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Abstract 

The objective of the present study was to investigate teaching and leamhg in 
typical university level complex analysis classes in British Columbia. T h m  classes wete 

studied at two universities. Presentations of material in class by inçtnictots was carefully 
recorded. A total of 20 subjects were studied during 54 audiotaped interviews of one 
hour duration. M n g  interviews sîuâents worked on 6 ta 10 questions, recordhg their 
work on wotksheets. Transctipts wett made of the interviews and these together with the 
worksheets were analyzed to study sîudent understanding of the many concepts wvered 
in a beginning cornplex anaiysis cowse. 

In this thesis we have confuted our analysis to the data wc collected on just one 
theme: multirepresentations of complex numbers. We fond that students have many 
misconceptions and difficulties with the basic representations of complex numbers such 
as, 
z = x + iy, z = (x, y), z = d, and the symbolic representation, in which z is useâ dimtly. 
In addition, we studied how well students were able to judge when to shift fiorn one 
representation to another. Finally, we have examined the data we collected that shows 
how insufficient understanding of basic material affécts student ability to do problems 
h m  material covered later in the couse. 

Where possible we have attempted to identify different levels of understanding of 
the various representatiow. Although we found very little Mathematical Education 
literature on complex analysis, our analysis of our data supports results reported in the 
literature on representations of kations and more generai representations. 

We found that sudents were competent with the z = x + iy and z = re' 
representations, and most made reasonable shifhg decisions between these two forms, 
but there is little evidence that students understooâ the symbolic representation of 
cornplex numbers. in any case, fiom our data we have identified four characteristics of 
understanding a given reptesentation that are consistent with results reportecl in the 
literature. 

We have also studied how well d e n t s  were able to understand the z = (x, y) 
representation simply as a mathematicai form with certain des. Four stages of 
understanding of this question were identified. 
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Chapter 1 

Nature and Goals of this Study 

1.1 Introduction 

We were motivated to do a mathematics educational study of complex analysis by 

our mutuai loves of complex analysis and teaching. Complex analysis is one of the most 

beautifid fields in al1 of mathematics; practicdly no one who studies this subject does so 

without being stnick by the wonderfùl interplay between ideas h m  calculus, algebra, 

and geometry. In British Columbia, complex analysis is typically a third year course, 

with subsequent fourth year and graduate courses sometirnes available. The third year 

version of the course is usuaily oriented towards science and engineering students, with a 

strong focus on applications. 

1.2 Research Rational 

Aside fkom our great persona1 love for the subject of complex analysis, we 

expected the subject to be an excellent area of research in post-calculus Mathematics 

Education for the following reasons: 

1.2.1 Inteilectual Inquiry 

1. The topics covered in third year cornplex analysis include a variety of subjects. 

Some of these topics, depend on a thomugh development of simpler concepts, but others 

do not. We conjectured that this aspect of cornplex analysis would enable us to study 

basic material for its own sake, as well as enable us to study the cffect that 

misuaderstandings of basic maserial bas on later work. In addition, we expected to be 

1 



able to study some advanced topics independently of the extent to which students 

understand basic material. For example, we expected to study topics such as singularities 

or rationai functions, which are usually studied well into the course. but are not especidly 

dependent on eartier work. 

2. We believed at the tirne we began this research, that research in Mathematics 

Education at third year level and beyond was useful because we believed that students in 

programs that required a course in complex analysis were quite likely to use what they 

have leamed, so that the effort to learn bow to teach them better would have extra value. 

This contrasts with, for example, first year calculus courses in which many students are 

enrolled because the program they wish to take is using calculus as an entrance screen. 

3. We expected to encounter three types of problems that students may not have 

confronteci in lower level courses. For example, at Simon Fraser University students do 

not generally have to construct proofs until third year (the standard second year analysis 

course is not a prerequisite for complex analysis at either the universities studied). In 

addition, success at complex analysis requires a greater synthesis of concepts such as 

aigebra, trigonometry, calculus, geometry, topology, and symbolism than other courses at 

third year level. Finally, the shifi h m  thinking "reai" to thinking "complex" is not 

trivial. 

1.2.2 Feasibility 

1. Complex analysis is nch in concepts, both difficult and relatively straight 

forward. We conjectured that the variation of difficuity of the concepts, wouid enable us 

to include students with a wide range of capabilities. 



2. Since complex analysis involves concepts ftom calculus, algcbra, gwmetry 

and topology, we expected that we would have many opportunities to siudy how well 

students synthesized concepts fiam different branches of mathematics. 

3. Enrollment is high enough, and course offcrings muen t  cnough in third ycar 

mathematics courses at Simon Fraser University and the University of Bristish Columbia, 

to atûact acceptable samples of -dents for study. 

13 Research Objectives 

With the above considerations in mind we were able to formulate general 

objectives for our research. The fht objective was to investigate what dudents are 

leaming in thUd year complex analysis courses at British Columbia universities. We 

intended to fulfill ihis objective on more ttian one level. To begin with, we planned to 

simply catalogue what happens in a third year complex analysis course. This included 

primarily course content and presentation, but as well ethnographie questions, such as, 

student responses to what was happening in class. 

Next, we proposeci to survey what sort of problems students have with the 

concepts introâuced in the classes studied. We were particuiarly intercsted in 

determinhg which topics might be d e  more accessible to students, with better or 

diff't instruction. 

Finally, we plmed to kgin the process of identifying those topics and (leaming 

difficuities) that would be fhidul for fûrther fe~eafch. We intended to begin a detailed 

study of one or two of these idenmecl topics, if time permitted, in order to get an 

impression of how our future research of these topics would transpire. 

3 



In addition to the above objectives, we weft also interested in some specific 

issues: 

1. How do misunderstandings of the basic matcrial affect student conceptions 

about later material? 

2. 1s there any evidence of students making the transition h m  aprocess 

understanding to an object understanding of a given mathematicai concept (process and 

object understandings are discussed at length in section 2.1 .U)? 

3. What could we leam about how students are synthesizing the different 

branches of mathematics required to understand complex analysis? 

1.4 Overview 

With the above objectives and considerations in mind we surveyed the literature, 

fkst for research reports in complex analysis and then for research reports on calculus and 

algebra that we could adapt to our purposes. We aiso established a reçearch plan and 

methodology. In chapter 2 we report on the theoretical h e w o r k  that we used for this 

study. 

In chapter 3 we report on our literature review. Since we found almost no p a p a  

on the subject of complex analysis h m  the perspective of mathematics education, we 

have reporteci on a number of studies done in o t k  fields of university level 

mathematics, such as aigebra (both abstract and hear) and calculus, that we used as 

models for specific questions on questionnaires, general ideas for interviewing, ideas for 

andysis of data, etc. 

Chapter 4 includes a thomugh discussion of the epistemology of the 

4 



complex numbers. In addition, we have ûaced the history of complex numbers in chapter 

4. 

In chapter 5 we present our methodology. This chapter includes both how we 

collecteci our data, and the framework we chose to analyzc our data. 

In chapter 6 we report on our data and present our analysis of that data. 

We have organized our results into the general heading of Multirepresentations of 

Complex Numbers. 

Chapter 7 consists of conclusions, including suggestions for possible fiiture 

directions for research in this field. 



Chapter 2 

Theoretical Framework 

2.1 Research Model 

We began our rescarch preparation by identifjing a research model. We were 

interesteci in three areas: the teaching model used, a theory of leaming, and a theory of 

mathematical knowledge. 

2.1.1 Teac hing Model 

in this study we had no control over the teaching madel used, however, we 

expected it to be essentially the Old Humanist style described in Emest [l] (we have 

chosen not to analyze the data that we collected on the teaching model, but generally, of 

the five teaching models described in the Emest scheme, the Old Humanist model is the 

best description of what actuaiiy happened). 

In the Old Humanist model the emphasis of teachiag is conveying a body of 

knowledge. Mathematical knowledge is assumed to be absolute, and essentially 

independent of the people and situations of those who study it. It is up to the student to 

leam the material presented. The tacher is an expert in the field (certainly the case in al1 

three of the classes studied). For the Old Humanist school, teaching consists prirnady of 

lecturing and answering questions. Mathematical knowledge is determin4 by standards 

set by the community of publishing mathematicians. Accordingly, leanllng difncuities of 

individual students, diffrrences betwten cultures, etc. are considered largely irrelevant to 



teaching, although individual teachers may have varying degrees of empathy for these 

difficulties. 

2.1.2 Learning Model 

We based our study of how students are learning complex analysis on the g e n d  

model developed by Confrey [2,3,4]. However, before we discuss Confirey's model we 

will review the representation modeI, consüuctivism and radical constructivism, since 

Confiey's model is a response to some of the cnticisms of radical constructivism. 

The representational mode1 essentially says that the leamer builds an i n t d  

representation of a mathematical concept by having a îransparent extemal representation 

made to them by a teacher. The teaeher may have constnieted the transparent extemal 

representation, but generally îhis is done by an expert in the field via the course 

materials. 

Consûuctivism began !O be adopted by the mathematics education community as 

a replacement for the the representational model in the 1980's and 1990's as 

contradictions in this model became apparent. An additional impetus for new theones of 

learning was a growing dissatisfaction (as evidenced by, for example, the calculus reform 

movement) with the results of teaching by the representational view. Thus, the primary 

mots of constnictivism within the mathematics education community were dissatisfaction 

with teaching rnethods and educationai philosophy. 

Radical constnictivsim on the other hand, developed out of dissatisfaction with 

existing models of scientifïc imowledge. The "reform" movement in the philosophy of 



science began in the 1%0's, as many philosphers began to challenge the view that 

scientific inquiry was fielleci by the scientific method. There was a parallel reform 

movement in psychology that also led to radical constnictivisim, but we will focus 

exclusively on the mathematicsi mathematics educational origins, even though the two 

movements were intenelateci. For an account of the origins of radical consûuctivism in 

the field of psychology see Steffe and Kiercn [SI. 

In any case, as the reforrn movement in philosophy of science progressai, 

researchers in the field of mathematics education used the work of Lakatos and Piaget to 

corne to the view that the theory of constnictivism did not go far enough. (Incidently, the 

work of Piaget was also pivota1 to the development of radical consûuctivism in the field 

of psychology,) To address the new concerns, the additional postulates of radical 

constnictivsim were developed. (There are several versions of radical constructivism, but 

al1 are related to constnictivism). 

Thus, we begin our discussion of Confiey's mode1 with a summary of the 

represmtational view, consüuctivism and radical consûuctivism and the relotionships 

between these theories. 

2.1.2.1.1 The Representational Mode1 

The representational model of leaming was the dominant l&g model used in 

mathematics education until constructivist models began to be adopted in the 1980's. 

Rorty [63 has d e s c r i i  the main theme of the representational view of the mind as: 



To know is to represent accurately what is outside the mind; so to undcrstand the 
possibility and nature of howledge is to understaud the way in which the mind is 
able to construct such [intemal] representations. (p. 3) 

Thus, according to the representational view, leamhg a mathematical concept consists of 

consûucting, inside our heads, an accurate representation of the mathematical concept. 

The representational model was (and still is) attractive because the model is 

compatible with thtee components of instruction that are widely practiced: 

1. The primary purpose of instruction is to help students construct mental 
representations that contctly depict mathematical relationships located outside the 
mind of the student in the instnictional materials or the mind of the insûuctor. 

2. The main method of achieving instructional goals is to develop transparent 
instructional materials that make it possible for students to fonn the correct 
interna1 representations of the mathematical concepts under study. 

3. The external instructional materials together with the teacher's presentation of 
those materials are the foundation h m  which students build their mental 
representations of the mathematics under study, and hence, their mathematical 
leiawledge. 

For an exarnple of this approach within the context of a lesson on complex 

numbers, suppose the topic is addition and/or multiplication of complex numbers using 

the algebraic extension representation, z = x + iy. The overall goal of the lesson would 

be to help students constmct a representation in th& minds of addition andlor 

multiplication of complex numbers. Of course, the complexity of the mental 

representation will depend on the depth of the presentation. One could use as their 

transparent insirucrional representarion, the properties of the real numbers, and treat 

(a + ibxc + id) as though it were a pmblem in reai number multiplication, with the 

additional special d e  thai i2 = -1. In this case, students are assumed to be famiiiar with 



the properties of the reai numbers. Extemal instructional materials would consist of any 

one of numemus excellent textbooks on the subject of complex analysis. 

It should be clear h m  this example that the representationai view is consistent 

with actual classroom practice in a wide varieîy of settings, incspective of whatever the 

insmctors of these classes profess to believe. Nevertheless, the representationai view has 

corne under increasing criticism in the 1st two decades. 

2.1.2.1.2 Criticism of the Representational Model 

Cobb, Yackel and Wood [7] have classified the objections to the representational 

view into four categories: theoretical, anthropological, pedagogical, and philosophicai 

(duality). 

Theoreticai Objections to the Repmentrtional Model 

The theoretical argument against the representational view goes like this: If the 

representation view is valid, then students wilI inevitably consmct a representation of the 

mathematics under study that accurately reflects the extemai concepts. This means that 

leaming is triggered by the mathematicai concepts under study. But by assumption, the 

student has no understanding of the new concept, so how can a concept of which the 

student has no mental representations üigger construction of those representations? 

One answer to this objection is tbat the teacher facilitates the process. However, 

this answer is inadequate for several misons: 1. New mathematics is invented 

(discovered) ail the tirne, so one can Mer one's mathematical understanding entirely by 

reflection. 2. Despite the best efforts of teachers everywhere, students routinely 



coastnict reptesentations that are incornt (by the representational view), suggesting that 

there is more to learning than transparent presentation by the tacher. 3. Steinbring [8] 

and Brousseau 191 have both noted that the more detailed the instruction, the more student 

understanding seems to be lost (in ibis context "detailed" does not necessarily mean 

careful or thoughtful instruction). In other words, they found that a very detailed 

~amparentpresentation does not necessarily lead to gaad understanding. 4. Finally, the 

trend in mathematics education is towards teaching as a process of negotiation (Bishop, 

[IO]) as opposed to a process of imposition. This trend is teflected, for example in the 

calculus refonn movement. Thus, the representationaî view of leaming faces a serious 

theoretical challenge. 

Antbropological Objections to the Representational Mode4 

The antbropological objections to the representational mode1 arise h m  close 

scnitiny of what is meant by the experâenced trunsparency ofexternul representations for 

the expert. There are essentailly two questions that arise h m  close examination of the 

expericnce of the expert: How cm we expect the student, who d e r  dl, is assumed to be 

uninitiated hto the culture of expert mathematicians, to understand anything about what 

the instructor is presenting to the class? In this question we are not even considering 

cultural clifferences. The question is how can we expect a student to understand mything 

about the presentation by the instructor, even assuming they speak the same language, 

Iive in the same culture, social class, are of the samc gender, etc.? No matter how clear or 

transparent the presentation is, there are a multitude of relationships and co~ections that 

students could and do make h m  the lesson. So how can we c l ah  that the presentation 
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was transparent? The second question is reIated to the first but the question is how can 

we ignore cultural differences and differences of affect when d e h g  the transparent 

experience of the expert? 

Cobb, Yackel and Wood [7] argue that the ability of teachers and students to 

overcome apparently insurmountable psychological and culturai differences indicates that 

students must be actively constnicting tbeir representations as opposeci to absarbing them 

h m  the instnictor. Thus, teaching is an act of guiding the student's constructive efforts. 

