the mapping of a vector (value of the linguistic 

variable) to a real number (crisp value). This mapping is not unique, that is, different 

values of a linguistic variabte can map to the samc defuzzified crisp value. 

In practical applications, the only difference between defuzzification methods is, whether 

they deliver the best compromise (Cohl, CoA, and CoG) or the most plausible result 

(MoM, LoM, and ROM).[ 

Within these groups. no relevant differences exist that cannot be equalized by modifying 

membership functions or rules. Complex membership function shapes do not deliver 

better results for output variables. CoM and MoM defuzzification metliods only use the 

maximum of the membership functions anyway. 

In closed-loop control, only use CoM defuzzification. Exceptions are, if the output of the 

fuzzy logic system proceeds to an integrator. 



The wide spread use of CoAKoG defuzzification has historicd reasons. Depending on 

the overlap and different areas of the membership functions, CoA/CoG c m  deliver 

implausible results. Use CoM instead. 

Some applications use CoA defuzzification with singleton membership functions. This is 

completeiy the sarne as CoM defuzzification with any membership hnction type. 

Fast-CoA that is used in most software tools and a fuzzy logic processor is equal to a 

weighted CoM defuzzification. 

5.1 1 Testing and Simulation 

5.1 1.1 Off-Line Optimization 

The next step in development process is to simulate and test the prototype designed. We 

either use pre-recorded data from the process or a process simulation written in a 

programming language. Al1 techniques used in the second development step are off-line, 

that is, we work on the PC with no connection to a process in red-tirne.[ 181 

5.1 1.2 On-Line Optimization 

For many closed loop control systems we cannot use simulation techniques because no 

good mathematical mode1 for the process exist. The use of pre-recorded process data is of 

Iirnited use, as the reaction of the system in real-time to the fuzzy logic controller output 

is not feed back into the process. In this case, we can use on-line optimization techniques 

thrit support "on-the-fly" modifications on a running system.[l8] 



IMPLEMENTATION 

We can irnplement the fuzzy logic system on target hardware platform after cornpletion. 

Depending on the target hardware, different irnplementation techniques exist. 

6.1 FUZZY LOGIC AND 68HC12 SUPPORT 

A fuzzy in ference kernel for the 68HC 1 2 requires one-fifth as much code space. and 

executes fifteen times faster than a comparable kernel irnplemented on a typical midrange 

microcontroller 

The 68HC 12 includes four instructions that perform specific fuzzy logic tasks. In 

addition, several other instructions are especially usefuI in fuzzy logic prograrns. The 

overail C-friendliness of the instruction set also aids development of efficient fuzzy logic 

programs. 

The four fuzzy logic instructions are MEM, which evaluates trapezoidal membership 

functions; REV and REVW, which perform unweighted or weighted MIN-MAX rule 

evaluation; and WAV, which performs weighted average defuzzification on singleton 

output membership functions. 

Other instructions that are useful for custom fuzzy logic programs include MiNA, 

EMiND, MAXM, EMAXM, TBL, ETBL, and EMACS. For higher resolution fuzzy 

programs, the fast extended precision math instructions in the 68HC 12 are also 



beneficial. Flexible indexed addressing modes help simplify access to fuzzy logic data 

structures stored as lists or tabular data structures in memory. A microcontroller based 

fuzzy logic control system has two parts.[5], [40], [42] 

The first part is a fuzzy inference kemef which is executed periodicdly to determine 

system out-puts based on current system inputs. The second part of the system is a 

knowledge base which contains membership functions and rules. 

The knowledge base c m  be developed by an application expert without any 

microcontroller programming experience. Membership functions are simply expressions 

of the expert's understanding of the linguistic terms that describe the system to be 

controlled. Rules are ordinary language statements that describe the actions a human 

expert would take to solve the application problem. 

Rules and membership functions cm be reduced to relatively simple data structures (the 

knowIedge base) stored in nonvolatile memory. A fuzzy inference kemel c m  be written 

by a programmer who does not know how the application system works. The only thing 

the programmer needs to do with knowledge base information is store it in the memory 

locations used by the kernel. 

The design process begins by associating fuzzy sets with the input and output variables. 

These fuzzy sets are described by membership function of the type shown in figure 

below. These fuzzy set values are labeled. The shape of  the membership functions are, in 

general, trapezoids that may have no top (triangles) o r  may have no vertical sides. 



A functional diagram of a fuzzy controller is shown in the following figure. 
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Functional Diagram of a Fuuy Controller 

The fuzzy controHer shown above consists of three parts. The fuzzificrttion of inputs. the 

processing of rules, and the defuzzification of the output. The inputs to a fuzzy controller 

are assigned to the fuzzy variables with a degree of membership given by the 

membership functions. After rtpplying al1 of the fuzzy rules to ri given set of input 

variables, the output will belong to more than one fuzzy set with different weights. The 

weighted output fuzzy sets are combined in a manner to be descnbed below and then a 

centroid defuzzification process is used to obtain a single crisp output value. 



Following figure is a block diagram of  fuzzy logic system. 
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Block Diagram of Fuuy Logic System 

6.2 Fuzzification of inputs 

During the fuzzification step. the current system input values are compared against stored 

input membership functions to determine the degree to which each label of each system 

input is tme. This is accomplished by finding the y-value for the current input value on a 

trapezoidal membership function for each label of each system input. The MEM 

instruction in the 68HC 12 performs this calculation for one label of one system input. T o  

perfonn the complete fuzzification task for a system, several MEM instructions must be 

executed, usually in a program loop structure. There is a RAM location for each fuzzy 

input Le., for each label of  each system input. 



6.2.1 MEM Instmction 

When the fuzzification step begins, the current value of the system input is in an 

accumulator of the 68HC 12, one index register points to the first membership function 

definition in the knowledge base, and a second index register points to the first fuzzy 

input in RAM. As each fuzzy input is cdculated by exccuting a iMEM instruction the 

result is stored to the fuzzy input and both pointers are updated automatically to point to 

the locations associated with the next fuzzy input. The MEM instruction takes care of 

cvsrything except counting the number of labels per system input and loading the current 

vaIue of m y  subsequent system inputs.[ t 61, [38], [39] 

One execution pass through the fuzzy inference kernel generates system output signals in 

response to current input conditions. The kernel is executed as often as needed to 

maintain control. If the kernei is executed more often than needed, processor bandwidth 

and power are wasted; delaying too long between passes can cause the system to get too 

far out of control. Choosing a periodic rate for a fuzzy control system is the same as it 

would be for a conventional control system. 

Each membership function can be defined by the four parameters rtl, 112, 113, and 114, 

shown in Figure. The MEM instruction requires that the values 111 and 114 be 8-bit values 

between $00 and $FE. The weight values also range from $00 to $FF where $FF 

represents a weight value of 1 .O 



The MEM instruction does not use the parameters r r l ,  u2. rr3, and 144 t o  define the 

membership function. Rather it uses r c l  (point-1) and u4 @oinr_S) tosether with the 

values of the two slopes, dope-l and dope-2. 

Fig: 19 Defining a Membership Function 

The value of siope-1 is $FF/(rrZ - [ i l)  and the value of dope2 is SFF/(lt3 - 113). These 

values c m  range from $01 to $FE. If 141 = 112 or  ri3 = r14 then the d o p e  is reaily infinite. 

In this case the values of dope-1 and/or dope-2 are taken to be $00 in as much as this 

value is not used otherwise. A special case is a singleton, o r  "crisp," membership 

function. This can be defined by setting u 1 = u4 and dope-l = dope-2 = $00. 

The MEM instruction requires accumulator A to contain the input value *ri and index 

register X to point to a data structure containing the two points and slopes that define the 

membership function. index register Y points to the element of the array corrzsponding to 

mernbership function.[5], [40], [42] 



Fig: 20 Data Structure Used by the 68HC12 MEM Instruction 

The MEM instruction will compute the weight value at the input value .ri based on the 

membership function whose parameters are pointed to by X. The computed weight value 

(600-SFF) is stored in the byte pointed to by Y. After the MEIM instruction iç executed 

X will have been incremented by 4 and Y will have been incremented by 1. if the four 

parameters of al1 membership functions for a single input are stored in adjacent bytes of 

rnemory. then X wili he pointing to the parrimeters of the next membership function. 

Similarly, Y will be pointing to the next element in the array.[16], [[38]. [39] 

Suppose that an input has the four membership functions then we c m  store the 

parameters =sociated with these four membership functions in the data structure snown 

below. 
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Fig: 21 Data Structure for Storing Membership Function Parameters 

The first 16-bit word at address pfa contains the number of membership functions. The 

second 16-bit word contains the address of the array. The next 16 bytes contain the 4-byte 

parameters for each of the five membership functions. Values for each membership 

function are indicated by the point-l and point-2. The dope-1 and dope-2 values have 

been left empty. A subroutine will compute these values and store them in memory. 



Note that the pfa is first popped from the data stack into Y and the value of X, is popped 

from the data stack into B. The value of Y is transferred to X and then loaded with the 

address of the array. The next three statements will load the nurnber of membership 

functions into B. store .Y, in A. and leave X pointing to the first byte of the parameters 

associated with the first membership function. This is the setup needed for the MEM 

instruction to execute. 

The MEM instruction is then executed B times (four in this example) by using the looping 

instruction DBNE B. FWI. This instruction will decrement B and branch to FCVl if B is 

not equal to zero. The net result will be that the five weight values associated with the 

five rnembership functions for this particular input value, s,. will be stored in the array. 

The end result of the fuzzification step is a table of fuzzy inputs representing current 

system conditions. 

6.3 Rule Evaluation 

Rule evaluation is the central element of a fuzzy logic inference progrm.  This step 

processes a list of rules from the knowledge base using current fuzzy input values from 

RAM to produce a list of fuzzy outputs in RAM. These fuzzy outputs cm be thought of 

as raw suggestions for what the system output should be in response to the current input 

conditions. Before the results can be applied, the fuzzy outputs must be further processrd, 

or defuzzified, to produce a single output value that represents the combined effect of d l  

of the fuzzy outputs. 



