An Intelligent Voice Driven Intranet Search Engine

(AIVDISE)

by

Salaheldin Ali Aboulkhasam

B.Sc., El_Fateh University, Libya, 1991

Thesis

Submitted in partial tuifillment of the requirement
for the degree of Master of Science (Computer Science)

Acadia University
Spring Convocation 2000

¢ by Salaheldin Aboulkhasam, 2000

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Weillington
Ottawa ON K1A ON4

Canada Canada

Your big Votre relerence

Our Ne Notre reMrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autornisation.

Canadi

0-612-52023-4

Abstract

The volume of website information accumulates rapidly. and thus. search engines
are indispensable. The main user demand trom the search engine ts to ethiciently retrieve
accurate and relevant results. This thesis presents a new and improved search engine
called [ntelligent Voice Driven Intranet Search Engine (AIVDISE) which aceepts natural
language queries. AIVDISE can be used to search a personat or business website, ¢.g.
Acadia’s website. As input. AIVDISLE can aceept both spoken and typed English
language sentences. Together with a number of uniquely powerful scarch engine
technologies. AIVDISE can deliver the accuracy people want from their intranet search

engine without the need for expert training in search techniques.

Acknowledgements

Although only my name appears on this thesis. this work would not be possible
without the help of many people. First. [would like 1o thank Dr. Andre Trudel. my
advisor. who helped me at every stage of this work. His suggestions and innovative ideas
were invaluable for the completion ot this work. I am also gratetul to Dr. Scott Goodwin
and Dr. Daniel L. Silver for their valuable suggestions and comments during thesis
discussions. [would also like o thank the other taculty members ot the Jodrey School of
Computer Science for helping me gain better knowledge in the ditterent lields of
computer science. I would like to thank Carol Luczak Vanlderstine. a master student in
The English department. tor spending time prootreading. Finally. [would like to thank

my parents and my wile for their support and encouragement.

Table of Contents:

CHAPTER | INTRODUCTION c.cuciiiictinisisssnissssssssissnsissssasssssessssisssssssassssssness |
Lol THESIS OVERNVIEW (iititis ittt e st ebe sttt eeneseanee e nanes 3
CHAPTER 2. WHAT ARE SEARCH ENGINES? ..ot s
INTRODUCTION tristssnsrisnsnnsisessissssmssessisissoscssssossssossosssssesssssssssssssssssossassassassasssssesss s
2.1 THE HISTORY OF SEARCH ENGINES t.octiiiiiciicic e 5
2.2 SEARCH ENGINE oottt 7
2.2.1 Environments of the search engine -
2200 Internet Search Engines oo 8
220 LT Alavista Search Engine o Y

2.2.1.1.2 Northern Light Search Engine oo 1

220113 Exeite Search Engine oo 12

22114 HotBot Search Engine...ooic 14

2. 2.1 1.5 Infoseek Search Engine ..o |5

22,12 Intranet search CNEINES. ..o 17
2.2.1.2.1 Why we need intranet search engines ... 17

2L FIreWall oot e 18

2.2.1.2.3 hte//dig Search Engine...ooceveciiiceeecceeeeeeeee s 19

2.2.1.2.4 Phantom Search Engine ..o 19

vi

2.2.1.2.6 Searchlink Search Engine V 3.0 e 19
2.2.1.2.7 Home page Search Engine v L3 e 21
2.2.1.2.8 SearchLite Search Engine v 2.0, 22

CHAPTER 3 HOW SEARCH ENGINES WORK.......cccovvevennnnn. esessansiesasesasanas creenn 23

INTRODUCTION. tircretisnnsniiiicsinsssanesisnsssisssssssiiesassiisesssisssessaes 23

01 DY PES OF SEARCH ENGINES oottt e et 23

hJ

S Directory Search Engines23

312 Index Search Engines. L M

J 13 Meta Search lngines M
3.2 HOW SEARCH ENGINES WORK oo 24
321 Kevword searching .. U 24
3201 Boolean TOIC cooviiiiii e 2D
320 LT Boolean logic OR e 23
3.2.1.1.2 Boolean logic AND s 20
32113 Boolean logic NOT e 27

32012 PRRIse SURBLCEY oottt e 28
32013 Case sensilivIty SHALCEY cooveeee e 28
3.2.1.3.1 Case SenSHIVE SUALCEY ooviereiiire et 28
3.2.1.3.2 Case inSEnSIIVE SITMCRY .overeii oot 29

3.2, 1.4 Wildeard SITRERY oo 29
322 Natural language SUralegy ..ot J0
3.3 SPIDERS L.ttt bbb e e s 30

vii

3310 Deadlinks ... TSSO 3!/

3.4 CONCLUSION ottt ettt et et e 34
CHAPTER 4 AIVDISE OVERVIEW.......... ERROR! BOOKMARK NOT DEFINIED.
INTRODUCTION. ..ottt st sasrsstsssasese VD

4.2 HHGH LEVEL ARCHITECTURE OF AIVDISE 30

4.5 OVERVIEW OF AIVDISE o 37

I I R R T L L T PP PPT PSS KD

4.4 1 Stop Words Strategy....... TP RSP U U TP P RO Y
4.4.2 Cancepr-hased searching Stradegy .o A
443 AND Logic Strategy . PP PRV RTRP T 42
4.4 Case insensitive SIFAICEN ... 42
4.5 HOW ATVDISE WORKS .ottt 43
51T NI USCE INICTACE Lottt 44
B3 L LT USUT FOQUESIS 1ot 43
5L FHe drop menu ..o 43

4.5 1112 Help drop menu....ccc 47

4.5 1.1 1.3 Instructions Menu Hem o 48

351 L4 About Item MenU ..o 49

4.5 111,06 Search BUttonoovviivieicic e 51
451117 Clear BUON....co.oeiviereec e 52
43112 RESULS QRN ... s s 53

viii

NI

S — ISIAAIY 1119
S “6056] 110 11 P> adaw 2503 YL g1 110
e DI/ AL GNY ISIAIY 10
(1 FH<H AR AR AR RSO 81 s\ OL LY IGOULNI
PR— . s NOSTHVAINGD 9 HALIVHD
coO ey ASTAATY HLEW SIOVHLLINTONINVADS ATTVELYN NOOVUA WO ¢+
[e {Aaieng Auryammas paseqadantoy e e

() 5 SAmeng spioy doig 1706

) poyta punof =<

ny o S poragy wondpassaqian | ¢ ¢

(J SV IONVES o
[e Pl Pt O bo G

QG POyt pasuvl YN €= ¢
Pa— S P p—

K o A) ¢

G T p—
£y POYIOI N L2408 | | ¢

G SSV1Y TNVAHONVES €
R — - e AR stnne e N OLLYAGOULN]
A — ‘NOLLY INTINATdINT ASIAATY $ ¥3LdVHD
G wonduasag €1 1¢'+

O 1 12 MU IE e s o8

6.1.2 Wha is teaching comp 29037 1
0. 1. 2 L ALV DS e e e 71

0.1. 2.2 NUAIZ .o s 73

6.1.3 Where can findcomp 11132 TR "6

. 3 NI Y D S o e e 76

0.1 3.2 DU AIZ e e 79

CON UL S O oottt et e v te st s e bt e e e e e eeaa e e e e e an s esssssss s eeeaaeataessananeeennes 82
CHAPTER 7 CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK........ 83
R B 0 5N & T BN 1 1 O OO N 83
7.2 DIRECTIONS FOR FUTL RE WORK. 11ttt eeee e e e e et e eeeeeeeaeeeaee e eiessesaeevantsasannaeeeeanns 84
BIBLIOGRAPHY cieeiieeniiiniiincsnsessnnenionsesmnenseensssssssassstessesissmsssosssssssassssssssssssssassnsssssns 86
APPENDIX A USER'S GUIDE.....iveriirnresiscenecescssntsnamsssssssinisssssssssasasssssansssssssasasessssns 90
APPENDIX B TESTING QUESTIONS ..itiiinnnininnnienineniiimieissesesmiisssssssssasesns 94
APPENDIX C SOURCE CODE ovueveeeieciieeresenesninsacssssccssansssassssssssssssssssssssssssanesssssssssses Y6

List Of Figures:

Figure 2.1 Search Engine environments ..o 8
Figure 2.2 Alavista simple user inerface ..o 10
Fieure 2.3 Altavista advanced user intertace i
Figure 2.4 Excite simple user interface. o 12
Figure 2.5 Excite advanced user INWCrIace .o 13
Figure 2.0 HOtBOU USCr intertice ..o 14
Figure 2.7 Infoseek Simple User interfiace .o 15
Figure 2.8 Infoseek Advanced User inerface. o 10
Figure 2.10 Searchlink search engine oo 20
Figure 2.11 Home page search engine ... 21
Figure 3.1 Boolean logic OR ..o 25
Figure 3.2 Boolean logic AND o 20
Figure 3.3 Boolean logic NOT 27
Figure 3.5 b 404 EITOE MESSUEC ovoeiviieicecenece s D
Figure 3.0 Error message F04 oo 30
Figure 3.7 Error message 401 oo 30
Figure 3.8 Error message 403 o e 33
Figure 4.1 High Level Architecture of AIVDISE .o 30
Figure 4.3 Opens AIVDISE o 43
Figure 4.4 Main User INerfaace ..o 44
Figure 4.3 File Drop Menucoooiiiiiiiiie s 435
Figure 4.0 EXIUMenu [tem ... 46

Xi

Figure 4.7 Help Drop Menu. ..ot et 47

Figure 4.8 Instructions Menu lem . ..o 48
Fiaure 4.9 AbOUL MEnu T oo 49
FIRUIC 410 TONUATCU oo e 30
Frgure 4 1T SCarch BUllOn (oo 51
Froure 402 Clear BUlton..o e
Fraure 413 ReSUIS AT 33
Froure 414 ACtual POge. o, 3
Feure 4 F3 DISCIIPUON Lo 4
Figure 6.1 AIVDISE Results From Question T 05
Figure 6.2 AIVDISE First Answer From Question 1 ... 60
Figure 6.3 AIVDISE Second Answer From Question 1o 07
Figure 0.4 ht: dig Results From Question [08
Figure 6.5 ht: -dig First Answer From Question L 0Y
Figure 6.0 ht: dig Second Answer From QUestion | ..o 70
Figure 6.7 AIVDISE Result From QUestion 2. 71
Figure 6.8 AIVDISE Answer From QUESTHON 2. 72
Figure 6.9 ht: "dig Results From Question 2. 73
Figure 0.10 htzdig First Answer From Question 2. 74
Figure 6.11 ht://dig Second Answer From Question 2 ..o, 75
Figure 6.12 AIVDISE Results From Question 3 ..o 76
Figure 6.13 AIVDISE First Answer From Question 3 oo 77
Figure 6.14 AIVDISE Second Answer From Question 3.....ccooevevviiieenienicicicene, 78

xii

Figure 6.15 ht/dig Results From Question 3. 79

Figure 6.16 htivdig First Answer From Question 3., 80
Figure 6.17 hti/dig Second Answer From Question 3 oo, 81

xiii

List of Tables:

TABIE 4.1 STOP WOTUS 1vitrteiecceiee e e

Table 4.2 EQUivalent KeyWORdS oo

Xiv

41

To my son Amgid

XY

Chapter 1 Introduction

As the amount ol information ancreases o persotial lomepages. specilic
information may be too ditticult for many users 1o find without a special tool. These wols
are called intranet search engines. Existing search engines use keyword searching which
often does not provide the user with the right information. For example. it we search
using the kevword "agent™ on the search engine Yahoo we get 7051 hits,

The ultimate goal of intranet search engine programmers is 0 make guerying a
website so simple that anyone can casily aceess information. Natural fanguage scarch
engines are working towards that goal. Natural anguage (NL) is defined as a language
spoken or written by humans. NL input is one of the most difticult problems for artiticial
mtelligence because human language is complex. irregular. and diverse.

In a natural fanguage query, a scarcher uses a non-structured language, such as
English. to conduct a search by describing the desired information. An example ol a
natural language query is "I need to know how search engines work.” A natural language
scarch does not require the user to use boolean logic. A natural fanguage search engine
uses relevance ranking and other Al technigques o extract the essence of the query.
conduct the search, and return the relevant information.

NL searching has certain overall advantages over Boolean keyword searching.

For example. Turtle {Turt 94] compared the performance of natural language and

Boolean query tormulations. Natural language tormulations worked better and scaled up
better. Experienced searchers tind that NL searches work better than keywords [Hersh
and Day 97].

To encourage people to make tull use of resources on homepages. the scarch
engine is required to be easy to use because the average user will likely never become an
oxpert with scarch software. At the same time. if we are o expect users o visit our
homepage and continue using our scarch engine. we must provide accurate and relevant
search results.

Fhis thesis introduces An Intelligent Voice Driven Intranet Search Engine
(AIVDISE) tor a personal or business website e.g.. Acadia’s website. AIVDISE can
aceept spoken and typed English language sentences as input. To increase the accuracy
and speed of the search engine. it will store and use specialized knowledge about the
Acadia website. We built our search engine using a single and casy user interface w
encourage people to Keep using the search engine.

We chose Java o implement AIVDISE because Java is designed to run on a
variety of platforms. Most computer programs are written tor specific kinds of hardware
and operating systems. Thus. some applications written tor Windows will not run on a
Macintosh and vice versa. Java is suitable because once it is written, Java runs on any
computer that has the Java Virtual Machine. Because Java is so widely aceepted. it has
become a popular tool on the internet. Java is guaranteed to work with virtually any

browser.

1.1 Thesis Overview

Chapter 2: What are Search Engines? We introduce the reader to search
engines. their history. where we can use them. and why we need them. We discuss some
popular intranet and internet scarch engines. such as hto dig. Phantom. Altavista.

Yahoo. WebbEnhancer. Scarchlink. cte.

Chapter 3: How Search Engines Work? In this chapter. we discuss difterent
tvpes of search engines. examine how search engines work. the hidden mechanies. and
how a page can be tound. Furthermore, we discuss why there are so many dead links

(sites are no longer in existence) returned from popular search engines.

Chapter 4: AIVDISE Overview. In this chapter, we present the strategies used to
build AIVDISE and our system design. We begin with a briet overview of what we want
to accomplish. Then. we describe the high level architecture of our system followed by a

step-by-step presentation of our strategics.

Chapter 3: Results, [n this Chapter. we demonstrate the performance of

AIVDISE through examples.

Chapter 6: Implementation. This chapter describes the system implementation. we

discuss the most important classes used by AIVDISE through code tragments.

o]

Chapter 7: Conclusion. This chapter presents conclusions and directions lor

tuture work.

CHAPTER 2. WHAT ARE SEARCH ENGINES?

Chapter 2. What are Search Engines?
[ntroduction

[this chapter. we introduce the reader t the description of search engines. their
history. where we can use them. and why we need them. We discuss some popular
mtranet and internet search engines. such as ht: dig. Phantom, Altavista, Yahoo.

Webknhancer, Searchlink. ete.

2.1 The history of search engines

The first attempts at organizing intormation on the net began in 1990 when Alan
Emtage of MeGill Umiversity developed a search engine named Archic [Corn 94]. At the
time. Archie was the most popular repository of internet files and anonvmous FTP (File
Franster Protocol) sites.

After the creation of Archie, the University of Nevada created the Very Easy
Rodent-Oriented NetWare Index o Computerized Archives (Veronica) [Maciv8).
Veronica works in a manner similar to that of” Archie. In 1993, Jughead [Maci98] was
developed at the University of Utah (USA). Jughead. another Gopher search facility. is
similar to Veronica. However. Jughead 1s less sophisticated and is intended tor searching

a smaller Gopher area. As the tiles on Gopher servers are gradually converted to HTML

h

CHAPTER 2. WHAT ARE SEARCH ENGINES?

tiles. Gopher (and therefore Veronica and Jughead) will become less important,
Currently. many valuable files can be found only on Gopher servers. Gopher servers
contain plain text documents. but no images or hypertext.

The web search engines did not come into existence until April 1994 [Maci98).
David Fill and Jerry Yang. two Stanford University Ph.D. students. built the first search
engine to orgamze their personal interests on the mternet. Fill and Yang tound 1t was tun
scarching the internet with the search engine because it was so casy and they would not
have o remember all of the addresses. Originally. the project was called Guide o the
World Wide Web but later was renamed “Yuhoo™ which stands tor “vet another
hicrarchical ofticious oracle.” Yahoo was converted into a database to help others locate
and identify sites. In April 93, Fill and Yang received one million dollars from Sequoia
Capital to develop Yahoo into a business. The students lett graduate school and are now
part of a new breed of entreprencurs who became overniglt millionaires.

Lycos was tounded in July 1994, The word Lyeos stems trom the first tive letters
of the Latin. Lycosidae (the Wolt Spider). Lycos was onginally designed and
implemented at Carnegie Mellon University. USAL America Online bought Lycos and
became Lyeos Ine.

In December 1995, Altavista was released from Digital's Research Laboratories in
Palo Alto. Calitornia.

Currently. there are a myriad of search engines available on the web, such as

Harvest 1996. Excite 19935, Looksmart 1996. and Copernic 1999,

CHAPTER 2. WHAT ARE SEARCH ENGINES?

2.2 Search Engine

The World Wide Web is the largest existing collection ot documents. . According
to Search Engine Watch, the Web had 800 million pages in August 1999, Information is
obtained as follows. It the URL is known, the user enters the URL in the "location” box
on a browser, such as Netscape Navigator or Internet Explorer. However. it the URL is
not known, a search engine 1s used.

A search engine is software that searches for intormation. Fhe scarch engine has
an intertace that allows you to 1ype keywords about the required information into a blank
ficld. then gives vou a list of addresses. These addresses are presented in hypertest.
which allows the user to click on any address. It the contents of the address selected do
not have the correct information. the user can click the back button on the browser and
return o the original list. There are different types of search engines which can be used in

cither an internet or intranet environment.

2.2.1 Environments of the search engine
We can use the search engine in two environments (internet or intranet) see

Figure 2.1.We discus them in detail next.

CHAPTER 2. WHAT ARE SEARCH ENGINES?