In other words, learning is an interactive process that involves negotiation behveen the 

learner and teacher. While the representational mode1 of learner could perhaps be 

modified to accommodate the view advocated by Cobb, Yackel and Wood (and many 

other cited therein), the model of teacher and student negotiating acceptable mental 

representations of mathematical concepts for the student is not consistent with the 

characteristics of the representation model given in section 2.1.2.1.1. Thus, 

anthropological and psychological considerations lead one to question the 

representational mode1 

Pedagogieal Objections to the Repmentational Model 

Cobb, Yackel and Wood [7] (and severai authors citeâ therein) argue that the 

representational leamhg model, if rigidly applied, can lead to students separating 

mathematical activity in schwl and outside of school. The problem is that the 

presentation of materials transparent to the expert is clearly quite a cliffernit experience 

for students than the mathernatizing that students do outside of school. This means that 

for many students schwl mathematics r e m a h  Urelvent and out of reach, since they 
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cannot connect the concepts they are learning in schwl with the math they are leaming 

outside of the class m m .  

Philosophical Objections to the RepmenWonal Model 

If we look closely at the representational leaming model, it is evident that there is 

a duality: on the one hand is the mathematics to be leamed (external representation) and 

on the other hand is the mathematics in the student's head (intemal representation). Thus, 

the internai and extemal representations are fundamentally separateci, and the basic 

problem of leaming and (teaching) is how to bring the intemal and external together 

again. 

Von Glasersfeld [Il] has reviewed the many unsuccessfûl attempts by 

philosophers to solve the problem of uniting the mind (intemal) with the extemal. The 

implication is that if the separation of mind and environment does not have a solution in 

other (philosophical) settings then it is unlikely that there is a fûlly satisfactory solution 

within the representational model. 

More recently, many philosophers, such as Gadamer [12], Habermas [13], 

Bernstein [14, 1 SI, Putnam [16] and Rorty [6,17] have challengecl the underlying 

assumption of the problem, namely the idea that the mind builds representations of teality 

independent of history, social factors, and human requirements. Thus, the problem of the 

duality of the mind and the extemal environment (posed by Descartes) is rejected as an 

illusion based on a faulty premise. These philosphers, consequently, reject 

representationai models of leaming: for example, Dewey [18] has r e f d  to 

representational models of leamhg as spectator theories of howledge to focus attention 
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on the fact that the representational models of leaming ignore environmental and cultural 

faetors, as well as the collective activiries of humans. 

Another way that the sarne ideas have been expresseci (for example Searle, [19]), 

is that the ody mind we will eva  know is the one that is involved in al1 aspects of our 

lives, so why bother poshilating the existence of the interna1 mind of representatioaal 

models? 

In any case, we cm see that supporters of the representational model at the very 

lest  have a serious phiiosophical challenge to address if the credibility of the 

representational model is to be retained. 

2.1.2.1.3 Summary of the Representational Model of Learning 

The representational model of leaming mathematics is the view that students 

constnict accurate mental representations of mathematics presented in tenns of models 

and images that are obvious to an expert. The representational mode1 has been criticized 

on severai grounds, namely theoreticai, anthropological and psychological, pedagogical, 

and philisophicai. 

From a theoretical point of view, there is the question of how a student can be 

expected to constnict new represeiitations if these representatiom are required to be 

already present in order to trigger the development of the new representations? 

From a psychological point of view, we can wonder how a student picks out the 

correct relationship about which to fom a mental rejmsentation, wben even in the 

simplest situation there are a multitude of possible relationships h m  which to choose? 



From an anthropological point of vicw, we can ask whether or not an expert 

mathematician can ever be expected to present material in a way that is transparent to al1 

students fiom many different backgrounds and experience. 

The pedagogical objection to the representational mode!, that we have discussed, 

is that by focussing on the transparent representations of experts, school math is 0 t h  

very different fiam math outside of school. 

Finally, many philosophas hava rejected representational models on the grounds 

that the notion of mind independent of human activity is unfaundeci and unprovable, and 

therefore not useM. 

Having discussed the representational mode1 at some length, we are now ready to 

proceed to the first attempts by contructivists to address the shortcomings of the 

representational models. 

2.1.2.2 Constructivism 

Constructivism amse in response to the shortcomings of the representational 

model, as well as in response to the need for a philosophy of l d n g  that was consistent 

with the increasing trend to negotiation as opposed to imposition of howledge, Bishop 

[IO]. In this section we discuss consûuctivisim, and some of the critiques of 

constnictivism. We are particularly intetestcd in critiques of wnstnictivism that have 

lead many researchers in mathematics educations to adopt the perspective of radical 

constnictivism, which is the topic of section 2.1.2.3. 



2,1,2.2,1 Coastructivism - The Basic Model 

The central feature of constructivism is the recognition that the learner actively 

consûucts theù own understanding. This has been descnbed in various ways: 

Knowledge is actively consûucted by the cognizing subject, not passively 
received h m  the environment (Kilpaûick, [20]). 

These days the consûuctivist perspective typically stands for a gentle commiûnent 
to mentalism - a cornmitment to the belief that mental structures exist, that such 
structures shape the ways individuals see the world, and that people build those 
structures through interactions with the world around them (Schoenfeld, [21, p. 
2901). 

Whereas, the t em "constructivism" was intended to convey the Piagetian notion 
of the nature of building cognitive structures, for many people it bas corne to 
mean a way of teaching embodied by one of two classniom methods. For some, 
having students use manipulatives is the necessary and sufficient condition for 
"doing consûuctivist teaching". ... The other quality of the insûuctional 
environment ofien thought to beper se consûuctivist is the use of group 
discussion (Pirie and Kieren, [22, p. 5051). 

Thus, constructivism is an attempt to revise the representational mode1 by recogninng 

that the learner actively builds their own lcnowledge of the subject under study. 

The problem faced by the constnictivist is the problem of cmrdinating three 

aspects of the leaming process: the assumed to be shared mathematical culture of society, 

the assurneci to be shared culture of the classroorn, and the thinlcing and leaming pattems 

of the student. This pniblern conûasts with the dilemma faced by the representationalist, 

narnely how to reconcile the duaiity between the student and the expert. 

Perhaps it is apparent h m  the discussion so fa.  that presenting a "model" 

consûuctivist leaming scenario is not easy, since exactly what constitutes a constructivist 

learning environment is still not clear. Thus, we will be content with a few ideas of what 



mnstnictivist tcaching and learning should look like. It should be noted that even thougb 

this section is part of our development of a leamhg model, so that matters of teaching 

should pmperly go in section 2.1.1, in the literature constnictivist teaching and leaming 

have consistently been discussed hand in hand. To us treating teaching and l e h g  in 

tandum is entirely consistent with the requirement of solving the basic problem faced by 

constructinsts: the reconciliation of the individual leamer, the classroom (including 

whatever teaching is occurring), and the larger society. Thus, we will treat constructivist 

teaching and leaming togeîher in this section. 

Arcavi and Schoenfeld [23] have taken the position that students must be viewed 

as quite capable of making sense of the challenges with which they are corhnted. 

Furthmore, Confrey [24] suggests that students' methods and ideas have the status of 

"genuine knowledge", and can be characterized as subjective, diverse, and rational in 

theù own way. Pirie and Kieren [22] have elaborated m e r ,  expanding these ideas into 

four tenets of belief that teachers must have to create a constructivist leaming 

1. Aithough a teacher may have the intention to move students towards particular 
mathematics leanüng goals, she will be well aware that such progress may not be 
achieved by some of the students and may not be achieved as expected by others. 

2. In creating an environment or providing oppurtunities for children to modi@ 
their mathematical understanding, the teacher will act upon the belief that there 
are Merent pathways to similar mathematical understanding. 

3. The teacher will be aware that different people will hold different mathematical 
understandings. 

4. The teacher wiil know that for any topic there are different levels of 
understanding, but that these are never achieved 'once and for di'. 



Unfortunately, the descriptions given so far are still too general to give a clear 

idea of what happens in a classrmm in which a constructivist environment is operating. 

Hence, we give two exarnples of actual learning situations in which a constructivist 

environment is present. The first is h m  Pirie and fieren [22]: 

Clussroom 1 The teacher passes out sheets of papa (units) to be folded into 
halves, fourths, eights, and sixteenths. AAer the students have done this and . 
discussed many aspects of this activity with each other, the teacher passes out 
"kits" containing numemus unit, half, etc, pieces. The teacher observes that many 
students are able to combine and compare fractions in this contexts but he 
nevertheless seeks to leam what different understandings students have. The 
teacher writes d o m  some statements and drawings about 314, and then asks 
students to make 5 or more sbtements about 314. The responses are collected and 
analyzed and presumably used for the next lesson. 

For an example in a somewhat les  fonnal setting, Arcavi and Schoenfeld [23] 

describe a constructivist tutoring session in the Function Group lab at the University of 

California at Berkeley (the Function Group is a research group in mathematical cognition 

directeci by Alan Schoenfeld): 

In this session a tutor and a student play a game called guess my rule with the aid 
of a computer program. The object of the game in this case, was for the student 
(grade 8) to guess the cquation of a sûaight line. The student would state an input 
value and the tutor would provide the conespondhg output value. This process 
was repeated until the student was able to guess the equation of the line (i.e. the 
de ) .  The computer was used to keep track of the input and output values and to 
ver@ guesses. Arcavi and Schoenfeld report in detail on exchanges between the 
tutor and the student in which the tutor aîtempts to understand the student's point 
of view, and make sense of the student's observations. 

in both these examples, a central aspect of the instruction is studying what images 

or mental representations ihe student has, and then trying to help the student build a better 

representation if necessary. In any case, defining exactly what constnictivist leaming and 



teaching looks like has been an important area of research in mathematics education, and 

the interested reader cm find further details in articles by Cobb, Yackel, and Wood [7], 

Williams [25], Pirie and Kieren [22], Arcavi and Schoenfeld [23] and many references 

therein. 

So far in this section we have discussed definitions of constnictivism, and 

presented two examples of constructivist teaching and leaming in practice. We now hun 

our attention to criticisms of the consûuctivist model. 

2.1.23.2 Criticisms of Constructivism 

Leman [26] has obsmed h t  the hrpothesis of constnictivism, namely that 

"knowledge is actively constructed by the cognizing subject, not passively received fiom 

the environment" is now widely accepteci in the mathematics education community as a 

usehl and productive hypothesis when thinking about how children leam. Thus, 

criticisrn of constructivism has generally corne h m  radical constructivist who claim that 

constnictivism does not go far enough and tbat, in fact, consûuctivism stops at a point 

that is not logically tenable. Thus, it might make sense at this stage to skip on to a 

discussion of radical consûuctivism, and reserve the following discussion until d e r  the 

next section (on radical constructivism). However, we have chosen not to do this because 

as far as we cm tell many radical constructivists in mathematics education came to their 

current view partly because of what they see as failings in the constructivist model. So 

we wish to foîlow the actual path taken by many scholars who subscribe to radical 

consûuctivism. Thus, the reader who is completely unfamiliar with radical 



consûuctivism might wish to skip on to section 2.1.2.3 before finishing the present 

section. 

Esmtidy, the objection that radical consûuctivists have with constnictivism is 

that in recognizing that the leamer builds their own representations of mathematical 

knowledge, there is no tuming back: we cannot logically continue to claim tbat there is 

an absolute body of mathematical knowledge to be learnt, and that each student will 

acquire the same representations of mathematics as their teacher. 

Another way to understand the difference, according to Confiey [2] is that 

constnictivism is essentially a theory of leaming, whereas, radical constnictivism is a 

theory of knowledge. The radical consûuctivist's criticism of constructivism is that a 

theory of learning is not enough to form a mode1 or ideology of mathematics education. 

E m t  [l] bas discussed in great detail the elements of an ideology of mathematics 

education. These elements include a theory of learning, a philosophy of mathematics, a 

theory of knowledge, a moral position, a theory of teaching mathematics, a theory of the 

child, etc. Thus, radical constructivists argue that if we adopt a constructivist theory of 

learning, and use by default, an abçolutist philosophy of mathematics (as is commonly 

done) we have not adapteci a consistent ideology of mathematics education. 

Leman [26] has made essentially the same point in the setting of philosophy of 

mathematics. Narnely, the debate between coastnictivism and radical constnictivism in 

mathematics educations is very similar to, if not the same debate as canstructivist 

(ituitionist) and faliibilist are having about the nature of mathematics. Fallibilist argue 

that no matter how much we try to "reform" the absolutist theories of mathematical 
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knowledge, bccause of Goâcl's incompletmess iheorems (or just ushg logic directly) 

there is no way to lcnow that any particular theory of mathematicai knowledge is 

intemaily consistent without invoking a meta-theory of some sort. Therefore, absolute 

knowledge in the sense of absolutism is not possible. 

Consüuctivists are well aware of the cnticism that has been made of 

constnictivism, and may even empathize with those criticisms, but for constnictivists, 

completely giving up on an absolute fiamework results in too many unresolved pmblems. 

As Schoenfeld [21 p. 2901 puts it: 

The leap into nonobjectivism, which lies at the core of radical construcrivisrn is a 
giant one. Making it leads to a host of deep philosophicai problems: If there is no 
"there" there, why do we appear to perceive it? By what means do we perceive it? 
How do we communicate? For those interested in instruction, it leads to equally 
deep practical questions, such as, How and what does one teach when the core of 
instruction, the subject matter, is no longer postulated to exist as an objective 
entity, and the standard notions of learning, based on intemal representations of 
that extemai reality, cannot be called upon? More simply, if you are a radical 
consüuctivist, what in the world cm you Say about practical issues of instruction? 

Thus, the debate between constnictivists and radical constructivists is centered 

around issues that are partly a matter of intuition and experience and therefore remain 

largely unresolved. 

We have characterized consûuctivism as the belief that the learner constructs their 

own representations of the subject under sîudy. The implication for insûuction is that 

representations held by the student must ùe nurhued and explored, with the teacher using 

a variety of ways to help the studeat corne to rcalize their errors in representation, and to 



help the student bring their mental representations into line with repte~tntations held by 

an expert. 

Criticisms of constructivism have mainly been made by radical constructivists, 

who argue Ihs< having rejected the representational duaîity between extemai aud internai 

knowledge, and having accepted that leaming is largely an interna1 pmess, 

constructivists are left with no choice but to adopt the radical constructivist position that 

al1 lcnowledge is internai. 

in any case, h a h g  discussed constructivism and the radical constructivist critique 

of constnictivism, it is high tirne that we properly discuss radical constnictivism. 

2.1 J.3 Radical Constructivism 

As already mentioned radical constructivism had its origins in the 1960's when 

refonn movements began in philosophy of science and in psychology. Radical 

constructivism goes beyond consûuctivism by making a hl1 cornmitment to an intemal 

theory of knowledge. We discuss the basic radical constructivist mode1 in section 

2.1.2.3.1, including connections with constructivism and two examples of instruction 

fiom a radical consîructivist perspective. In section 2.1 2.3.2 we consider some critici 

of radical constnictivism, and we conclude section 2.1.2.3 with a summary in section 

2.1.2.3.3. 