6.3.1 Instructions for Fuzzy Inference 

The 68HC 12 offers two variations of rule evaluation instructions. The REV instruction 

provides for unweighted rules (al1 niles are considered to be equally important). The 

REVW instruction is similar but allows each rule to have a separate weighting factor 

which is stored in a separate parallel data structure in the knowledge base. in addition to 

the weights, the two mle evduation instructions also differ in the way rules are encoded 

into the knowledge base. 

Complete rules are stored in the knowledge base as a list of pointers or addresses of fuzzy 

inputs and fuzzy outputs. In order for the rule evaluation logic to work, there needs to be 

some means of knowing which pointers refer to fuzzy inputs. and which refer to fuzzy 

outputs. There also needs to be a way to know when the Iast mle in the system h a  been 

reached. 

Method of organization used in the 68HC 12, is to mark the end of the rule list with ri 

reserved value, m d  separate antecedents and consequents with another reserved vatue. 

This permits any number of mles, and dlows each rule to have any number of 

antecedents and consequents, subject to the iimits imposed by availability of system 

memory. 

Each rule is evaluated sequentidly, but the  mles as a group are treated as if they were di11 

evaluated simultaneously. Two mathematicai operations take place during d e  

evaluation. The fuzzy and operator corresponds to the mathematical minimum operation 

and the fuzzy or operation corresponds to the mathematical maximum operation. The 



fuzzy and is used to connect antecedents within a rule. The fuzzy or is implied between 

successive mies. Before evaluating any rules, dl hzzy outputs are set to zero (meaning 

not true at d l ) .  As each rule is evaluated, the srnaliest (minimum) antecedent is taken to 

be the overall tmth of the d e .  This rule tmth value is applied to each consequent of the 

rule (by storing this value to the corresponding fuzzy output) unless the fuzzy output is 

already larger (maximum). If two rules affect the sarne fuzzy output. the rule that is most 

tme governs the value in the fuzzy output because the rules rire connected by an implied 

fuzzy or. 

6.3.1.1 REV Instruction 

Unweighted Rule Evduation (FEV) impfements basic miri-mus mle evaluation. X and Y 

index registers are used as index pointers to the rule list and the fuzzy inputs and outputs. 

The accrunrtlcrtor A is used for intemediate results cdculation and must be set to SFF 

initially (the largest 8-bit value). For subsequent rules in the list, A is automatically set to 

SFF. when an instruction detects the $FE marker character between the Iast consequent 

of the previous mle, and the first antecedent of a new mle.[S]. [40], [42] 

The Vcondition code bit is used as an instruction status indicritor to show whether 

antecedents or consequents are k i n g  processed. Initially, the V bit is cleared to zero to 

indicate antecedents are being processed. The instruction LDAA #$FF cleus the V bit at 

the same time it initializes A to $FF. 

The fuzzy outputs (working RAM locations) need to bc cleared to $00 before executing 

the REV instruction. 



The X index register is set to the address of the first element in the rule list (in the 

knowledge base). The Y index register is set to the base address for the fuzzy inputs and 

outputs (in working RAM). Each rule antecedent and consequent are unsigned 8-bit 

offset from base address to the referenced fuzzy input and fuzzy output respectively. 

The 8-bit accrtrnr~lator A is used to hold intermediate calculation results during execution 

of the REV instruction. During this process, A starts out at SFF and is replaced by any 

smaller fuzzy input that is referenced by a rule antecedent (Mm. During consequent 

processing. A holds the tmth value for the rule. This truth value is stored to any fuzzy 

output that is referenced by a rule consequent. unless that fuzzy output is already larger 

(MAX). 

The final requirement to clear al1 fuzzy outputs to $00 is part of the MAX algorithm. Each 

time a rule consequent references a fuzzy output, that fuzzy output is compared to the 

tmth value for the current rule. If the current truth value is larger, it is written over the 

previous value in the fuzzy output. After al1 rules have been evaluated, the hzzy output 

contains the tmth value for the rnost-true rule that referenced that tùzzy output. After 

REV finishes. A will hold the truth value for the last rule in the rule list. The Vcondition 

code bit should be one because the fast element before the $FF end marker should have 

been a ruIe consequent. If V is zero after executing REV, it indicates the rule list was 

stmctured incorrectly. 



Bavg 1 

Avg 2 

H ~ Y  3 

Near 4 

Far 5 

Empty 6 

7 

Nil 8 

Lvl 9 

Lv12 10 

Lv13 11 

Fig: 22 

Weight wt I 

Distance wt I 

OutO 

Out 

rules 

Light 

Far 

Lv12 

H'fy 

Near 

end of rules 

Setup Required for REV Instruction.[ i 61. [[38], [39] 

6.3.1.2 REVW Instruction 

The Weighted Rule Evaluation (REVW) is a weighted variation of MIN-MAX mle 

evaluation. Before applying the tnith value to the consequents for the rule, the value is 

multiplied by a fraction from zero (rule disabled) to one (rule fully enabled). The 

resulting modified tmth value is then appIied to the fuzzy outputs. 



The rule structure for REVW is made up of 16-bit elements rather than 8-bit elements as 

in REV instruction. Each antecedent and consequent is represented by the full 16-bit 

address of the corresponding fuzzy input and fuzzy output respcctively. 

The 16-bit markers SFFFE separates the antecedents from consequents and the end of the 

Iast mle is marked by the reserved 16-bit value SFFFFF. 

X and Y index registers are used as index pointers to the mlc list and the list of rule 

weights. The 8-bit accumulator A is used to hold intermediate calculation results during 

execution of the R E W  instruction and must be set to $FF initidly. During antecedent 

processing. A starts out üt SFF and is replaced by my smaller fuzzy input thrit is 

referenced by a rule antecedent. The Vcondition code bit is used as an instruction status 

indicritor that shows whether antecedents or consequents are being processed. Initidly the 

V bit is cleared to zero to indicate antecedents are being processed. The C condition code 

bit is used to indicate whether rule weights are to be used ( 1) or not (0). If rule weights 

are enabled by the C condition code bit equal one, the rule truth value is multiplied by the 

mie weight just before consequent processing starts. The fuzzy outputs (working RAM 

locations) is cleared to $00. These values must be initialized before REVW instruction is 

cxecuted to avoid errors in the result. 

The X index register is set to the address of the first element in the rule list (in the 

knowledge base). After the REVW instruction finishes, X will point at the next address 

past the $FFFF separator word that marks the end of the mle list. The Y index register is 

set to the starting address of the list of rule weights. 



Each mie weight is an 8-bit value which is driven by muitiplying the minimum mle 

antecedent value ($00-$FF) by the weight plus one ($ml -$100). The weighted result is 

the tmncated upper 8 bits of the 16-bit resuit,. This method of weighting rules ailows an 

8-bit weighting factor to represent a value between zero and one inclusive. 

During consequent processing, A holds the tmth value (possibly weighted) for the nile. 

This m t h  value is stored to any fuzzy output that is referenced by a rule consequent, 

unless that fuzzy output is already lxger  (MAX).Accumulator A is autornatically set to 

SFF when the instruction detects the $FFFE marker word between the last consequent of 

the previous rule, and the first antecedent of a new rule. 

Once the  REVW instruction starts, the C bit remains constant and the value in the V bit is 

automaticaily maintained as $FFFE separator words are detected. 

The final requirement to clear al1 fuzzy outputs to $00 is part of the MAX algorithm. Each 

time a mie consequent references a fuzzy output, that fuzzy output is compared to the 

truth value (weighted) for the current rule. If the current uuth value is larger. it is written 

over the prcvious value in the fuzzy output. After al1 rules have been evrtluated. the fuzzy 

output contains the truth value for the most-tnie rule that refercnced that fuzzy output. 

After REl'lV finishes, A will hold the truth value (weighted) for the iast mle in the rule 

list. The V condition code bit should be one because the last element before the $FFFF 

end marker should have been a rule consequent. If V is zero after executing REVW, it 

indicates the rule list was structured incorrectly. 
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Fig: 23 Setup Required for REVW Instruction.[ 161, [[38], (391 

6.4 Defuzzification 

The end result of the rule evaiuation step is a table of suggested or "raw" fuzzy outputs in 

RAii .  These values were obtained by plugging current conditions (fùzzy input values) 

into the system rules in the knowledge base. The raw results cannot be supplied directly 

to the systern outputs because they may be ambiguous. For instance, one raw output can 

indicate that the system output should be medium with a degree of tmth of 50% while, at 

the same time, another indicates that the system output should be low with a degree of 

truth of 25%. The defuzzification step resolves these arnbiguities. 



The final step in the fuzzy logic program combines the raw fuzzy outputs into a 

composite system output. Unlike the trapezoidal shapes used for inputs, the 68HC 12 

typicaily uses singletons for output membership functions. As with the in-puts, the x - a i s  

represerits the range of possible values for a system output. Singleton mernbership 

functions consist of the x-axis position for a label of the system output. Fuzzy outputs 

correspond to the y-axis height of the corresponding output rnernbership function. 

The WAV instruction cdculates the numerator and denominator sums for weighted 

average of the fuzzy outputs according to the following formula: 

y,, = '=' 
i w i  

Before executing WAV, an accumulator must be loaded with the number of iterations (n). 

one index register rnust be pointed at the list of singleton positions in the knowledge base, 

and a second index register must be pointed at the list of fuzzy outputs in RAM. If the 

system has more than one system output, the WAV instruction is executed once for each 

system output. .[16], (1381, [39] 

6.4.1 WAV Instruction 

Et performs weighted average cdculations on values stored in the memory and uses 

indexed (X) addressing mode to reference one source operand list, and indexed (Y) 



addressing mode to reference a second source operand list. Accumulator B is used as a 

counter to control the number of elements to be included in the weighted average. 

For each pair of data points, a 24-bit Sum Of Products (SOP) and a 16-bit Sum Of 

Weights (SO W) is accumulated in ternporary registers. When B reaches zero (no more 

data pairs). the SOP is placed in Y:D. The SOW is placed in X. 

To arrive at the final weighted average, divide the content of Y:D by X by executing an 

EDIV after the WA V. This instruction c m  be intempted. i f  an interrupt occurs during 

WA V execution. the intermediate results (six bytes) are stacked in the order SO W [ IS:0/  , 

SOP [ 15:0/ , $OO:SOP [Z?: l6 ]  before the interrupt is processed. 