— B

Internet

.
I

Figure 2.1 Search Engine environments

2.2.1.1 Internet Search Engines

An internet scarch engine is sotftware designed to search the internet (see Figure
2.1). Although there are hundreds of ditTerent internet search engines. the most popular

scarch engines are Altavista, Lycos. and Excite

CHAPTER 2. WHAT ARE SEARCH ENGINES?

2.2.1.1.1 Altavista Search Engine
Altavista contains over 150 million web pages in an index tile. It is a tull-text index that
scarches the entire HTML tile. Altavista has both a simple search (Figure 2.2). and
advanced search user interfaces (Figure 2.3). Altavista uses boolean logic to search. In
simple searching. the detault is OR logic between words. For example. assume the user
wanted o tind information on "hard rock music” and ty ped in the keywords:

hard rock.
The scarch engine presents the user with tiles that contain only "hard.” "rock.” and "hard
rock”. The user is potentially only interested in tiles containing both "hard™ and "rock”. In
advanced searching, OR, ANDONOT may be used. Case sensitivity. in which both upper

and lower case characters are searched. may also be used.

CHAPTER 2. WHAT ARE SEARCH ENGINES?

2 18] x]

K Allavista HOME - Netsc ape

Be f& Yew fo Lommuncdor Heb A

J.aookmak: ALccdem//melamtacw - B — =

i)%’-’ia-bdfiﬁ

-ti+sd Relosd Home Sewch Gude Prnt Secunly Siop

. @ Bac. . .
AItaV|sta % The most powerful and useful quide to the Net Septembet 30, 1990 et
Connections ' My AltaVista Shopoing com Zip2 com |
Ask AltaVista® a question. Or enter a few words in [any language v) et T g
Search For: @ wevPages images € wigen € Audio Search tip:
[: Search l yse the gstenck
Exarnple Where can | find a recipe for corn tortillas?
ALTAVISTA CHANNELS - My Altavists - Finangs - Traegl- Shopging - S areers - Heaith - News - Entetanmert -
FREE INTERNET ACCESS - Downigad Sufware ™ - Sygpert USEFUL TOOLS -7 amuly Friler - Transiation - * 2iigw Pages -
Paogle Firder - Maps - Lisenet - Free Emal
DIRECTORY ALTAVISTA HIGHLIGHTS [7hek Here
Automplive POWER SEARCH
Buginess & Finance P oovin 3t iE T wrk f atan tha € ibis Pictyre
ut " “9375'\ “:g ggg;laugf A mn!]![gnm g!!!
: NEW MEDIA NOW
Health & Finess » tgwie fans vs) Mowie Calegone
Hobhies & Intesests » Iman® ke Foolball” Plaw i EE Fantase & AN
Home & Familv Al TAVACTA METWANY Frue virnr mranmuee .:J
b o BN {Connect Host ad doublecick.net contacied Watng lor reply . BN WY

Aston| | B Miciosoht wond - chagter2.. | [EX ARavista HOME - Net... B8OAY L RUTREDIE nyam

Figure 2.2 Altavista simple user interface

10

CHAPTER 2. WHAT ARE SEARCH ENGINES?

AV s HOME Netuape mrig
fle Edt Yew Go Lommuncator Hep o _

J Bookmarks &Locmlmpllmmenmtacom/cobwmmy’og-eq&m-web ~]

. -

v v 3% 2 £ I & ill

Back - . Reload Home Semch Gude Pt Secunty

I YLENAIXC IR The most powerful and useful quide to the Net September 10, 1992 poy

Connectinne - My AhaVisla Shopping.com Zip2.com

Enter ranking klywoldslnlany language :l' mﬁ

| CSearcn |

Enter boolean expression Range of dates

=l me:l _

To: I—

-l #g 21/Mar6

™ Coumt documents matching the boolean expression.
To take odvqnlag! o[a@vaqcld search features, please consuit the Help section.

ALTAVISTA CHANNELS - My AltaVists - Finange - Travel - Shopping - Zaraers - Heaith - News - Enteainment

FREE INTERNET ACCESS - Qywnigad Scware " " - Syppont USEFUL TOOLS -Farmuiy Fiter - Trangiation - Yellow Pages -
Fecpte Findar - Maps - Lsanel - Free Emal

DIRECTORY ALTAVISTA HIGHLIGHTS
Automotive POWER SEARCH e i

@ Document Done I a3 L

Asten| JgMumuww-omu:{]F;uwinnauouE -Net... BGAY LN *BNCEVRE 1nm

Figure 2.3 Altavista advanced user interface

2.2.1.1.2 Northern Light Search Engine
In its index file, Northern Light contains over 160 million web pages. The detault
between kevwords is AND. For example, assume the user wanted to tind information on
"hard exam" and typed in the keywords:
hard exam.
The scarch engine presents the user with files that contain both "hard” and "exam”. You
can also use boolean logic OR and NOT. Phrase searching requires quotation marks

around cach phrase. Users can search Northern Light's special collection which is an

11

CHAPTER 2. WHAT ARE SEARCH ENGINES?

index of articles from 3000 journals and periodicals. Searching the special collection is

free but retrieving the text of an article requires payment.

2.2.1.1.3 Excite Search Engine

There are 335 million pages in the Excite database. Excite has simple and advanced
intertaces as shown in Figures 2.4 and 2.5, respectively. In the simple interface. OR is
used as a default. In the advanced interface, AND and NOT are used but they must be

entered in capital letters.

flo Ed Yiew Go Commumcatar Heo

J Bookmarks & lehl'n//m;c.e;sncpm *_ :7 — = . - =] ﬂ

< ¢ 3 R 2 £t 3 & W

Back Fowad Reiosd Home Semwch Gude Pt Secunty Slop

eXcite Personalize vouw 1Yaae! Ry e coute 20 ite - *u{-' ‘
* 'lc—u'mo-nw ¢ Esle Membaen slouﬂ . Hll! a :’:.J
ra , l _Saarch | iy S
51 y Autos Entertainment Meney Tlooh Cugtes
Sree Excile Yorcemal conlt ﬂminl-u-rw! Emﬂu Bnl.bml Yallow Pages
W’n‘ ‘-‘-‘]Q!g aml‘ggr newt 1
Today on Excite Cmmnﬁ tueat Mnl!h smI &mmﬁngmmn
Thursday September 30 10 MAM EDT mmn-—;am
News Grass Wins Nobel Pize % e Ragle for Your PCI L?“’-’—N-'—"n
2 Polt Sapning of AT -
+ O Yoy YWork com? Shopping austens Clamnegs Paste danery SensusiZons Maps & Duections
Taik tor O 3 Minute Heisgsope §hop Saldiics S4adasy Mo Horascopes
rian F aster (Paople & Chat) Shuttewe: 2aspis vaissSng Mate
Pacers Finder Moty
Stocks wdl = X My News st~ X My Weather odit = X
Top Stories | Photos s« i 10 38.m) Enter your Jip Coce
I— M‘—j . launjju_ummmkm_ﬁhnmm M
‘-ﬂmm.' . u.sn.:In:anlmnmumn_ﬁmmu [Aupont Qeiays | 30 Yyeather | =
[Cmtmmhtdm:m i cae 2 2!
13'-_1- || Y Microsck ward - Documen [€ acite - Netscape | @DAVE ~BEESHOPE nwom

Figure 2.4 Excite simple user interface

CHAPTER 2. WHAT ARE SEARCH ENGINES?

o Eacte Seanh Advanced Netu ape

fle E&t Yew Go Communcaor Heb

J * Bookmarks A Nohh;lhltp 2 /wwew excie com/seacch_torms/advanced langsendc_typesc_countiybc_countiyeweb :_| E

v 3 2 a2 £t &

Back ~-.vr! Reload Home Seaich Guide Print Secuity Stop

eYcite. ™™ E

Parsonalize | Check Email [Excite Home =] Gol
 nlne 1 ambling Choose your gane now ' [_ o) x]
¢ € Blackiack ¢ SlotMachines o dealer! CANINOY Games
' @ iRoutetle ' Video Poker e e] (S0 ON-NEP] 1oview
Click Heta }
Advanced Web Search —
Mors Seatch Advanced Web Search |

Search for

Include and/or exclude specific words ar phrases in or from your search
Do NOT use quotanor marks, modifiers ke + and - or cperators hke ANCY

Results [AN ¢antan =] [the woraisi =] |
Res) ALST contain _'_] [the phrase :_] I
ults[T NCT contain ;] [lhe phrase ;] I

Add more constraints | =

7 ik . a2 2
{ B} Eacite Seaich: Advan... :J 8 4 ”“M’;&{-O;‘Q 1149 AM

Search
options

Figure 2.5 Excite advanced user interface

13

CHAPTER 2. WHAT ARE SEARCH ENGINES?

2.2.1.1.4 HotBot Search Engine

HotBot contains over 110 million sites. HotBot has a single interface which
allows the user to modity a search term from a drop-down list and choose advanced
scarch options (Figure 2.6). Boolean scarches are supported through the menu options or

by using AND, OR. and NOT.

+ Mol Netaoape

fie {a V!u ﬁo Communcaty Heb

J Beokmrs &Lm]mﬂm;& Y

dé!'& deJl

Favy? Reioed Home Sold’o Pri Secwsly Sicc

Download the HotBot
Neoplanet Browser \gw!

VR T AR T KA WY
T I T

Scarch

wtyu ug :hm.n

choices s & Entenannens Relermnce
Al M Jeey gt - Coasl et
Business & Money Reaional
[rengtag ccap legugmrer o« Ll G0 Ap
Computers & Internet Science & Technology
LT CT I ST T VN, ZT1T SRS T L FPY CRFENT R L _
o 0 } G - ‘ - i iiaried
I vdee T Javascrpe edenamet Soeta o teats,
m M
e sty Varihe, Forer) Ateit,g e toetiysg e f by
10 0[- PRLN AL S S BT
Tuil descnpt j LSRN e 3 .-;,.;i.c.»-,.g Co
escnplions @ 4 .
R N M (T
i Rl e By s AN
Necplaret Erowser

e e o R

{Docurent Dore

|l
] | gy voot V- [et -der. FPoninini | | § DAY R

Figure 2.6 HotBot User interface

14

|IW&<&°W NS

CHAPTER 2. WHAT ARE SEARCH ENGINEN?

2.2.1.1.5 Infoseek Search Engine

There are 75 million sites in full-text. Infoseck has two user interfaces. simple
scarch interface (Figure 2.7) and advanced search interface (Figure 2.8.) InfoSeek uses

Boolean OR as the default. In the advanced search. Intoseek allows the use of AND and

NOT. The user can search for phrases by enclosing them in quotation marks.

W oinloseeb Nets ape

fie Eat Yiew Go Communcalor Hep

T $ Boskmaks K Lcsonfosmioengooed 3
v v 3R a &£ 3 & @
Back +: Reload Home Seach Gude Pt Secuty Stop

Sedrch
i} Networs R (YT)

CInTIns Toew s [YY Y YVIRETRN SO EPING [?]

Mapg Cusgtions jallovepgez Wiy pAader Wedibel Herggepas (lazubeds Iepnglater Chag
Mg boyids fraghome piges §cards Jt2eg [oewniggds Mowaimeg 2Q Invdg i ceniges 2 Remote
Autey Eood and Drink Real Estate
Puging, (ke Keguleg firng gt (grt ong
Groadcast Games Shopping
Badie. mpi Mmywiad Les dames pigu Bpdusy mahany
Caleenry Heatth Small Businesy
20bf ddeie (ieager. o.M divicg tefegiih
nj:g Sparts from ESPN

Revives. Jevenio)ds fuo e ted WMLE. NFL. tantagy
Entenainruent NEW! Money Icavel
Movigs, IV, caiabt Slodg Makey flants. paegaing

Latest news Eamily News Women

. Parsnts. Hde ARCNEWS ywieg Famuly beduty

Flooded NC
- Radiation Leah a1 Japan Plant
. F"IV:| “rawrdad nracidential :.I

P R N [TF 3 Lk de Q¥ 2.
Astan| gymicootwod - |[FlIntoresk -Ne... [RPerneizebrct | [@R AY L BATR LU nosam

Figure 2.7 Infoseek Simple User interface

CHAPTER 2. WHAT ARE SEARCH ENGINES?

Wolnluseer Advanced Seanch Wordd Wide Weh Nty ape

fle fd View Go Communicdtr Heb

T8 Booknaks } Locaon|ip oret g o e e o e et 1N
v i3 datad @

Back Foowx: Reload Home Sewch Gude FPint Seculy Stop
infoseek- tang 1t | Sulow Page
4/ This form requires JavaSeripy

search JRCIICKINGTE) What are

yuu
luoking for?

Infoseek Advanced Search

WEDB | :iEneT WHITE PavES {EMPANIES 310CKks | NEWS IMAREWARE REFERENCE -
* sk ek boxto see ictions * Enter quers tems * Legveunuze 9 es blank,

Search the Web for pages in which the:
[URL =J[must =Jcomamthe|phrase @] |

should

[Document +] M ontam the [phrase »| |

Il'ucume'-l of |shouté not »]contanthe [phrase ¢ | M|
& o Document Done 5 _ap 89
aszJ B vosad-.. [inosenh Adv.. [Penniinini | | SGAY Y BETREOIE nwm

Figure 2.8 Infoseek Advanced User interface

16

CHAPTER 2. WHAT ARE SEARCH ENGINES?

2.2.1.2 Intranet search engines

An intranet search engine is a software program that can only search a website
(see Figure 2.1). There are many intranet scarch engines, such as ht: “dig and Phantom.
The intranet search engines are not meant to replace the need tor internet search engines
like Yahoo. Lycos, Infoseek. Webcrawler. and AltaVista. Instead. the intranet scarch
engines are meant to cover the search needs tor a single company. campus. or even a

particular sub section of a website.

2.2.1.2.1 Why we need intranet search engines

We need an intranet search engine because no internet scarch engine can access
an intranet if it is behind a firewall (see section 2.3.1.2.2). Morcover. internet search
engines are not searching the web directly (see section 3.3) but are using a database file,
usually called an index file. The search engines scarch through the index file and provide
the user with the addresses of search results. Most internet search engines cannot visit
the website every day. Updating by a search engine [webp 98] takes time and that length
of time depends on the speed of the search engine tools. For example. Yahoo can update
its index database in four to eight weeks. Northern Light can improve its index database
in three weeks. Lycos improves its index database in two to four weeks. It the content off
a website changes often and a user is using an internet search engine to find specitic
information in a website, many of the links in the website will be dead links (see section

35.1).

17

CHAPTER 2. WHAT ARE SEARCH ENGINES?

2.2.1.2.2 Firewall

A firewall is a program which sits between a private network (an intranet) and
public networks (the internet). The firewall can restrict access between the intranet and
internet. Firewalls are generally used to protect an intranet trom intruders. as well as to
restrict access 1o the internet resources by local users of the intranet. For example, the
computers in box A in figure 2.9 can communicate amongst themselves, But. they are

isolated from the computers in B, C and D.

A | l

: Fire wall ‘
R - *
Intranet

Internet

i

Figure 2.9 Firewall

18

CHAPTER 2. WHAT ARE SEARCH ENGINES?
2.2.1.2.3 ht://dig Search Engine

ht:/“dig [Sche 99] is a searching system tor an intranet. The search engine uses
kevwords and was developed at San Diego State University as a way to search the on-

campus website network.

2.2.1.2.4 Phantom Search Engine

Phantom [Phan 99] is another intranet search engine that can search a website.

Phantom works 1in a manner similar to Altavista.

2.2.1.2.5 WebEnhancer Search Engine v 5.0

WebEnhancer [Deltix 99] is a personal search engine tor a website. It works in a
similar manner to Altavista or Yahoo. But. Webknhancer has been developed to search a
website. rather than the entire internet. WebEnhancer supports kevword search by using

boolean logic tor searching.

2.2.1.2.6 Searchlink Search Engine V 3.0

You can use Searchlink [Silk 97] in a webpage (Figure 2.10). A website visitor
uses the search engine in a similar way (o other internet search engines. Once a list is
returned. the links can then be followed with a single click over the appropriate link

name. The links themselves are stored and formatted in a text file which allows for casy

19

CHAPTER 2. WHAT ARE SEARCH ENGINES?

editing and fast access. Like many popular search engines, Searchlink uses "all words”

which is AND logic, or "any word" whichis OR logic searches.

I Incaade M Wards ~ |

—— -t asrade b ik P *ed . i

Figure 2.10 Searchlink search engine

CHAPTER 2. WHAT ARE SEARCH ENGINES?

2.2.1.2.7 Home page Search Engine v L.§

The Home Page Search Applet [Rich 98] is a Java applet written to search the
pages of a website (Figure 2.11). The applet starts searching at the index.html (or
index.htm) file and then follows all local links (i.e all HTML pages) on a website. The

applet uses both case sensitive and insensitive search strategies.

wauw | searml dur' st:plufm XTI g
T
i

A T et st ahmpeamive [s whle wes
- BT T T R I A YD T o ‘e ‘

Figure 2.11 Home page search engine

CHAPTER 2. WHAT ARE SEARCH ENGINES?

2.2.1.2.8 SearchLite Search Engine v 2.0

SearchLite [leen 99] gives the user a choice of three search techiques: "the word”
for single word scarch,any of the words™ which means OR logic. and “all of the words™
which means AND Logic. SearchLite scans the site and presents the user with the pages

that match the keywords.

9
9

CHAPTER 3. HOW SEARCH ENGINES WORK

Chapter 3 How Search Engines Work

Introduction

[n this chapter we discuss ditferent types of search engines. examine how search
engines work. the hidden mechanics, and how a webpage can be tound. Further. we
discuss why there are so many dead links (sites are no longer in existence) returned trom

popular scarch engines.
3.1 Types of Search Engines
There are three ditferent types of search engines: directory. index. and Neta

search engines.

3.1.1 Directory Search Engines
Directory search engines catalogue all the webpages into categories. Queries go
through the categories. not the individual pages. This type of search engine is best for

scarching a general subject. Yahoo is the most popular directory search engine.

(3]
(%]

CHAPTER 3. HOW SEARCH ENGINES WORK

3.1.2 Index Search Engines

Index search engines search webpages and index them according to the number off
oceurrences of certain words. When a request is typed to the search engine. the page that
has the most words matching words in the query shows up first. The most popular index

scarch engines are Altavista, Infoseek. Excite, Lycos, and Webcrawler.