2.1.23.1 Radical Constructivism - The Basic Theory 

A Brief History of the Development of Radical Coostnictivism 

The groundwork for radical constnictivism was begun in the 1960's as reform 

movements in both the philosophy of science and in psychology (perhaps reflecting Ihe 

social turmoil of this period) began to challenge the traditional p d g m s .  We d l  only 

mention a few of the developments in psychology for cornparison purposes, so the reader 

interesteci in the psychological mots should refer to Steefe and Kieren [SI. Thus, we will 

focus on the origins of radical constnictivism that are based in the ment history of 

philosphy of science. 

Confiey [2] has traced one of the origins of radical constnictivism to the reform 

movement in the philosophy of science that began with the work of Karl Popper [27] in 

1962. Popper claimed that scientific advances followed h m  falsification more oflen 

than from verification, so that the scientific method (which was the pillar of the 

philosophy of science at the time) cm not be the whole story. Later, in the early 1970's, 

Kuhn [28] and Toulmin [29] argued that falsification (of hypotheses by nul1 experimmtal 

results) alone could not explain scientific advances. 

The re-examination of the sources of scientific advances led to the realization tint 

a much larger picture was needed (than just scientific method) that included theones of 

individual knowledge, of methodologies, of standards of research and reporting, of prooc 

and of the social context of the scientific investigation. Of course, opposing views arose, 

but for our purposes, the next development of interest was the application of the analyses 



emerging fimm îhe philosophy of science to mathematics, fht by Lakatos [30,3 1,321, 

and later by Kalmar [33], and Tymoczkb [34,35]. 

The emerging theories had a profound effect on the espistemology of science and 

mathematics. As Confiey [2, p. 21 puts it: 

A11 of the theories coalesced to change the view of science, and to [a] significant 
but laser extent, mathematics, to make them vulnerable to systematic change, 
revision, debate, and rejection. Ail stniggled Co explain the twin processes of 
stability and change as they admitted relativism into the scientific and mathematic 
enterprise. And al1 of them challenged a simplistic view of objectivity; in each 
theory, the subjective, eiiher as psychological process or a sociological process, 
was inexorably involved. 

As one rnight expect, the new ideas spread to science and mathematics education, 

influencing discussions of classroom culture, and the epistomology of teaching and 

learning. To some extent the new thinking in science and mathematics rnerged with the 

refonn movements in education and psychology, resulting in growing interest in 

constnictivism. Thus, by the late 1970's and early 1980's there was widespread support 

for the need for new theories of iearning in mathematics education. Of course, with any 

reform movement there are many variations, so it is not surprishg that constnictivism bas 

so many different meaninp. 

The search for new models of leaming rather naturally led to widespread interest 

in the work of Piaget, since as a biologist studyîng child development he attempted to 

incorporate many of the reforms in the philosophy of science into his theories. Piaget's 

work was concernai with the development of chiidren's understanding of basic concepts 

such as number, tirne, and space, and also the phases of tbat development. The intefest in 

Piaget by the mathematics education community was roughiy paralleled in psychology by 
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''the Piagetian studia" spcarheaded by Van Eugen [36]. Piaget's work was particularly 

attractive since he had attempted to identify the mental structures and represcntations of 

children, which was exactly the information that theorist needed to develop new 

espistemological theories. As Confiey [2, p. 31 says: 

The effect of combining Piagetian work and the philosophy of science was to 
emphasize the importance of espistomogical issues and to challenge the 
assumption that children's worlds were simply inadquate or inwmplete 
representations of adult worlds. Such contributions were necessary for the 
formation of a radical constxuctivist perspective in mathematics education. 

Throughout the 1980's and 1990's work on radical constnictivism has continued 

with most research focussed on the central problem of radical constructivism (discussed 

below). We wish to emphasize however, that radical consûuctivism and constnictivism 

are fiuidamentally different movements, which have an overlap in their adherents and a 

convergence of their content up to a point. 

Radical Constructivism 

As was the case with constnictivism, researchers have defined radical 

constnictivism in varying amounts of detail. Kilpaûick [20] gives a definiton consisting 

of just two hypostheses, the first of which we have already seen as a reasonable deçiition 

of constnictivism: 

1. Knowledge is actively constructed by the cognipng subject, not passively 
received h m  the environment. 

2. Coming to know is an adaptive process that organizes one's experiential world; 
it does not discover an independent, pre-existing world outside the mind of the 
knower. 



Coafrey [2] describes these ideas in much more detail, elaboraihg a defintion into 

a four point fiamework for radical constructivism. Confirey has used the work of von 

Glasersfeld [37] extensively to construct her h e w o r k .  (Incidently the four point 

ûamework given here is not Confrey's modification of radical constructivism to which 

we refend in section 2.1.2 at the beginning of our discussion of the leaming model.) 

1. Genetic Epistemology: Knowledge develops over t h e .  To understand a 
concept one needs to attend to both the overall construction of the mental 
representations, as well as the evolution of the representations. 

2. Radical Epistemology: There are hvo key ideas in this point: a) Knowledge is 
fluid and constantly being constructed and modified. There is no fixed canon of 
knowledge, independent of the observer, to be discovered. b) To know 
something is to act on this knowledge, to reflect on the knowledge and the actions 
taken, and then to reflect and act on the reflections, etc, in a never ending 
construction. 

3. Scheme Tiieory: Scheme theory in radical constructivist theory has its origins 
with Piaget. For Piaget a scheme is 'khatever is repeated or generalizable in an 
action" Piaget (p.34 1970 cited in Confiey [3]). Schemes are a record of the parts 
of actions (on knowledge) that are repeatable or predictable. Key for radical 
constructivists is the observation of differences between, for example, the scherne 
of an individual child and the expected scheme for children of the same age. 

4. M ' e l  Building and the Constmction of Others: This point of radical 
constructivism refers to the idea that the knowledge of others (extemal to 
ourselves) is created in the sarne way that small children give life to objects and 
human qualitites to animals. The term 'models of others' is us& to emphasize the 
fact that there is no priviledge statu inherent in our knowledge of others. Radical 
constructivists argue that individuals make such constructions ôecause they help 
us make pcedictions and give us more control. 

Ernst von Glasersfeld [38] has written extensively about radical constructivism. 

He has explained radical constructivism as follows: 

Radical constructivists redefine "the concept of howledge as an adoptive 
function. In simple words, this meam that the resuits of out cognitive efforts have 
the purpose of helping us to cope in the world of our expaience, ratlier than the 



traditional goal of fumishing an 'objective' representation of the world as it might 
'exist' apart h m  us and our experience" (p.xiv) 

To summarize, radical constructivists agree with constnictivists that ktwwleàge is 

actively constructed by the lemer. Radical constructivists differ from constructivists, 

because the former believe that there is no extemal reality, independent of the individual. 

Thus, for radical constructivists the process of coming to know is an essential part of 

knowing, in fact, some radical constructivist would claim that the process of coming to 

know and acting on knowledge is al1 there is to knowing, in effect, the actual facts or 

representations that an individual has are meaningless if considered in isolation h m  the 

process by which they were acquired or the actions that are taken on account of those 

representations. For radical constructivists acquiring knowledge is about acquiring 

control and predictability, as well as making sense of the sensory inputs and the mental 

reflections one has. 

Having discussed the nature of radical consûuctivism, we now describe two 

classroom situations to illustrate the radical constructivist method of teaching and 

leaming . 

Radical Constnictivists Mdels  of Learning 

The most difficult problem for radical constructivists is to define a practical 

classroom environment in which to implement the radical constructivist philosophy of 

teaching and Iearning. This problem has by no means been solved, especialiy the 

problem of how to teach h m  a radical constructivist perspective, so we give two 

examples of attempts to solve this problem, or at least some aspect of the problem. 



Confiey's research group has reportcd work done with a college fieshman, 

Confrey [39]. in this research the student drew a number line that was suppose to 

represent the entire timeline of the universe. She marked evenly spaced powers of ten on 

the bottom of the line and then divided each unit of a power of ten into evenly space 

increments h m  the lower power of ten to the higher power of ten on the top of the line. 

Thus, a portion of her timeline looked something Sie this: 

A traditional approach would mle this incorrect since there are two diffmnt 

scales: The powers of ten are a multiplicative scale, and the increments of 10 or 100 are 

an addiave scale. However, this student showed a great deal of facility calculating time 

intervals (with this double scaie), and also showed that she could fluently switch h m  

scientific notation (lower scale) to decimal notation (upper scale). Thus, this student 

showed reai understanding with a non-standard model. 

The challenge for the radical constnictivist is where to go with this? Confiey, 

suggests that creating a task that would lead this student to the need to use a tnie 

logarithrnic scale is the next step. Another possibility would be to devise different 

tirnelines to see where this student's methads lead. 



The second example is a nport by Russell and Convin [40]. In this research 

teachers were asked to fonn conjectures about the relationship between the number of 

corners, edges and sides of pyramids. They were given construction materials to work 

6th so that they could make pyramids with various shaped bases. This was al1 done in a 

classroom setting. 

Russell and C o d  report that some teachers disthguished between the vertex off 

the plane of the base, describing this vertex as a point rather than a comer. This 

perspective was further reinforced by the additional exercise that teachers were asked to 

perfom, narnely the construction of two dimensional "graphs" in which al1 the vertices 

and edges were displayed. For many of the "graphs" the vertex off the plane looks very 

different h m  the base vertices. 

The teachers holding the view that the vertex off the plane of the base was not a 

comer were encouraged to develop their idea further. Among other things it became clear 

that many teachers in this group thought of a corner as a point of intersection of exactly 

three planes (like a Street comer or a room comer). The instmctors of this class made no 

attempt to "correct" the teachers, or fonnally introduce the concept of 'vertex'. Instead 

the teachers were allowed to engage in a lively debate, thereby gaining valuable 

experience in the way mathematics is actually practiced. 

Several more examples of radical constnictivist teaching styles and classnwims are 

containeci in Bauerfeld [41], for the interested reader. We will not discuss these examples 

for reasons of space limitation. 



in conclusion, in this section (2.1.2.3.1) we have reviewed the origins of radical 

constnictivism, particularly the ongins in the the reform movement in philosophy of 

science. in addition, we looked at definitions and interpretations of radical 

consûuctivism. We noted that identification of a clear radical constnictivist program is 

far h m  complete, so that we were only able to offer partial illustrations. 

Having reviewed the nature of and the ongins of radical constructivism, we now 

look ai some of the criticisms that have been made of radical constnictivism. 

2.1.2.3.2 Radical Constructivism - Criticism 

Criticisms of radical consûuctivism have been made on several grounds: the 

objectives are too exireme to be attainable, there is no grounds for explaining differences 

in cognition except on the basis of age, a radical consûuctivist model of teaching does not 

exist and is problematic, and finally there is a contradiction between on the one hand 

emphasizing the 'individual' construction of knowledge, and on the other hand cequiring 

everyone to act "collectively" to achieve common knowledge. 

Below we discuss these criticism as well as possible replies. 

As we noted in section 2.1.2.2.2, Schoenfeld [21] has argued that the problems 

posed by radical consûuctivism are intractable. For example, if there is no extemal 

world, why do we appear to perceive it? How do we perceive an external world, and how 

do we cornmunicate? 

In ou.  view, these questions are based on a misunderstanding of radical 

constnictivism. Radical constructivism postdates that the individual coastnicts their 



reality to help them build their knowledge, in much the same way as a child aîtributes ail 

sorts of pmperties to animals and objects. When the chilhood images are no longer 

usefiil, the individual adopts incresingly complex perceptions. Thus, by radical 

consûuctivism we perceive an extemal world because doing so helps us organize and 

understand subjects which we decide to sîudy. Of course, we cm strengthen 

Schoenfeld's objection by asking why do we do al1 this? What is sa important about the 

process of organizing and understanding howledge (which afterall, is entirely intemally 

consûucted)? As far as we can tell, radical consîructivists have no answer to this 

question. Nevertheles, we cannot very well dismiss radical consûuctivism on these 

grounds, since no theory of knowledge (or in the case of radical consûuctivism, the 

process of acquiring knowledge) can explain why seeking knowledge is important, since 

this is a meta-knowledge question. 

Corhey [2] has argueci that radical consûuctivisrn is essentialist except with 

respect to age. As she puts it: 

Constructivists approaches can be criticid as positing a universalist or 
essentialist view of cognition across classifications except age. 

Confiey argues that constructivist have not yet accounted for the ciifferences in 

performance that exist between cultures, races, and genders. Furthmore, the heavy 

emphasis on the individual can lead to a devduation of individuals who hold back, who 

work for consensus, or who for whatever reason choose not to actively participate. 

One answer to this criticism is simply that individuals h m  different backgrounds 

are seeking ciifferent knowledge, so th& processi of organizing that knowledge is 



different. (Of course, it is more accurate to argue that individuals need to perceive 

variations in performance between people h m  different cultures, races, and genders, 

because this helps us organize our knowledge. In other words, building differences of 

affect between the people in our mental images helps us organize ou -  knowledge.) 

The third criticism of radical consûuctivism, noted by Confiey [2], and 

Schoenfeld [21], is that, as of this writing, there is no model of radical consûuctivist 

teaching. This is a senous problem for constnictivists, because sooner or later the end 

product of teaching or research winds up with the 'correct' answer being imposed or at 

least strongly suggested. This is evident in both the examples we gave in 

section 2.1.2.3.1. For example, in the scale example one suggested course of action is to 

direct the student to a log scale, in effect, the 'correct* answer. In the other exarnple of 

"discove~g Euler's equation for pyramids", although this was not how the research was 

reporteci, discovering Euler's equation is in fact the task, so that anybody teaching this 

group would not be satisfied if Euler's equation was not eventually discaverd (at least in 

some subsequent lesmn). One would have to be a very disciplined and cornmitted radical 

consûuctivist not to feel this way. 

In defence of radical consüuctivism, unless we can prove that there is no teaching 

model in radical consüuctivism, the absence of a teaching model cannot be used to argue 

that radical consûuctivism is an unsound theory. The problem is pragmatic: teaching 

h m  a radical const~~tivist perspective is not mmntly posiible, but that does not mean 

it is impossible. 



Zevenbergen [42], is a ment critique of constructivism based on what 

Zevenbergen views as the contradiction between emphasizing the individual (reality is a 

mental construction), and postulating that we act "~ollectively~~ to build the same 

perceptions of an extemal reality. Zevenbergen argues, among other things, that radical 

constnictivism can be used to justify individualism, and also to justify ignoring social 

injustice in schwls and education in general. The argument is that since an individual 

constmcts their intemal reality to help them with the process of howing, and since part 

of that construction is the perception that we al1 have the same images of reality, why is 

there any need to affect social change? Does oppression exist? What does oppression 

mean if werything has been constnicted in the mind of the individual to aid in the 

construction of knowledge and understanding? 

This seems like a difficult conundrurn for radical consûuctivists, but acnially, 

there is a 'cheap' way out: oppression (in the usual sense) is built into our mental images 

to help us organize our knowledge. We have images of a stmggle over oppression 

because it helps us organize our knowledge and understanding. We take action on the 

images of oppression (or not) because the pmess of acquiring understanding is what it 

means to know, and taking action is part of the process. Thus, taking action to change 

sacial injustice is completely consistent with radical constnictivism. 

In summary, we have discussed several criticisms that have been made of radical 

constnictivism, as well as given possible replies that illustrate radical constnictivist 

thinking. The criticisms we studicd include: the theory is intractable, there is no theory 

of teaching, there is no explanation for diffmces in affect, other than age, and tadical 
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constnictivism can be used to justi& rnaintaining the status quo. We believe ail of these 

criticisms (except the absence of a twhing model) can be addressed by carefiilly 

applying the postdates of radical constmctivism, in particular, the ideas of taking action 

on knowledge and the key point that the process of organizing knowledge is what is 

meant by understanding. 