CHAPTER 7 

AIRBAG 

7.1 Project Description 

Linguistic Input Variables 

ILin suistic Output Variables 

Intcrmcdiatc Variables 

Project Statistics 

O 

Rulcs 

cmbcrship Functions 

7.2 System Structure 

'72 

I6 

The system structure identifies the fuzzy logic inference flow from the input variables 

to the output variables. The fuzzificsition in the input interfaces transIates analog 

inputs into fuzzy values. The fuzzy inference takes place in rule blocks which contain 

the linguistic control rules. The output of these rule blocks are linguistic variables. 

The defuzzification in the output interfaces translates them into analog variables. 



The following figure shows the whole structure of this fuzzy system including input 

interfaces, mie blocks and output interfaces. The connectins 1ines symboiize the data 

flow. 

AUTOMOTIVE AIRBAG CONTROL SYSTEM 

INPUTS RULES BLOCK OUTPUT 

B eltn n 
B eltn MIN 

Distance q ,..ar Firpwr -1 ~irpwr Rel-speed &\ 
Weight MPX 

Fig: 21 Structure of the Fuzzy Logic System 



WEIGHT IN POUNDS IN RELATION TO HElG iT FOR 
J 

MEN AND WOMEN, 25 YEARS OR OLOER 
1 'Men Medium Frame I !Women Medium Frame 1 

Adopted frorn the Metropolitan Insurance Company Statistical Bulletin -- 

Table: 1 

Height 

4 8 93--- 1 04 98.5 
Range Ft In. Midpoint 

' Height 
Ft 1 ln. Range Midpoint 



I AGE-SPECIFIC WEIGHT-FOR-HEIGHT 
TABLES' 

1 GERONTOLOGY RESEARCH CENTER) 1 

Table: 2 
1251 

Weight Range (Ibs) for Men and 
Women 

Height 
(ft in) 
4 10 

by Age (Years) i 

25 
8 4 1  11 - 

35 
9 2 1  19 

45 
9 9 1 2 7  

55 
107-135 

65 
1 1 5 1 4 2  



1 Distance Between Instmment Panel and 
1 Passenger Side Back of the Seat 

Model I Pushed Forward I Pushed Backward 
Centimeters 

53 l ~ r a n d  Marquis 76 

C hrysler 
Neon 

,--.- 
53 76 

Cirrus 5 1 74 
(Intrepid 56 79 

Table: 3 



7.3 Linguistic Variables 

The following table lists d l  linguistic variables of the system and their tem names. 

Variable Name 

lRe'-speed Fty. Hiwy. Ospd 

1 

Inf-Specd il. Lvl 1. Lv13. Lv13 I 
Wcight 

Linguistic Variables 

Light, Bavg, Avg, Hvy 

The properties of ail base variables are listed in the following table. 

Variable Name 

Beltn 

Distance 

Table: 1 Base Variables 

Wcight 

Inf-S peed 

The default value of an output variable is used if no rule is fixing for this variable. 

Different methods c m  be used for the defuzzification, resulting either in to the 'most 

plausible result' or the 'best compromise'. 

Unit 

Units 

Cm 

Min 

3 

50 

50 

3 

Krns Rcl-spccd PO 

Max 

1 

80 

100 

200 

Default 

1 

65 

150 95 

75 

1 0 0  

Kgs 

Kmph 



The best compromise'is produced by the methods: 

CoM (Center of Maximum) 

CoA (Center of Area) 

CoA BS UM, a version especidly for efficient VLS 1 irnplementations 

The 'most plausible result is produced by the methods: 

MoM (Mean of Maximum) 

MOLM BSUM, a version especially for efficient VLSI implementations 

The foilowing table lists al1 variables linked with an interface as well as the respective 

fuzzification or defuzzification method. 

Table: 5 Interfaces 

Fuzzi fica tion/Defuzzifica tion 

Compute MBF 

Variable Name FYP~ 

Distance 

Rel-spced 

Wcight 

In f-Speed 

Beltn Input 

Input 

Input 

Input 

Output 

Compute MBF 

Computc MBF 

Compute MBF 

CoM 



7.3.1 Input Variable "Beltn" 

Fig: 25 .MBF of "Beltn" 

Term Name y n i t i o n  Points (x, y) 

1 

B kld Ilincar I(0. 1)  (0.6. 1 ) 1 

Tale: 6 Definition Points of MBF "Beltn" 



7.3.2 Input Variable "Distance" 

Fig: 26 iMBF of "Distance" 

Term Namc 

Ncar 

Far 

E ~ P ~ Y  

Table: 7 Definition Points of MBF "Distance" 

ShapdPar. 

I i n c x  

l i near 

1 i ncar 

Definition Points (x, y) 

(50. 1) (55. 1 ) (60. O) 

(80. O) 

(50,O) (55,  O) (61.25. 1 )  

(68.75, I ) (75, Oi (80. O) 

(50.0) (70, O) (77.5. 1 )  

(80. 1 )  



7.3.3 Input Variable "Rel-speedw 

Fig: 27 M BF of " Rel-speed " 

Term Name 

Cty 

Hiwy 

Ospd 

Shape/Par. efinition Points (x, y) 

Table: 8 Definition Points of MBF " Rel-speed" 

i ncar (JO, O) ( 1  15. O) (125, 1 )  



7.3.4 Input Variable "Weight" 

Fig: 28 MBF of " Weight" 

Definition Points (x. y) 

'50, 1 ) (52.6. 1 )  (60.6. O) 

100. O) 

50. O )  (55.3, O) (63.2. 1 ) 

71. 1) (79, O) (100. O )  

50, O )  (71, O) (76.4. 1 ) 

81.2. 1)  (92.2, O) (100. O) 

Table: 9 Definition Points of MBF "Weight" 



7.3.5 Output Variable "Inf'Speed" 

Fig: 29 MBF of "Inf-Speed" 

Terrn Name 

Nil 

Lvl1 

Lv12 

Lv13 

, 

ShapeIPar. IDelinition Points (x, y) 

Table: 10 Definition Points of MBF "Inf-Speed" 



7.4 Rule BIocks 

7.4.1 Parameter 

Aggrcgation: 

Parame ter: 

RcsuIt Aggre,ga~ion: 

Numbcr of Inputs: 

Number of Ouiputs: 

Numbcr of Rulcs: 

MINMAX 

0.00 

MAX 

3 

1 

72 

1 
Unbkl 

Unbkl 

Unbkl 

Unbkl 

Unbkl 

Unbkl 

Unbkl 

Unbkl 

Unbkl 

UnbkI 

Ncar 

Ncar 

Ncar 

Ncar 

Near 

Near 

Ncar 

Ncar 

Near 

Ncar 

Cty 

C ~ Y  

C ~ Y  

CLY 

Hi wy 

Hiwy 

Hiwy 

Hiwy 

Ospd 

OsPd 

Lisht 

Bavg 

Avg 

Hvy 

Light 

Bavg 

Avg 

HVY 

Light 

Bavg 

1 -00 

1 .O0 

1 .O0 

1 .O0 

1 .O0 

1 .O0 

1 .O0 

1 .O0 

1 .O0 

1 .O0 

Lvl l 

Lvl 1 

Lvi î  

Lv12 

Lv12 

Lv12 

Lvl2 

Lvl2 

tv12 

Lv13 



Unbki 

Unbkl 

Unbkl 

Unbkl 

Unbkl 

Unbkl 

Ncar 

Ncar 

Far 

Far 

I 1 

Far Hiwy 

OsPd 

Ospd 

CtY 

CtY 

Far 

1 .O0 Unbkl 

Light 

Avg C ~ Y  

Unbkl I Far 

Avg 

HvY 

Light 

Bavg 

1 -00 

Far 

Hiwy I Bavz 1 1.00 

1 .O0 

1 .00 

t .O0 

1.00 

C ~ Y  HvY 

Unbkl 
1 1 I I 

Far 

Unbkl 

Unbkl 

1v13 

Nil 

Nil 

Hi wy 

Far Hiwy l 
Far 

Unbkl 

Unbkl 

Unbkl 

Unbkl 

Unbkl 

Unbkl Nil 

Hvy  1 .O0 

Ospd Far 

Unbkl I CLY I Hvy 

Avg 

Ospd 

Far 

Far 

E ~ P [ Y  

Empty 

Empty 

Nil 

1-00 

Bavg 

Nil 

Lisht 

1.00 

Ospd 

Ospd 

C ~ Y  

Ct y 

C ~ Y  

Unbkl 1 E ~ P ~ Y  

1 .O0 

Light 

Avg 

Hvy 

Light 

Bavg 

Avz 

1.00 

1 .O0 

1 .O0 

1 .O0 

1 .O0 

Nil Unbkl 

Nil 

E ~ P [ Y  
f 

Nil 

Unbkl 

Unbkl 

1 .O0 
1 

1 .O0 Em P Y  
I 

Hiwy 

Hiwy 

Unbkl 

Unbkl 

Bavg 

Avg 
I 

Unbkl 

E ~ P ~ Y  
1 

EmPY 

1 .O0 EmptY 

Ospd 

Hi wy HvY 

Nil 

1.00 

Ospd 

Ospd Bavg 

Nil 

Lighi 

Unbkl 

1 .O0 

EmPY Ospd Hvy 1 -00 



B kld Ncar C ~ Y  Bavg 1 .O 

B kld Ncar C ~ Y  Avg 1 .O0 

B kld Ncar C ~ Y  HvY 1 .O0 

B kld Ncar Hiwy Lighi 1 .O0 

B kid Near Hiwy Bavg 1-00 

B kId Ncar Hiwy Av_o 1 . 0 0  

B kld 
! 