3.1.3 Meta Search Engines

Meta scarch engines initially call two or more ditferent search engines to pertorm
a search. The meta scarch engine then collects, prunes. and ranks the results returned by
the various search engines. There are many meta search engines such as Copernie 2000
and Metacrawler.

3.2 How Search Engines Work

There are two primary methods ot searching that can be used by search engines.

3.2.1 Keyword searching

Most scarch engines do their query and retrieval using keyvwords [Barl 96). We
usually see basic and advanced options in these search engines. They try to narrow the
results by using boolean logic and other technigues to provide the user with good results.
One problem is that sometimes they cannot distinguish between words that are spellied
the same way, but have different meaning, tor example, "hard stone” or "hard exam”. In
cither of these queries. the user may receive results related to hard rock music, which is
completely irrelevant 1o user expectations.

Boolean logic and other techniques are discussed in the next section.

CHAPTER 3. HOW SEARCH ENGINES WORK

3.2.1.1 Boolean logic

Boolean logic refers to a system of logical thought developed by George Boole
(1815-64) who was an English mathematician. People using boolean logic based search
engines [Libr 99] must understand the meaning of each operator. The user also has o use
the correct kevwords in the search. [the kevwords are too general. or have multple
meanings. users may receive too many results which are not related to their request {garb
99).
3.2.1.1.1 Boolean logic OR

When the user combines keywords using the boolean logic OR. the search engine
is instructed to retrieve all the files that contain at least one of those kevwords. Both
words do not have to appear. I1 cither word is present. the search engine presents the user
with the tile. For example. it the user wanted o tind all the information the scarch engine

had on cither hard or rock. this search might be used: hard or rock.

Figure 3.1 Boolean logic OR

As Figure 3.1 shows. the search engine goes through its database and locates

every file with the word "hard” and every file with the word "rock.” The search engine

CHAPTER 3. HOW SEARCH ENGINES WORK

presents the user with every file found that contains at least one of the words specified in

the search.

3.2.1.1.2 Boolean logic AND

The boolean logic AND tells the search engine to search its database for every tile
that has both of the words somewhere in the same file. For example. it we want to find
information on hard rock. we might search the appropriate scarch engine in this manner:

hard and rock

Figure 3.2 Boolean logic AND

The scarch engine goes through its database and retrieves every tile found with

the word "hard" and every file with the word “rock.” Then. the search engine gives only

CHAPTER 3. HOW SEARCH ENGINES WORK

those files in which both words appear. as indicated by the shaded area where the circles
intersect in Fig 3.2,

3.2.1.1.3 Boolean logic NOT

The tinal operator is NOT. Combining the scarch terms with this operator allows
the user to strip a term out of the search. This tells the scarch engine to retrieve
evervthing with the first word but nothing that mentions the sccond word. For example.
i the user is looking tor something with the word hard. any mention of the exam should
be removed. We might try this search:

hard not exam

hard

exdam
oxam

Figure 3.3 Boolean logic NOT

The search engine goes through its database and extracts every tile with the word

"hard" trom that group of files. The search engine will display only those files in which

CHAPTER 3. HOW SEARCH ENGINES WORK

the word "exam" does not appear. as Fig 3.3 illustrates. We will not see any file that has

both words.

3.2.1.2 Phrase Strategy

The phrase strategy tells the search engine to search its database tor every file that
has a group of words which appear side-by-side in the same file. For example. il we want
to tind intormation on hard rock music. we can pose the query:

“hard rock music™

The search engine goes through its database and retrieves every tile it tinds with

the words hard and rock and music appearing side by side.

3.2.1.3 Case sensitivity strategy

We divide this into two sub-strategics

3.2.1.3.1 Case sensitive strategy

The case sensitive strategy tells the search engine to search its database for every
file that has a group of words whose upper and lower case characters appear exactly as

they do in the query.

CHAPTER 3. HOW SEARCH ENGINES WORK

3.2.1.3.2 Case insensitive strategy

The Case insensitive strategy tells the search engine to scarch its database for
every file that has a group of words in the same tile without paying any attention to
whether the word is in upper or lower case. For example. it we want to find information
on hard rock music. we might ask the search engine in this way

Hard rOcK mUsle
The search engine goes through its database and retrieves every file with the words hard

rock music or Hard rO¢k mUsle or HARD ROCK MUSIC.

3.2.1.4 Wildcard Strategy

The wildeard strategy uses the asterisk (*) svmbol which tells the scarch engine to
return alternate spellings tor a word at the point where the asterisk appears. For example.
i we want to find the word hard. we might search the appropriate search engine in this
Wiy

hard*
The search engine goes through its database and retrieves every file tound with the word

hard. harder. and hardest.

CHAPTER 3. HOW SEARCH ENGINES WORK
3.2.2 Natural language Strategy

The natural language strategy is the most powertul strategy because the scarch
engine is told. in plain English. to search its database for every file that has the
information for which the user is looking. For example. it we want to tind information on
hard rock music, we might ask the search engine in either of the following wavs:

Where | can find any information about hard rock music.

Give me a list of hard rock music.

In both guestions. the search engine goes through its database and retrieves every tile it

finds on the subject ot hard rock music.

3.3 Spiders

When vou use a search engine to search the web. vou are not searching the web
directly as mentioned in section 2.3.1.2.1 A scarch engine scarches index files that
contain some addresses and their contents. Some search engines like Altavista use spiders
which are programs that can search the internet to update or add new web tiles. read their
pages. and place their addresses and content-related information in an index file. Then.
the scarch engine can search that index file. A spider is also known as a "crawler” or a
"bot.” These programs normally start with a historical list of links such as server lists
which list the most popular sites. The links on these pages are then followed to find more
links and add them to the index file. Most search engines have their own spider. For

example. Altavista uses its own spider which is called Scooter {whatis 97].

CHAPTER 3. HOW SEARCH ENGINES IWVORK

3.3.1 Dead links

All information on the web is subject to change without notice. I a site is changed
today. it will take sometime betore the search engines notice the changes. Spiders cannot
visit and update the web site every day. For example. the most powertul spider which is
based in Altavista. can visit only three million websites per day. According to Scarch
Engine Watch. the Web had 800 million pages in August 1999, For this reason. there are
dead links that generate a browser window message stating that the requested document
cannot be found.

A report by Greg R. Notess [Note99] shows in Figure 3.3a and figure 3.5b the
percentage of dead links generated in the first one hundred hits from three separate
scarches. The dead links percentage columns include the 404 file not tound error
message. 401 access denied. and other errors that do not let the user connect to the result
(see figure 3.3 a). Figure 3.5 b shows the percentage of dead links that resulted from the
404, Figure 3.6 shows the tile not tound error message. Figure 3.7 shows the file access
denied error message 401 and Figure 3.8 shows the error message 403 forbidden crrors.
These examples exclude all the connection errors which could represent only temporarily

dead links.

n'e 3 & @ n

L]

LR " oo t8 ot

N orthen 22
wog Rt
8 %
Y ahoo
10 %

A 1ta v s 1S
10~

Figure 3.5 a Error messages

CHAPTER 3. HOW SEARCH ENGINES IWORK

Infoseek
9 %
Excte
4% HotBot
Northen
Lignt
5 %
Y ahono
13 %
oagle
5 %

A ltavista
11 %

Fast 18 %
8 %

Figure 3.5 b 404 Error message

R T 1)
Ge Commursceler Mew
: I - |

tia Lo You
" Dochmarhs A Losaton [l s niaed o gn s et marh 010, sua1-he/ e < STV R 1/ 0e N
. 3 ’& “n & Pt < A
Mach - -t Semch (lude Socumy e

wos LI SR U I SN R S

Error 404:

LUt et bt

Ther files ¢ td ved Teniuier o} .
GGt

Frlea e Feettfn SOON 1O vivat TS e] frye e

OO0 MAY Tetuln 1O The raferning [Hages Ly tsiteg
your ‘Back' bulton Or S1art 3t they sty

S e W L

T T focunens, Oone T ’
!luul g Merosan wora - rortace [N 404 Cione Mereage P | R N o am A I 12 uem

Figure 3.6 Error message 404

(99]
~J

CHAPTER 3. HOW SEARCH ENGINES WORK

E'l' Ea ¥m~ ﬁa Wu Hep

3" Bockmarks i Locatiors [Rip /7w comproc man ec ks~ wriwabber 401 hard - — B

Jii’&&hd‘ﬂlww

Boch Fuwad Meleed . Sooraly- = SIOD £k L S s vt

&L
___IIJMIH . Bicovemcs | Wsswenro | || @R W W

b a8 & |
AN O PEI 129Pu

Figure 3.7 Error message 401

Error 403 - Forbldden

The URL you requasted (http:/1ucus.ru.ac.aa) is restricted to the ru.ac.za domain only.

Tus 15 an a-lurustrative restncon due to the hugh volume of tratfic that thus site generates
Showdd vou believe thus to Le an ervor. or should vou have any quenes, please contact the page owner or the wel mazter

Thask Vou

[eoswent Dere

e L o 2
.Ll--n.n____umw-- || e -) |n-==.avw | e] O PLD 1z

Figure 3.8 Error message 403

33

CHAPTER 3. HOW SEARCH ENGINES WORK

3.4 Conclusion

Most search engines use boolean logic strategies for searching. These strategies
are sometimes complicated to use. It users are not tamiliar with boolean logic, it is
sometimes ditticult to find the information they want. Theretore, we decided to design an
intranet search engine that would be easy to use with a single user intertace and that

would understand natural language (both typed and spoken).

34

CHAPTER4. AIVDISE Overview

Chapter 4 AIVDISE Overview

Introduction

in this chapter we present the strategies used to build AIVDISE and our system
design. We begin with a briet overview of the goals we wanted to accomplish. Then., we
detail the high level architecture of our system. Next. we give an overview of AIVDISE
followed by a discussion of our strategies in a step-by-step presentation. We describe
how we used those strategies in our system design. Finally, we describe how AIVDISE

works using natural language.
4.1 Goals

Our goal was to build an intelligent voice driven intranet scarch engine
(AIVDISE). Using Java. AIVDISE will accept natural language as input and provide the
user with accurate results. In a single user intertace. the user can use spoken English for
his/her request. AIVDISE translates the verbal request into written language, searches its

database. and returns results.

35

CHAPTERA. AIVDISE Overview

4.2 High level Architecture of AIVDISE

User Interface Backbone

from the Users

v

Process

Receive the results Send the results

b-

Requesl * Receive the request

Figure 4.1 High Level Architecture of AIVDISE

The high level architecture ot AIVDISE contains the user interface and backbone
components. The former interacts with the user and is responsible for user requests (sce
Figure 4.1). Also. the user interface component holds received results so that the user can
see the results of their request. The backbone components interact with the user intertace
and receives the request through the Request component. The Process component is a
significant process and its strategies are described in section 4.3. The Send Results

component receives the result trom the Process component and passes it on to the

36

CHAPTERS. AIVDISE Overview

‘Receive the results” component in the user interface. Finally, the user can interact with

the user intertace through the Receive the results component.

4.3 Overview of AIVDISE

A brief overview of the components ot the AIVDISE system is given. The most
important components. such as Stop word. concept-based searching. case sensitivity. and
AND logic will be described in detail in the following section. In order to develop a user-
triendly svstem, AIVDISE accepts queries in the form of English sentences. The question
needs o be changed o lower case. All the stop words must be removed trom the
question. AIVDISE uses concept-based searching strategy in case there are some words
which need to be changed. Then. the search will start by using AND logic strategy. An

overview of AIVDISE is given in Figure 4.2,

CHAPTER4. AIVDISE Overview

Change the query to lower
INPUT 0 sefhe duen

Plain Enghish
Sentence
Congept-based Take out the stop
searching strategy ——— words from the

query

Change all the contents
of the page to lower case peee———p AND logic strategy

Selected

OUTPUT documents

Figure 4.2 Overview of AIVDISE system

38

CHAPTERA. AIVDISE Overview

4.4 Strategies

[n this section. we review the strategies and the methodologies used by AIVDISE.

4.4.1 Stop Words Strategy

In written text, some words are very common but they add no additional meaning
to the actual content of the text. A considerable amount of processing time and working
memory can be saved it the words that do not contribute to the actual content of the
corpus are removed. The percentage that the corpus is being decreased is often 70-75 2.
Fhis is done by tiltering the text using “stop words™ [Rijs 79]. We constructed our own
list of stop words which is shown in able 4.1.

For Example. consider this question:

Who is the director?

Since the most important word in this question is “director™, we ignore the rest of the
words. Thus. in this situation we are cutting processing time by 75% because it we want
to scarch for cach word. the search engine has to make four passes o tind cach of the
above words. The search engine could potentially look at all matches of “who.™ “is.”
“the.” and “director™. The chances are that just looking tor the last word is enough to tind
the relevant page. Therefore. to save time. AIVDISE will exclude searching for the other

words.

39

CHAPTERS. AIVDISE Overview

| Who Is Where [
|
; Show What The [Give
‘ |
Can Me ! All " Find
List 1' A ! ot ! Are
Intormation About ‘ Were ' Was
In Dr. By j And
i Who's | Which ' Oftered Doctor
| : ‘
Need T Some | Want ? Search
! : |
Could : Please * Tell You
! | |
Does i

Table 4.1 Stop Words

40

CHAPTERS. AIVDISE Overview

4.4.2 Concept-based searching Strategy

Now we are faced with another problem: how can AIVDISE understand the
meaning ot the question that will be asked. We used a concept-based scarching strategy
which allows the user to retrieve documents based on concepts. Concept-based searching
attempts to determine what is meant, not just what is said. In the best circumstances. a
concept-based search returns hits on documents that are "about” the subjecttheme the
user is exploring. even if the words in the document do not precisely match the words

"

entered in the query. For example. a search for "teaching " could also automatically
retrieve documents containing equivalent kevwords. The exact equivalent keywords used

depends on the particular context.

Alist ot equivalent keywords is shown in table 4.2,

“Keyword Equivalent keywords

Courses Instructors or professor or professors or instructor
Iail . September
Teaching | Instructors or protessor or professors or instructor or car 310 or car 416 or
ccar 313
- Teach © Instructors or professor or professors or instructor
Taught Instructors or professor or professors or instructor
Teaches | Instructors or professor or professors or instructor or car 310 or car 416 or
ccar 313
“Director ¢ Faculty at the Jodrey School of Computer Science

Trudel - Course Outline

Giles - Course Qutline
“Oliver . Course Outline :
L first I .
- Second ™

- Third 3"

"Fourth 4"

Table 4.2 Equivalent Keywords

41

CHAPTERY. AIVDISE Overview

4.4.3 AND Logic Strategy

The next strategy AIVDISE uses is the AND logic strategy which narrows the scarch
by retrieving only those references containing at least one term from each concept. The
AND logic strategy is good [or narrowing a search to the specilic lopic bemg rescarched.
I we were doing a search tor documents about "Computers and Society™ by using the
AND logic strategy. all the resulting documents would contain both of the terms
“Computers™ and “Society™. Any documents containing one of the two terms. and not the

other. would be excluded.

4.4.4 Case insensitive strategy

Next. AIVDISE uses the case insensitive strategy which allows AIVDISE 10
search its database for every tile that has a group of words in the same file without
consideration of case. For example. it we want to tind information on “computers and
society™. The search engine goes through its database and retrieves every file it tinds with
the words “computers and society™ or “Computers And Society.” AIVDISE will do that

by changing the user query and the tile to be searched to lower case.

CHAPTERA4. AIVDISE Overview

4.5 How AIVDISE Works

We illustrate how AIVDISE works through the use of screenshots. To start
working with AIVDISE from a browser, open the file AIVDISE.hmtl and then press the
open button (Figure 4.5) to get the main user interface. Then. the user can interact with

the search engine. Alternatively, the "open” button can be embedded in another web

page.

TR hte U e TR T bt ALVINE bt e ..
fia Edt Vew Favates Joock Heo []
“ .+ .9 D A@ @ P DI T,
Back cavet Slop Refiesh Home Seach Favortes Hatory Mai Pt Es Copernc }
Agaess [@] Hiro 2131 162 165 1) 2 wabpub AIVIISE hemd =] 6o CLeks
HelCome To Salal's [Homepag e =
H . Sy : X :
- ’ '%: > ’ - ‘ > ’ ’
- R - " - - : . .
S AR Hi My Mz!nc 18 550 Ah IWas barn in L:byd . e
" Thus is a test of A[VDISE '
’. t s Search My %-lomepue : - , : .
= - OPEN - '
L. e L o=l
@ Dore ~ [_r_[‘ lm

B ACDREE || Brrsves [T gysmws. | NG FRETE® wriar

Figure 4.3 Opens AIVDISE

43

CHAPTERA. AIVDISE Overview

4.5.1.1 Main user interface
Once the user presses the open button, the system opens the main user intertace.
Figure 4.4 shows the main user interface. We divided the main user interface into three

section menu bars: User requests, Results, and Description.

m Arcinteligent von e Urven alboanet rwch Eoapne AT .mm]ﬂ
L : S
{;Scr —) LT T
= iﬂu)muﬂmnmﬂh&mﬂqnw
Lariganp 01 joubavs 3 moophorst g
rCL]l]CS[S
Toap ot A L) e 0 Uy year e e e e atar o e Lo kit (b an vl oo he G age
Results
Area
Description
alo
I 1uu have
= TN iy : -

Reobre-| BBESEe O

ﬂ | Btk - !m_l B)Seaténgn. [fian Ineki..

Figure 4.4 Main User Interface

CHAPTERS. AIVDISE Overview

4.5.1.1.1 User requests

The User request section is responsible for the requests from the user and sends

the commands to the search engine.

4.5.1.1.1.1 File drop menu

FFile is a drop menu that lets the user exit from AIVDISE. The File drop menu contains

one menu item which is exit (figure 4.5).

File
drt)p
meng

b agua [AIVINLE Y

mrytngo ok wih ey
v the sexchblion

Figure 4.5 File Drop Menu

45

CHAPTERA. AIVDISE Overview

When the user finishes working with AIVDISE, the user can click on File.
AIVDISE will open the drop menu for the user. Then the user can click on exit and
AIVDISE will open an option window to exit or go back to the main user interface

(tigure 4.6).

e # . A T B »
be . titoe Yana qmumnmuxuhuqnu-qw:- .