In any case, after briefly summarizing section 2.1.2.3, we will discuss Conby's 

modifications of radical constructivism. 

2.1.2.3.3 Radical Constmctivism - Summary 

We have reviewed the origins of radical constnictivism from the reform 

movements in philosophy of science and psycbology. We observed that constnrctivisrn 

had a different origin in mathematics education h m  radical constnictivism, so they have 

developed somewhat in opposition. 

We have given several debitions of radical constructivism and reconciled them 

into some key points such as: knowledge is actively wnstmcted in the leamer's head, 

taking action on lcnowledge is an essential aspect of corning to understand, and the 

process of learning is what it means to know. 

The primary unsolved problem with radical constnictivism is that there is no 

teaching model. Other cnticisms çeem to have reasonable answers within the h e w o r k  

of radical constnictivism. 



Having reviewed the representations model, constnictivisrn and radical 

constructivi& we are now prepared to direuss the model of knowledge that we 

attempted to use for our research project. 

2.1.2.4 Confrey's Modification of Radical Constructivism 

Confrey's [2,3,4] modification has seven tenets. These are bnefly described 

below: 

1 .  Human deyelopment depends on the environment. in Confrey's perspective 
one educates at al1 levels for a global society that includes al1 living things. The 
whole point of consüuctivism is that any exclusion of part of human experience is 
limiting to leaming and teachg. Thus, this tenet is included in Kilpatrick's [20] 
two assumptions discussed in section 2.1.2.3.1. 

2. The selfis both autonomous and communal. This assumption is designed to 
answer the well known criticism of radical constnictivism of how different 
individuals create the same reality. Conhy is suggesting that part of our desire 
for knowledge is to create coherence in addition to the usually stated motive of 
active control and manipulation. 

3. Diversity and dissent are anticipted Since one of the basic natures postulated 
(see #2) is that humans are autonomous, we expect that there will be different 
opinions and ideas of how to l e m  and solve problems. We expect different ideas 
about what is relevant in any given situation. Diversity is therefore encouraged as 
an essential part of developing the autonomous side of human beings. 

4. Emotional intelligence ir ucknowledged. By emotiod intelligence Co&y 
means the ability to monitor one's own and other's feelings, to discriminate 
between them, and use the information to help one's thinking and actions. This 
assumption is included partiy to penait the inelusion of various issues of 
mathematical affect as part of mathematics. 

5 .  Abstraction is reconceptualized andplaced in a diulectic. This postulate is 
intended to resolve the long ninning historical debate between the value of 
abstraction and practical kmwledge. Conîky believes these two to be vital 
aspects of the same thing which she refm to as a dialectic. 



6. Leaming is viewed as a reciprocal activity. This statement follows h m  the 
empbasis placed on diversity. Teachers must be willing to l e m  new methods as 
they aise in the classraam. Unexpected solutions should be the inspiration of a 
new or modified teaching strategy. 

7 .  Ciassrooms are stuàied as interactions among interactions. Essentially, the 
intention of this assumption is to recognize the interplay between individual and 
social aspects of classrooms. 

2.1.2.5 Reification and APOS 

In addition to the above model, we have attempted to incorporate two specific 

processes of leaming mathematics: reification and NOS. 

For a discussion of reification, see S fard [43], S fard and Linchevski [44], and 

Kieran [45] (Kieran discusses the sarne ideas but uses different terminology). Reification 

is essentially the leanllng process of moving h m  aprocess understanding of a concept to 

an object understanding of the concept. For an example of reification, consider the 

gradua1 shift of comprehension required to understand a fiinction first as a fonnula for 

calculating an answer given an input value (pmcess notion), then as a mqp i~g ,  and 

hally as Say, an element of a vector space (object notion). 

The other leaming process is APOS, which is an expansion of the idea of 

interiorization due to Piaget. The Research in Undergraduate Mathematics Education 

Community (RUMEC) has been especially active in the investigation of APOS. See, for 

example, Asiala, et al 1461 or Breidenbach et al (471 . 

N O S  stands for Action Process Object Scherna. In the version of APOS used by 

the RUMEC group there are four stages: actions are formed by manipulating previously 



consûucted objects (mental or physical), pmessess are fomed by interioriring actions, 

pracesses are encapsulated to fom an object understanding, and finally actions, processes 

and objects can be orgunized into schemas. In addition, objects can be de-encapsdated 

back to the processes h m  which they were formed. (Schema can be fhematùed into 

objects.) In our work we have concentrateci on the fht three stages, in effect, actions, 

processes and objects, because we regarded the process of identifymg schemas to be tw 

complex for this stage of our research. 

For in exarnple of APOS framework, again using functions, a student who is 

unable to even think about functions unless they are given a specific function to calculate 

at a specific point has an action understanding. If the student is able to think about 

functions as having a domain and range they have begun to acquire a process 

understanding. If the student l e m  to think about whole classes of fûnctions, such as 

continuous functions, then they have encapsulated their process understanding to an 

object understanding. 

It is not hard to see that encapsulation and reification are closely related. This has 

been noted by Sfard and Linchevski, [44]. Reification and encapsulation both descnbe 

the leaming process of coming to understand aprocess as an object. Nevertheless, we do 

need to exercise caution when comparing reification and encapsulation: although, the 

idea of an object understanding of a concept is similar in both frameworks, what we mean 

byprocess is different in the reification format and the APOS format. In the APOS 

fiamework process is intended action, in effect action that has been interiorized. Since 

there is no concept of action in reification, pmess in reification includes the APOS 
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notion of action. Thus, the set of mathematical activities that we would identifjr as 

process within an APOS format is a subset of the set of activities that we would identify 

as pmess in the reification format. 

In chapter 4 we bave used the Sfard-Lhchevski-Kieran reification format as the 

basis for our analysis of what indicators of understanding we expected to see in the data. 

We have use the Sfard-Linchevski-Kieran format as opposed to APOS in chapter 4, 

because we believe that distinguishing between action and process understanding in 

NOS is largely dependent on the individual: we must careîülly scrutinize the thoughts 

of the student to detemiine if the activity is intended (process) or being performed 

routinely (action). in our analyses in chapter 6, however, where we used data indicating 

student thoughts, we have used the APOS format when there was enough data to warrant 

attempting to identiQ the intenorization of actions into processes. 

To summarize, we regard reification and encapsulation as essentially the sarne 

thing. We have used the Sfard-Linchevski-Kieran reification format to analyze what is 

meant by understanding in chapter 4 and chapter 6, but we have sometimes used NOS in 

chapter 6 when identification of the process of interiorization was possible. 

2.1.3 Model of Mathematical Knowledge 

To complete our background model for this research project we needed a model of 

mathexnatical imowledge. We have attempted to use the feminist point of view collected 

into a model by Burton [48] (sec also Hanna, [49]). Burton drew heavily h m  the work 



of feminist scholars working in the a m  of philosophy of science. Five aspects of 

mathematics knowledge were identified by Burton: 

1. Its person and culturaYsocia1 relatedness. 
2. The aesthetics of mathematical thinking it invokes. 
3. Its nurturllig of intuition and insight. 
4. Its recognition and celebration of different approaches particularly in styles of 

thinking. 
5. The globality of its applications. 

The challenge of applying Burton's model was substantial, and we were not too 

successful. Our main attempt consisied of asking ethonographic questions, not to learn 

the demographics of the shidents we interviewed, but because according to the Burton 

model ethonographic information is an essential part of understanding and assessing the 

mathematical knowledge of the students we interview @oint 1 above). Unfortunately, we 

had no guidelines about how to use the information collected or even what questions to 

ask. Since we did not solve this problem, we chose to omit the ethnographie data h m  

this thesis. 

On the other hancl, during interviews we tried very hard to be sensitive to and 

encouraging of different approaches to solving the problems we posed @oint 4 above). 

Having discussed the model of mathematical howledge that we attempted to use 

in this study, we next consider what we expected the rcsults to be. 

2.2 Expectations before Entering the Study 

In this section we wiil summarize what we expected the resuits of this study to be, 

prior to the shidy. As already mentioned, we expected the classes to be o r g e c d  as 

lectures with an informal atmosphere. We anticipated that by third year University, most 

39 



students would be convinced that a proof is the only way to know that a theorem is 

correct. We expected that few if any of the studenis would have given much thought to 

what it means to know mathematics. We ihought that few if any students would have 

enough awareness of theu own culture to be able to analyze how their culture was 

affecting what they were learning, how they were leaming it, and what they understood to 

be mathematical knowledge. 

Awareness of gender issues has improved in the 1st  few decades (Leder, [SOI), so 

we expccted that a few students might have at least wondned how their gender was 

affecting their experience in the classes studied. We expected to observe practically 

everyone stmggle with the process of reification, at each stage in the course. Finally, we 

had some generai ideas about where students would have difficulties, but we had no 

detailed picture of the problems students would have. 

Since a central focus of this research has been to ascertain what sort of mental 

images students have of the subject ma, we expected a fair arnount of diversity in 

understanding and problem solving approach. 

2 3  Summary 

In this chapter we have descibd the thearetical framework that we used for this 

study. We discussed the teaching model that we expected ta find used in the classes 

studieâ, a learning modeI, and a model of mathematical knowledge. In addition, we have 

listed what we expected some of the resuiis of this study to be, before we began the study. 



Literature Review 

3.1 Research in Mathematics Education on Cornplex Analysis 

We have reviewed what research nsults have b m  published in the area of 

teaching d 1 e . g  complex analysis. We have found none k t  were explicitly related 

ta our study. CARL and ERIC searches, as weU as searches of the SFU library's 

connection to British data bases, nimed up no results. Keyword searches did tura up 15- 

20 p a p a ,  but they al1 were concerned 14th difficult statistical problems in educational 

research. 

We have found a few refemces on the subject of complex numbers. Tirosh and 

Almog [5 11 studied 78 high school students in Israel. The students had 8 lessons (the 

length of the lessons is not specified in this paper) on complex numbers, including an 

explanation of why the usual ordering c on the real numbers does not hold for the 

complex numbers. 94% of the students passed a çummation examination on complex 

numbers at the end of the 8 lessons. 

Thsh and Aimog found that the students they studied had a very difficult tirne 

understanding that complex numbers were numbers (many students insisted that a 

aumber has to teptesent a quantity). In addition, they had great difficuity understanding 

that the usuai ordering relation on the real numbers does not hotd for the complex 

numbers. For example, in a pst-test administcted by Tirosh and Almog 95% of the 

students agreed that i < 4 + i. Students explained that when a positive number is added to 



a number it makes the n m k  hrgcr, so i < 4 + i. 

Wc have not pursued research reports on high schwl students actively, since we 

have assumed (with reasanable justification we believe, based on our data) that third year 

University students have a differtnt set of difficulties when leaming complex analysis. 

For example, wen though we did not specifically study the question of whether or not the 

complex numbers are numbers, wc found no evidence during interviews or tutoring 

sessions that the students studied did not recognke complex numbers as numbers. 

The students in our study did have problems understanding that the ordering 

relation, c, does not extend to the complex numbers, but most of the difficulties we found 

had to do with what it means to extend < (the students we siudied had no instruction on 

ordering at the tirne of the interview). So, dthough there is some superficial similarity 

between the tespanses of high school d e n t s  and the students in our study, carefiil 

scrutiny shows distinctly different problems of understanding. For example, several of 

the students in our study were side iracked by the modulus ordering (discussed in section 

4.2.5.4) and almost all the students in our study rejecttd any order on the wmplex 

numbers that extends < once bey understaad what it meam to extend the ordering. 

Thus, d l  that we were able to do is to mode1 this study after sunilar stuclies in 

other areas of university level mathematics. We were primarily interested in tesearch 

methodology and firameworks for analyzing the data, when we reviewed other research 

reports- 



3.2 Related Reseatch 

Some projects h m  which we have used ideas for this mearch are Zazkis [52j, 

Dubinsky, Dautermanu, Leron, and Zazkis [53], Williams [54], White and Mitchelmore 

[SI,  Thompson [56], Confkey and Smith [57], Breidenbach, Dubinsky, Hawks, and 

Nichois 1471, Zazkis and Campbell (581, and Zazkis and Dubinsky [59]. We have also 

used some general ideas h m  Schoedeld [60] and Ta11 [dl]. Finally, we have used Hillel 

and Sierpinska [62,63] to help us understand the contrast between complex numbers and 

linear algebra in R2, in effcct, deepening ow understanding of representations in complex 

analysis. 

ZazlUs [52] studied the mathematical behaviour of college shidents faced with the 

challenge of finding the inverse of a compound element. A compound element is, for 

example, a product of two invertible objects. Thus, if A and B are invertibit, then 

(ABXI = Bm'K'. Zazkis posed the questions in a Logo environment. We used this study 

as one of our models for our methodology, since we planried to use clinical interviews. 

We have also used this papa as a mcxiel of reporting and analyzhg our reults. 

Dubinsky, et al, [53] reports on student knowledge of group theory. The subjects 

in this snidy were 24 hi& school teachers takuig a summer f t h h e r  course in abstract 

algebra We usad this papa to get idcas hr the fomat of interview questions, and get a 

sense of what difficulty of questions yields useful d t s .  The analysis in this paper was 

aiso insEnictive for us, as a mode1 of how to take data and identify process thinking, 

object thinking, etc. 



Williams [54] identified vanous models of limit held by college students (the 

exact level is not specified in this paper) at a large American university. The Williams 

study had two phases: a short Witten questio~aire given to 341 students, and second 

stage detailed study of 10 students select& h m  the h t  stage. We have used various 

adaptations of the questionnaire used by Williams. The format consists of three parts. 

Part A consists of six trudfaise statements, part B asks subjects to decide which of the 

statements in part A is most accurate, and part C asks students to describe in theù own 

words the concept being studied in part A. We explored subjects' understanding of seven 

topics using the question fonnat used by Williams (see appendix 4 for the exact 

questions). 

White and Mitchelmore [55] studieâ changes in student ski11 level in doing related 

rate problems before and &er 24 hours of concept based instruction in caiculus. We did 

not ask any questions about related rates in our study, but we useà this study to get a 

sense of how complicated questions could be and still yield interesting data. For 

example, one question subjects were asked to answer in the White and Mitchelmore study 

involved a vehicle attempting to get h m  point A to point C by travershg a stretch of 

open country followed by a stretch of highway: the road is longer, but faster, so some 

combination of terrain is the fastest route. Findhg the fastest mute is the objective of the 

problem. This was evidently a difficult problem (only 4 attempts out of 40 were 

successful), but the resuits reveded the limitations of the instruction given to prepare the 

subjecîs. 

The White and Mitchelmon study also gave us a perspective of what range of 
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difficulty was usefid: this study had a specific goal of comparing subjects' ski11 level on 

four different versions of each of four questions. The versions consisted of a word 

problem with differing amounts of translation into symbols done for the subjects in the 

study. We followd this example in our study, asking both very open questions of 

discovery, such as "Why are p les  isolated?" to basic manipulation questions, such as 

"Find the real part of 4 + i". 