N c x  Hiwy HvY 1 .O0 

Bkld Ncar Ospd Light 1 .O0  

B kld Ncar Ospd Bavg 1 .O0 

Bkld Ncar Ospd Avg 1 -00 

Bkld N c x  Ospd HVY 1 - 0 0  

Bkld Far Cty Light 1 .O0 

B kld Far CtY Bavg 1 . 0 0  

Bkld Far C ~ Y  Avg 1 .O0 

B kld Far Cty Hvy I .O0 

B kld Frir Hiwy Light 1  .O0 

B kld Far Hi wy Bavg 1  .O0 

B kld Far Hi wy Avg 1 -00 

B kid Far Hiwy Hvy 1 -00 

E kld Far Ospd Light 1 .O0 

B kld Far Ospd Bavg 1 .O0 

Bkld Far Ospd Avg 1 .O0 

Bkld Far Ospd H ~ Y  1 . 0 0  

B kld EmPty C t Y Light 1.00 

B kld EmPiY CtY Bavg 1 .O0 

Nil 

Lvl 1 

Lvl 1 

Lvl 1 

Nil 

Nil 



B kld E ~ P ~ Y  C ~ Y  HVY 1 . 0 0  Nil 

B kld E ~ P ~ Y  Hiwy Light 1 -00 Ni 1 

Blcld E ~ P ~ Y  Hiwy Bavg 1 .O0 Nil 

Bkld EmPY Hiwy Avg 1 .O0 Nil 

B kld E W ~ Y  Hiwy HVY 1 .O Nil 

B kld EmPY Ospd Light 1 .O0 Ni 1 

Bkld E ~ P ~ Y  Ospd B avg 1.00 Nil 

Bkld EmVY Ospd Avg 1 .O Nil 

B kld E ~ P ~ Y  Ospd Hvy 1 .O0 Nil 

Table: 1 1 Rules of the Rule Block "RB 1" 

7.5 List of Abbreviations 

Compute MBF Compute Membership Function (Fuuification Method) 

CoM Center of Maximum (Defuuification Methode) 

BSUM Bounded Sum F u u y  Operator for Result Aggregation 

MIN F u u y  Operator for AND Aggregation 

MAX F u u y  Operator for OR Aggregation 

GAMMA Compensatory Operator for Aggregation 

PROD F u u y  Operator for Composition 

LV 

MBF 

RB 

Linguistic Variable 

Mernbership Function 

Rule Block 















SUMMERY AND CONCLUSION 

This thesis is concerned with the design techniques for fuzzy logic and its 

implementation in the automotive airbas control system. It should be noted that the 

techniques used here Iend themselves to the flexibility of designing virtuaily any type of 

decision structure based on human linguistic variables. In chapter 1. we discussed the 

mechanism of airbag and also discussed the areas where they need improvement. in 

chapter 3 we discussed fuzzy logic concepts and decision structure bases for conclusion, 

reasoning and mathematical models for each technique. Due to the new series of 

microcontrollers 68HC 12, which has dedicated instructions for programming and 

implementation of fuzzy logic it has become easy to write a smaller code which can 

overcome the memory constraints of earlier versions of microcontrollers. Automotive 

industry had been using 68HC 1 1 for long time and it could handle fuzzy logic techniques 

for embedded systems too but the code for 68HC12 is one fifth in size and about fifteen 

times faster than its predecessors. Chapter 4 h a  an overview of the 68HC 12, its memory 

structure. addressing modes and basic features inctuding key improvements over 

68HC 1 1. Chapter 5 further discusses the fuzzy logic concepts in more detait and we saw 

that how an element belongs to the set with a degree of membership between O and 1. We 

showed that a fuzzy controller consists of three parts, input section, inference section and 

defuzzification section in which a fuzzy output is converted to a crisp output. In chapter 

6, we have discussed the instruction set for fuzzy logic in detail. We showed how MEM 



instruction can be used to perforrn the mapping of inputs to  fuzzy set, rule evaluation by 

REV and REVW instructions and WAV instruction for defuzzification. The FuzzyTECH 

design software has made it very easy to design a control system using fuzzy logic. The 

reference manual for the microcontroller also advises to use some design tools for 

implementation and after trying different other tools, we reaiized its importance and 

preferred to use it. T o  ensure the stability and time response of the system. we generated 

a pattern file and observed its response on the 3-D graphs with different combinations of 

inputs. The output graph clearly shows different output levels and calculates defuzzified 

output result at the bottom. 

This design approach using fuzzy logic is practically feasible and many other applications 

are open venues for further research and future work. Therc is a potential for future work 

for an ASIC. FPGA or custom chip design to perform these tasks. 
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CREATED = 1 1.18.1999; 

SHELL = MCU-HC 12: 

SHELLOPTIONS { 

ONLWE-REFRESHTME = 55;  

ONLLNE-TIMEOUTCOUNT = 1 100: 

ONLiNE-CODE = OFF: 

ONLINE-TRACE-B UFFER = (OFF, PAR(0)); 

COMMENTS = ON; 

FTL-BUFFER = ( O f f ,  PAR( 1)): 

PASSWORD = O f f ;  

PUBLICJO = ON; 

FAST-CMBF = OFF; 

FAST-COA = OFF: 

FILE-CODE = OFF: 

BTYPE = 8-BIT; 

C-TYPE = ANSI; 

) /* SHELLOPTIONS */ 



MODEL { 

VARIABLE-S ECTION { 

LVAR { 

NAME = Beltn; 

BASEVAR = Units; 

LVRANGE = MïN(0.ûûûOûûj. MAX( 1.000000). 

LMINDEF(O), MAXDEF(255). 

DEFAULT-OUTPUT( 1.000000); 

RESOLUTION = XGRiD(O.lOOOûû), YGRiD( 1.000000), 

SHOWGRID (ON), SNAPTOGRZD(0N): 

COLOR = RED (O), GREEN ( 1%). B L a  ( O ) ;  

TERLM ( 

TERMNAME = Unbkl: 

PONTS = (0.000000, 1.000000), 

(0.000000,0.000000), 

( 1.000000.0.000000); 

SHAPE = LNEAR; 

COLOR = RED (255), GREEN ( O ) ,  BLUE ( O ) :  

1 

TERM { 

TERMNAME = Bkld; 

POINTS = (0.000000, 1.000000), 

(O . 6 O ,  1 .Oûûûûû), 



(1.000000, 1.000000): 

SHAPE = LINEAR: 

COLOR = RED (O), G E E N  (O),  BLUE (255); 

1 

) /* LVAR */ 

LVAR ( 

NAME = Distance: 

BASEVAR =Cm; 

LVRANGE = MIN(50.000000). MAX(80.000000), 

MiNDEF(O), MAXDEF(255), 

DEFAULT-OUTPUT(65.Oûûûûû); 

RESOLUTION = XGRiD(O.l X O O O ) .  YGRiD( 1.000000), 

SHOWGRID (ON), SNAPTOGRID(0N): 

COLOR = RED (O), GREEN (128), BLUE (O): 

TEhM { 

TERMNAME = Near: 

POINTS = (50.000000, 1 .ûûûûûû), 

(SS.Oooooo, 1 .O-), 

(60.000000,0.000000), 

(80.000000.0.000000); 

SHAPE = L N A R ;  

COLOR = RED (O), GREEN (128), BLUE (O); 

1 



TERM { 

TERMNAME = Far; 

POINTS = (50.000000,0.000000), 

(S5*Oooooo, 0.00oooo). 

(6 1.250000, 1.000000), 

(68.750000, 1 .00ûûûû), 

(75.000000.0.oooooo). 

(80.000000,0.000000); 

SHAPE = LiNEAR; 

COLOR = RED (O). GREEN (O), BLUE (255);  

1 

TERM { 

TERMNAME = Empty: 

POZNTS = (50.000000.0.000000), 

(70.000000,0.000000), 

(77.500000. 1.000000), 

(80.000000, 1 .m): 

SHAPE = LFNEAR; 

COLOR = RED (128), GREEN (O), BLUE (O); 

1 

} /* LVAR */ 

LVAR { 

NAME = Rel-speed; 



BASEVAR = Kms; 

LVRANGE = MIN(40.000000), MAX( 1 5O.OOOOOO), 

MlNDEF(O), MAXDEF(255), 

DEFAULT-OUTPUT(95.000000): 

RESOLUTION = X G R I D ( 0 . 5 0 0 ) ,  YGRID( 1 .Oûûûûû).  

SHOWGRID (ON), SNAPTOGRID(0N); 

COLOR = RED (O). GREEN (O). BLUE (255):  

TERM ( 

TERMNAME = Cty; 

POINTS = (40.000000, 1.000000), 

(50.000000. 1 .Oûûûûû) .  

(70.000000,0.~), 

( i SO.ûûûûûû, 0.00Oûûû) : OPEN (40.000000. 150.000000): 

SHAPE = LiNEAR; 

COLOR = RED (255), GREEN (O), BLUE (O); 

1 

TERM ( 

TERiMNAME = Hiwy; 

POINTS = (40.000000,0.000000), 

(60.000000,0.000000), 

(80.000000, l.OOOûûû), 

( 1 10.000000, 1.000000), 

( 13O.ûûûûûû, 0.000000), 



( 1 sO.ûOOûûû, 0.00ûûûû) : OPEN (40.000000, 150.000000); 

SHAPE = LKNEAR; 

COLOR = RED (O), GREEN (128), BLüE (O); 

1 

TERM { 

TERMNAlME = Ospd: 

POINTS = (40.000000.0.000000). 

( 1 15.oooooo. o.oooooo), 

(I25.OOOOûû. 1.0ûûûOû). 

( 150.000000. 1.000000) : OPEN (40.000000. 150.000000): 

SHAPE = LLNEAR; 

COLOR = RED (O). GREEN (O). BLUE (255): 

1 

) /* LVAR */ 

LVAR { 

NAME = Weight: 

BASEVAR = Kgs; 

LVRANGE = MIN(50.000000), MAX( 100.000000). 

MiNDEF(O), MAXDEF(255), 

DEFALJLT-OUTPUT(75.000000); 

RESOLUTION = XGRID(0.200000), YGRID( 1 .O), 

SHOWGRID (ON), SNAPTOGRID(0N); 

COLOR = RED (255), GREEN (O), BLUE (O); 



TERM { 

TERMNAME = Light: 

PONTS = (50.000000, 1.000000), 

(52.600000, 1 .O), 

(60.600000.0.000000). 

( 100.000000,0.000000); 

SHAPE = LINEAR: 

COLOR = RED (255). GREEN (O). BLUE (O): 

1 

TERM { 

TERMNAME = Bavg: 

POINTS = (50.000000.0.000000), 

(55.200000,0.000000), 

(63.200000, 1.000000), 

(7 1.000000, 1.000000), 

(79.000000,0.00OOûO), 

( 100.000000,0.000000 ): 

SHAPE = LiNEAR; 

COLOR = RED ( O ) ,  GREEK ( 

1 

TERM { 

TERMNAME = Avg: 

BLUE (O): 

POINTS = (50.000000,0.000000), 

115 



(7 1.000000,0.000000), 

( 7 6 . 4 0 0 0 ,  1 .ûûûûûû), 

(84.200000, 1 .ûûûûûû), 

( 9 2 . 2 0 . 0 . 0 0 0 0 0 0 ) .  