Yuu have

Watnng Appiet Window
Mtent] | 4 Exclorng - 16.1.2000 | BY Microwh Waid - Ch... | @)Seattrgne - Mare. |[RAn Ineiigars Vo | LI ATYR® 11:20P4

Figure 4.6 Exit Menu [tem

46

CHAPTERA. AIVDISE Overview

4.5.1.1.1.2 Help drop menu

The Help drop menu contains the About and Instructions menu ttems (figure 4.7).

Db Lewsl we w0 Ty g et e Orsode Ui o doubio ik pou wdl Lo tho outual e

Figure 4.7 Help Drop Menu

47

CHAPTERA. AIVDISE Overview

4.5.1.1.1.3 Instructions Menu Item

Help is a drop menu that lets the user get help from AIVDISE (see Figure 4.7).
Clicking on Instructions opens the window shown in Figure 4.8. [t will guide the user in
the use of AIVDISE.

- Anlatellagent o

’ 5 n » g 1y e Y T T
Horly Menu B¢

Search button _‘J

By pressing Search button AIVDISE accepts the queston
text aea ond stants seaiching

Clear buttan

n the User requests. Reruls. and 0 escrotion rections. Tix

Wher the uzes prestes the cles button. AIVDISE clears U—I
make a new tesich

Resulls avea

M o

Yuou have

IVMMMME‘!* B

m_-ejn.w'nxu" T B m _mgr'-—-LMlmwm

Figure 4.8 Instructions Menu Item

48

CHAPTERS. AIVDISE Overview

4.5.1.1.14 About Item Menu

This menu item shows information about search engine implementation. (figure

4.9)

An hideligeat Vino e Do Sean b b ogee (ALY]

. Eoter o oesion a1 s et i arca Lang natual
- Larnguage Ur il you have a nsiophono Iqq*m -

You hove

iWamng Appist Window: v

Aswa]]] (X Erioin..| Mo | Gviewc.| §)sentk...| <keve-1.| B)senti. [[(anin. |[FEKEADR® 022040

Figure 4.9 About Menu Iltem

49

CHAPTERA. AIVDISE Overview

4.5.1.1.1.5 Text area

The text area in figure 4.10 is responsible for accepting the request trom the user
in either typed or spoken English. For example. the text arca in figure 4.11 shows the

question “who is teaching comp 29037".

?: s bl agene JAIY DO
D ”" s Vi A) . ; N N ‘."v') . . - .- '.« :_'l"-"‘
& . ,H«f&-{n} ‘w]]lif?lr('f;l'?ﬁl:: :‘mﬁ]]‘j ;”.;,,t ’

bora - - . e ~n

e —————————

-y @ S o i Lrlor 1 ou Queston n you ket udoucausmw& S
lext aga Langoage Oid i have a miiophone spoak wath the

- ' .o teamct etugnwe Lied U, hen e te weach altun

Trus oot AiCh L Lauadonme box ty yons damsar dames ihe descagdun of e bie doubin Cick pou wil 800 the actuol page

~

i o You hover 0 Hosuits
Toe: IWeming Acgiat Window + R R T R
Astan| | gy Hicowh Wod - Cups | §)Senhéngne - Microshin..|[1An Inteligerd Veics ... TSRO 120044

Figure 4.10 Text Area

CHAPTERY. AIVDISE Overview

4.5.1.1.1.6 Search button

By pressing the search button, AIVDISE accepts the question {rom the text arca
and starts searching. First. AIVDISE changes the question to lower case. Second. all the
stop words must be removed. In the example in Figure 4.11. the question is “Who is
eaching comp 2905377 and the stop words are "Who" and "is". Third, the word
“teaching™ has to change because we want the name of the protessor who is teaching
comp 2903. We replace the keyword "teaching” with "professor or protessors or
instructor or instructors”. Fourth, AIVDISE changes cach file to be scarched to lower
case. We then start searching tor the words ™ professor or protessors or instructor or
instructors”™ and "comp" and "2903".

Search
Button

1ol .
i; v ~ T i "l
, i Loter You e ston n po ioit e ame Mung sousal - -

Languays Ui ¢ you have a maophons sasah wih the
1CaLE Oy theu»l)mum;mmm -

,,f.r:‘ :)
o T o B

P ————— mm—
B . . e i A g

At lowaa) e ok T Ak oasse stuass e e ngdeon o the Tde ool ol juons vell 360 o o tuct page

Wamning Apgiet Window
MStat ||| P Microsoh Word - Chapters | $)Seatngne - Microsoh in_|[igiAn inteligert Veice ... OISR ® 1006 pu

Figure 4.11 Search Button

51

CHAPTERY. AVDISE Overview

4.5.1.1.1.7 Clear button
When the user presses the clear button, AIVDISE clears any information in the
User requests, Results. and Description sections. Then the user can initiate a new search.

Figure 4.12 shows the button and all the sections cleared.

Ars bdellngent 7o e o intane 0w b e

Fis Heb

tim

Isl&l

CIT O e ity ten pie s the soalh buitun -] Clenr bu“on
ey

F Thia 3 what ANDISE lound one cack by yous uasss showes tho deaciplan of tha ls cutio Uk yuu el 500 the achud page -+

| Waning Aogiet Window .

. N
RSt | gy Moot Wand- Ougtes | §)Seabkrgne - Micosek in. [A Indeigerd Veice .. DRSO oM

Figure 4.12 Clear Button

W
[}]

CHAPTERA. AIVDISE Overview

4.5.1.1.2 Results area

[n this section. the user can see the results of the search. Only the addresses ot the
pages found by AIVDISE will be shown. Figure 4.13 shows the results of the question
“who is teaching comp 29037". Although we do not see the actual page. the user can

access the page by double clicking on the address. Figure 4. 14 shows the actual page.

NPT IYE

no il r e mea Ui folis o

¢yt ava s e ghons Ipeak with ihe

Double ¢clic
here

&5 | Wanng Acclel Wedow

Asw] | ASPBREE |] B Mirowoh | 33 Perionai. | @0/ 2. |[iiAn ... }ﬁumm

Figure 4.13 Results Area

CHAPTERS. AIVDISE Overview

lem !’m Oﬂml ‘a a g: CE«

COMP 2903 j

£ Yew Fgvatas Jode Qe
- . = D [)

LN L= Nohosh Hems
VYIS 1O 1 ety e i m e bl

agrneis (€] ren.

Computers and Soclety
. e Offess CAR IO -~
I B ocu.umlymm L e
Py - Wheer 1999 B
- , N '3 H o
et A "“x‘ ; "
T Coene .-" T S w' -5
1 Q-ur-lﬂﬂ-cﬂnl—' T L
2 Te sthudy tha odsiriinid, bu:.pdoud. ooud. athzal, uﬂwannmwuwmumahumn o computsrs. 'muu
not a wad oeurss whers we snidy sema ot s Juch as & Progresuning
lasyguage or opcunn. systosnn. Theve will be no progy unmung. Instead, you wall be requisred te lhnlg tenearch, discuse,
and wyws sbowul werary » wanues Yeou wnll be challanged te thunk and s anvrvsvcate clearly
S tewt
4 Marking sehame
R B P L e e L =
_l o .G Irtawwn o ___
A CREDRY® 11 2eam

ug(::':ol AR KIEN] S Pwen | #Yrwe |) 403 |! o) | ®1co..

Figure 4.14 Actual Page

4.5.1.1.3 Description
This section endeavors to assist the user by showing a

page found by AIVDISE. The user can click on the address in

the result arca and AIVDISE will show the description in the description arca (ligure

PP . prr—. e s R inte res Users hahoa
. s - e g ek et Uve
cmLh avim e ety W rmes Qee seasch bustomn.

.
LJ0a 0% pngt ARUARA $Unrsd Srwn e Ly pons e nsem St (e e ganon i e T o zm'mn _'
:

Figure 4.15 Description

54

CHAPTER 5 AIVDISE IMPLEMENTATION

Chapter S AIVDISE Implementation.

Introduction

In this chapter we describe the system implementation. We discuss the most important

classes used by AIVDISE through code fragments.

5.1 SearchPanel Class

This class is responsible for all the interactions between the user and the system. The

SearchPanel Class implements a series of methods to tultill its functionalities.

S5.1.1 getScarchText Method

This method is responsible for reading the request from the user e.p.. "which courses
were offered in fall 1999
public String getSearchText() |

return req_area.getText():

CHAPTER 5 AIVDISE IMPLEMENTATION

When actionPerformed() is called. the "clear” or "scarch” button was pressed. It the
clear button is pressed. all the text area will be cleared.
public void actionPerformed(ActionEvent ¢)

+
t

it (e.getSource() == clearButton) |
Clear every thing in the main user interface, results list area. description arca

t
]

it (el.getSource() == searchButton) §
[t the button presses but no request entered

“AIVDISE will not make any search through this condition

il (getSearchText(). length() == 0) |

return ©

I the user presses the search button, we send the request and home page address to the
Search class.
search = new Search(mainGUI. mainGUl.searchEngine.home _address.,

getSearchText.toLowerCase())::

CHAPTER 5 AIVDISE IMPLEMENTATION

5.2 Result Panel Class

This class is responsible for holding all the results retrieved by the scarch class. Also. it

shows the description of each page found.

5.2.1 clearList method
This method is invoked when a new search is initiated or when the 'Clear’ button is

clicked. It clears all the addresses trom the result list.

public void clearList()

|
§

clear all the elements from the result list

§5.2.2 addResult method

I'his method is responsible for adding the results to the result list. This method is

invoked when a search is successful and it increases the number of results by one.
public void addResult(String match. String url)

numberOfresults ++. /7 number of results increased by one

resultsList.additem(match): // add each results tound to the results list

57

CHAPTER 5 AIVDISE IMPLEMENTATION

5.2.3 itemStateChanged method
This method is responsible for the description arca. For example. it shows the description

of each file when it is highlighted.

public void itemStateChanged(ltemEvent e)}
String[] showMe = 1" This is will be in "."You will tind it in".” Arc vou looking tor"."Or
vou are looking for” " You may looking for"}:
int index = resultsList.getSelectedndex():
String str = (String)descrption.get(new Integer(index)):
it (showl > d) show! =0:
description_Label setTextshowMe{showl| " "):
int len = str.length):
ittlen > 400) ¢
String linel = str.substring(0.61):
String line2 = str.substring(61.121):
String line3 = str.substring(121.181):
String lined = str.substring(181.241):
textAreal setText(" "+ linel +"-" +Mn");
textAreal.append(” "+line2+ "-" +"\n");
textAreal .append(" "+line3+ "-" +"\n");
textAreal.append(" "+lined +". ")
show | =showl+1;

\
)

58

CHAPTER 5 AIVDISE IMPLEMENTATION

else {
String lineS = str.substring(0.61)

String line6 = str.substring(61.121):

" on "o (Lo L)

textAreal.setText(" "+ lined + "-" +™n");
textAreal.append(” "+line6 +"............. ")

show!-show!~1:}

5.2.4 actionPerformed method
The actionPerformed() method is called when the user double clicks on an address and
the actual page is shown.

public void actionPertormed(ActionEvent ¢1)

int listIndex = resultsList.getSelectedIndex():
URL goal:
try |
goal = new URL((String) urls.elementAt(listindex)):
tramel.searchEngine.getAppletContext().showDocument(goal. "Results”):

v catch (MaltormedURLException badurl) {

59

CHAPTER 5 AIVDISE IMPLEMENTATION

5.3 Search Class

Scarch Class is the main class and it does the entire scarch.

5.3.1 GetDescription Method

This method is responsible for removing all the tags from cach htmt file.

public String getDescription (String contents)

}
[}

" This method will delete all the tags in cach file and return the file as text

3.3.2 found method

This is the most important method since it searches the website tor pages that satisty the

user's query.

8.3.2.1 Stop Words Strategy

This action is responsible for removing all the stop words trom the user's query.

weons e o0 "nonn N "non "ot

String[] wordlgnoreMe = {"who". "is" ."where", "i", "show". "what". "the". "give” .

" " "non "non "o .. L

"can”. "me". "all". "find" "list". "a". "of™, "are" "intormation”. "about”. "were", "was".

"in". "dr.". "by". "who's", "which" ."otfered". "doctor" "need” "some” . "want"
Ssearch” "could”, "please”, "tell” | "vou", "does”. "and"} :

Enumeration enumSubstrings = subStrs.clements():

60

CHAPTER 5 AIVDISE IMPLEMENTATION

while(enumSubstrings.hasMoreElements()) |
String subString = (String) enumSubstrings.nextElement():
tor(int i=0: 1< 37:i++)!
il (subString.equals(wordlgnoreMe[i]))!
subString = (String) cnumSubstrings.nextilement():

i—0:

§.3.2.2 Concept-based searching Strategy
This section of the code replaces words in the user's query. FFor example. the
tollowing code replaces every occurrence of “teaching”. "teach”. " taught”. and "teaches™
with "professor” or " protessors” or "instructor” or "instructors ":
il (subString.cquals("teaching™))
l(subString.cquals("teach™))
{(subString.equals("tought™))
{[(subString.equals("teaches™))){
subString = "protessor":
if' (content.indexOf{subString) == -1) {
subString="instructor";

it (content.indexOft(subString) == -1) |

subString="professors";

6l

CHAPTER 3 AIVDISE IMPLEMENTATION

if (content.indexOt(subString) == -1) }

subString="instructors";

In this instance. there is a high probability the user is interested in finding out who is

teaching a particular course. Thus. "professor " is a better keyword to use.

5.4 How dragon naturally speaking interacts with AIVDISE

AIVDISE uses Dragon naturally speaking preferred (DNS) version 3.01 as a front
end. DNS is commercial software that can work with any Windows application. After
the installation of DNS (see Appendix A). users can use spoken Lnglish. simply by using

the headphones.

5.5 Example

In this example. we describe all the steps pertormed by AIVDISE to answer the
spoken query "which courses were offered in tall 1999, Instead of typing the request in
the text area, the user can use spoken English by using dragon naturally speaking.
AIVDISE accepts the request trom the text area. Through the getSearchText method
(section 5.1.1), AIVDISE starts searching after the search button is pressed. This action
happens through the actionPerformed method in the class searchpanel. Then, AIVDISE
changes the question to lower case by calling the method tol.owercase trom the Java

library (tigure 4.2 change the query to lower case). AIVDISE sends the query to search

CHAPTER 5 AIVDISE IMPLEMENTATION

class. In this stage. all the stop words must be removed by the method found in the search
class by using the wordlgnoreMe array (tigure 4.2). This will take out the stop words
from the query. AIVDISE test cach keyword from the request against cach Kevword in
the array wordlgnoreMe and remove all keywords found from the request. The request is
“Which courses were oftered in fall 1999" and the stop words are "which". "were".
"oftered” and "in". Next. the word “courses™ has to change because we want the name of
the courses (tigure 4.2 Concept-based scarching strategy). In this case. we may not find
this word through our search because we are looking tor the name of the course. Sincee
the course name is related to a professor, courses has to change to the word protessor.
AIVDISE test if the kevword “courses" appears in the request. [t
"courses” appears. the change has to be done by the method found through if” condition.
Also, the kevword "tall” may has to change to "September” because September is part off
the fall term Finally we may arrive at the allowing Keywords professor. September and
1999, AIVDISE uses the strategy AND (tigure 4.2 AND strategy). When searching cach
kevword against a webpage. it a Keyword does not appear. the page is ignored. This

action happens by calling the method indexOf trom Java library.

63

CHAPTER 6. COMPARISON

Chapter 6 Comparison

Introduction

[n this Chapter. we compare the performance of AIVDISE with the bt/ 'dig scarch

engine. We choose ht://dig because it used on the Acadia University WebPage .

6.1 AIVDISE and ht://dig

he questions that we passed to both search engines:

[. Which courses were oftered in tall 19997

19

Who is teaching comp 29037

3. Where can | tind comp 1113?

CHAPTER 6. COMPARISON

6.1.1 Which courses were offered in fall 1999?

6.1.1.1 AIVDISE

This question requested the names of all courses that were oftered in the fall of
1999, We received five answers (see figure 6.1) from AIVDISE. Two ot The pages are
illustrated in figures 6.2 and 6.3. A double click on the chosen address shows a very

specific answer to the question

http:/fiitrc.acadiau.ca/salah/261 J0utline 1999 htm
b http:/fiitrc.acadiau.ca/salah/outline 1 him
i hup:/fiitrc.acadiau.ca/salah/outline htm
15 |Wp Jhiitrc.acadiau.ca/salah/1113_990utline him
htp /fiitec. acadiau.ca/salah/37130ulling 1999 him

You have 5 Hesult(s)

T

A AGPREE | @My | ot Q| i A5

[P N& DRDWYO 1257p

Figure 6.1 AIVDISE Results From Question 1

65

CHAPTER 6. COMPARISON

As you can see figure 6.2 shows one of the right answers retrieved by AIVDISE,
[t shows the name of the course and when it was offered. Note that “fall 1999™ does not

appear in the page. AIVDISE knows that “September™ is part of the fall term.

An Intelhgent Vo e oy en Inhanet © can b | agme (AIVDE
)

Comp 2613 X1 - DataProcessing 1 - Course Outline
September 1999

Professor Leshe Oliver, Office Camegie 313, Phone 585-1615

" The Comp 2613 course covers basic busmess onented data processung
http /fiwc.acad software development, testng and mplementation. Particular antention will be
pad to transaction processing and fle processing using sequential and ndexed
files with emphasis on COBOL as aprogmmg lm,guage i business

1&gmmom

Cousss OutineSoptembat
Camegis 313, Phane: 585161 58rieiCouse Descrpto-
9 2613 couse - covers basic business arented.....