Thompson [56], studied the understanding that 19 senior and graduate 

mathematics students (most were in teaching programs) had with the fundamental 

theorem of calculus, Thompson found that limited understanding of rate of change and 

function covariance was the main difficulty students had understanding the fundamental 

theorem. This is a very detailed paper, requiring an intense effort to absorb: we used 

this papa as justification for attacking difficuit concepts (of which there are many in 

complex analysis). That is, Thompson [56] is a paper that reports on research done with 

mature subjects on a complicated aspect of understanding an important theorern of 

calculus. Thus, our attempt to study equally complicated pmblems was justified by 

previous research. In addition, Thompson [56] has several interview exccrpts which we 

studied as part of ou .  effort to lem how to do qualitative interviews. 

Confiey and Smith [57] is primarily about rates of change. They argue that rates 

of change is a more natural approach to the hct ion concept than the set correspondence 

notion of a hc t ion  that is usually given to calculus students. However, Co&y and 

Smith dso comment on a number of implications of radical consûuctivism that they 

beiieve have not been properly incorporated into m y  research efforts. They beiieve that 
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in many cases student concepts are actually correct or ai least intenially consistent, even 

though they are different h m  the usual formulation of the concept under consideration. 

For exarnple, they cite the example of the tenn "constant": some students may think of a 

"constant function" as a function with a constant rate of change. 

Since radical consüuctivists recognize that individuals constnict their knowledge, 

Confiey and Smith believe that we should be exploring the nature of student conceptions. 

They argue that we should assume these conceptions are correct (if perhaps unusual), 

d e r  than investigating them in tenns of how they are mistaken, or in tenns of how to 

help students avoid 'înisconceptions". Furthemore, they disagree that irnproved 

teaching necessarily means that more students will develop the established mental images 

of the concept under consideration. 

We have tried very hard in out study to give the subjects what Confrey cails 

''voice" and to be aware of the context of the interview, what Coniiey calls 'berspective". 

Perspective is primarily al1 of the knowledge and expectation that the researcher brings 

to the intexview. Uiiforhmately, wc were not able to use Conkey's interview h e w o r k  

as much we would have liked, because we found that most of our subjects were very 

concemed with developing an established understanding of the material covered in class. 

Breidembach, Dubinsky, Hawks, and Nichols [47] reports on research doue to 

study how students dwelop a process notion of fûnctions in a leaming environment that 

includes cornputers with the programming language, ISETL. This papa was our 

Uiûoduction to the idea of cncapsulation. We also used this papes to get a sense of what 

kinds of questions to ask in interviews, since the= are s e v d  interview excerpts included 
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in this paper. 

Zazkis and Campbell [58] is a study of the understanding held by preservice 

teachers of the divisibility and rnuhiplicative structure of the natural numbers. We 

closely followed the data collection procedures describeci in this paper. Furthemore, the 

many interview excerpts included in this paper, gave us additionai insight into how to 

conduct our interviews. 

In addition, Zazkis and Campbell [5&] was very useful to us because the APOS 

h e w o r k  (explained in section 2.1.2.5) was used to begin construction of a cornplete 

genetic decomposition of their participants' understanding of divisibility and the 

multiplicative structure of the natural numbers. We found it very helpful to us to see how 

to look at the data and extract evidence of action, process, or object understandings of 

divisibility. 

Zazkis and Dubinsky (591 is prhcipally a discussion of research done on subjects 

fiom an abstract algebra class. This paper is specifically focused on the problern students 

had interpreting successive permutations of the dihedral gmup, however, other examples 

of the same problem of interpretation are also discussed. We used this papa for its 

examples of interviewhg technique (interview excerpts), and as an example of how to 

anaiyze our data. 

Schoenfeld [60] is an extensive article on problem solving. We were particularly 

impressed by the the-ihe graphs for pmblem solvers of various skill levels. We used 

these diagrams in a general way to help us estimate how mathematicaîiy sophisticated the 

students were that we intcrviewcd. For examples of two of these diagrarns see figure 3.1. 
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The ciifference in time use between an expert and an experienced problem solver is 

remarkable. Although we did not record time use measurements we attempteà to notice 

how much time (relatively) students spent on the problem salving activities listed in 

figure 3.1. 

a) hexperienced Pmblem Solver 
Activity 

5 1 O 15 20 
Elapsed time in minutes 

b) Expert Problem Solver 
Activib 

Elapsed time in minutes 

Figure 3.1 
Time use diagrams for a) a student problem solver and 

b) an expert problem solver working on a difficult problem. 
Adapted h m  Schoenfeld [60]. 

Ta11 [61] is a review of recent research (mostly as reported in American joumals, 

up to 1991) on functions, limits, M t y  and proof. We used this papa to get some idea 



of what sort of responses we could expect h m  students if we asked them questions about 

these topics. For exarnple, Tall confirms (citing several other authors) the work of 

Williams [54] that many student difficulties with the concept of limit stem h m  the 

conflict behveen everyday usage of the word limit and the technical meaning of limit in 

mathernatics. He argues that the definition of a limit, while precise mathcmatically, is not 

a good cognitive rmt: the defiaition of a lirnit is not built on concepts that students are 

familiar with and which they can readily extendcd to further mathematical development. 

When intewiewing students we lookeâ for signs of what might be a good cognitive root 

for the student on questions of limit, continuity, analyticity , et cetera, in effect, on al1 the 

questions modeled afier the Williams questiomarie (see above or see appendix 4). 

At the conclusion of our research we found it very usefiil to contrast work in 

linear algebra on the representations of a linear operator with respect to different bases 

with our work on representations of complex numbers. Hillel and Sierpinska [62,63] 

studied the problem of representation of a linear mapping expressed as a matrix, L:Rn + 

Rm . In general, vectors are expressed in tenns of two àifferent bases, e and f (the basis 

vectors are of course, expressed in tenns of the standard bases for Rn and Rm , 

respectively). Hillel and Sierpinska analyzed student reçponses to questions that involve 

calculating the value of a linear rnapping acting on basis vectors as well as more general 

vectors. The snidents worked under several sets of circumstances. They found that 

although practically al1 students conectiy reaiized that L(eJ involved the i"' column of the 

matrix for L, many forgot that they n d e d  to express their answcr in terms of the basis 
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for Rn. So L(ei), = CL ,c where L(e& is the ka component of the vector L(eJ, Lji is 

the element in the j" mw and i' column in the matrix of L, and fi is thc k"' component of 

the j' bais vector for Rm. More specificaily, one cannot just readsff the answer as the 

i' column of L. A central aspect of this type of problem, identified by Hiiiel and 

Sierpinska is the confiision students experience between the images of the basis vectors 

and the representations of these images in the basisf: 

In contras$ the representations of complex numbers that we have studied (the 

representations are studied in great detail in chapter 4, section 4.2) are essentially 

representations of the addition and multiplication operations (we realized this after 

studying Hillel and Sierpinska's paper). Although the polar form can be seen as a 

coordinate transformation of the Cartesian form, because different variables are used, 

coordinate changes when needed are apparent: we observed no confusion arnongst 

students about which "coordinate*' system they were using. Furthemore, it is practically 

never usefitl (at least in a beginning course) to make a change of coordinates within a 

given representation. For example, we almost never consider a transformations such as 

2x + iy u=- x - 2iy , Y=- , because this sort of cwrdinate system makes it M e r  to tind 
2 2 

the reai and imaginary parts of a complex number such as (1,2) in the (u, v)  system. 

(The one major exception to this is complex conjugate coordinates, which are very useful. 

However, complex conjugate coordinates are a coordinate system in the tangent space of 

each point in the complex plane, so this is quite a different situatioa) 



The similarity between complex number repnsentations and linear algebra is with 

bilinear fonns, since the multiplication and addition operations for the complex numbers 

are bilinear fonns. This is a difficult subject that we will not discuss further. 

3 3  Conclusion 

We have not found any reports in the mathematics education literature on 

complex analysis, with the exception of a few papers on complex numbers. Accordingly, 

we modeled our research after research &ne in o h  areas of university level 

mathematics, such as algebra and calculus. 



Chapter 4 

History and Epistemology of the Complex Numbers 

4.1 Introduction 

In this chapter we examine the historical development of complcx numbers, with 

particular attention focused on the development of the various representations. We have 

organized this chapter into a section on epistemology and a section on history, since we 

wish to emphasize the t h e  sequence of the historical development. This organization 

makes sense because we will see that, historically, there were really only hvo major 

conceptual obstacles in the development of complex numbers: that they made any sense 

at al1 (they were "impossible" or "imaginary") and the search for a geometric 

interpretation. Evidently, as early as the 17" cmhuy, al1 the major mathematicians had 

no difficulty perforrning calculations with complex numbers, using whatever techniques 

were available to them. in other words, questions such as, what is the meaning of eit were 

not seriously debated (at least, as far as we can tell h m  the record of the history of 

mathematics). 

Nevertheless, we have included a section on the epistemotogy of complex 

numbers for completeness, and because, irrespective of wheher or not research 

mathernaticians had any. dficulty understanding the basic form and meaning of complex 

nurnbcrs, students at third year level certainly do have difficulty with these concepts. 

In our discussion of the epistemology of complex numbers we have included both 

a modem treatment of the mechanics of each of the four representations discussed, as 

well some general comments on what is meant by understanding these concepts. Our 
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analysis of what understanding means is resûicted to a discussion of what reification 

lwks like in the present context. (Reification is discussed in chapter 2.) 

4.2 Epistemology of the Complex Numbers and their Representatioas 

in this section we discuss the meaning of the various representations of complex 

numbers. We bave included discussions of the algebraic extension fom, z = x + iy; the 

vector forni, z = (x, y), the polar fom, z = @, and the symbolic fom, in which complex 

numbers are simply represented by z. in addition, we include discussions of some 

general questions such as ordering, direction and the modulus, which are relevant to al1 

the representations under consideration. 

4.2.1 The Algebraic Extension Representation: z = x + iy 

In this section we discuss the algebraic extension representation of complex 

numbers. We have divided this section into four parts: basics, meaning and difficulties, 

understanding, and a summary of this section. In the subsection on basics we discuss 

how the algebraic extension representation works and the context of this representation 

with respect to the real numbers. The subsection on meaning addresses questions such 

as, "Mat does the + sign mean in z = x + iy?" . 
In the subsection on understanding we have attempted to identify indicators of 

reification (recall that reification is the primary aspect of understanding that we are 

studying in this thesis). This section is necessarily speculative since the actuai evidence 

ofreification, if any, is in the data collected. Thus, an anaiysis of the data which suggestg 

nification has taken place, is containeci in Chapter 6. 



4.2.1.1 The Algebraic Extension Representation - Basics 

The aigebraic extension representation of comptex numbers emphasizes the fact 

that the complex numbers are an dgebraic field extension of the real field. The notation 

is bomwed h m  the development of the field of algebraic numbers as an extension of 

the rationais. Thus. Q(&) consist of al1 of the numbers needed to malce the set 

Q u (Ji} a field. These numbers cm be apressed in the fom a + b fi, where addition 

and multiplication indicated in this expression are defined in ternis of addition and 

multiplication of the rationals in such a way that al1 of the usual field laws hold. In 

particular, the distributive law is retained: (a + b f i  )( c + d 6) = 

ac+~bd+(ad+bc ) f i .  

Of course, to understand what it means to multiply a rational number tima fi 
we need to invoke one of the developments of the real numbers, such as Dedekind cuts: 

f i  is defined as îhe set of rational numbm l a s  than f i ,  and if b is a positive rational 

numbrr, b is the set of al1 rationai numbers formed by multiplying elemmts of fi by 

b. If b 5 O, multiplication is more complicated, see Rudii [64] for details. 

To see that each nonzero number of the fom a + b f i  has an inverse, we can fhd 

an explkit formula: the inverse of a + b f i  is a - bJ2 . Note that for a and b cational, 
a2 -2b2 

the denominator of this expression cannot be zero ( a and b cannot both be zero if a + 

b JZ is noozno). nius, Q( fi  ) is a field. 

Further construction of the real number field (icluding the transcendental 

numbers) would take us too far away h m  out main topic, so interested readers sbould 
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consult a text on real analysis, such as, Rudin [64) . In any case, given the real numbers 

we can construct the complex numbers as an dgebraic field extension of the real 

numbers, in the sense that i is not a real number, but is the root of the polynomial x2 + 1. 

We proceed just as in the case of algebraic extensions of the rationals: every 

complex number is represented as a number of the form a + ib, where a and b are real 

numbers. The multiplication and addition in this expression are extensions of the usual 

reai number operations, defined in such a way as to preserve the usual field laws of the 

real numbers: 

(a + ib)(c + id) = (ac - bd) +i(ad + bc) . 

4.2.1.2 The Algebraic Extension Representation - Meaning 

We can give a geometric representation of complex addition and multiplication 

(discussed below), but the existence of plausible (and usefiil) geometric representations 

does not change the fact that complex addition and multiplication are far removed fiom 

the basic interpretations that we have for addition and multiplication when working with 

whole numbers. Thus, we cannot expect to have the same sort of picture of an expression 

such as, ib that we have for 3 thes 2. There is nothing new in this situation, since e 

times x also has no easy interpretation. The point is that we mut  abandon the 

expectation of having clear interpretations of complex addition and multiplication, at 

least in the sense of having interpretations that relate directly to everyday life in the way 

that addition and multiplication of whole numbers do ( for example, 3 times 2 is the total 

number of apples in 3 bags that contain 2 apples each). Ncveriheless, abandonment of 

this sort of everyday intetpretation of multiplication by i did not corne easily for the 

mathematics community, and the whole question of the meaning of i and 
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multiplication by i is a large part of the discussion in section 4.3, below. 

Nonetheless, this is not to Say that we can assign no meaning to an expression 

such as bi. The rneaning is simply abstract, in effect, bi means b nits of i. This says 

very little about bi, but it is the relationship between bi and other numbers that gives the 

reai meaning (recall h m  sections 2.1.2.3 and 2.1.2.4 that relationships were a key part of 

knowing). For example, ib x ib = -b2 , so that ib is a square mot of -b2 . The main 

conceptual difficulty in this statement is overcoming the belief that negative numbers do 

not have square mts. Of course, this belief is only true for the real numbers, so the 

difficulty can be expressed as the problem of fully accepting or understanding that we are 

working in a larger system of numbers than the real numbers. 

The advantages of the algebraic form are the ease in performing basic calculations 

(especiaily addition), the ease in learning about cornplex numbers, and the clear emphasis 

of the relationship between the reals and the complex numbers, in the sense that complex 

number cornputations are done in terms of the usuai real number operations. In addition, 

the algebraic fom is generally the best fom to use for solving basic algebraic problems, 

such as factoring a polynomial, or hding mots of a specific polynomial (an exception 

occurs in the case of mots of unity [z" = 11 for which the polar form is very efficient). 

For example, to solve the polynomial equation z2 + c,z + c2 = O, ci and cz complex 

numbers, we would have to use the quadratic formula, which, in general, wiil give us an 

answer that is a complex number in the algebraic form. 



There is a pedagogical aspect of the algebraic form that was prcsent in ail the 

classes studied and the textbooks uscd for these classes: the algebraic fom was 

combined with the geometric intcrprctation of the cornplex nwnbers in a plane and 

sometimes used as a vector form. Aithough it was not stated explicitly, implicitly 1 was 

someîimes used as though it was the unit vector 1 in 'R* and i used for the unit vator j. 

This is not much of a pmblem at a beginning level, but at a more advanced level can lead 

to problems understanding thai the representation of the cumplex numbers as a plane has 

limitations. We will return to the question of treating the algebraic fonn as a vector form 

in much more detail later (in Cham 6). 