( 100.000000,0.000000); 

SHAPE = LWEAR; 

COLOR = RED (O). GREEN (O), BLUE (255): 

1 

TERM { 

TERiMNAME = Hvy: 

POINTS = (50.000000.0.000000), 

(84.200000, 0.000000). 

(93.200000. 1 .ûûûûûO), 

( 100.000000, 1 .O=): 

SHAPE = LINEAR: 

COLOR = RED ( 125), GREEN ( O ) ,  B 

) /* LVAR */ 

LVAR { 

NAME = Inf-Speed: 

BASEVAR = Krnph; 

U E  (O); 

LVRANGE = MIN(0.000000). MAX(200.000000), 

MINDEF(O), MAXDEF(255), 



DEFAULT-OUTPUT( 100.000000): 

RESOLUTTON = XGRID(1.000000), YGRID( 1 .O-), 

S HOWGRiD (ON), SNAPTOGRiD(0N); 

COLOR = RED (128), GREEN (O), BLüE (O); 

TERM { 

TERMNAME = Nil; 

POINTS = (0.000000. 1.000000). 

(20.000000, 1 .oooooo), 

(60.000000,0.000ûOû), 

(200.000000.0.000000); 

SHAPE = LiNEAR: 

COLOR = RED (255), GREEN (O), BLUE (O); 

1 

TERM { 

TERMNAME = Lvl I ; 

POINTS = (0.000000,0.000000), 

(20.000000.0.000000), 

(SO.oooooo, 1 .Oooooo). 

( S O . O o o o o o ,  1 .oooooo), 

( 120.000000,0.000000), 

(200.000000,0.000000); 

SHAPE = LiNEAR; 

COLOR = RED (O), GREEN (128), BLUE (O); 



} 

TERM ( 

TERMNAME = Lv12; 

POINTS = (0-000000,0.000000), 

(8O.OOOOOO. O.OOûûûû), 

( 120.000000, 1.000000), 

( 150.000000, 1.000000), 

( 180.000000.0.000000), 

(200.000000.0.000000): 

SHAPE = LLNEAR: 

COLOR = RED ( 128). GREEN (O), BLUE (O): 

1 

TERM { 

TERMNAME = Lv13; 

POINTS = (0.000000,0.000000), 

( 150.oooooo. o.oooooo), 

( l8O.ooOooO, 1.000000), 

(200.000000, 1.000000): 

SHAPE = LiNEAR: 

COLOR = RED ( 128): GREEN (O), BLUE (O): 

1 

} /* LVAR */ 

) /* VARIABLE-SECTION */ 



OBJECT-SECTION ( 

INTERFACE { 

INPUT = (Weight, CMBF): 

POS = -201. 135: 

I 

INTERFACE { 

NPUT = (Distance. CMBF); 

POS = -305. 10; 

1 

INTERFACE { 

INPUT = (Rel-speed, CMBF); 

POS = -203, 75; 

} 

INTERFACE ( 

OUTPUT = (Inf-Speed, COM); 

POS = l96,4O: 

1 

INTERFACE { 

INPUT = (Beltn, CMBF); 

POS = -203, -58; 

1 

RULEBLOCK ( 



NAME =RB1; 

INPUT = Beltn. Distance. Rel-speed. Weight: 

OUTPUT = Inf-Speed; 

AGGREGATION = (LMIN-MAX. PAR ( 0 . O ) ) :  

RESULT-AGGR = MAX; 

POS =-18. 12: 

RULES ( 

IF Beltn = Unbkl 

AND Distance = Near 

AND Rel-speed = Cty 

AiVD Weight = Light 

THEN Inf-Speed = Lvl 1 WITH 1.000: 

IF Beltn = Unbki 

AND Distance = Near 

AND Rel-speed = Cty 

AND Weight = Bavg 

THEN inf Speed = Lvl 1 WITH 1.000: 

IF Beltn = Unbkl 

AND Distance = Near 

AND Rel-speed = Cty 

AND Weight = Avg 

THEN Inf-S peed = Lvl2 WTTH 1 -000; 

IF Beltn = Unbkl 



AND Distance = Near 

AND Re'speed = Cty 

AND Weight = Hvy 

THEN Inf-Speed = Lvl2 WITH ! -000; 

IF Beltn = Unbkl 

AND Distance = Near 

AND Rel-speed = Hiwy 

AND Weight = Light 

THEN Inf-Speed = Lv12 WITH 1.000: 

iF Beltn = Unbkl 

AND Distance = Near 

AND Rel-speed = Hiwy 

AND Weight = Bavg 

THEN hf-Speed = Lv12 WITH 1.000; 

IF Beltn = Unbkl 

AND Distance = Near 

AND Rel-speed = Hiwy 

AND Weight = Avg 

THEN Inf-Speed = Lv12 WITH 1.000: 

IF Beltn = Unbkl 

AND Distance = Near 

AND Rel-speed = Hiwy 

AND Weight = Hvy 



THEN Inf-Speed = Lv12 WITH 1.000: 

IF Beltn = Unbkl 

AND Distance = Near 

AND Rel-speed = Ospd 

AND Weight = Light 

THEN Inf-Speed = Lv12 WITH 1.000; 

IF Beltn = Unbkl 

AND Distance = Near 

AND Rel-speed = Ospd 

AiUD Weight = Bavg 

THEN Inf-Speed = Lv13 WITH 1.000: 

IF Beltn = Unbkl 

AND Distance = Near 

AND Rel-speed = Ospd 

AND Weight = Avg 

THEN Inf-Speed = Lv13 WITH 1.000; 

IF Beltn = Unbkl 

AND Distance = Near 

AND Rel-speed = Ospd 

AND Weight = Hvy 

THEN InCSpeed = Lv13 WITH 1.000; 

IF Beltn = Unbkl 

AND Distance = Far 



AND Rel-speed = Cty 

AND Weight = Light 

THEN Inf-Speed = Lv13 WITH 1 .O; 

IF Beltn = Unblil 

AND Distance = Far 

AND Rel-speed = Cty 

AND Weight = Bavg 

THEN Inf-Speed = Lvl3 WITH 1.000; 

IF Beltn = Unbkl 

AND Distance = Far 

AND Rel-speed = Cty 

AiiD Weight = Avg 

THEN Cnf-Speed = Lvl3 WITH 1.000; 

IF Beltn = Unbkl 

AND Distance = Far 

AND Rel-speed = Cty 

AND Weight = Hvy 

THEN Inf-Speed = Lvl3 WITH 1.000; 

iF Beltn = Unbkl 

AND Distance = Far 

AND Rel-speed = Hiwy 

AND Weight = Light 

THEN Inf-Speed = Lv13 WITH 1.000; 



IF Beltn = Unbki 

AND Distance = Far 

AND Rel-speed = Hiwy 

AND Weight = Bavg 

THEN Inf-Speed = Lvl3 WiTH 1.000; 

IF Beltn = Unbkl 

AiiD Distance = Far 

AND Rel-speed = Hiwy 

AND Weight = Avg 

THEN Inf-Speed = Lvi3 WITH 1.000: 

IF Beltn = Unbkl 

AND Distance = Far 

AND Rel-speed = Hiwy 

AND Weight = Hvy 

THEN inf-Speed = Lvl3 WITH 1.000: 

IF Beltn = Unbkl 

AND Distance = Far 

AND Rel-speed = Ospd 

AND Weight = Light 

THEN Inf-Speed = Lvl3 WITH 1.000; 

IF Beltn = Unbkl 

AND Distance = Far 

AND Rel-speed = Ospd 



AND Weight = Bavg 

THEN inf-Speed = Lv13 WITH 1.000: 

IF BeItn = Unbkl 

AND Distance = Far 

AND Rel-speed = Ospd 

AND Weight = Avg 

THEN Inf-Speed = Lv13 WITH 1.000: 

IF Beltn=Unbkl 

AND Distance = Far 

AiVD Rel-speed = Ospd 

AND Weight = Hvy 

THEN Inf-Speed = Lvl3 WITH 1.000: 

IF Beltn = Unbkl 

AND Distance = Empty 

AND ReI-speed = Cty 

AND Weight = Light 

THEN Inf-Speed = Nil WITH 1.000; 

LF Beltn = Unbkl 

AND Distance = Empty 

AND Rel-speed = Cty 

AND Weight = Bavg 

THEN Inf-Speed = Nil WITH 1.000; 

IF Beltn = Unbkl 



AND Distance = Empty 

AND Rel-speed = Cty 

AND Weight = Avg 

THEN bf-Speed = Nil W ï ï H  1.000: 

IF Beitn = Unbkl 

AND Distance = Empty 

AND Rel-speed = Cty 

AND Weight = Hvy 

THEN Inf-Speed = Nil WITH 1.000: 

IF Beltn = Unbkl 

AND Distance = Empty 

AND Rel-speed = Hiwy 

AND Weight = Light 

THEN Inf-Speed = Nil WITH 1.000; 

IF Beltn = Unbkl 

A N D  Distance = Empty 

AND Rel-speed = Hiwy 

A N D  Weight = Bavg 

THEN fnf-Speed = Ni1 WITH 1 -000: 

IF Beltn = Unbkl 

AND Distance = Empty 

AND Rel-speed = Hiwy 

AiVD Weight = Avg 



THEN inf-Speed = Nil WITH 1.000; 

ff Beltn = UnbkI 

AND Distance = Empty 

AND Rel-speed = Hiwy 

AND Weight = Hvy 

THEN Inf-Speed = Nil WITH 1.000: 

IF Beltn = Unbkl 

AND Distance = Empty 

AND Rel-speed = Ospd 

AND Weight = Light 

THEN Inf-Speed = Nil WITH 1.000: 

IF Beltn = Unbkl 

AND Distance = Empty 

AND Rel-speed = Ospd 

AND Weight = Bavg 

THEN Inf-Speed = Nil WlTH 1.000; 