Yuu have Y9 Hesull(s)

Figure 6.2 AIVDISE First Answer From Question 1

66

CHAPTER 6. COMPARISON

Another correct answer retrieved by AIVDISE shows the name of the course and

when it was oftered. In this case, the word “fall” is used (Figure 6.3).

|
| & . » | @@&I@G‘Gl@aﬁ
] Back Forward Aoiesh Home | Seawch Favortes Hetory | Mad FPx |
| Address [@] titp /1ic acadau ca/ssian/oulbne him o _] OGo || Unks ™ | inks %
- - 3
COMP 2043: Functional and Logic
Programming, Fall, 1999
| Section X1
hllp ‘linec.acad
; o Instructor Ke Qu
ke . e Tume and Locaton Slot 12 (TT 1000-11 30 AM). CAR 113
: p-/intic.aca e Office CAR 403
g "' //wrc acad e Office Hours (tentative) Mon and Wed 1000 AM - 100 PM
o Home Page hnp “drag-n acabau car -k puhe me htmd
e emad ke quiBacadiau ca |
{@] Dcne T [irveenat

rou have 45 Baeaihy)

Figure 6.3 AIVDISE Second Answer From Question 1

67

CHAPTER 6. COMPARISON

6.1.1.2 ht://dig
The same question was asked of the ht://dig search engine. We received one

hundred and sixteen answers from ht://dig (see figure 6.4).

acve s wwere ol leced an sl D

| Fla Q' ViewFaveres’E Lok~ HopTF=F T

v . 5.0 0 0@ 3B 8 v .8

| Bach Fowed Slop Aewsh Home'| Seach Fevoies Hilw | Mal Pl E@ Copenic
Agdiens Ii] ucdcgonmzwch’cmg-naﬂmum-mﬁm-wl.lamu-bulnshmll.wad.l-mn-cmxacwhqmwmol89'3 :] & Go

Urks @)BestoltheWeb @) CharveiGude @] Customizelinks @) Free HotMal @) Iniemet Stat @] Microsot @) RealPlayer »
Refine seuch ﬁuch courses were oftered infall 199 Search I o]

Documents 1 - 10 of 116 matches. More ¥¥'s indicate a better match.

2reryrey iand Year Courses2nd Year Courses
2rrYreY @nd Year Courses3rd Year Courses
WYY @nd Year Coursesdth Year Courses

2rYeYT AU - Prospective Students - Programs of S

ey Cowsses in Compyter Science at Acadia

TIYTrSY Andre Trudel's Courses

2rYrey Lst Vear Courses

worer Courses

TST Cowses

WYY Courses

- Courses in the Faculty of Pure and Applied Science

Pages:

m}w

2
Asten| | A G FS IR RO || By Microscht Word - Chragters 1 [[@Seach iorults tor i, [[NMG@ORETD® 706Pm

Figure 6.4 ht://dig Results From Question 1

68

CHAPTER 6. COMPARISON

Figure 6.5, shows one of the answers retrieved by ht://dig. It shows a page that
contains the typical course load tor students doing a BCS program in 2nd vear. However.
our question had nothing to do with the typical course load for students doing a BCS
program in 2nd vear. Note that ht://dig ranks this page with four stars which means a

perfect answer but the answer was wrong.

fis ER Vew Fgvoiles

-, - _,
Back Fowerd Stop - Refresh:.. Home - |.'

Figure 6.5 ht://dig First Answer From Question 1

69

CHAPTER 6. COMPARISON

Another answer is shown in Figure 6.6. The page concerned Academic Policy and
Regulations. Our question was " which courses were oftered in fall 1999?", Therefore.

the answer was not related to our question.

| ks @)oot of e Web ™) Charrl G-) o Lrkav:) rod Hobd.* @) inirmt S _ @ Microroh_ @\ RoaPlawr -

Academic Policy and Regulations

Authority of the Calendar

Curriculum and course requirements and descriptions, acadenic regulations, and other matters, are
established, modified, and approved by the Senate of Acadia University, or in some cases by the Board
of Govemnors, and are recorded in the calendar or its addends. Through registering in any course or
program described herein a student agrees to abide by the pertinent sections of the curent calendar.

Disclaimer

This calendar is printed some months before the academic year for which it is operative. Its contents are
subject to continuing review and revision without notice other than through the regular processes of
Acadia University. Students admitted to the University are required to pay deposits on tuition fees, as
confumation of their acceptance of the offer of admission. These fees may not be refundable in cither
part or whole. By acceptance a student is deemed to have agreed to sbide by any change.

The University also reserves the right to limit enrolment in any course, course section, or program, but
will make every reasonable effort to offer courses required for specific programs and give priority in
course registration to students in that program. It does not guarantee enrolment in any course or course o)

s A CEINNER | e o i §ac i niveity . ﬁ"m

Figure 6.6 ht://dig Second Answer From Question |

0

CHAPTER 6. COMPARISON

6.1.2 Who is teaching comp 2903?

6.1.2.1 AIVDISE

When we asked AIVDISE this question, we got one answer from the search

engine (see figure 6.7) .The actual page is illustrated in figure 6.8.

B A bt tule aies Uieyg nohual
e nmy tane speak walh the

Twablun

Mip /fiitrc. acadiav.ca/salah/outiine htmi

Figure 6.7 AIVDISE Result From Question 2

71

CHAPTER 6. COMPARISON

Figure 6.8 shows the answer of our question, " Who is teaching comp 2903." The
page showed us the name of the Professor who teaches that specific course. It was clear

Professor Trudel teaches COMP 2903 and that is the correct answer.

TR T T S Y

o

Computers‘and Soclety -~

You hoave 1 Harsuli(y)

Figure 6.8 AIVDISE Answer From Question 2

CHAPTER 6. COMPARISON

6.1.2.2 ht://dig

We received one hundred and thirty six answers trom ht://dig (see tigure 6.9).The
following are examples of the results returned trom the search engine (figures 6.10 and

6.11).

P rean b reruity b mhin feoa bing - osing

fie Edd Yew Favories Jooks Heb
= . 9, Bt

Forwird: ‘ESHH"‘M@ s
Jimne/egrban h7conhgshiagh Lexchudes bnethodeorbomatsbutyronghwar dsswhoets sleachngs scompe 2903 @ ¥

Refine seasch Miﬁ 13 1eaching comp 2303 m :J

e 1 .
Svethos s Hiskony 715 Mol s Pnt—: -+ [E"~: Copemie -

Dacuments 1 - 10 of 136 matches. More RX's indicate a better match.

COMP 2903 - Links¥3vrersy
- COMP 1903 COMPUTERS AND SOCIETY RELATED LINKS A TRUDEL CRYPTOGRAPHY * PGP *
RSA * General cryptographuc information ACADIA ADVANTAGE * Glenn MacDougall's January 1998 AA
presentaton to the class COMPUTERS AND HEALTH * Indiana Unuversity Computers and Health ® [ndwidual and
Insututional Protective ...

iy sihatre acadiau. ca'saiah/lanks, htini 03726000, 3077 bytes

COMP 2903 - Course Outline ey
- COMP 2903 COMPUTERS AND SOCIETY Professor Andre Trudel Office CAR 310 Office Hours: By
Appomtment Winter 1999 ® General Objectives * To study the economuc, legal, pohtical, social, ethical, and
professional issues that anse because of computers. Tlus is not a tradmional computer science course ...
e Jdhatre. acadiau.ca/salah/outine. himl G326/, 10008 bytes

COMP 2903 . Course Qutline X ?rerv¥
- COMP 2903 PRESENTATION A Trudel [n groups of 3, students must present a topic to the class By January 12,
choose atopic and group (this is a frm deadline, no groups accepted after this date) You can also suggest a new topic
Emal Dr Trudel the topic and group If you do not know anybody . ..
arerentredeadia e z'salahipresent. atmi 0372600, 1781 bytes =

Asunf | A D EREN, - ||[05euchwndsiorn.. 1Moutwod:cuoe.. | |[NMEGIRBEDO 123

Figure 6.9 ht://dig Results From Question 2

73

CHAPTER 6. COMPARISON

Figure 6.10 illustrates one of the answers that we received from ht://dig. The
answer was ranked with four stars but it did not answer our question. Instead, it gave a

page containing "COMP 2903 Final Exam".

FUOME M Dol cnan Mac it e
TETE™ - = z:-gt-gmxnnc SRS
“.* .9 B :ﬁ | ¢ | 4 v . M
Back Founmd Siop Retesh Home | Seach Fmiu History Md Pint ER Copermic
m“il.-) NIp //stic acadiaus ca/ssian/exam himi _] @G0
| Links @munw&ﬁmm&ﬁ' v s @) Frod Hotets) intermet Stant - aum b]num- . »

Szudm may mo%w
‘ Enm is clou&book,

1 ot
2. Post your questions to l}:e course nunyg\p.
3. Only post text Blesl .~
4
5

The instructor reserves the nght to mochfy or notto uu pomd qmnom
For each question that you are the ﬁm,wmn..md\m u.lubuqumdy uud.'you will receive 10 bonus marks an the

-

am-ﬂ”:ﬁgbuuﬁ “!Nnoodt\vud M]l@mnwm Fineler... |[NW'W P

Figure 6.10 ht://dig First Answer From Question 2

74

CHAPTER 6. COMPARISON

Figure 6.11 was also answers about " COMP 4343 COMP NETWORKS/
DISTRIBUTED SYST." This answer by ht://dig was incorrect because our question was

"who is teaching comp 29037"

COMP 4343 COMP NETWORKS/DISTRIBUTED SYST

Design and implementaton of computer networks and related systems, communications protocols and distnbuted systems
Prereq Comp 2343, 3713, Math 1023, 2433, each wath C- or better

[COMP Courses] [Subject List]

=
Asnf | 21 5 KLIR N, || ppucomwiniomess[Fcour e conrn.. . [NEGERBARS: 2m

Figure 6.11 ht://dig Second Answer From Question 2

75

CHAPTER 6. COMPARISON

6.1.3 Where can [find comp 1113?

6.1.3.1 AIVDISE
We asked this question and received two answers from AIVDISE (see figure

6.12). The actual pages are illustrated in figures 6.13 and 6.14.

Pt et e mea Ugng notaat
oo e a s iophange :pc.i wih the

e hetgme ey hen peess (he search buttons

Mtp://iitrc.acadiau.ca/salah/Comp111.html
http:/fiitrc.acadiay.ca/salah/1113_990uytline.htm

T R =y
A ASRKEE] pvicsd] M| k| Ones{[sal. [MPNGERDDO 16w

Figure 6.12 AIVDISE Results From Question 3

76

L

€ UOHSIND WOl Jamsuy 15314 FASIAAIV €1°9 340314

(shinemyy o oauynng

B B SN SN S A IO I IO T T PO RN O O O AP I AN

[1ALV wumiu) g itas | jout quy usa(] 4 1o A uobgiugu) uy

"I3MSUL
W Juipuly ut papaddons JSIAAIV pue uonsanb ino o1 paejas aam saded yiog
uo ssamsue dy] "¢ || dwo) Jo dUIINO ISINOI 3Y) AALT PUE 103110D SBAL JOMSUR) ‘$]°9

amdy vy g1 dwod meqe uoneuuojur Jurtueiuos afled Ay smoys ¢1°+ and

NOSIIVdWNOD "9 ¥41dVH)

CHAPTER 6. COMPARISON

m hitp.//itic. acadiau ca/3aah/1113_990utine him

COMP 1113 - Computsr Programming 1

—- COURSE OUTLINE- Fall, 1999

bwtraewes: Section comp] L13B1 Rick Chles and Section compll1IALLC] Leske Qliver
Email addresses: ack ples@acadiay <o and leglie olrverDacackau ca
Offices: R0 - CAR 416, LO - CAR N3

Office Howrs: RO - MWF 9 30.10:30, MWF 11301230,

Vioa b bt}

Mmanxuﬂ l!yymwj«ummjurﬁ- IWm—W

Figure 6.14 AIVDISE Second Answer From Question 3

78

CHAPTER 6. COMPARISON

6.1.3.2 ht://dig

To the question "Where can [find comp 11137" we received eighty nine answers
trom ht://dig (see figure 6.15).The following figures are examples from the results

received from the search engine (see figures 6.16 and 6.17).

Refine seasch: fwhsra 1hnd comp 1113 m

Doacuments | - 10 of 89 matches. More Y¥'s indicate @ better match.

to com i

7270y COMP 4343 COMP NETWORKS/DISTRIBUTED SYST
TrYrvryy COMP 1113 COMPUTER PROGRAMMING |
27Ty COMP 1113: COMPUTER PROGRAMNMING 1

Trorsy COMP 2903 - Course Outline

Y COMP 2903 - Links

TrYres COMP 2903 - Caurse Qutline

s COMP 2903 - Final exam

2rrer Comp 2043 outlipe

2ty COMP 2903 - Assignmont 2

Pages

oo -
L 4

ht"“Dig
N /T 30 8b2

s} 2

Figure 6.15 ht://dig Results From Question 3

19

CHAPTER 6. COMPARISON

In Figure 6.16. one of the answers retrieved by ht://dig contained information
about COMP 4343 COMP NETWORKS/ DISTRIBUTED SYST. It is clear the answer

was not correct because our question concerned comp 1113.

]I PIME 4 L O M Db

" Back " Siop* g3

. = e - SowchY F Rt B8 Copemic |
Aﬁmm NI /7tic. acadau a/s8lsh/4343 him L - _J_fl @Go | [Links ™

pS|
COMP 4343 COMP NETWORKS/DISTRIBUTED SYST

Desnign and mplementation of computer networks and related systems, commumcations protocols and distnbuted systems.
Prereq Comp 2343, 3713, Math 1023, 2433, each with C- or better

[COMP Courses] [Subject Lust]

Figure 6.16 ht://dig First Answer From Question 3

80

CHAPTER 6. COMPARISON

Another answer from ht://dig is illustrated in figure 6.17. The page about "COMP

2903 Assignment 2" was wrong
MrIe

oM e Avignme Mool bateet |
fle £ Yew Favorles': Iuh Eeti’*’*“, :
‘:J A4 * . a m g I v Q w .
Back ronved Stop Hdmh um Semch Favortes Histoy | Mal Pt Ed Coperxc
Agdrers |@] hitp //uic acadeu ca/salah/ass? himi B 2] PGo ||Links *

Throughout the course, we will have many student presentations: Choose your favente one and wnte a short report (maxmum
2 pages). The report should contain at lns: one pwaph addressing each of the following:

lmmommo 1047AM

’sunll] _g S x u ﬂ “!nmw«d Igsm :m.j]Q)cnuP 2903 .
Figure 6.17 ht://dig Second Answer From Question 3

81

CHAPTER 6. COMPARISON

Conclusion

In the first three questions, the results trom AIVDISE were excellent. In answer to
question number one. AIVDISE showed only the results of the courses oftered in fall
1999. On the other hand. ht://dig showed one hundred and sixteen results and some of
them had nothing to do with the question. “Which courses were oftered in fall 199977,
The next question, "Who is teaching comp 29037 was supposed to yield the name ot the
protessor who is teaching the course comp 2903. There was one result trom AIVDISE and
that was exactly what we requested. However, we got one hundred and thirty six answers
trom ht//dig and some were not remotely related to our guestion. The last natural
language question that we asked both search engines was. "Where can | find comp
11137, The result from AIVDISE was two answers. Both answers were related to our

question. However, ht://dig did not return the right answer.

CHAPTER = CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

Chapter 7 Conclusions and directions for future work

7.1 Conclusion

In this thesis, we learned about internet and intranet search engines. We discussed
the history ot scarch engines. where we can use them, and why we need them. We
discussed the importance of an intranet scarch engine. We explored the hidden
mechanism ot different search engines. including the process of accessing a page. We
illustrated some popular intranet and internet search engines. such as ht:/Dig . Phantom.
Altavista, Yahoo. WebEnhancer and Scarchlink. We also discussed why there are so

many dead links (sites are no longer in existence) returned trom popular search engines.

The aim of this thesis was 10 build An Intelligent Voice Driven Intranet Scarch
Engine (AIVDISE) for a personal or a business website, for example the Acadia website.
QOur goal was to develop a search engine that could accept verbal English language
sentences as input. We detailed our strategies and the methodologies used in our design.
To increase the accuracy and speed ot the search engine. we stored and used specialized
knowledge about the Acadia website. Unlike keyword search systems, AIVDISE tries to
determine what you mean. not what you say. In the best circumstances. AIVDISE

returns hits on documents which pertain to the subject for which you were looking, even

CHAPTER = CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

il the words in the document do not precisely match the words you entered in the query.
Currently. AIVDISE retrieves text information by searching tor meaning and concepts in
context.

AIVDISE is a user-friendly search engine. By typing plain English and/or using
voice control, the user will be able to give a command to the search engine and it will
execute the request.

The literature on natural language versus Boolean keyword searching makes it clear
that NL input has certain overall advantages. For example. AIVDISE has an advantage
over ht:/dig since AIVDISE can retrieve the right information by using natural
language as input. A single keyword query will retrieve many documents which will he
irrelevant. Often. choosing the correct keyword means the difference between a
successtul search and a failure. Even when the right keyword is chosen, the relevant
documents are otten hidden within a myriad of irrelevant information. Sometimes users
are required o combine several keywords. Many users do not understand boolean
expresstons or the correet keywords to combine. Since the search engine "knows” the
contents of the intranet, it should be possible to engage that internal knowledge and put

the query in its proper context.

7.2 Directions for future work.

We have demonstrated through our work that by utilizing natural language and
voice control, AIVDISE provides a new and improved tool for searching the intranet.

However. there are many ways in which this work can be extended. Currently. AIVDISE

84

CHAPTER 7. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

scarches a website by using simple sentences as input. AIVDISE could be improved to
accept more complicated sentences such as “show me all types ot search engines and how
they work™.

AIVDISE could also be improved by building a spider that can help AIVDISE.
This spider would collect all the data from the website and build an index file

automatically.

85

Bibliography

Bibliography:

| Barl 96] Monash Information Services. by Linda R. Barlow
Available at:

hitp: Awww.monash.conybarlow . himl|

[Corn 94 Cronin, Mary J. Doing Business on the Internet. New York: Van

Nostrand Reinhoid. 1994,

[Deltix 99] WebEnhancer founded in Deltix Software tools for web development
Available at:

hup://www.deltix.comy search.html

[Garb 99] Secarching tor New Scarch Technologies By lian Greenberg and
Lee Garber .Computer innovation Technology tor computer
Protessionals. August 1999 avatlable via:

http://computer.muni.cz/csinto/stattorg/pubmags/lgarber him

[Hersh and Day 97] Hersh. W. and B. Day (Oregon Health Sciences University). 1997.