4.2.1.3 The Algebraic Extension Representation - Undemtanding 

In this section we attempt to anticipate what the resdts of our research will be by 

analyzing some of the possible steps in the reification process for the algebraic extension 

representation. In 0 t h  words, we wish to identify indications of procas and object 

understandings of this representation that we think we will see in the responses that 

students give to our questions. In addition, we would like to answer the question, "What 

indicators show that shifting h m  one understanding to the other (reification) is 

occming?" As we mentioned in section 2.1.2.5, in chapter 4 we have resûicted our 

discussion to Sfatd-Linchevski-Kieran model of reification (discussed in section 2.1.2.5) 

since we believe that distinguisbg between action and process understandings in the 

APûS model requires a careful analysis of the data. 



Certainly, indicators of a pmess understanding would be the ability to do calculations 

(particularly, without skipping steps), recognition that x and y are reai in the expression 2 

= x + iy, and recognition that the multiplication d e ,  

(a + ib)(c + id) = (ac - bd) + (ad + bd)i , in this representation is just the usual real number 

distributive law, with the additional feature that i2 = -1. 

The problem of identifjmg indicators of an object understanding is more difficult. 

Certainly the ability to shift h m  the algebraic representation to any of the other 

representations would be one indication, but are there indications within the algebraic 

extension representation? In other words, can we find clear indications of an object 

understanding if we ask questions that only involve the algebraic extension representation 

for their solution? We think the answer is no, since having an object understanding of a 

concept partly means having the ability to consider the concept amongst other similar 

concepts as objects. Thus, to show an object understandiing of the algebraic extension 

representation necessarily means showing the ability to think about this representation 

within the context of other representations of complex nurnbers, or possibly in the context 

of other field extension (algebraic or othenvise) of the real numbers. Since the latter 

possibility was not investigated in this study, we are left with "thinks about the algebraic 

representation within the context of other representations of complex numbers" as our 

main p u p  of indicators of an objcct understanding (by "hhk'' we mean builds mentai 

images and relationships in the sense discussed in chapter 2). This is a group of 

indicators, since we expect to find student thinking about the different representations in 

a wide variety of ways. For exarnple, we expect to see rnost students show fiuency with 

the algebraic extension representation, good ski11 with the polar represcntation, and 



various levels of judgment of whm to shiil betwm two rcpresentations. Another 

possibility is that a student thinks geomeûically, so that they show very little process ski11 

with the algebraic extension representation but use the polar and symbolic representations 

fluently. Thus, we should expect to see a variety of combiations of representations used 

by students who have an object understanding of two or more representations. 

Since some of the students interviewai may not achieve a full object 

understanding of the algebraic extension representation it is worth considering whether 

there is some way to think of the algebraic extension representation as a collection of 

objects that might be individually understood as abjects. We think the answer is yes to 

some extent. The algebraic extension rqmentation is composai of objects such as the 

real nurnbers, i, the operations of complex multiplication and addition, and various 

algorithms, such as the algonthms for division or caiculating inverses. Thus, a student 

might be able to understand any of these objects, as objects, without dernonstrating more 

than a process understanding of the whole representation. 

In addition, to the various indicators of either a process or object understanding 

we also expect to see indications of reification occumng. For exarnple, we believe that a 

student who can strearnline the algorithms, for example, for calculating the inverse of 

z = x + iy, is showing signs of reification, because streamlining an algorithm shows that 

the student notices they are performing a process that can be made more efficient, so they 

are thinking of the whole process, which means they have begun to acquire an object 

understanding of the procas. Thus, a d e n t  who streamlines an algorithm understands 

that they are using an algorithm, and that like other algorithms they may know, it can be 

modified if necessary. This is clearly showhg an object understanding of the algorithm. 



To summarize, using the Sfard-Linchevski-Kieren model, we expect that a 

procas undastanding of the algebraic extension tepte~~ntation is indicated by 

preoccupation with the details of basic calculations. An object understanding of the 

algebraic extension representation is indicated by fluency with computational details 

combined with st lest some judgment of when to shiA h m  the algebraic extension 

representation to some other representation, Of course, these are generai considerations, 

and whether or nat any particular student has a pmess or object understanding requires 

close study. 

4.2.1.4 The Algebraic Extension Representation - Summary 

In summary, the algebraic fonn z = x + iy emphasizes the complex nurnbers as an 

algebraic field extension of the real numbers. The advantages of this representation are 

that it is relatively easy to leam and apply (since it does not require much preparation 

0 t h  han aigebtà). The main disadvantage of the algebraic form is that the very 

simplicity makes complicated calculations, involving large exponents, very tedious. In 

addition, the multivalueness of the complex numbers is not easily repfesented in the 

algebraic representation, so that 6nding mots is not easy. 

The main conceptual ciifficuldes with the algebraic form is understanding what ib 

means and understanding that the new complex operations of + and x have been deîined 

in tems of the + and x operations for real numbers in a way that retains ali the usual 

d e s .  Tbe surprising ease with which we can extend the umal niles for real numbers 

sometimes masks the fâct that we are working in a new system of numôers, and same 

mors can be traced to thinking in rcal number terms as opposed tci thinkjng in cornplex 

aumber terms. 
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Finally, we expect to identify a process understanding of the algebraic extension 

reptesentation as preoccupation with the details of computations, wheteas an object 

understanding will reveal a fluency with computations and an awarenesa of when to siiift 

to anather representation. We have a h  identified some indications of reification. 

4.2.2 The Cartesian Vector Representation: z = (x, y) 

We now turn OUT attention to the Cariesian vector fonn. We bave bmken the 

discussion into the same four parts that we used in section 4.2.1 : basics, meaning, 

understanding and a sununary. 

4.2.2.1 The Cartesian Vector Representation - Basics 

In the Cartesian vector representation the complex numbers are treated as a vector 

space of vators in fi2 over 91. Vector addition is dehed as follows: Givm z = (x, y) 

and w = (u, v), with x , y, y and v al1 real, then z + w = (x + u, y + v). The addition 

inside the parentheses is the usud red number addition. Scalar multiplication is defined 

by r(x, y) = (rx, ry). In this equation, the multiplication inside the parentheses is the usual 

real number multiplication. Thus far we have only 912 treated as a vector space over 8. 

To get the complex numbers we need to introduce a vector product, definecl as 

follows (with the above definitions for z and w): zw = (x, y)(u, v) = (xu - yv, xv + yu), 

where the addition and multiplication operations inside the parentheses are the usual r d  

number opemtions. Then it is possible to show that the vectur product, together with 

vector addition defined above forms a field stmcture on 9'. For example, the 

multiplicative identity element in this field is (1, O), since 

(1, OXx, y) = (lx - Oy, Ox + ly)= (x, y). The inverse of any element (x, y), not equal to 



zero is [ 1 .  Note (bat for real x r d  y, with (x, y) r (O, O) the 
x2 +yZ 'xZ c y Z  

denominator in this expression cannot be zero. 

We can also see that there is an element in this field with the property that 

z2 = (-1, O), name1y (O, 1): (O, l)(O, 1) = (0x0 - IX 1, OX 1 + 0x1) = (-1, O). The 

significance of this fact becomes clear when we understand that the real numbers are 

represented by the set of numbers of the fom (a, O), so that if z2 = (-1, O), then z is the 

square root of -1. That the real numbers are represented by numbers of the form (a, 0) 

follows readily fiom the observations that (a, O) + (b, O) = (a + b, 0) and 

(a, O)@, O) = (ab - 0,O) = (ab, O), so that the mapping fiom % into the complex numbers 

given by a + (a, O) is a field isomorphism. 

Since the Cartesian vector form is somewhat more abstract than the algebraic 

extension fom it is important to note that the two forms are isomorphic by way of the 

mapping (x, y) + x + iy. For example, under this mapping, 

(x, y)(u, v) = (XU - yv, xv + yu) 3 xu - yv + (xv + yu)i = (x + iyMu + iv), so the 

multiplication operation is preserved. A similar calculation shows that the addition 

operation is preserved (clearly (x, y) 4 x + iy is one to one and onto). 

It is very important to recognize that the aigebraic structure of the complex 

numbers is built into the vector form z = (x, y) (by way of the vector product). Thus, the 

real number y and (0, y) are not the same thing (unlas y = O), since (O, y) includes the 

impiied structure of the complex numbers, whereas, the real number y bas no such 

implied conventions attacheci to it. 



In fact, the real number y is repmsented as (y, O) in the vector form, and (y, O) is 

definitely not equal to (O, y), unless y = 0. 

4.2.2.2 The Cartesian Vector Representation - Meaning 

As in the case of the algebraic extension fonn, there is a geometric interpretation 

of the Cariesian vector form available. For reasons that will be discussed in section 4.3, 

ibding a geometric interpretation of the complex numbers was deemed to be an 

important pmblexn by many mathematicians of the 17' , 1 8' , and 1 9Ih centuries, but the 

Cartesian vector fom was introduced (by Hamilton) specifically to avoid geometry. This 

point will be discussed m e r  in section 4.3. 

Nevertheless, as already noted above, the existence of geometric or algebraic 

representations of the complex numbers, while helpfiil, does not by itself give meaning to 

the Cartesian fonn. As was the case for the algebraic extension form, we can also build 

understanding h m  the relationships between the various objects in the vector space we 

are using to represent the complex numbers. For example, to understand complex 

multiplication using the Cartesian vector representation we need to study the vector 

product, (x, y)(u, v), asking such questions as: is lzwl= lzllwl? , how does the angle 

between z and w affect zw? , does zw = wz? , is f(z, w) = zw continuous? , and is 

f(z, w) = zw bilinear? . These are the kinds of questions one would ask if studying a 

vector space. 

However, in out study of the Cartesian vector fonn we asked questions at a more 

basic level: in particular, we focused on the fact that the symbol i does not appear in the 

vector form. We also asked students questions about the fact that the scalars in the 

Cartesian representation are reai numbers, and that the square mot of -1 is represented 
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by (O, l), so we do not use i in this representation. 

in any case, to pmperly study the complex numbers as a vector space of 3 over 

%, we need to study vector spaces, linear transformations, and the techniques of linear 

algebra for understanding vector spaces. A f i l  discussion of these topics would take us 

t w  far afield. 

The main advantage of the Cartesian vector fonn is that the complex numbers are 

described as a vector space. Tbis enablcs us to use al1 the twls of linear algebra to 

understand the complex numbers. The emphasis in this representation is on the complex 

numbers as a formal system. Unfortunately, at third year level most students are not 

mathematically sophisticated enough to appreciate how to use the techniques of linear 

algebra to help them understand complex numbers. 

Thus, the fonnal nature of the Cartesian representation is also its main 

disadvantage. For example, to multiply nv = (x, y)@, v) one has to know the 

multiplication rule, but to multiply (x + iy)(u + iv), we can use the niles for real numbers, 

together with i2 = -1 . In the latter case, one can think of the + in x + iy as ordinary 

addition, without serious consequemes. Hence, (x + iy)(u + iv) looks very similar to 

(a + b)(c + d), for real numbers a, b, c, d, so that the algebraic representation is easily 

related to previous knowledge. 

4.2.2.3 The Cartesian Vector Representation - Understanding 

As was the case in section 4.2.1.3. we will discuss understanding within a narrow 

h e w o r k  of reification. Aside h m  the general indicators of aprocess understanding 

identifiai in section 4.2.1.3 (in effect, preoccupation with computational difficulties), the 

Cartesian vector representation has an additional ptocess level difliculty: namely, 
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the formalisrn of the ordered pair notation. Thus, a process understanding is indicated not 

only by computational difficulties, but also by not using the fomuiism correctly, or at 

lest not using the fomalism fluently. 

For example, mistakes indicating that a student was stniggling to obtain a process 

understanding would includes things such as treating (O, y) as though it was r d ,  

translating to the algebraic form incorrectly, or bringing i into the caiculation. A specific 

example of this kind of mistake would be something like this: (3,5)(0,2) = 

2i(3,5) = (6i, loi). Although we could make sense of this expression, in tenns of the 

Cartesian vector fonn (6i, loi) is not correct because there is no symbol i in the Cartesian 

vector fonn. 

We expect the indicators of an object understanding of the Cartesian vector form 

to be essentially the same as the indicators already identified for an object understanding 

of the algebraic extension fom in section 4.2.1.3: fluent computational skill, clear 

understanding of the formalism, and good judgment about when to shift to another 

representation. Of coruse, other indications of an object understanding would include 

consideration of the complex nurnbers as a vector space, and the use of general pmperties 

of vector spaces to make conclusions about the complex nurnbets, but we did not expect 

to see these indicators in a beginning complex analysis class. 

Thus, the only new indicator that we need to look for with the Cartesian vector 

fepresemtation is skill with the formalism. 



4.2.2.4 The Cartesian Vector Represeatatioa - Summary 

in summary, the Cartesian vector representation emphasizes the complex nwnbers 

as a vector space of vectors in 'A' over OL with a vector product dehncd as 

(x, y)(& v) = (xu - yv, xv + yu). The main advantage of this representation is that any 

reference to mots of negative nurnbers is avoided. The complex numbers can be 

understood as a fomal system in this representation. Thus, any conceptual problems that 

studenis have accepting mots of negative numbers can be avoided, at least, in the 

beginning. There is no need to understand il since i is not used in the Cartesian vector 

forrn. 

The fomal approach is also the main disadvantage of the Cartesian vector form 

that is particular to this fom: students may find the formal approach hard to understand 

and think about. In addition, the Cartesian vector form suffers ftom the sarne problems 

as any rectilinear form: complicated products are much easier to do in the polar 

representation, and the multivaluedness of the complex numbers is hard to represent in 

the Cartesian representation. 

The prirnary additional indicator of understanding that we have with the Cartesian 

vector form is the ski11 level with the formalism. In short, does the student understand 

that we do not have i in the Cartesian vector representation. 

43.3 The Polar Representation of Complex Numben: z = reu 

The polar representation is a vector form in polar coordinates. The main 

advantages of the p l a t  fom are ease of calculating products of complex numbers, 

perféct representation of the inherent multivaluedness of the complex numbers, and the 

ease of simple geomeûic applications in polar coordinates. We have divided tbis 
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section into the usual four parts, basics, meaning, understanding and a summary. 

4.2.3.1 The Polar Representation of Complex Numbers - Basics 

In the polar forni, z = nie , r is the modulus 01% Le., for z = (a, b), r = 4 . .  

e is the base of the natural logarithm, defineci as e = lim . The expression eie is 
n e  

defined formally as follows: e' = cos 8 + i sin 8. This expresses eie in terms that we 

already understand, since sin 8 and cos 0 are r d .  in other words, we fonnally d e h e  eie 

in terms of the algebraic extension representation, with x and y expcessed in terms of 

polar coordinates. The modern derivation of this formula, known as Euier's formula, 

cornes h m  the theory of power series in the complex plane. A proper development of 

the theory of complex power series is beyond the scope of this section, but interested 

readers can consult Saff and Snider 1651, or for a more advanced treatment, see Ablfors 

[66] or Nehari [67], In section 4.3 we discuss Euler's formula in more detail. 