TF Beltn = Unbkl 

AND Distance = Empty 

AND Rel-speed = Ospd 

AND Weight = Avg 

THEN Inf-Speed = Nil WITH 1 .ûûû; 

IF Beltn = Unbkl 

AND Distance = Empty 



AND Rel-speed = Ospd 

AND Weight = Hvy 

THEN Inf-Speed = Nil WiTH 1.000; 

IF Beltn = Bkld 

AND Distance = Near 

AND Rel-speed = Cty 

AND Weight = Light 

THEN [nf-Speed = Nil W ï ï H  1.000; 

IF Beltn = Bkld 

AND Distance = Near 

AND Rel-speed = Cty 

AND Weight = Bavg 

THEN Inf-Speed=Nil WlTH 1.000: 

IF Beltn = Bkld 

AND Distance = Near 

AND Rel-speed = Cty 

AND Weight = Avg 

THEN Inf-Speed = Lvl 1 WITH 1.000: 

IF Beltn = Bkld 

AND Distance = Near 

AND Rel-speed = Cty 

AND Weight = Hvy 

THEN Inf-S peed = Lvl 1 W ITH 1 -000; 



iF Beltn = Bkld 

AND Distance = Near 

AND Rei-speed = Hiwy 

AND Weight = Light 

THEN Inf Speed = Lvl 1 W ITH 1 -000; 

IF Beltn = Bkld 

.4ND Distance = Near 

AND Rel-speed = Hiwy 

AND Weight = Bavg 

THEN Inf-Speed = Lvl 1 WITH 1.000; 

IF BeItn = Bidd 

AND Distance = Near 

AND Rel-speed = Hiwy 

AiVD Weight = Avg 

THEN inf Speed = Lvl2 W ITH 1.000: 

IF Beltn = Bkld 

AND Distance = Near 

AVD Rel-speed = Hiwy 

AND Weight = Hvy 

THEN Inf-Speed = Lvl2 WITH 1.000; 

IF Beltn = Bkld 

AND Distance = Near 

AND Rel-speed = Ospd 



AND Weight = Light 

THEN Inf-Speed = Lv12 W ï r H  1.000: 

IF Beltn=Bkld 

AND Distance = Near 

AND Rel-speed = Ospd 

AND Weight = Bavg 

THEN Inf-Speed = LvlZ WITH 1.000: 

IF: Bcltn = BkId 

AND Distance = Near 

AND Rel-speed = Ospd 

AND Weight = Avg 

THEN Inf-Speed = Lvl2 WITH 1 .O: 

IF Beltn = Bkld 

AND Distance = Near 

AND Rel-speed = Ospd 

AND Weight = Hvy 

THEN Inf-Speed = Lvl2 WITH1.000: 

LF Beltn = Bkld 

AND Distance = Far 

AND Rel-speed = Cty 

AND Weight = Light 

THEN Inf-Speed = LvlS WITH 1.000; 

IF Beltn = Bkld 



AND Distance = Far 

AND Rel-speed = Cty 

AND Weight = Bavg 

THEN Lnf-Speed = Lv12 WITH 1.000: 

IF Beltn=Bkld 

AND Distance = Far 

AND Rel-speed = Cty 

AND Weight = Avg 

THEN lnf-Speed = Lvl3 WITH 1.000; 

IF Beltn = Bkld 

AND Distance = Far 

AND Rel-speed = Cty 

AND Weight = Hvy 

THEN Inf-Speed = Lv13 WITH 1 .O: 

IF Beltn = Bkid 

AND Distance = Far 

AND Rel-speed = Hiwy 

AND Weight = Light 

THEN InfSpeed = Lvl3 W1TH 1.000: 

IF Beltn = Bkld 

AND Distance = Far 

AND Rel-speed = Hiwy 

AND Weight = Bavp 



THEN Inf-Speed = Lvl3 WITH 1.000; 

IF Beltn = Bkld 

AND Distance = Far 

AND Rel-speed = Hiwy 

AND Weight = Avg 

THEN Inf-Speed = Lv13 W ITH 1.000; 

IF Beltn = Bkld 

AND Distance = Far 

AND Rel-speed = Hiwy 

AND Weight = Hvy 

THEN Inf-Speed = Lvl3 WITH 1 .ûûû: 

IF Beltn = Bkld 

AND Distance = Far 

AND Relspeed = Ospd 

AND Weight = Light 

THEN Inf-Speed = Lvl3 WITH 1.000: 

IF Beltn = Bkld 

AND Distance = Far 

AND Rel-speed = Ospd 

AND Weight = Bavg 

THEN Inf_Speed=Lvl3 WITH 1.000; 

IF Beltn = Bkld 

AND Distance = Far 



AND Rel-speed = Ospd 

AND Weight = Avg 

THEN Inf-Speed = Lv13 Wï ïH  1.000: 

IF Beltn = Bkld 

AND Distance = Far 

AND Rel-speed = Ospd 

AND Weight = Hvy 

THEN Inf-Speed = Lv13 WITH 1.000: 

IF Beltn = Bkld 

AND Distance = Empty 

AND Rel-speed = Cty 

AND Weight = Light 

THEN Inf-Speed = Ni1 WITH 1.000; 

IF Beltn = Bkld 

AND Distance = Empty 

AND Rei-speed = Cty 

AND Weight = Bavg 

THEN Inf-Speed = Nil WITH 1 .ûO; 

IF Beltn = Bkld 

AND Distance = Empty 

AND Rel-speed = Cty 

AND Weight = Avg 

THEN Inf-Speed = Nil WITH 1.000; 



IF Beltn = Bkld 

AND Distance = Empty 

AND Rel-speed = Cty 

AND Weight = Hvy 

THEN Inf-Speed = Nil WiTH 1.000: 

IF Beltn = Bkld 

AiVD Distance = Empty 

AND Rel-speed = Hiwy 

AND Weight = Light 

THEN Inf-Speed = Nil WITH 1.000: 

IF Beltn = Bkld 

AND Distance = Empty 

AND Rel-speed = Hiwy 

AND Weight = Bavg 

THEN Inf-Speed = Nil WITH 1 .ûûû; 

IF Beltn=Bkld 

AND Distance = Empty 

AWD Rel-speed = Hiwy 

AND Weight = Avg 

THEN Inf-Speed = Nil WITH 1.000; 

IF Beltn = Bkid 

AND Distance = Empty 

AVD Rel-speed = Hiwy 



AND Weight = Hvy 

THEN inf-Speed=Nil WITH 1.000: 

CF Beltn = Bkld 

AND Distance = Empty 

AND Rel-speed = Ospd 

AND Weight = Light 

THEN Inf-Speed = Nil WITH 1.000: 

iF Beltn = Bkld 

AND Distance = Empty 

AND Rel-speed = Ospd 

AND Weight = Bavg 

THEN Inf-Speed = Nil WITH 1.000: 

IF Beltn = Bkld 

AND Distance = Empty 

AND Rel-speed = Ospd 

AND Weight = Avg 

THEN Inf-Speed=Nil WiTH 1.000: 

IF Beltn = Bkld 

AND Distance = Empty 

AND Rel-speed = Ospd 

AND Weight = Hvy 

THEN Inf-Speed = Nil WITH 1.000; 

) /* RULES */ 



) /* RULEBLOCK */ 

REMARK { 

TEXT = AUTOMOTTVE AIRBAG CONTROL SYSTEiM; 

POS = -189, -170: 

FONTSPEC = -24,7ûO. 0,0,0. 34.0; 

FONTNAME =Arial; 

COLOR = RED (O). GREEN (O), BLUE (O): 

1 

REMARK { 

TEXT = INPUTS; 

POS = -194. - 1  13; 

FONTSPEC = - 19.400,0, 0.0, 34.0: 

FONTNAME =Arial: 

COLOR = RED (O), GREEN (O), BLUE (O); 

1 

REMARK ( 

TEXT = RULES BLOCK; 

POS = -26, - 1 1 1 ; 

FONTSPEC = - 19,400,0,0,0,34,0; 

FONTNAME =Arial; 

COLOR = RED (O), GREEN (O), BLUE (O); 

1 

REMARK { 



TEXT = OUTPUT; 

POS = 208, -1 10; 

FONTSPEC = - 1 9 , 4 0 0 , 0 , 0 , 0 ,  34,O; 

FONTNAME =Anal; 

COLOR = RED (O), GREEN (O). BLUE (O): 

1 

) /* OBJECT-SECTION */ 

} /* iMODEL */ 

} /* PROJECT */ 

ONLiNE { 

TIMESTAMP = 1999 12 10085058UT; 

) /* ONLINE */ 

NEUROFUZZY { 

LEARNRULE =RandomMethod: 

STEPWIDTHDOS = 0.10 1563: 

STEPWDTHTERM = 1.000000: 

MAXDEVlATION = (50.000000, 1.000000,0.750000); 

AVGDEVWTION = 0.100000; 

MAXSTEPS = 100: 

NEURONS = 1 ;  

DATASEQUENCE = RANDOM; 

UPDATEDBGWIN = OFF; } /* NEUROFUZZY */ 



Appendix B1 

Code Generator: C Source Code 

Header File 





typedef unsigned char FUZZY; 

#de fine FUZZYDEFINED 

#endif 

#ifndef FLAGSDEFINED 

/* ---------------- type of retum value of fuzzy controller --------------- "/ 

typedef unsigned char FLAGS: 

#de fine FLAGS DEFNED 

#endi f 

/*----------------------- data only used by fuzzyTECH --------------------- */ 

extern FUZZY * const pcvairbag: 

/*- use the following #defines to write the inputs to the fuzzy controlIer */ 

/*------------------------------------------------------------------------- */ 

#de fine Beitn-airbag ("(pcvairbagt O)) /* OOOOH .. OOFM */ 

#de fine Distance-airbag (*(pcvairbag+ 1 )) /* O H  .. OOFFH */ 

#define Rd-speed-airbag (*(pcvairbag+ 2)) /* OûûûH .. OOFFH */ 

#de fine Weight-airbag (*(pcvairbag+ 3)) /* OOOOH .. OOFFH */ 



/ * - ------ for starting up the generated fuzzy logic systern, cd1 once -----*/ 

void initairbag(void); 