A Comparison of Boolean and Natural Language Searching for the

86

Bibliography

TRECG6 Interactive Task . in Voorhees and Harman 1997.

NIST Special Publication 500-240. Information Technology.--E. M.
Voorhees and D. K.Harman. Editors. Co-sponsored by the National
Institute of Standards and Technology (NIST) and the Defense Advanced
Research Projects Agency (DARPA). Contains the proceedings of the
sixth Lext REtrieval Conterence. held in Ganthersburg. Maryland.

November 19-21. 1997, Evaluates new technologies in text retrieval.

Publisher:
Commerce Dept.. Technology Administration. National Institute ot
Standards and Technology. Intformation Technology Laboratory
fleen 99] ScarchLite by thomas leen available at
hitp:: members.xoom.com:-holzp: searchlite. himl
[Libr 99] Bartlesville Public Library(1999) : Learn how to scarch. Available via:
http:/www bartlesville.lib.ok.us/boolean. htm
[Maci 98] Guide to search Engines by Wes Sonnernreich and Tim Macinta.

Publisher: John Wiley & Sons 1998.

[Note 99] Search Engine Statistics: Dead Links Report by Greg R. Notess Sept
10,1999 : Available Via:

hitp:/www.notess.cony/search/stats/dead.shtml

87

Bibliography

[Phan 99] Maxum Development Corporation. Phantom ver 2.2.
Available via:

http:www.maxum.com/Phantomy

|[Rich v¥)| Home Page Scarch Applet by Richard Everitt 1998 Available via

http:/www. babbage demon.co.uk/java.html

[Rijs 79] Rijsbergen. C. J. v. (1979). Information Retrieval. London. Butterworths.

[Sche 99] Andrew Scherpbier: WWW Scarch Engine Sottware . Available via:

http:'www. htdig.org/

[Sery 99 1999 Command Internet Services (1999). Search engine. Available via:

hup:www.commandnet.net support/search.htm

[Silk 97] Searchlink developed by Silk webware 1997 Available at:

hup://silk.webware.co.nz/Products/Searchlink/

[Turt 94] Turtle. Howard R. 1994, Natural Language vs. Boolean Query
Evaluation: A Comparison of Retrieval Performance. In Proceedings of
the 17th Annual International ACM-SIGIR Conterence on Research and
Development in Information Retrieval (SIGIR 94). Dublin. Ireland. July

1994.

88

Bibliography

Publisher:

[whatis 97|

[webp US|

Commerce Dept.. Technology Administration. National Institute of’

Standards and Technology. Information Technology Laboratory

whatis.com(1997). a knowledge exploration tool about information
technology. Available via:

http://www. whatis.com. scooter.htm

WebPromote newsletter 1998, The intelligent internet marketing
Resource. Search Engine Update Available via:

http://www .webpromote.cony

89

APPENDIX A User's Guide

Appendix A

AIVDISE Requirements and Installation

I. Syvstem Requirements.

- JDK ver 1.1 or higher to compile and run AIVDISE. JDK software and
documentation is free per the license agreement.

2 We used Personal web server because it is available free at microsoft.com.

3= Dragon NaturallySpeaking Preferred ver 3.01 or higher tor speech recognition.

4. Microsott windows 93 or higher.

Processer requirements
At least a 133 MHz Pentium® Processor.

Memory Requirements

At least 32 MB.

Hard Disk Space

At least 75 MB free hard disk space.
Installation

I. AIVDISE

APPENDIX A User's Guide

1- Download the personal web server from

hitp://www.microsott.com/downloads/

2. Download jdk 1.1 trom

hitp: java.sun.com/products/jdk/ 1.1/

3-In the file AIVDISE.html change the VALUE in <PARAM NAMLE=="server”
VALUE= "homepageaddress” > to vour home page address. If vou are using personal
web server, the home page address will be the name of the machine.

4-To run AIVDISE | in vour browser write the address of your homepage tollowed by
the tilename INVDISE huml. For Example . hup: 131.162.166. 112 INVDISE hunl

5- By pressing the open button, the main user interface will appear.

[1. Dragon naturally speaking preferred ver 3.01
- Start Windows.

2- Put the dis¢ in the CD-ROM drive

3- On the start menu , click RUN

4- Type D2SETUP, then press Enter . The Setup wizard guides you through the

installation.

User Guide

Main user interface

Once the user presses the open button. the system opens the main user interface.

91

APPENDIX A User's Guide

User requests

The User request section is responsible tor the requests from the user and sends

the queries to the search engine.

File drop menu

File is a drop menu that lets the user exit from AIVDISE.

Help drop menu
The Help drop menu contains the About menu item and the Instructions menu

item.

Instructions Menu Item
Clicking on Instructions opens the window. It will guide the user in the use of

AIVDISE.

About [tem Menu

This menu item shows intformation about the search engine implementation.

Text area

The text area is responsible for accepting the request from the user in either typed

or spoken English.

APPENDIX A User's Guide

Search button
By pressing the Search button. AIVDISE accepts the question trom the text area

and starts searching.

Clear button
When the user presses the clear button, AIVDISE clears any information in the

User requests. Results, and Description sections. Then the user can make a new scearch.

Results area
[n this section, the user can see the search results. Only addresses are shown and

the user can access a page by double clicking onit.

Description
This section shows a simple description of cach page found by AIVDISE. The
user can click on the address in the result arca and AIVDISE will show the desceription in

the description area.

93

APPENDIX B Testing Questions

Appendix B
[n this Appendix. we list the queries used to test AIVDISE.

What courses were offered in winter 1999
What courses were oftered in tall 1999
Who is teaching comp 20437

Who is teaching comp 34037

Who is teaching comp 2903?

Where is comp 29037

Comp 1113

Where can i tind comp 11137

Who is the director ?

Show me first vear courses

Where is a tirst year course?

First vear courses

Find first year courses

I need second year courses

Who is teaching comp 29037

Show me second year courses?

What dr. trudel teaches?

Where can | tind computer professors?
Show me compulter protessors

Give me second year courses

94

APPENDIX B Testing Questions

Who is teaching comp 1113?
Where can [find comp 11137
What dr. Giles teaches

Show me third yeuar courses
What dr. Oliver teaches
Show me tourth year courses
What dr. Qiu teaches

Winter courses

Fall courses

95

APPENDIX C. SOURCE CODE

Appendix C

Source code

ok
* This tile "AboutDialog.java" provides the necessary

* methods and attributes for the the aboutDialog class.

*

* Author: Salah Ali

* Verston: 24 April 13 1999

import java.awt.*;

22

b the About class contains all the clements

* necessary (o prsent an information about the search engine like the version . copy
right.

.

* aversion 1.3 April 13 1999

* wauthor Salah Ali

*%

96

APPENDIX C. SOURCE CODE

A basic extension of the java.awt.Dialog class

IMpOrt java.awt.*:
public cliss AboutDialog extends Dialog |
public AboutDialog(Frame parent, boolean modal)

|
\

super(parent. nodal):
setLavout(null):

setVisible(false):

setSize(312.232):

pancll = new java.awt. Panel():
panell.setlayout(null):

panel! setBounds(2.18.512.232).
panellsetForeground(new Color()):
panel . setBackground(new Color(12632256)).
add(panell);

okButton = new java.awt.Button():
okButton.setLabel("OK"):
okButton.setBounds(223.177.66.27);
panelL.add(okButton):

listl = new java.awt.List(4):

97

APPENDIX C. SOURCE CODE

flistl.addItem("” An Intelligent Voice Driven Intranet Search Engine
listl.addltem(" ")
hist].addltem(" (AIVDISE)").

listhaddltem(" ")

list{.addltem(” Acadia University):
listh.addltem(""):

listl.addItem("Copyright ¢ 2000 Salah Aboulkhasam®”):
panel Ladd(listl):

listl.setBounds(33.12.400.133):

listl.setlont(new Font("Dialog”. Font.PLAIN, 14)):
list].setloreground(new Color(16711680)):
list].setknabled(talse).

setTitle(" About AIVDISE).

i
14

YUIREGISTER_LISTENERS

SymWindow aSymWindow = new SymWindow):
this.addWindowL.istenertaSymWindow):
SymAction [SymAction = new SymAction():
okButton.addActionListener(ISymAction):

Al
ay

98

APPENDIX C. SOURCE CODE

public AboutDialog(Frame parent. String title. boolean modal)

this(parent. modal):
setTitlecttley:

]
]

public void addNotity()

/ Record the size of the window prior to calling parents addNotify.
Dimension d = getSize():
super.addNotifv():
S Only do this onee.
if (t{ComponentsAdjusted)
return;
'/ Adjust components according to the insets
setSize(insets().left + insets().right + d.width. insets().top + insets().bottom
= d.height):
Component components|] = getComponents():
tor (int i = 0; 1 < components.length; i++)
!
Point p = components{i].getLocation():

p-translate(insets().lefl. insets().top):

99

APPENDIX C. SOURCE CODE

components[i].setLocation(p):
:.
/! Used for addNotity check.
tComponentsAdjusted = true:

public void setVisible(boolean b)

Rectangle bounds = getParent().bounds().
Rectangle abounds = bounds(
move(bounds.x + (bounds.width - abounds.width), 2.

bounds.v ~ (bounds.height - abounds.height):2):

super.setVisible(b).

1 {DECLARE_CONTROLS

java.awt.Panel panell;

java.awt.Button okButton:

java.awt.List listl:

RN
1

/I Used tor addNotity check.

100

APPENDIX C. SOURCE CODE

boolean fComponentsAdjusted = false:
class SymWindow extends java.awt.event. WindowAdapter
|

public void windowClosing(java.awt.event. WindowlEvent event)

P

Object object — event.getSource):
if (object == AboutDialog.this)

AboutDialog_WindowClosing(event):

void AboutDialog_WindowClosing(java.awt.event. Windowl:ivent event)

dispose():

class SymAction implements java.awt.event. ActionListener

public void actionPerformed{java.awt.event. ActionEvent event)

]
l

Object abject = event.getSource():
if (object == okButton)

okButton_Clicked(event):

101

APPENDIX C. SOURCE CODE

void okButton_Clicked(java.awt.event. ActionEvent event)

YV tCONNECTION
 Clicked from okButton Hide the Dialog
dispose():

R
Ty

LR

*

This tile "AboutDialog.java” provides the necessary

»*

methods and attributes for the the aboutDialog class.

*

Author: Salah Ali

*Version: 24 April 13 1999

import java.awt.*;

102

APPENDIX C. SOURCE CODE

* %
* the About class contains all the elements
* necessary to present an information about the search engine like the version ,

copy right.

*

* aversion 1.3 April 13 1999
* wauthor Salah Ali

*x

import java.awt.*:

public ¢lass AboutDialogtext extends Dialoyg |

public AboutDialogtextuFramel parent. boolean modal)

super(parent. modal):

setL.avout(null):

setVisible(talse).

setSize(400.340):

panetl = new java.awt.Panel():
panell.setLayout(nuil):

panel 1 .setBounds(20.20.365.305):
panell.setBackground(new Color(16776960)):
add¢pancll).

okButton = new java.awt.Button():

APPENDIX C. SOURCE CODE

okButton.setLabel("OK").

okButton.setBounds(150.220.66.27).

okButton.setBackground(new Color(16711680)):

panell.add(okButton):

panel2 = new java.awt.Panel():

panel2 setLayout(null):

panel2.setBounds(120.10.106.80):

panell.add(panel2):

scrolling Text2 = new java.Component.Scrolling Text():

try .
java.lang. String{] tempString = new javalang. String[1]
tempString[0] = new java.lang.String("Salah AL")
scrolling Text2.setMessageList(tempString).

catch(java.beans. Property Vetolixeeption ¢) | |
scrolling Text2.setBounds(0.40.110.30):
scrolling Text2.setBackground(new Color(16711680)).
panel2.add(scrollingText2):
scrolling Text3 = new symantec.itools.multimedia. Scrotling Text():
try
java.lang.String{] tempString = new java.lang. String[1]
tempString[0} = new java.lang.String("Acadia University"):

scrolling Text3.setMessageList(tempString).

104

APPENDIX C. SOURCE CODE

catch(java.beans.Property VetoException ¢) | !
scrollingText3.setBounds(90.100.180.30);
scrollingText3.setBackground(new Color(16711680)):
panel Ladd(scrollingText3):
scrollingTextd = new symantec.itools.multimedia. Scrolling Text(1;
try
Javadang. String(| tempString = new java.lang. String[1:
tempString[0] = new java.lang. String("Copy right 1999");
scrolling Textd.setMessagelist(tempString):

catch(java.beans.Property VetoException ¢) | !

scrolling Textd.setBounds(120.160.120.20):

scrolling Textd.setBackground(new Color(16711680));

pancel Ladd(scrolling Text4):

scrollingTextl = new symantec.itools.multimedia.Scrolling Text():

try |
Javalang. String[] tempString = new javalang. String(1):
tempString{0] = new javalang. String("An Intelligebt Voice Driven

Interanet Search Engine”):

scrollingText].setMessageList(tempString):

1
)

catch(java.beans.Property VetoException e) |)

105

APPENDIX C. SOURCE CODE

scrollingText! setBounds(20.10.320.21):
scrollingTextl.setBackground(new Color(16711680)):
panell.add(scrollingTextl1);

setTitle("About™):

Gy

“HREGISTER_LISTENERS

SymWindow aSymWindow = new SymWindow():
this.addWindowListener(aSymWindow):
SymAction [SymAction = new SymaAction():
okButton.addActionListener(ISymAction):

AN
1)

public AboutDialogtext(Frame parent. String title. boolean modal)

this(parent. modal):
setTitle(title);

public void addNotity()

|
\

/! Record the size of the window prior to calling parents addNotity.
Dimension d = getSize():

super.addNotify():

106

APPENDIX €. SOURCE CODE

// Only do this once.
if (tComponentsAdjusted)
return:

/I Adjust components according to the insets

setSize(insets().Jeft + insets().right = d.width, insets).top ~ insetst).bottom
= d height):

Component components|] = getComponents():

tor (int i = 0: 1 < components.length: i++)

Point p = components[i].getl.ocation():
p.translate(insets(). left. insets().top):

components[i].setLocation(p):

"Used tor addNotity check.

fComponentsAdjusted = true:

public void setVisible(boolean b)

Rectangle bounds = getParent().bounds():

Rectangle abounds = bounds():

107

APPENDIX C. SOURCE CODE

move(bounds.x + (bounds.width - abounds.width)/ 2.

bounds.y + (bounds.height - abounds.height)/2):
super.setVisible(b).

CHIDECLARE_CONTROLS
java.awt Panel panell:
Javaawt. Button okButton:

javaawt.Panel panel2:

“Used tor addNotity check.
boolean fComponentsAdjusted = lalse:

class SymWindow extends java.awt.event. WindowAdapter

public void windowClosing(java.awt.event. WindowEvent event)

Object object = event.getSource().
if' (object == AboutDialogtext.this)

AboutDialog_WindowClosing(event):

|
)

void AboutDialog_WindowClosing(java.awt.event. WindowEvent event)

108

APPENDIX €. SOURCE CODE

dispose():

class SymAction implements java.awt.event. Acticinlistener

public void actionPerformedijava.awt.event.Actionl.vent event)

Object object = event.getSource().

it (object == okButton)

okButton_Clicked(event):

void okButton_Clicked(java.awtevent. Actionl:vent event)

dispose():

import java.applet.*:
import java.awt.*;
import java.io.*:

import java.net.*;

109

APPENDIX C. SOURCE CODE

import java.util.*:
import java.awt.event.*;

import MainGUI:

public class SearchEngine extends Applet implements Actionlistener

private Button openButton = new Button (" OPEN").
MainGUT mainGUI:

String server:

Siring main_page:

int totalPages:

int width1. highl: " Width and highlht of the main user intertace
public void init()

getParameters():

main_page = new String¢server + homepage):
Panel buttonPanel = new Pancl():
buttonPanel.add(openButton):
add(buttonPanel):

openButton.addActionListener(this);

110

APPENDIX C. SOURCE CODE

public void getParameters()

String num = getParameter("totalPages"):
totalPages = Integer.parselnt(num);
String homepage = getParameter("homepage™)
String docBase = this.getDocumentBase().toString().
int endindex = docBase lastindexOt(" ™).
server = new String(docBase.substring(O.endindex) - " ™)
String w = getParameter("width1"):
widthl = Integer.parselnt(wy
String h = getParameter("highl™):
highl = Integer.parselnt(h):

b
]

public void actionPertformed(ActionEvent ¢)
g
if (¢.getSource() == openButton)
mainGU1 = new MainGUI(this. (Frame)t, "An Intelligent Voice Driven Intranct
Search Engine (AIVDISE) ")
mainGULresize(width 1 highl)

mainGUI.show():

)
'

APPENDIX C. SOURCE CODE

o

*

This file "mainGUIjava" provides the necessary

* methods and attributes tor the the mainGUI class.
*

* Author: Salah Ali

* Version: 24 may 27 1999

]

.

import java.awt.*;

import Search:

* 4

* the mainGUT class contains all the elements

* necessary to act as the main window of an application.
x

* aversion 1.3 may 27 1999

*

« author Salah Al

public class MainGUI extends Frame

3
t

'/ Used for addNotify check.
boolean tComponentsAdjusted = talse;
-\ {DECLARE_CONTROLS

java.awt.FileDialog openFileDialogl:

APPENDIX C. SOURCE CODE

java.awt.Label head_Label.