At frst sight it might seem more logical to define z = r(cos0 + isinû) to avoid the 

use of complex exponents, which we have not introduced at this stage. Perhaps even 

more consistent would be to use the vector representation in polar coordinates, z = 

r(cos8, sine). This last defuiition would clearly define the polar representation as a 

vector representation in polar coordinates. However, computations are easier in the 

exponential fonndism, than in either of the trîgonomeûic formalisms suggested above, so 

we will follow the development of the polar representation used by al1 of the textbooks 

for the classes shidied Priestfey 1681, Churchiil and Brown [69], and Saif and Snider [65], 

nameiy z = ri*. 



Once we accept the exponential fonnalism, it is important to realize that Euler's 

equation is much more than simply a f o d  expression: we can use the niles of 

exponents in the usual way to simplify calcuiations. For example, we can derive the d e  

for multiplying two complex numbers in the polar repmentation: if z = d and w = veiv 

, then 

m = nreieeiq = rvei(-' . Thus, th nile for multiplying two numbers in the polar 

representation is: add the arguments to get the argument of the product, and the product 

of the moduli is the modulus of the product of the two camplex numbers. This simple 

mle makes multiplication in the polar representation especially convenient. We have 

more to Say about Euler's equation in sections 4.2.3.2 and 4.3. 

Unfortunately, there is no simple nile for adding in the polar representation. The 

only thing that can be done is to convert into Cartesian vector form, add, then convert 

back to the polar fom. Thus, given bat z = reiO and w = veiq , to find z + w, we express 

. zas(rcos0,rsin0)andw=(vcoscp,vsincp),thenz+w=(rcos8+vcoscp,rsin0+ 

v sin 9). This can be converîed to polar form 

rsin d+vsin# 
= arctan . To choose the correct value of the arctan (x) function we 

rcosd+vcos# 

examine the signs of rcos$+vcos~ and rsin9+vsin# . 

The polar form is derived h m  the algebraic form, x + iy, in the sense that i is 

given (as the f i )  and appears explicitly in the polar fom. We a h  have innaitely 

i(1+2&) 
many non-trivial fepresentations of i in the polar form, namely, i = e ,wherekis 



any intcger. At first sight it seems odd (or even incorrect) that we have a npesmtation 

for i that involves i, but we must remanber thaî we can dways refer back to a vector 

representation in polar fom, so that 

4.2.3.2 The Polar Representation of Complex Numbers - Meaning 

The most difficdt part of îhe polar fonn is understanding what we mean by e to 

the power of iû. Of course, it is not necessary to develop a theory of complex exponents 

to understand e* because we are considering a special case: the case of a real base and a 

pure imaginary exponent (the polar angle 0 is aiways real). In this special case, we can 

avoid the difficulties of complex exponents, by defining % in terms of Euler's equation: 

eiO = cos 0 + i sin 0. Then the rules for manipulating exponents can be derived using the 

angle addition and subtraction d e s  for sine and cosine. For example, 

The other important nile for working with exponents, can also be derived using 

the properties of sine aod cosim (e' r = (cos 8 + i sin 0)" = (cos nt9 + isin n 0) = eh' . 

The middle equation, (cos0 + isin û)" = (cosn 8 + isin na) is known as DeMoivre's 

equation and can be pmved using mathematical induction. 

For our purposes we need look no furtber, because we have interpreted the polar 

formalism in ternis that we bave deScTibed in sections 4.2.1 and 4.2.2. Nevertheless, it is 

important to note that the polar representation hrms out to be ihe best representation to 
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use to fornulate the inherent multivaluedness of the complex numbers. This suggests 

that Euler's equation is much deeper than the treatment we have given it. We will cetuni 

to this point in section 4.3. 

4.2.3.3 The Polar Representation of Complex Numbers - 
Understanding 

In this section, as in previous sections (4.2.1.3 and 4.2.2.3)- we wish to identi@ 

indicators ofprocess and object understanding (in the Sfard-Kieren mode1 of reification 

discussed in chapter 2), as well as, indications of reifcation. 

As was the case with the algebraic extension and vector representations, the main 

indicator of a process understanding should be a preoccupation with computational 

details. In this case we have a complication, namely trigonomeûic related difficulties, 

that was not present in the representations previously discussed. Recall that in the 

algebraic extension and Cartesian vector representations, complex multiplication and 

addition were defined in terms of real number multiplication and addition. Since we 

expect students at third year university to be completely fluent with arithmetic ( or 

perhaps use of theu calculator), and reasonably fluent in algebra, any difficulties they 

expeience with the algebraic extension and Cartesian vector representations, at a process 

level of understanding, should be due to the representation and not lack of preparation. 

We mut  be careful with the polar representation however, because mmy students 

even at third year university level may not be conversant in trigonornetry. Trigonometry, 

especially the arctan(x) function is an important part of the polar representation, so a 

student who is poorly prepared in trigonometry is bound to have trouble using the polar 

form. Thus, when looking for indications that a student is "preoccupied with 



computationai" details we shouid be circumspect about difficulties that appear to be 

trigonometric in nature. 

Another important feature of calculations in the polar representation that is not 

particularly evident in the other representations is work with exponents. Even at third 

year level we expect some students to have trouble with exponents. 

Thus, some of the computational difficulties that WC expect to see, other than 

trigonometric and exponent difficulties, are: wing 3 instead of r (it is cornmon for 

studcnts calculate the rnodulus as 2, forgetting io take the square mot) , difficulty finding 

the argument, 0 (at least expressed in terms of trigonometric hctions), chaasing the sign 

of 0 correctly, and attempting to add two numbers directly in the polar representation. 

in short, the difficulty we expect to have analyzing indicators of a process 

understanding is that student work will be confounded by lack of preparedness with 

trigonometry and exponents. Accordingly, our best approach is probably to look for 

indicators of reification and an object understanding kt, and if these are not present, 

decide if the student has at least acquired some aspects of a process understanding. 

Aside h m  the ability to shift h m  one repmtation to another, indications of 

reification and an object understanding of the polar representation are: a clear 

understanding that we cannot add directly with the polar representation, combining the 

polar representation with geometric arguments, atid the ability to work with eie as 

opposed to cos 0 and sin 0. For an example of using the polar representation with a 

geometric argument, consider îhe task of computing il, if z = d: ûne way to auswer 

1 1 e"' 
would be to say z-' = - = - = - . However, we believe considerably more 
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understanding is reveaied by an answer such as, '?O find i' reflect z radially about the 

1 
unit circle, so that the new modulus is - and multiply by the unit conjugate, to get 

r 

1 
z-' = -e-'a ". This is not to say that a student who uses the first rnethod does not have 

r 

an object understanding. The first method simply does not show anything more than a 

process understanding. The second method shows innovation, since k i s  method is not 

normally taught in class, hence a student who used such an argument would be showing 

that they can think about the polar representation in conjunction with geomeîric thinkuig. 

Incidentaily, geometric thinking, although always present as a possible tool, is 

much more prominent in the polar representation than in the algebraic extension or 

Cartesian forms, partly because of the need to use pictures to understand the 

trigonometric relationships, but also because the type of problems that we use the polar 

form to solve cornmonly have a strong geometric component. In other words, the reasbn 

we choose the polar fom to do a problem is because we have noticed some sort of radial 

symmetry that can be exploited using the polar fom. 

In conclusion, we expect aprocess understanding to be indicated, as usual by a 

pmcupation with computational details, but we must be aware that computatiod 

difficulties in the polar representation may be due to inadquate preparation in 

trigonometry andlor exponents. An object undmtanding of the polar representation is 

indicated by the ability to shift representations cffectively and the ability to incorporate 

geometric thinking. Some s i p  that we identified that rescation is taking place are: 

understanding to switch to Cartesian vcctor or algebraic extension form to add and doing 

most calculations with ea. 
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4.23.4 The Polar Representation of Comptes Numbers - Summary 

The polar representaîion of complex numbers, r = eiO, is a vector repmentation in 

polar coordinates. In addition. we use Euler's equation, eiO = (cos 0 + i sin O), asentially 

as a convenient computational aid. We noted that there is no need to develop a general 

theory of complex exponents to undentand e', rince we are using a very special case. 

The niles for calculating praducts and integral powers are deriveci h m  the correspondhg 

rules for sine and cosine. 

As with the 0th- representations sîudied so far, we expect that the primary 

indication of aprocas understanding will be a preoccupation with computational details. 

However, we have noted that we expect this indicator to be confounded, in some cases, 

by difficulties with trigonometry and use of exponents. 

We expect an object understanding to be indicated by fluent use of the polar 

representation, good decisions about when to shift, and possibly incorporation of 

geometric arguments into the solution of problems. 

4.2.4 The Symbolic Representation of Cornplex Numbers 

The symbolic representation of the complex numbers emphasizes the overall 

structure of and general relationships between the complex numbers. In the symbolic 

representation complex numbers are simply represented as z. We have divided this 

section into the same four parts that we divided previous sections: basics, meanings, 

understanding, and a summary. 



4.2.4.1 The Symbolic Representation of Cornplex Numbers - Boisics 

As already mentioned, in the symbolic representation, complex numbers are 

simply denoted by z. Two operations are introduced, namely + and x, which give the 

complex numbers a field structure that has ail the algebraic properiies of the real 

numbers. 

In the symbolic representation we are ailowed to fieely multiply z by any complex 

number in the algebraic extension fom. For example, an expression such as 3 + (1 - i) is 

properly expressed in the symbolic fom. Thus, the symbolic fom is somewhat more 

advanced than the previous foms, since we are taking for granteci that we understand, for 

exampIe, the expression (1 - i), in effat, a number in the algebraic extension f o n .  in 

the symbolic fom the complex conjugate and complex conjugation are used kequently: 

? + z  2 - Z  
k is the reflection of z across the real a is ,  so that Re z = - and Imz =- . 

2 2i 

We can establish various facts in the symbolic representation by using any of the 

otha representations. For example, the modulus of z, denoted by JzJ, is given by 

z' 
Iz( = +G , and t-' = - if z is not zero. Thus, if z = reiO , i = r d e ,  then 

1111 

G= J 9 5 3 5 ' = 8 = r .  

The symbolic fom is especially useful when c o m b i  with geometric thinking. 

For example, to solve the equation lz - il = lz + 11 , we observe that if z is a solution to 

this equation then z is equidistant between i and -1. Thus, Re z = - Im z. . To solve this 

equation using, for example, the aigebraic fom we have to solve the equation: 

x' + (y - 1)' = (x + 1)2 + $ . Tben y = -x is the oniy solution. 



4.2.4.2 The Symbolic Representation of Complex Numbers - Meaning 

The symbolic representation does not require any new explanations of meaning 

since d l  operations cm be understood in terms of one of the other representations. 

However, the full utility of the symbolic representaîion lies in not directly relating z back 

to one of the other representations. In other words, once the basic niles of the 

representation have been established, the symbolic representation is most usehl in those 

situations where we want to express relationships between complex numbers that are 

independent of the properties of the reai sub-fieId. Hence, to be fluent with the symbolic 

representation a student needs to be able to think "z", and only think "z = x + iy" to venfy 

basic results or perhaps to h d  the exact answer to a specific problem. 

Thus, we need to address the question of what it means to think "z", in 

effect, think of complex numbers abstracted h m  the real sub-field. Unfortunately, it is 

difficult to answer this question in tenns of basic concepts that students can reasonably be 

expected to grasp in a beginning course on complex analysis. For example, to think "2' 

we need to have some understanding of the one point compactification topology of the 

extended complex plane, experience with fields, and to have made some progress towards 

separating our thinkîug of complex nubers away h m  just R~. Put another way, 

thinking in ternis of z requires us to begin expanding our picture of the complex numbets 

beyond 'Tt2 with some additional structure such as vector multiplication". Since lhis is 

quite sophisticated we will not discuss the meaning of thinking in te= of z further since 

it is very unlikely that we will actually see much evidence of any symbolic thinking, let 

alone thinking at the level of sophistication &mg describeci here. 

Thus, we will restrict our attention to evidence of aprocess understanding in the 
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next section, since we do not expect to see a full object understanding of the symbolic 

4.2.4.3 The Symbolic Representation of 
Complex Numbers - Understanding 

As already mentioned, we expect that some students may be able to acquire skiil 

manipulating expressions in z. Hence, we might see a process understanding, manifested 

by the use of symbolic niles for simplification, as opposed to using one of the other 

representations for computations. For exarnple, a student who has a solid pmess 

understanding of the symbolic form would recognize that an expression such as H is 

just one, since the numerator and denominator are complex conjugates. Thus, a student 

who simplifies this expression by substituting z = x + iy has not shown a process 

understanding of the syrnbolic form. 

The main tools of symbolic manipulation are the modulus or distance and 

conjugation. Since these concepts are present in the other representations, we do not 

expect to see a student who attempts to use the syrnboiic form sûuggle with the madulus 

or conjugates. Rather, different levels of skill with the symbolic form are more a maiter 

of breadth of the method, as opposed to degree of preoccupation with computational 

details. So for example, a student might be able ta use the notion of distance represented 
-. 

by the modulus to salve a problem symbolically (without much trouble), but not 

recognize conjugation when it occurs in an expression. Thus, we need to look for 

evidence of fluency with several techniques such as, use of the modulus, conjugation and 

application of geometry to determine the level of pmess understanding that a sîudeat 



has. 

4.2.4.4 The Symbolic Representation of Complex Numbers - Summary 

in the symbolic representation of complex numbers we treat complex numbers as 

z. The connection between the complex numbets and the real numbers plays a much less 

prominent role than in the other representations we have discussed. 

Since the level of experience with complex analysis needed to make the meaning 

of the symbolic represenîation completely clear is far beyond a beginning course, we 

have restricted our discussion to noting that the basic ideas needed for the a process 

understanding of the symbolic form can al1 be understood in terms of the other 

representations. These basic concepts include the modulus, conjugation and basic 

geometrical ideas, such as the equations of lines and circles in symbolic form. 

We do not expect to see more than a process understanding of the symbolic fom. 

Since a student who is attempting to use the symbolic representation has most likely 

already mastered one or more of the 0 t h  representations, we do not expect to see 

students struggle with symbolic computations. Instead, we expect different ski11 levels to 

be revealed as the nurnber of basic operations (modulus, conjugation, applications of 

geometry) that the student can use. 

4.2.5 Geometry, Order and Direction in the Complex Plane 

in this section we discuçs three additional aspects of the complex numkn that are 

not directly associated with any one of the four representations discussed, narnely 

geometry, order and direction in the complex plane. 



By geometry we mean relationships between complex numbers that can be 

determincd by using the properties of R2. Since a beginning course does not cover the 

extendeâ complex plane thoroughly enough for students to use the geometry of the 

extended complex plane, we will confine our discussion to the geometry of R2. 

There is no ordering on the complex plane, at least there is no ordering that is an 

extension of the ordering on the real numbers, but in this section we discuss what this 

means. Since there is no ordering on the complex plane, we cannot define direction 

either. This is much hardn to see, so we will dincuu this point at some length. 

We have organized this section into three subsections, one subsection for each of 

the three topics of this section. However we have not gone into as much detail as in 

previous sections, because we have not collected enough data on the topics of this section 

to warrant such a thorough analysis. Thus, the focus in the discussion below is on basics 

and meaning. 

4.2.5.1 The Geometry of the Complex Plane 

in this section we briefly review the geometry of the complex plane. Although 

the topology of the complex plane @articularly the extendeâ complex plane) is very 

important for a thorough analysis of analytic and merornorphic hctions, in a beginning 

course there is simply not enough tirne to cover topological developments in any detail, 

so we will not cover the topological perspective. 