/* ----- ----- ---- for calling the generated fuzzy logic system ------------- */ 

FLAGS airbag(void): 



APPENDIX B2 

ANS1 C code for 68HC12 



/*------------------------------------------------------------------ */ 

/*---------------------- Code Generator: C Source Code ------------------ */ 

/* -------- ----- Code Generation Date: Fri Dec 10 03:54:36 1999 ------------ */ 

/*----------------------- Fuzzy Logic System: AIRBAG ...................... */ 

/"------------------------------------------------------------------------- */ 

/* -------- (c) 199 1 - 1999 INFORM GmbH, Pascalstr. 23. D-52076 Aachen ------- */ 

/* ------ Inform Software Corp., 2001 Midwest Rd.. Oak Brook. iL 60523 -----*/ 

/"------------------------------------------------------------------------- */ 

#define FTLiBC8 

#indude "ft1ibc.h" 

#define FUZZYDEFINED 

#de fine FLAGSDEFINED 

lffinclude "airbap-h" 

static FUZZY crispio[4+ 1 1 ;  

static FUZZY fuzvals[ 12+4+0]: 

FUZZY * const pcvairbag = crispio; 



static const F U Z Y  tpts[48] = { 

ox00.0x00,0x00, 0x00, 

ox00,ox00, OxFF, OxFF, 

Ox00,0x00,0x2B, 0x55, 

Ox2B. Ox60,0x9F, OxD5, 

OxAA, OxEA, OxFF, OxFF, 

0x00.0x00, Ox 17,0x46, 

OxSE, OxSD, OxA2, OxD 1, 

OxAE. OxC5, OxFF, OxFF, 

0~00 .0~00 .  OxOD. 0x36. 

Ox 1 B, Ox43,0x6B, 0x94, 

Qx6B, 0x87, OxAE, OxD7. 

OxAE. OxD7, OxFF, OxFF } : 

static const FUZZY xcom[4] = ( 

OxOD. 0x53, OxAC, OxF2 ) ; 

static const BYTE rtO[434] = { 

Ox48,OxOO, 

Ox03,OxO l,Ox02,OxOS, 0x08, OxOD, 

0x03,OxOI, 0x02,0x05,0x09, OxOD, 

0x03,0x01,0x02,0x05, OxOA, OxOE, 



OxO3,OxO 1,Ox02,OxO5, OxOB, OxOE, 

0x03,0x01,Ox02,0x06,OxO8, OxOE, 

0x03,0x01,0x02,0x06,0x09, OxOE, 

Ox03,OxO l,Ox02,0x06, OxOA, OxOE, 

Qx03,OxO l,Ox02,0x06, OxOB, OxOE, 

0 ~ 0 3 . 0 ~ 0  1,0x02.0x07.0x08, OxOE, 

Ox03,OxOl. 0x02,0x07,0x09, OxOF, 

0 ~ 0 3 . 0 ~ 0  l,Ox02,0x07, OxOA, OxOF, 

Ox03,OxO I,0x02,0x07, OxOB, OxOF, 

Ox03,OxO 1,0x03,0x05.0x08, OxOF, 

Ox03,OxO 1.0x03,OxO5,0x09. OxOF, 

Qx03,OxO1,0x03,OxO5, OxOA, OxOF, 

Ox03,OxO l,Ox03,0x05, OxOB, OxOF, 

0 ~ 0 3 . 0 ~ 0  1,0x03,0x06,0x08. OxOF, 

0x03.OxO1.0x03,0x06,0x09. OxOF, 

Ox03,OxO l,Ox03,0x06. OxOA. OxOF, 

Ox03,OxO l,Ox03,0x06, OxOB, OxOF, 

OxO3,OxO l,OxO3,OxO7,OxO8, OxOF, 

Ox03,OxO l,OxO3,OxO7,OxO9, OxOF, 

0x03,OxO1,0x03,0x07, OxOA, OxOF, 

OxO3,OxO l,OxO3,OxO7, OxOB, OxOF, 

Ox03,0xOl, 0x04,0x05,0x08, OxûC, 

OxO3,OxO l,Ox04,OxOS, 0x09, OxOC, 



Ox03,OxO l,Ox04,0x05, OxOA, OxOC, 

0 ~ 0 3 . 0 ~ 0  1,Ox04,OxO5. OxOB. OxOC, 

Ox03,OxO 1,0xû4,0x06,0x08, OxûC, 

OxO3,OxO 1,0xû4,0x06,0x09. OxOC, 

0 ~ 0 3 . 0 ~ 0  I.Ox04,0x06, OxOA, OxOC, 

0 ~ 0 3 . 0 ~ 0  1 .0~04 .0~06 ,  OxOB, OxOC, 

0 ~ 0 3 . 0 ~ 0  1,0x04.0x07,0x08. OxOC, 

0 ~ 0 3 . 0 ~ 0  1.0x04,0x07,0x09. OxOC, 

Ox03,OxO 1.0x04,0x07, OxOA, OxOC, 

0 ~ 0 3 . 0 ~ 0  1,Ox04,0x07, OxOB, OxOC. 

OxO3,OxO 1,0x02,0x05,0x0S, OxOC, 

0 ~ 0 3 . 0 ~ 0  1,0x02.0xOS, 0x09, OxOC, 

0 ~ 0 3 . 0 ~ 0  l,Ox02,0x05, OxOA, OxOD, 

OxO3,OxO i , OxOS,Ox05. OxOB, OxOD, 

0 ~ 0 3 . 0 ~ 0  I.OxOS,0x06,OxOS, OxOD, 

0 ~ 0 3 . 0 ~ 0  l,OxOS, Ox06,0x09, OxOD, 

0 ~ 0 3 ~ 0 x 0  1.0x02,0x06, OxOA, OxOE. 

0 ~ 0 3 . 0 ~ 0  l,Ox02,OxO6, OxOB, OxOE, 

Ox03,OxO I,0x02,0x07,OxO8, OxOE, 

Ox03,OxO 1,0x02,0x07,0x09, OxOE, 

OxO3,OxO l,Ox02,0x07, OxOA, OxOE, 

OxO3,OxO l,Ox02,0x07, OxOB, OxOE, 

Ox03,OxO l,Ox03,OxO5, 0x08, OxOE, 



0x03.0x01,0x03,0x05,0x09, OxOE, 

Ox03,OxO 1,0~03~0x05,  OxOA, OxOF, 

Ox03,OxOi, Ox03,0x05, OxOB, OxOF, 

Ox03,OxO 1,0x03,0x06.0x08, OxOF, 

0 ~ 0 3 . 0 ~ 0  1,0x03.0x06,0x09, OxOF, 

0 ~ 0 3 . 0 ~ 0  I,0x03,0x06. OxOA, OxOF, 

0 ~ 0 3 . 0 ~ 0  I .Ox03,0x06. OxOB. OxOF. 

0x03. OxO!. 0x03.0x07.OxO8. OxOF. 

O.uO3.0~0 1.0x03,0x07,0x09, OxOF, 

0 ~ 0 3 . 0 ~ 0  1.0x03.0x07, OxOA, OxOF. 

0x03.OxO1.0x03.0x07, OxOB. OxOF, 

Ox03,OxO 1.0x04,0x05,0x08. OxOC, 

Os03,OxO l,OxO4,OxO5,0x09. OxOC, 

Ox03,OxO 1.0x04,0x05, OxOA, OxOC, 

0 ~ 0 3 . 0 ~ 0  1,Oxû4, 0x05. OxOB, OxOC, 

OxO3,OxO 1.0x04,0x06.0x08, OxOC. 

OxO3,OxO l,OxW, 0 ~ 0 6 ~ 0 x 0 9 ,  OxûC, 

0 ~ 0 3 . 0 ~ 0  l,Ox04,0x06, OxOA, OxOC, 

0 ~ 0 3 ~ 0 x 0  l,Ox04,0x06, OxOB, OxOC, 

OxO3,OxO I,0x04,0x07,0x08, OxK, 

OxO3,OxO 1, OxM, Ox07,Ox09, OxûC, 

Ox03,OxO l,Ox04,0x07, OxOA, OxOC, 

0 ~ 0 3 ~ 0 x 0  l,Ox04,0x07, OxOB, OxOC ) ; 



static const FRAT frat0[3] = { 

0xûûû2,0xûûD8,0xûûD8 ) ; 

FLAGS airbag(void) { 

fuzptr = (PFUZZY) fuzvals; 

tpptr = (PFUZZY) tpts: 

crisp = crispio[O); 

bTNum = 3: 

flms0: 

crisp = crispio[ 1 1; 

bTNum = 3: 

fIms(): 

crisp = crispio[S]; 

bTNum = 3: 

flms(): 

crisp = crispio[3]; 

bTNum = 4; 

flmso; 



pfuzvals = (PFUZZY) fuzvals: 

rtptr = (PFTBYTE) rtO: 

fuzptr = (PFUZZY) &fuzvals 

fratptr = (PFRAT) frat0: 

bTNurn = 2; 

 min(): /* min aggregation */ 

invalidflags = 0; 

fuzptr =&fuzvals[l3]; 

xcomptr = (PFUZZY) xcom; 

crispio[4] = 0x80: 

bTNum = 4: 

defuzz = &crkpi0[4]; 

corn(): 

retum invalidflags: 

1 

void initairbag(void) { 

for ( fuzptr = &fuzvds[ 121 ; 

fuzptr < &fÜzvals[l6]; 



/* 

I------------------------------------------------ I 

I Memory l R A i i  I ROM I 

I---------------------------------------------------- I 

I Fuzzy Lozic System 1 2 1 (00 1SH) I 494 (O 1 EEH) I 

!---------------------------------------------------- I 

I Total l 21 (001SH)I 494(OlEEH)I 

]--*------------------------------------------------- I 

*/ 



APPENDIX C l  

Code for HIWARE for 68HC12 

Header File 



/*------------------- fuzzyTECH 5.30 MCU-HC 1 1 / 12 Edition ---------------- */ 

/*------------------ License Number: FT IU 0006 1 0 1 H S  ---------------- */ 

/* -------- (c) 199 1 - 1999 INFORM GmbH, Pascalstr. 23, D-52076 Aachen ------- */ 