AN
/’ll

CHIDECLARE _MENLUS
java.awt. MenuBar mainMenuBar:
java.awt.Menu menul
java.awt.Menultem miExit:
java.awt. Menu menu3:
Javaawt Menultem miAbout:
java.awtMenultem milelp:
i

ScarchEngine searchEngine:

ScarchPanel searchPanel:

ResultPanel resultPanel:

int numberOfPages:
MainGUI(SearchEngine searchengine, Frame frame. String title)

3
)

super(title):

searchEngine = searchengine:

//{{INIT_CONTROLS

setLayout(null):

APPENDIX C. SOURCE CODE

setVisible(false):
setSize(600.500);
sctBackground(new Color(U.128.192)):
scarchPanel = new SearchPancl(this):
searchPanel.setLayout(null):
scarchPanei.setBounds(30,60.550.91).
searchPanel.setBackground(new Color(234.219.112)).
addescarchPanel):
resultPanel = new ResultPanel(this):
resultPanel.setLayout(null):
resultPanel.setBounds(30.170.530.200):
resultPanel.setBackground(new Color(234.219. 112}
add(resultPancel).
head_Label = new java.awt.Label("l Can Understand Natural
Language”.Label. CENTER):
head_Label.setBounds(30.10.530,37):
head_Label.setFontinew Font¢"Dialog”. Font. PLAIN, 30)).
head_Label.setBackgroundinew Color(234.219.112)):
add(head_Label):
/L LINTT_MENUS
mainMenuBar = new java.awt. MenuBar():
menul = new java.awt.Menu("File"):

miExit = new java.awt.Menultem("Exit"):

114

APPENDIX C. SOURCE CODE

menul.add(miExit):

mainMenuBar.add(menul):

menu3 = new java.awt. Menu("Help”):

mainMenuBar.setHelpMenu(menul):

miAbout = new java.awt Menultem(” About..”);

millelp — now javaawt Menultem(" Instructions™)

menu3.add(miAbout);

menu3.add(miHelp):

mainMenuBar.add(menu3):

setMenuBar(mainMenuBar):

SOREGISTER _LISTENERS

SymWindow aSymWindow = new SymWindow():

this.addWindowListener(aSymWindow):

SymAction ISvmAction = new SymaAction():

miAbout.addActionListener(ISymAction):
milfelp.addActionListener(ISymaAction):

mikExit.addActionListener(ISymAction):

GF

public void setVisible(boolean b)

if(b)

APPENDIX C. SOURCE CODE

public

= d.height);

—

setl.ocation(30. 50);

super.setVisible(b):

void addNotifv()

‘ Record the size of the window prior to calling parents addNouity.

Dimension d = getSize():

super.addNotityv():

it ({ComponentsAdjusted)

return:

'/ Adjust components according to the insets

setSize(insets().lett + insets().right + d.width, insets().top ~ insets().bottom

Component components[] = getComponents():

for (inti = 0: i < components.length: i++)

§
]

116

APPENDIX C. SOURCE CODE

Point p = components[i}.getLocation():
p-translate(insets(). lefl. insets().top):
components(i].setl.ocation(p):

\
)

fComponentsAdjusted = true:

class SymWindow extends java.awt.event. WindowAdapter

public void windowClosing(java.awt.event. Windowl:vent event)

Object object = event.getSouree():

it (object == MainGULthis)

MainGUL WindowClosing(event):

void MainGUIL_WindowClosing(java.awt.event. WindowEvent event)

setVisible(false): /! hide the Frame
dispose(): /1 {ree the system resources
System.exit(0): /! ¢lose the application

117

APPENDIX C. SOURCE CODE

class SymAction implements java.awt.event.ActionListener

I
t

public void actionPerformed(java.awt.event. ActionEvent event)

Object object = event.getSource();
if (object == miAbout)
miAbout_Action(event);
else if (object == mikxit)
miExit_Action(event):
else it (object == millelp)

mitelp_Action(event).

void miAbout_Action(java.awt.event.ActionEvent event)

AY{CONNECTION
/1 Action from About Create and show as modal

(new AboutDialog(this, true)).setVisible(true):

void miHelp_Action(java.awt.event.ActionEvent event)

118

APPENDIX C. SOURCE CODE

——

/1 {CONNECTION
'/ Action trom Help Create and show as modal
(new HelpDialog(this. true)).setVisible(true):

AN
1

void miExit_Action(ava.awt.event.Actionkivent event)

'
t

Y CONNECTION
7 Action trom Exit Create and show as modal
(new QuitDialog(this. true)).setVisible(true):

void miOpen_Action(java.awt.event. ActionEvent event)

it tCONNECTION

 Action trom Open... Show the OpenFileDialog

int detMode =
openFileDialogl.getMode():

String detTitle = openFileDialog!.getTitle():

119

APPENDIX C. SOURCE CODE

String detDirectory = openFileDialogl.getDirectory():

String detFile = openFileDialogl.getFile():

openFileDialog] = new java.awt.FileDialog(this. detTitle. detMode):
openFileDialogl.setDirectory(detDirectory):
openfileDialogl.setFiletdetTile):

openkileDialog ! setVisible(true).

N
I

ok
* This file "ResultPanel java" provides the necessary

* methods and attributes tor the the resultpane] class.

*

* Author: Salah Ali

* Version: 2.4 Sep 13 1999
X

x

IMPOrt jJaviuwt.*;
import java.io.*;

import java.util.*;
import java.awt.event.*;
import java.awt.*:

import Search:

120

APPENDIX C. SOURCE CODE

»* %
* The class take the request trom the user and send it to the SearchlForText class

* also it clear the results list and the number of results {from the previouse search

dversion 4.3 sep 13 1999

»*

« author Salah Ali

* %

public class SearchPanel extends Panel implements ActionListener

int results:
MainGUI mainGU;
Search search:
ResultPanel resultPanel:
TextArea req_area :
Button searchButton. clearButton;
Label scarch_label.lab_helpl .lab_help2 .lab_help3 :
ScarchPanel(MainGUI myframe) |
mainGUI = myframe:
req_area = new TextArea().

req_area.setBounds(32.15.301.85):

APPENDIX C. SOURCE CODE

req_area.setFont(new Font("Dialog". Font.PLAIN. 14)):
add(req_area):
seirchButton = new java.awt.Button():
scarchButton.setLabel("Search™):
scarchButton.setBounds(382.76.112.32);
scarchButton.sctBackground(new Color(12632256)):
scarchButton.addActionListener(this):
add(scarchButton):
clearButton = new java.awt.Button():
clearButton.setLabel("Clear”):
clearButton.setBounds(526.74.119.32).
clearButton.setBackground(new Color(12632256)):
clearButton.addActionListener(this):
addtelearButton):
lab_helpl = new java.awt.Label(" Enter Your question in your lett side area
Using natural ")
lab_helpl.setBounds(344.7.310.21);
lab_helpl.setForeground(new Color(255.255.128)):
add(lab_helpl)
lab_help2 = new java.awt.Label(" Language Or if you have a microphone speak
with the"):
lab_help2.setBounds(344.25.310.20):

lab_help2.setForeground(new Color(255,255.128)):

APPENDIX C. SOURCE CODE

add(lab_help2):
lab_help3 = new java.awt.Label(" search engine directly then press the search
button. "):
lab_help3.setBounds(344.44.300.23):
lab_help3.setForeground(new Color(255.255.128)):
add(lab_help3y:

" This method is responsible for reading
/ the request trom the user e.g.. "which
. courses were otfered in tall 1999,
public String getSearchText() |

return reg_area.getlext):

“When actionPerformed() 1s called.
“the “clear” or "search” button is pressed
il clear button is pressed. all the text area
will be cleared.
public void actionPerformed(Actionkvent ¢)

|
[}

il (e.getSource() == clearButton) |
// Clear every thing in the main user interface.
'/ results list area, description area

req_area.setText(""):

APPENDIX C. SOURCE CODE

mainGUI.resultPanel.clearList():

mainGULresultPanel.descrp.setText(""):

mainGUL.resultPanel.description_Label.setText(""):
mainGULresultPanel.textAreal .setText(""):

results=0;

manGULresultPanel numOfResultssetText("You have "= (results) = Results”
)
return ;
[}
]
if (e l.getSource() == scarchButton) |
1 the user did not enter or say the request
AIVDISE will not make any search
it (req_area.getText().dength() == 0) }
return ;
\
)
I the user presses the search button, we send the
i request and home page address to the Scarch class

mainGULresultPanel.descrp.setText(""):

mainG UL resultPanel.index=0;

mainGUL.resultPanel.ciearList();

mainGUL resultPanel. descrption.clear();

search.pageDatabase.clear():

124

APPENDIX C. SOURCE CODE

mainGULresultPanel.description_Label.setText(""):

mainGULresultPanel.textAreal.setText("");

mainGULnumberOtPages = 0:

Scarch search:

search = new Scarch(maimGUI.

manGU LsearchEngine.home _address, getSearch’Text().toLowerCaset)

return ©

* This tile "Search.java” provides the all necessary methods

* and attributes tor the Scarch class.

*
* Author: Salah

* Version: 2.4 Oct 20 1999
*

"y

import java.awt.*;
import java.net.*;

import java.io.*:

APPENDIX C. SOURCE CODE

import java.util.*;

*x %

* The class does the main search search tor the urls and

* remove the deplicate pages send the result to the resultPanel
*

*gversion 9.2 Jan 152000

* wauthor Salah

LE

public class Search extends Thread

“The maximum number of simultancous threads
static Hashtable pageDatabase = new Hashtable():
String subString:

URL pageToScarch;
MainGUI mainGUI:
String textField: // search tor a string
Veetor extractString = new Vector()

StringButter bufl = new StringBufter():

/1 Constructor

Search(MainGUI myFrame. String page. String string)
|

t

mainGUI = myFrame;

126

APPENDIX C. SOURCE CODE

try |
pageToSearch = new URL(page):
setName(page);
start():

y catch (MaltormedURLException ¢) |
this.stop():

]
L

textField = new String(string):

String Tokenizer st = new String Tokenizer(texttield):

extractString.ensureCapacity(st.count Tokens()):

while (st.hasMoreTokens()) !
extractString.addElement((String) st.nextToken()):

public void run()

[}
{

mainGULsetCursor(Frame. WAIT_CURSOR):
mainGUI.searchPanel.searchButton.disable():

mainGUL numberOfPages++:

i (mainGULnumberOtPages > mainGULsearchEngine.total Pages) |
this.stop():

\
]

127

APPENDIX C. SOURCE CODE

String contentsOtPage: // The entire page is stored in this string
Vector linksInPage: /t The parsed links in a page are stored here
boolean match:
contentsOtPage = getPage(page ToSearch):

/ Grab the links in the page to crawl

linksInPage — extractLinks(contentsOfPage):

match = found(contentsOtPage. extractString):

2 add the result to the list ot results in resultPanel

i (match) |

String decsription_page;

deesription_page = des_arca(contentsOtPage))

mainGULresultPanel.addResuli(page ToSearch.toString(). page ToSearch.toString(

mainGULresultPanel.putDescerpidecsription_page + ™n" = " these words AIVDISE
Searches tor: ");

Enumeration enumLinks = linksInPage.elements():
while(enumLinks.hasMoreElements()) §
String nextPage = (String) enumLinks.nextElement():
if (! already Visited(nextPage)) |
markAsVisted(nextPage);

new Search(mainGUI. nextPage. textField):

APPENDIX C. SOURCE CODE

try |
Thread.sleep (int) (Math.random()*200)):
'eatch (Exception ¢) |

mainG UL searchPanel.scarchButton.enable():
mainGULsetCursor(Frame. DEFAULT_CURSOR):

protected String getPage (URL acadia)

InputStream conn = null:
DatalnputStream data = null:
String line:

StringButter but = new StringButter():

ry
conn = acadia.openStream():
data = new DatalnputStream(conn).
while ((line=data.readLine()) !'= null) {

but.appendline):

-

129

APPENDIX C. SOURCE CODE

! catch (IOException ¢) |

"ee,

return .

return buf.toString():

© chick fa page has already been encountred
protected boolean already Visited(String page)
'

return pageDatabase.containsKey{page):

Method to mark a page as visited
protected void markAsVisted(String page)

|
]

mainGULscarchEngine. pageDatabase.put{ page. page):

" add page to the data base

pageDatabase.put(page. page).

all the extractString have to be searched
‘/ this is the main method that can understand the natural language.

protected boolean found(String content. Vector subStrs)

130

APPENDIX C. SOURCE CODE

String[] wordlgnoreMe = {"who"."is" ."where"."i"."show"."what"."the".
"give” . "can”. "me". "all"."find" list"."a",
"of”. "are" ."information”."about"."were"."was".
Ii "dr " "b\ " “Jrc” ||\\ |10‘ Ll ll\‘ l]icl]“

Joftered”,
"doctor”."need”."some” | "want”
Ssearch”."could"."please”
Jtell you" Mdoes” "and ") .
Enumeration enumSubstrings = subStrs.elements();
while(enumSubstrings.hasMoreElements() |
String subString = (String) enumSubstrings.nextblement()
tor(inti=0: 1< 38 1++)}
it (subString.cquals(wordlgnoreMe[i] N
subString = (String) enumSubstrings.nextl:lement():

0:

il (subString.equals("courses™)) !

subString="instructors":

it (content.indexOft{subString) == -1) |

subString="professor":

131

APPENDIX C. SOURCE CODE

if (content.indexOt(subString) == -1) |
subString="instructor":
:
i (content.indexOt(subString) —— -1) §
subString="professor";

it (content.indexOf{subString) == -1) |
subString="instructors";

it (content.indexOt{subString) == -1) |
subString="professors":

if'(content.indexOf(subString) == -1) |
subString="professors":

it (subString.equals("professors”)
|lsubString.equals("instructors”)
||subString.equals("professor”)
subString="instructors";

it (content.indexOf(subString) == -1) |

)

APPENDIX C. SOURCE CODE

subString="instructor":}

if’ (content.indexOt(subString) == -1) {
subString="professor":}

it (content.indexOt(subString) == -1) |

subString="professors”:}

it((subString.cquals("tall™)))}
it (content.indexOf{subString) == -1) |
subString="september":

il((subString.cquals("teaching™))
‘H(subString.equals("teach™))
(subString.cquals(“tought™))
i(subString.equals(teaches™))),
subString = "protessor”.
if (content.indexOf(subString) == -1) |

subString="instructor".

il (content.indexOt{subString) == -1) |

subString="professors",

APPENDIX C. SOURCE CODE

it (content.indexOf(subString) == -1) |

subString="instructors":

if((subString.equals("director”)|
subString = "Faculty at the Jodrey School ot
Computer Science™:
subString = (String) enumSubstrings.nextl:lement():

00 :
HisubString.equals("to™))}
subString ="2")
if((subString.cquals("trudel”)}
subString = "Course Outline”:

subString = (String) enumSubstrings.nextilement():

il((subString.equals("teaches™))||(subString.cquals("teaching”))

[|(subString.equals("tought”)) K

subString="CAR 310"

134

APPENDIX C. SOURCE CODE

H{(subString.equals("giu")| (subString.cquals("q."))!
subString = "course outline”:

subString = (String) enumSubstrings.nextElement():

HitsubString.equals("teaches™))! (subString.equalst "teaching™))
I(subString.equatlst“tought™)|

subString = "CAR 403":

i((subString.equals("giles™)))
subString = "course outline”:

subString = (String) enumSubstrings.nextElement():

HitsubString.equals("teaches”) Jij(subString.equals("teaching™))
[l(subString.equals("tought™)))!

subString = "CAR 416":

-

i((subString.equals("oliver")))!

subString = "Carnegie 313";

APPENDIX C. SOURCE CODE

it (content.indexOf(subString) == -1) |

subString="CAR 313":

subString = (String) enumSubstrings.nextElement():

H{(subString.equals("teaches”))(subString. equals("teaching”))
i(subString.equals("tought™))){
subString = "Course Qutline™:

t
)

it({subString.cquals("tirst"))}}
subString = "1Ist";
subString = (String)
cnumSubstrings.nextElement():

it ((subString.equals("year")|

H{(subString.equals("second”))){
subString = "2nd":
subString = (String) enumSubstrings.nextElement():
it ((subString.equais("year")))|

subString = (String) enumSubstrings.nextElement():

APPENDIX C. SOURCE CODE

if{(subString.equals("third"))){
subString = "3rd™:
subString = (String) enumSubstrings.nextElement():

it ((subString.equals("vear”)))}

i (subString.equals("tourth™) t
subString = "4th";
subString = (String) enumSubstrings.nextilement().

it ((subString.equals("year")

subString = (String) enumSubstrings.nextElement():

“/ third year course
if((subString.equals("3rd"))}{
subString = "3rd year":

subString3 = "3rd":

137

APPENDIX C. SOURCE CODE

subString = (String) enumSubstrings.nextElement():

it ((subString.cquals("vear"))){
subString="comp":
subString4="year":
subString — (String) enumSubstrings.nextlilement().
it ((subString.equals("courses™))))

an

subString="3703":

subString3="courses":

it (content.indexOf{subString) == -1) }

return false:

return true.

public String des_area (String contents)

]
]

StringButter but3 = new StringButter ("").

boolean toundTag = false:

138

APPENDIX C. SOURCE CODE

for (int i=0: 1 < contents.length(): i1++)
!
it (contents.charAt (i) =='<')
tound Tag = true:
clse if (contents.charAt(i) == ">
toundTag = false:
else it (foundTag == false)
but3.append (contents.charAui)):

return (but3.toString()):

protected Vector extractLinks (String content)

int marker = 0;
int trameMarker = 0:
int endOtLink:
String butt = new String(content.toUpperCase()):
String link:
Vector butterOtLinks = new Vector(): // Storage for tound links
while (marker '=-1) {
marker = butt.indexOt("HREF=", marker):
if (marker !=-1) {

marker += 3;

APPENDIX C. SOURCE CODE

endOfLink = content.indexOf(">".marker+1).
link = content.substring(marker. endOfLink):
link = massageLink(link):
if Jink.endsWith(" himl") | link.endsWith(".htm")) |
String tullPath = new
String(mainGULscarchEngine.server « link):
butterOtLinks.addElement(tullPath):

marker ++:

return butterOtLinks:

protected String massagelink(String link)

]
]

i (link.startsWith("\")) |
link = link.substring(. link.length()):

it (link.endsWith(™")) |
link = link.substring(0.link.length() -1}

1
I

it (link.indexOt("://"y==-1) |

return link:

140

APPENDIX C. SOURCE CODE

Velse |

return

* %

*

This tile "ResultPanel java” provides the necessary

* methods and attributes for the the resultpanel class.
.