/*------ In form Software Corp.. 200 1 Midwest Rd., Oak Brook. IL 60523 -----*/ 



typedef unsigned char FUZZY: 

#de fine FUZZYDEFINED 

#endif 

#i fndef FLAGSDEFINED 

/* ----- ----------- type of return value of fuzzy controller --------------- */ 

typedef unsigned char FLAGS: 

#de fine FLAGSDEFINED 

?#endiF 

extern FLAGS -invdidfiags: 

extem FUZZY -Beltn-airbag; 

extern FUZZY _Distanceairbag; 

ex tem FUZZY -Relspeed-airbag; 

extem FUZZY -Weight-airbag; 

ex tem FUZZY -In f-S peed-airbag; 

/* O H  .. OOFFH */ 

/* OOOOH .. OOFFH */ 

/* OOOOH .. OOFFH */ 

/* OOOOH .. OOFFH */ 

/* r n H  .. OOFFH */ 



/* ------- for starting up the generated fuzzy logic system, cd1 once -----*/ 

void -initairbag(void); 

#define initairbag jnitairbag 



/* -------------- for calling the generated fuzzy logic systern ------------ */ 

FLAGS -airbag(void); 

#define airbag -airbag 



APPENDIX C2 

Code for HIWARE for 68HC12 



.................... 
y fuzzyTECH 5.30 MCU-HC 1 1 / 12 Edition ------------------- 

---------------- License Nurnber: FT iU 0006 1 O 1 HS ------------------ 

---------- (c) I99 1- 1999 iNFORV GmbH, Pascalstr. 23, D-52076 Aachen --------- 

-------- Inform Software Corp.. 200 1 Midwest Rd., Oak Brook, IL 60523 ------- 

---------------------------------- iMcu: 13 ---------------------------------- 

XDEF -airbag 

XDEF -initairbag 

.................... , input/output interface o f  controller ------------------- 

XDEF -Beltnairbag ;OOH .. FFH 

XDEF -Distance-airbag ;WH .. FFH 

XDEF -Rel-speed-airbag $OH .. FFH 

XDEF -Weight-airbag ;WH .. FFH 



XDEF Jnf-Speed-airbag ;WH .. FFH 

.................... extemal functions of  fuzzy l i b r q  -------------------- 

XREF flms 

XREF corn 

.................... , external variables o f  fuzzy library .................... 

XREF fuzptr 

XREF -invdidflags 

XREF itcnt 

X E F  tpptr 

XREF crisp 

XREF otcnt 

----------------------------------------------------------------------------- 

ftData: SECTION I 

-------------------------------- RAM i/o-vars ------------------------------- 

fuzvals: ; 12+4+0  

fvs: 

t Beltn-airbag: ds.b 2 

- t-Distance-airbag: ds.b 3 

- t-Rd-speed-airbag : ds. b 3 



crispio: 

- BeItn-airbag: ds.b 1 

- Distance-airbag: ds-b 1 

- Rel-speed-airbag: ds. b 1 

- Weight-airbag: ds.b 1 

- In f-Speed-airbag: ds.b 1 

ticode: SECTION 2 

----------------- standard tenn de finition (x 1. x2, x3, x4) ----------------- 

tpts: 

dc.b $00, $00, $00, $00 

dc.b Sûû, SOO, SFF, SFF 

dc-b SOO. $00, S2B, SS5 

dc.b S2B, $60. S9F, SD5 

dc.b SAA, SEA. SFF, SFF 

dc.b SOO,Sûû,$17,S46 

dc.b S2E. SSD, SA2, SD 1 

dc.b SAE, $CS, SFF, SFF 

dc-b Sm, $00, SOD, $36 

dc.b $lB,S43,$6B,$94 



--------------------- 
y xcom table (de fuzzi fication) --------------- 

xcom: 

dc.b SOD, $53, SAC, SF2 

:------------------------------- nile table(s)------------------------------- 

- no: 

dc-b $0, $2, $5. $8, $FE 

dc-b SD, SFE 

dc.b SO, $2, $5, $9, SFE 

dc-b SD, $FE 

dc-b $0. $2. $5, SA, SFE 

dc.b SE. SFE 

dc-b $0. S2, SS, SB, SFE 

dc-b SE, SFE 

dc-b S0. 52, $6, $8, SFE 

dc.b $E, $FE 

dc.b SO, $2, $6, $9, $FE 

dc-b SE, SFE 

dc-b $0, $2, S6, $A, SFE 

dc.b $E, SFE 



dc-b $0, $2, $6, SB, $FE 

dc.b SE. SFE 

dc.b $0, $2, $7, $8. $FE 

dc.b SE, SFE 

dc-b $0, $2. S7, S9, SFE 

dc-b SF. SFE 

dc-b $0, $2,S7, SA, SFE 

dc-b SF. $FE 

dc-b $0, S2, $7, SB, SFE 

dc-b SF. SFE 

dc-b SO, $3, $5. S8, SFE 

dc-b SF, SFE 

dc.b SO, $3, $5, $9, SFE 

dc-b SF, $FE 

dc.b $O,S3,$S,SA, SFE 

dc-b SF, $FE 

dc-b $0, $3, $5, SB, SFE 

dc-b SF, $FE 

dc-b $0, $3, $6, $8, $FE 

dc.b SF, $FE 

dc-b S0, $3, $6, S9, $FE 

dc-b $F, $FE 

dc-b $0, $3, $6, $A. $FE 



dc.b 

dc.b 

dc-b 

dc-b 

dc.b 

dc. b 

dc.b 

dc.b 

dc. b 

dc.b 

dc-b 

dc-b 

dc-b 

dc. b 

dc. b 

dc.b 

dc.b 

dc.b 

dc-b 

dc-b 

dc.b 

dc.b 

dc.b 

$F, $FE 

$0, $3, $6, $B, $FE 

$F, SFE 

$0. $3, $7, $8, SFE 

$F, $FE 

$0, $3 ,  $7, $9, SFE 

SF. SFE 

$0, $3,  $7, SA, SFE 

SF, $FE 

$0, $3, $7, SB. $FE 

SF. $FE 

$0, $4, $5, $8. SFE 

SC, SFE 

SO, $4, S5. $9. SFE 

SC, $FE 

$0, $4, S5, SA, SFE 

SC, SFE 

$0, $4.55,  SB, SFE 

SC, $FE 

SO, 9, $6, S8, $FE 

SC, $FE 

$0, $4, $6, $9, SFE 

SC, $FE 



dc.b $0, S4, $6, SA, $FE 

dc.b SC, SFE 

dc-b $0. $4, $6, $B, SFE 

dc-b SC, $FE 

dc-b S0, %, $7, $8, $FE 

dc.b SC, SFE 

dc-b $0, $4, $7, $9, SFE 

dc-b SC, $FE 

dc-b $0, $4, S7, SA, S E  

dc-b SC, SFE 

dc-b $0. $4. $7, SB. $FE 

dc-b SC, SFE 

dc-b $1.S2,$5,$8.SFE 

dc-b SC. SFE 

dc-b $1, $2, $5,  $9, $FE 

dc-b SC. SFE 

dc-b S1. $235, SA, $FE 

dc-b SD, $FE 

dc-b $1, $2, S5, SB, $FE 

dc-b SD, $FE 

dc-b $ 1, $2, $6, $8, $FE 

dc-b SD, SFE 

dc-b $1, $2, $6, $9, $FE 



dc-b SD, $FE 

dc-b !S 1, $2, $6, $A, $FE 

dc-b SE, $FE 

dc-b S 1. S2, S6, SB, SFE 

dc-b SE, SFE 

dc-b $1, $2, $7. $8. $FE 

dc.b SE, $FE 

dc-b $1, $2. $7, $9, SFE 

dc-b SE. SFE 

dc-b $1. $2. S7, SA. SFE 

dc-b SE, SFE 

dc.b S 1. $2, $7, SB. SFE 

dc-b SE. SFE 

dc.b S 1. S3, $5, $8, $FE 

dc.b SE, SFE 

dc.b s 1, $3, $5. $9, $FE 

dc.b SE, $FE 
- - - - - - - - - 

dc.b S 1, S3, S5, SA, SFE 

dc.b SF, $FE 

dc.b S 1, $3, $5, SB, $FE 

dc-b SF, $FE 

dc-b S 1, $3, $6, $8, $FE 

dc-b SF, $FE 



dc-b $1, $3, $6, $9, $FE 

dc-b $F, $FE 

dc.b $1, $3, $6, SA, $FE 

dc.b SF, SFE 

dc-b S 1, $3, S6, SB, $FE 

dc-b SF, SFE 

dc-b S 1. S3. S7, $8. SFE 

dc-b SF, SFE 

dc-b $1, $3, S7. S9, SFE 

dc-b SF. $FE 

dc-b S 1, $3, $7, SA. $FE 

dc-b SF, SFE 

dc.b S 1, $3. $7, SB. $FE 

dc.b SF, SFE 

dc.b s 1, $4. $5, S8, SFE 

dc-b SC, SFE 

dc-b $1,  $4, $5. $9, $FE 

dc.b SC. SFE 

dc-b S 1, S4, $5. SA, SFE 

dc.b SC, $FE 

dc-b $1, W. SS, SB, $FE 

dc-b SC, $FE 

dc-b $1, S4, $6, $8, $FE 





ldab #S2 

stab itcnt 

ldab -BeItn-airbag 

stab cnsp 

jsr flms 

ldab #$3 

stab itcnt 

ldab -Distance-airbag 

stab crisp 

jsr flms 

ldab #S3 

stab itcnt 

ldab -Rel-speed-airbag 

stab ct-isp 

jsr flms 

ldab #$4 

stab itcnt 

ldab -Weight-airbag 

stab cnsp 

jsr fims 



ldx #xcorn +SO 

ldab #SJ 

stab otcnt 

jsr corn 

bcc outovalid 

ldab #S80 

outovalid: stab Jnf-Speed-airbag 

ldab -invalidflags 

rts ;end of fuzzy controller 



- initairbag: 

ldy #S4 

ldaa #O 

begin: 

stria fuzvds + SB,y 

dey 

bne begin 

rts 

:data size knowiedpe base (bytes): 

:RAM: 21 00015H 

:ROM: 412 0019CH 

:TOTAL: 433 OOlBlH 

, 

end 
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