* Author: Salah Al

*Version: 2.4 Oct 25 1999

"

.

import java.util. Date:
import java.awt.*;
import javi.net.*;
import java.util.Vector:

import java.util. Hashtable:

import java.awt.event.*;

* The class represents the results ot the search

141

APPENDIX C. SOURCE CODE

*

all the results will be displyed in a list

»

also it show the number of results that presented in the list

aversion 2.4 Jan 13 2000

* wauthor Salah Ali

L

public class ResultPanel extends Panel implements ltemListener. ActionListener

int showi=0:
String num_OtResults:
MainGUI mainGUI:
L.ist resultsList:
Vector urls = new Vector():
TextArea desc_area:
/** table that maps users objects to a hashtable of Users *

public Hashtable descrption = new Hashtable():

intindex =0:
Label numOtResults, descrp:
Label description_Label:

int num_of _results = 0;

142

APPENDIX C. SOURCE CODE

Label label _Description:
ResultPanel(MainGUI myFrame)

3
t

Label help_1:
Label help _2:
mainGU[= myFrame:

urls.ensureCapacity(myFrame.searchl:ngine totalPages):

resultsList = new java.awt.Lisy(0);

ihi
it

resultsList.addltemListener(this);

resultsListaddActionListener(this);

add(resultsList):
resultsList.setBounds(20.46.650.142);

resultsList.setBackground(new Color(255.255.255)):

resultsList.setFont(new Font("Dialog”. Font. BOLD. 14)):

resultsList.setForeground(new Color(255)).

help_1 = new java.awt.Label("This is what AIVDISE found one click by

your mouse shows the description of the tile double click you will see the actual page.

".Label.CENTER):

143

APPENDIX C. SOURCE CODE

help_1.setBounds(-7.10.711.17).
help_1.setForeground(new Color(255.255.128)):
add(help_1);
description_Label = new java.awt.Label("".Label RIGHT):
description_Label.setBounds(38.215.244.24);

deseription_Labelsetlonttnew Font¢"Dialog”. Font. BOLDiVontITALIC,

20))
description_LabelsetlForeground(new Color(213.43.539))
red
add(description_Label):
numOI1Results = new java.awt.Label("You have ".Label. CENTER):
numO{Results.setBounds(288.274.320.27).
numOfResults.setFont(new Font("Dialog”. Font.BOLD. 14)).
numOfResults.setForeground(new Color(255.255.0)):
add(numOfResults):
dese_area = new javaawt. TextArea().
desc_area.setBounds(285.200.350.70):
desc_area.setFont(new Font("Dialog” . Font.PLAIN. 12)):
desc_area.setForeground(new Color(0)):
desc_area.setForeground(new Color(213,43.59)).//
red

add(desc_area):

[44

APPENDIX C. SOURCE CODE

descrp = new java.awt.Label("™):
descrp.setBounds(10.230.690.28):
descrp.setForeground(new Color(255.255.0)):
descrp.sedront(new Font("Dialog”. Font.BOLD. 16)):
add(descrp):
)
'/ "This method is invoked when a new search
s initiated or when the 'Clear’ buton is
clicked. It clears all the addresses trom the

result list. public void clearList()

urls.removeAllElementst);
resultsList.clear():

t
]

I'his method is responsible tor adding the
results to the result list. This method
is invoked when a search is found and it
increases the number of results by one.

public void addResult(String match, String url)

descrption.put(new Integer(-1). " ");

num_of results ++;

145

APPENDIX C. SOURCE CODE

urls.addElement(new String(url)):
resultsList.addltem{match):

numOIResults.setText("You have " + (hum_ol_results)

+ "

Resultts) ")
mainGULsearchPanel.clearButton.enable():

‘This method 1s responsible tor the
deseription area. For example, it shows the
description of each file when it is highlighted.
public void itemStateChanged(ltemEvent ¢) |
String[] showMe = ["This is will be in "."You will find it in"." Are yvou looking for”."Or

vouare lvoking tor”
SYou
may looking tor"}:
int index = resultsList.getSelectedIndex():
String str = (String)descrption.get(new [nteger(index)):
it (show! > 4) show! =0:
description_LabelsetText(showMe[showl] +" ")
int len = str.length()/2:
itf(len > 100) ¢
String linel = str.substring(0.61):
String line2 = str.substring(61.121);

String line3 = str.substring(121.181)

146

APPENDIX C. SOURCE CODE

String lined = str.substring(181.241).
dese_arcacsetText(" "+ linel +"-" +™"\n"):
desc_arca.append(” "+line2+ "-" +"\n");

desc_area.append(” "+line3+ "-" +"\n"):
dese_area.append(” "+lined +". ")

show ! =showl+];

else !
String line3 = str.substring(0.len):
desc_area.append(” "+line6 +".....)
show | =showl~1:}

public void putDescrp(String str)}
descrption.put(new Integer(index). str);

index+-+;

Ihe actionPertormed() method is called
when the user double clicks on an address
' the and the actual page is shown.
public void actionPertormed(ActionEvent el)

]
[}

int listindex = resultsList.getSelectedIndex():

URL goal;

147

APPENDIX C. SOURCE CODE

try {
goal = new URL((String)

urls.clementAtlistindex)):

mainGULsearchEngine.getAppletContext().showDocument(goal. "Results™):
v catch (MaltormedURL Exception badurl) |
t

)

rewurn:

'oend of elass

* %

* This file "QuitDialog.java” provides the necessary

* methods and attributes tor the the QuitDialog class.

*

* Author: Salah AL

* Version: 2.4 june 23 1999
E

.

import java.awt.*;

import java.awt.event.*;

148

APPENDIX C. SOURCE CODE

LE

* the QuitDialog class contains all the elements

* necessary to quit or stay in the main window of the search engine .
*x

* wversion 1.1 june 21 1999
* wauthor Salabh AL

¥

public class QuitDialog extends Dialog

+
t

public QuitDiatog(Frame parent. boolean modal)

super({ parent. modal):

setLayout(null):

setVisible(false):

setSize(337.133):

yesButton = new java.awt.Button():
vesButton.setLabel(" Yes ")

vesButton.setBounds(72.80.79.22).

149

0s!

HUONIVIWAG] MAUMNSTTUONDIVPPE-UONINESAL
H(UONIVWAG] MAUNSITUONIYPPE UONNEOU
(OUONIVILAS MU = UOUDIVILAG] UONIVIUAS
HCMOPULA WASRUOUMSITWOPUL W PPRSIY
TOMOPULA LLSE MU = MOPULA WASE MOPUTAL WIS

SUUNLSIT YALSION

~

1,0 = durdusy yaaeag, Iop s

“(112qepppr

(ETORICCRLISPUNOEIS [12qR]
CQUILINADY [Pge T camb

O] JuRA S[[Ra1 nos ogg)PpqeTaneeael wau = [[aquy

(uonngjou)ppr

T IO O, BO[TI(,, HU0.] Wat a0 J1as tonngou

ATT6L08 S8 1)Spunogpas uonngou

(., ON .)jPqeTias uonngou

‘(uonng meeael mdu = uonngou

((uonngsal)ppe

((C1 "a1ogo,] *, Joeigg, o] Mau)iuo J1das uoNngsas

3A0I 3UNOS "D XIANTddV

APPENDIX C. SOURCE CODE

public void addNotifv()

" Record the size of the window prior to calling parents addNotify.

Dimension d = getSize():

super.addNotify():

if (tComponentsAdjusted)

return:

7 Adjust components according to the insets
setSize(insets().left + insets().right + d.width. insets().top + insets().bottom
= d.height)y:
Component components|| = getComponents():
for (int i = 0: i < components.length: i~~+)
'
Point p = components|i].getLlocation():
p.translate(insets().lett, insets().top):
components|i].setLocation(p):

fComponentsAdjusted = true:

151

APPENDIX C. SOURCE CODE

public QuitDialog(Frame parent. String title, boolean modal)

this(parent. modal):

setTitle(title);

Shows or hides the component depending on the boolean tlag b.

param b it true. show the component: otherwise. hide the component.

see Javaawt.Component#isVisible

public void setVisible(boolean b)

it(b)
]
Rectangle bounds = getParent(). getBounds():
Rectangle abounds = getBounds():
setLocation(bounds.x = (bounds.width - abounds.width)/ 2.
bounds.y ~ (bounds.height - abounds. height). 2);
)
super.setVisible(b):

"Used for addNotify check.

APPENDIX C. SOURCE CODE

boolean {ComponentsAdjusted = false:

/1 {DECLARE_CONTROLS
java.awt.Button yesButton:
java.awt.Button noButton:
Jav dass L Label labelt.

T
N

class SymWindow extends java.awt.event. WindowAdapter

public void windowClosing(java.awtevent. Windowlbivent event)

Object object = event.getSource().
it (object == QuitDialog.this)

QuitDialog_WindowClosing(event):

void QuitDialog_WindowClosing(java.awt.event. WindowEvent event)

'
t

dispose():

|
}

APPENDIX C. SOURCE CODE

class SymAction implements java.awt.event. ActionListener
i
]
public void actionPerformed(java.awt.event. ActionEvent event)

Object object = event.getSource():
if (object == noButton)

noButton_Clicked(event):
else i (object == vesButton)

vesButton_Clicked(event):

void vesButton_Clicked(java.awt.event. ActionEvent event)

[}
t

Toolkit.getDetault Toolkit().getSystemEventQueue().postEvent(new
WindowEventjava.awt. Window)getParent(). WindowEvent. WINDOW _CLOSING)):

void noButton_Clicked(java.awt.event. ActionEvent event)
|

[}

dispose():

154

APPENDIX C. SOURCE CODE

X3

* This tile "helpDialog.java” provides the necessary
* methods and attributes for the the helpDialog class.
*

* Author: Salah Al

*Version: 2.4 April 17 1999

Import juva.awt.*;

>

* the helpDialog class contains all the elements

* necessary to present an information for how to use the search engine.
"

* aversion 2.3 April 17 1999

*

« author Salah Ali

*h/

155

APPENDIX C. SOURCE CODE

public class HelpDialog extends Dialog |

public HelpDialog(Frame parent. boolean modal)

super(parent. modal):

PP UINIT_CONTROLS
setLayout(null);

setVisible(talse):

setSize(300.300);

panell = new java.awt.Panel():
panel l.setLayout(null);
panell.setBounds(40.10.430,275):
add(panell):

okButton = new java.awt.Button():
okButton.sctLabel("OK").
okButton.setBounds(190.230.66.27):
panell.add(okButton):

list] = new java.awt.List(0):

list].addltem("Using AIVDISE"}).

list].addltem("");

156

APPENDIX C. SOURCE CODE

listl.addltem("The first thing that we have to do to start working with AIVDISE).
list].addltem("is in the your browser write the address of your homepage tollowed"):
Listh.addltem("by the tilename INVDISE . hmtl and press enter then press the Open):
listt.addlItem("and the system opens the main user interface. Then. the user can ™).
Listl.additem("interact with the scarch engine.”):

tistl.additen ™).

list].additem("Main user interface Once the user presses the open button, the system ")
list].addltem("opens the main user interface. "):

st addltem¢™").

listLaddltem("User requests”):

listl.additem(""):

tistLaddltem("The User request section is responsible tor the requests from™):
listl.addltem("the user and sends the commands to the search engine. ")
Listladdlen™):

listhaddltem("File drop menu”):

listl.addltem("File is a drop menu that lets the user exit from AIVDISE."):
listl.addltem("The File drop menu contains one menu item which is exit menu item ."):
listl.addltem("When the user tinishes working with AIVDISE. the user can click on File.
AIVDISE witl open the drop menu tor the user. Then the user can click on exit and
AIVDISE will open an option window to exit or go back to the main user interface . ")
listl.additem("");

listl.addItem("Help drop menu").

listl.addltem("");

157

APPENDIX C. SOURCE CODE

listladdltem("");

histLaddltem("The Help drop menu contains the About menu item and the Instructions”):
listl.addltem("menu item . ");

listl.addlItem("");

listladdltem("Instructions Menu ltem™):

tistlhaddliem(""y:

listhaddltem("Help is a drop menu that lets the user get help from AIVDISE."):
listl.addltem("Clicking on Instructions opens the window . It will guide the”);
listl.addltem("user in the use of AIVDISE. "):

list]addltem("");

listladdlem(" About Item Menu™):

listladdhem("):

listLaddliem("This menu item shows information about search engine implementation.
"):

histladdhtem(""):

listl.addltem("Text area”):

histladdltem(""):

listl.addltem("The text area is responsible tor accepting the request trom the user)
listl.addltem("in either typed or spoken English. ");

listl.addltem(""):

listLaddltem("Search button”):

listlLaddltem(""):

list]l.addltem("By pressing Search button. AIVDISE accepts the question from the ");

158

APPENDIX C. SOURCE CODE

listl.addltem("text area and starts searching. "):

listl.addltem(""):

listlLaddltem(""):

list].addltem("Clear button"):

listl.addltem(""):

listh.addltem("When the user presses the clear button, AIVDISE clears any information
")

listl.addltem("in the User requests, Results, and Description sections. Then the user can
")

listl.additem("make a new search, "):

listl.addltem(""):

listL.addltem("Results area”):

listl.addltem(""):

list].addltem("In this section. the user can see the results ot the search. In this arca”):
listl.addltem("only the address of the page found by AIVDISE .We do not see the actual
page. ")

listh.addltem("the user can access the page by double clicking on that address in the
result area. "):

list]l.addltem(" ")

listl.addltem("Description”):

listladdltem(""):

list].addltem("This section endeavors to assist the user by showing a simple "):

APPENDIX C. SOURCE CODE

list].addltem("description of each page tound by AIVDISE. The user can click on the
address in the"):
list].addltem("result arca and AIVDISE will show the description in the description
area.”):
listl.addltem{"");
pancil.add(list]);
list].setBounds(70.20.300.200):
set Ntle("Help Menu");
w
b
TV{REGISTER _LISTENERS
SymWindow aSymWindow = new SymWindow():
this.addWindowListener(aSymWindow):
SymaAction [SymAction = new SymAction():
okButton.addActionListener(ISyvmaAction):

AN
iy

public HelpDialog(Frame parent. String title, boolean modal)
\
this(parent, modal);

setTitle(title):

160

APPENDIX C. SOURCE CODE

public void addNotity()

§
t

7 Record the size ot the window prior to calling parents addNotity.

Dimension Jd - getSize().

super.addNotfv()

4 Only do this once.
it (fComponentsAdjusted)

return:

' Adjust components according to the insets

setSize(insets().lett + insets().right + d.width, insets().top + insets().bottom
- Jd.height):

Component components[] = getComponents():

tor (inti = 0; i < components.length: i++)

f
§

Point p = components[i].getLocation():
p.translate(insets().left. insets().top):

components|i].setlocation(p):

161

APPENDIX C. SOURCE CODE

/1 Used tor addNotity check.

tComponentsAdjusted = true:

public void setVisible(boolcan b

Rectangle bounds = getParent().bounds():

Rectangle abounds = bounds():

move(bounds.x + (bounds.width - abounds.width)/ 2.

bounds.yv + (bounds.height - abounds.height)/2):

super.setVisible(b):

"1 {DECLARE_CONTROLS
java.awt.Panel panell:
java.awt.Button okButton;

java.awt.List listl;

APPENDIX C. SOURCE CODE

/ Used for addNotity check.

boolean tComponentsAdjusted = talse:

class SymWindow extends java.awtevent, WindowAdapter

public voud windowClosing(java.awt.event. WindowkEvent event)

Object object = event.getSourcee();
it (object == HelpDialog.this)

HelpDialog_WindowClosing(event);

void HelpDialog_WindowClosing(java.awt.event. WindowLvent event)

]
t

dispose():

class SymAction implements java.awt.event. ActionListener

}
\

public void actionPerformed(java.awt.event. ActionEvent event)

APPENDIX C. SOURCE CODE

~

Object object = event.getSource():
it (object == okButton)

okButton_Clicked(event).

void okButton_Clicked(java.awt.event.ActionEvent event)

]
t

P ICONNECTION
/Clicked trom okButton Hide the Dialog
dispose():

IR}
Ty

AIVDISE.hiuml

“~HTML>

~HEAD>

<META HTTP-EQUIV="Content-Type" CONTENT="texvhtml: charset=windows-
1252">

“META NAME="Generator" CONTENT="Microsoft Word 97">

<TITLE> </TITLE>

164

APPENDIX C. SOURCE CODE

<META NAME="Template” CONTENT="C:\PROGRAM FILES\MICROSOFT
OFFICE\OFFICE\html.dot">

<'HEAD>

<BODY TEXT="#000000" LINK="#00001t" VLINK="#t10000"

BACKGROUND="Imagel jpg" alink="2000088">

<P ALIGN="CENTER">

 :

 : < P>

- P ALIGN="CENTER"><IMG SRC="rainbow _thinline.git" WIDTH=340
HEIGHT=42<,P>

“P ALIGN="CENTER"><blink><|><[FONT SIZE=06
COLOR="#808080">WelCome To Salah's Homepage</blink></[> </P>
* P ALIGN="CENTER"><IMG SRC="rainbow _thinline.git" WIDT11=340
HEIGHT=4></P>

- P ALIGN="CENTER">> :
P

<I><P ALIGN="CENTER">Hi My Name is </I><|>Salah</[><|> Ali [was born in Libya.</P>

“'I><VFONT><P ALIGN="CENTER">This is a test ot A[VDISLE</P>
<P> .</P>

<P ALIGN="CENTER"> :</P>

165

APPENDIX C. SOURCE CODE

<P ALIGN="CENTER">Search My Homepage :</P>

<P ALIGN="CENTER"><applet code="SearchEngine.class" align="bascline"
width="150" height="50"><param name="width!" value="730"><param name="high!"
value="300"><param name="totalPages" value="200"><param name="server”
value="htp://131.162.166.112/"><param name="homepuge”
value="index20.htmi">~param name—"scarchingStyle" value—"truc" > applet>-=/P>

<P ALIGN="CENTER"> :</P>

~[><P ALIGN="CENTER">Under Construction<. =< FFONT> ~BR>
 : < P>

<P ALIGN="CENTER"><IMG SRC="Mail git"
BORDER=0 WIDTH=45 HEIGHT=32></P>

<P ALIGN="CENTER"> :</P></BODY>

< HTML>

166