By R~ we mean the set of ordered pairs, (x, y), where x and y are any real 

numôers. We can represent this set as all points in a plane. We introduce a Cartesian 

coordinate system, by drawing two straight lines that intersect in a nght angle, in the 

plane of R~ . The intersection point is called the ongin and has coordinates (O, O). We - 
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choose one of the lines and cal1 this line the x ais. We denote the direction of the x axis 

that points in the direction of the right half of the plane as the positive diction. The 

other line is denoted the y a i s ,  with positive direction pointing to the IeA of the x axis 

(sa Figure 4.1). Thai each point in R', (x. y), can be iocated in the plane by measuring x 

units from the origin, in the positive direction if x is positive, in the negative direction if x 

is negative, and then moving y units h m  the x axis in the positive or negative direction, 

dependhg on whettier y is positive or negative respectively. 

Figure 4.1 

The Cartesian Coordinate Axis with a typical point labeled. 
The arrows indicate the positive directions 

A very important aspect of Cartesian coordinates in R' is that the point (x, O) is 

locatéd a distance 1x1 h m  the origin, so that the notion of (Euclidean) distance on a line 

is built into the Cartesian coordinates system. 

So fa? we have dacribed R~. TO get the complex plane we have to intnoduce 

addition and multiplication operations that have beeo described in sections 3.2.1,3.2.2 

and 3.2.3. We can add additionai structure to the complex plane by d e h g  a distance 

hinction: If ZI = (xi, y,) and a = ( ~ 2 ,  y2) are points in the complex plane, then d: CxC + 

R dehed by d(z, ,r,) = J(x, - x,)' + (y, - y,)2 , is a distance function on C. Tbcn if 



one of the points is zero, this fonnula gives the madulus of the temaihg point. One of 

the rnany wonders of complex analysis is that d(q, z2) is completely compatible with the 

complex multiplication operation in the sense that the rnodulus of a product is quai to 

the product of the moduli. This is quite surprising, since the cornplex multiplication 

operation is a cornplex bilinear fom on C (x:C x C + C), whereas d(z1, zz) has none of 

the nice pmperties characteristic of bilinear forms. (An important example of a bilinear 

form on R* that is not compatible with d(z1, z2) in the sense discussed hm, is the usual 

dot product: 1 v wu 1 t 1 v [ - 1  u 1 .) Further discussion of this point would take us too far a 

field, since we want to consider the modulus in connection with ordering and direction. 

Heuce we wilt next discuss ordering. 

4.2.5.2 There is No Order (that extends <) in the Complex Plane 

AIthough it is possible to order the complex plane topologically with, for 

example, a lexicographie ordering, by ordering the complex numbers we mean with an 

oràering that extends the usuai "les than" (c) ordering on the real numbers. Thus, if 

such an ordering exists it must not only satisfy set theoretical requirements of any linear 

ordering (triangle inequality and trichotomy), but also satisQ the usual algebraic 

properties of < on the real numbm. Briefly, these d e s  are: 

1. If x and y are positive, tûen O c xy. 
2. if x is positive and y is negative xy < O 
3. If x < y, then (z + x) < (z + y). 

From these three rules we can derive the more familiar forms: I f x  < y, and O c c, 

then by rule 2 WC bave CO, - x )  c O ,  so cy < c g  yiclding the usual nile of rrvcrsing the k t i o n  

of the inequality when muitiplying by a negatiw number. Using these d e s  w t  can rcadily show 



that then is no extension of < to the complex nurnbers: Suppose then is such an extension. By 

trichotomy, i = O, i < O, or O < i. clearIy i + O, since i2 = -1, but o2 = O. If i < O, then 

multiplying both sides of this inequality should reverse the order, so O c i2 , or O c -1. 

Since this last statement is false, we cannot have i < O . On the other hand, if O c i , then 

multiplying by i preserves the order, so O c i2 , O < -1. This is also false, so we are left 

with no possible way to satis@ both the operationai niles given a b v e  and the 

requirements of a linear order (trichotomy). Thus, we are not able to order the complex 

plane. 

4.2.5.3 Tbere is No Direction in the Complex Plane 

Although the absence of an ordering in the complex plane that extends < of the 

real numbers is readily shown, it is much harder to recognize that the complex plane also 

has no meaningful notion of direction. This is one of the shortcornings of the 

representation, previously discussed, of the complex numbers as points in the plane. For 

example, the real and irnaginary axes appear to define directions that are clearly 

orthogonal. The pmblems with ordering, and direction of, the complex nurnbers are 

much easier to understand if we use a sphere (stereographic sphere) to made1 the complex 

numbers (a punctured sphere if WC do not include the point at infinity). 

In any case, using the complex plane, it appears that any line passing through the 

origin defines a direction. To see that this view is untenable in the whole plane, recall 

that the d e s  for manipulating transfkite numbers (in an unordered vector space) are: 1. 

kf a=a ,  2 . a f  a = a ,  3. k -oo=a , and4 . a t i - a=a .  



Then if we represent a line through the origin by the equation z = (x, kx), where k is a 

real number, then lim z = (oo,kao) = (ao,ai) , using rule 3, so that there is only one point at 
1 4  

infinity, which implies that in the geometry of the complex plane al1 lines through the 

origin have the sarne direction. We noie in passing that since this is a matter of topology, 

then is no direction in R* eicba. However, note that R~ with the lexicographie order 

does have some directions. For example, (-ai,-) < (4, a) < (a, 4) < (a, a) are 

différent points in the extended lexicopphic plane. 

Of course, we can still define direction locally using the coordinate axes, but we 

do not have direction in any neighbourhood that includes the point at infinity, in effect, 

for whole (haif) lines. 

4.2.5.4 The Modulus 

The modulus has been coasidered in connection with each of the representations 

discussed in previous sections of this chapter, however we would like to discuss the 

modulus in connection with ordering and direction. It is possible to define equivalence 

classes on the compbx plane by using the modulw: if z, = r , e i b d  z, = r,ei4 , then we 

define z, - 2, provided that r, = r, . Using the polar representation it is easy to see that 

we have defined an equivalence relation. (RecalI that - is an equivaience relation on a set 

S , i f fo ranyx ,y ,z~  S,wehavex-x;ifx-y,iheny-x;andifx-yandy-z,then 

x - z.) We can then define operations on the equivalence classes by [z,] [z,] = [z], where 

[z] is the equivalence class for whicb r = r, 5 ,  and [q]+ [z2] = [z] , where [z] is the 

equivaience class for which r = r, + r, . With these delinitions the set of equivalence 



classes io isomorphic to the non-negaiive real nwnbers, so that we CM Say [z,] < [z2 ]  

provided r, c r, . 

This last point is the point we want to d e ,  because we found that several 

students in our study had a very robust M e f  that this ordering on the equivalence classes 

"of circles centered at the ongin" (C, -) defines an ordering on C. We will have more to 

Say about this in sections 6.4.3 and 6.4.4. Suffice it to Say, for the purposes of this 

section that the ordering defined on (C, -) definitely does not defme a linear order on the 

complex numbers (no distinction is made, by this ordering, between different complex 

numbers on the same circle). 

4.2.5.5 Geometry - Summary 

in section 4.2.5 we have discussed the epistemology of some aspects of the 

geometry of the complex plane. In particular, we bave discussed the Cartesian coordinate 

system and the absence of an ordering on the complex plane, that extends the usual 

ordering on the real numbers. We have also discussed the absence of a notion of 

direction on the complex plane (except locdly). Findly, we briefly examined the set of 

equivalence classes on the complex plane de6ned by "circles centereà at the ongin" and 

considered the order induced on this set by the order on the non-negative real numbers. 

We also noted that the topics in this section (except for Cartesian coordinates) are 

on the "eàges" of a standard third year course, since the extended complex plane is not a 

topic of study. 

Having concluded our brief study of the epistemology of the geometry of the 

complex plane, we are ready to s u m a r k  the epistemology of the complex numbers and 



4.2.6 Summary of the Epistemology of the Complex Numbers 

We have discussed at great length the epistemology of four representations of 

cornplex numbers, namely: the aigebraic extension representation, z = x +iy; the 

Cartesian vector representation, z = (x. y); the polar vector representation z = reiB; and the 

symbolic representation in which cornplex numbers are represented by simply z. 

In each case we discussed the basics of the representation, the rneanings of the 

various aspects of each representation, and speculated on what it means to understand a 

representation with aprocess and an object understanding within the leaming mode1 

descnbed as reification. As well, for each representation we attempted to identifL 

indicators of the pmcess of reification. 

Finally, we considered some aspects of the geometry of the complex plane that 

overlap with al1 four representations: These are the Cartesian coordinates system, the 

absence of ordering and direction on the complex plane, and the set of equivalence 

classes of concentric circles about the ongin. 

Having thoroughly discussed the aspects of the episternology of the complex 

nurnbers that are particularly relevant to our thesis, we are now ready to study the history 

of our present &y understanding of complex numbers. 

4.3 The History of the Complex Numbers 

We have divided this section into 3 periods, namely the penod up to about 1650, 

the period fiom 1650 to about 1800, and the nineteenth century. The fint period was an 

age of conflict and curiosity: on the one fiand practically al1 the leading mathematician 

were sure that complex numbers were imaginary or impossible, but stiii, there seemed to 

be something then. From 1650 to 1800 was a period of discoveq of the utility of 
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complex numbers. The nineteenth cenhiry was a period in which the complex numbers 

were fïnaily understood. The overall period we will cover is h m  antiquity to about 1880. 

Al1 three of these periods are characterized to varying degrees by three themes: 

1. Epistemological questions - Do complex numbers exist? If so, what do they 
mean and how should we interpret hem? If not why do they seem to 'kork" in 
some cases? 

2. The search for a geometric model of the complex numbers. For the overall 
pend  of this account of the history of complex numbers, a clear geornetnc model 
would have been accepted as proof of the existence of complex numbers by most 
mathematicians. To what extent p m f  of the existence of complex numbers, as 
opposed to the desire for an aid to conceptualization was the motivation for the 
search of a geometric model is unclear h m  the bistotical record. 

3. The search for an abstract, or algebraic formulation of the complex numbers. 
The emphasis of this pmgram was to avoid any refcrence to f i ,  and thereby 
side step deeply held beliefs that no such number exists. 

The fust pend  was dominated by theme 1. The second penod was dominated by 

theme 2, although to a somewhat lesser extent because of the vast number of applications 

of the complex numbers that were invented in this period. The third theme was of 

interest in the third period, although it was overshadowed by the first two themes. Thus, 

themes 1 and 2 were far more significant than theme 3. On hindsight, we can see that the 

hope that introduction of an abstract algebraic formulation of complex numbers would act 

as an "end M** around the prejudice that the complex numbers were "impossible*', was 

overly optimistic! 

An important sub-theme that was prevalent in period 2, but was also evident in the 

work of Cauchy (period 3), was the discovery of applications of complex numbers. This 

theme dominated most of period 2, and was characterized by an attitude that cm be 

expresseci (somewhat whimsically) as: "we don? know what they mean, but they sure 



are usefil!". 

In any case, we begin our account of the history of complex numbers in antiquity. 

4.3.1 The First Period - Antiquity to 1650 

It is not hown who first observed a complex number, but Boyer [70] has noted 

that the observation was almost surely done in connection with using the quadratic 

equation. As is well hown, quadratic equations, such as x2 + x + 1 = O have no real 

roots. This fact manifests itself when using the quadratic fonnula by the appearance of a 

negative discriminant. Since the quadratic equation yields solutions that are clervly real 

or not real, we can dismiss al1 those equations that do not have real mots if we wish. 

Thus, there was no impetus to understand the imaginary or impossible roots, and indeed 

they were ignored for at least two millennia. 

Everythmg changed (although, only gradually) with the discovery of formulas for 

solving cubic equations. Nahin [71] attributes the discovery of a formula for the 

depraseci cubic equation. x3 + px = q . @, q > O) to Scipione del Ferro. The tmly 

inspired idea (there is no record of how del Ferro thought of his solution, although 40 

years later Cardano did give the motivation for this choice) is to let x = u + v, substitute 

this into the equation and extract two cquations in u and v, by comparing the depressed 

cubic with the identity (v + ur - 3 u I v  + u) = v3 + u3. Then v cm be eliminated resulting 

in a sixth degret equation in u that is quadratic. The result of this procedure is the real 

solution: 



It is not toa hard to show that a depressed cubic with positive coefficients in the 

fom given above must have two complex mots. Accordingly, the complex mts cauld 

be dismissed leaving the unique real solution. Thus, del Fm's formula did not by itsetf 

inspire any progress in the development of complex numbers. 

Important progress was made however, when Nicolo Tartaglia discovered in 1535 

how to solve cubic equations of the fonn x3 + = n, @, n > O) (Nahin, [7 11, 

Eaves [72]). Later, in 1545, Girolarno Cardano published the sotution of a generai cubic 

equation, x3 + a,x2 + a2x + a, = O. Cardano's solution relied on the method discovered 

by Tartaglia, and Tartaglia claimed he was the discoverer of the general solution. In any 

1 
case the idea was to let x = y - -a, ,  then we get a depressed cubic equation with 

3 

1 2  -L 3 1 p = a, --a, , and q = -a, + -a,a2 -a, . We can then use the del Fem formula for a 
3 27 3 

depressed cubic to solve this equation (by the tirne Cardano published his result p and q 

were no longer required to be positive). Gradually the solution method came io be 

known as the Cardano solution, so we will refer to the "Cardano solution or formula", 

henceforth. 

Cardano recognized that certain choices of p and q lead to negative numben 

inside the square mots. He fieely manipulated such quantities, treating them like real 

numbers, but he was stumped by the problem of calculating a cube root of a complex 

number (Nahin, [70]). For example, he ûied a solution in the fom 

112 = u + , but this le& to two cubic equations in u and v, which have 

solutions that involve the cube mots of complex numbers. 



The next important development was the observation in 1572 by Bombelli that 

some depressecl cubics had real solutions even though the Cardano formula gave a 

solution involving complex numbers. Laugwitz 1731, Boyer [70], and Nahin [71] 

attribute this observation to BombeIii, but Nahin claims that Cardano was also aware of 

this fact. Bombelli managed to derive al1 the rules for multiplication and addition of 

complex numbers, such as, (+l)(i) = +i, el cetera (Fauve1 and Gray, [74]). 

in any case, by the time of Cardano's de& in1576 it was known that the so called 

q2 P' irreducible case, that is the case when - + - c O in the Cardano 
4 27 

solutionx=3 ,/F -+ -+- -' 1 2  --+ , aiways bad na1 roots gaves, [72]). 
4 27 4 27 

Bombelli considered the equation x3 - 15x - 4 = 0: using the Cardano formula 

x = + d n  , but he also noticed by inspection that x = 4 is a mot. He 

Unfortunately, very little further progress was made in understanding complex numbers 

\ 

for the next century or so. However, in 1591 Vie te showed that irreducible cubic 

equations could be solved without involving complex numbers (Nahin, [71]). 

None of the sources we investigated discussed the origins of the fundamental 

theorem of algebra, but there is a close coonection between the increased interest in the 

fundamental theorem of algebra and the acceptance of complex numbers. Without 

complex numbers the best we can do is factor every polynomiai with real coefficients 

into factors that are at most quadratic. Thus, the mathematicians of this period were 



faced with a choice: accept complex nurnbers or give up on the fundamental theorem of 

algebra (the fiuidamental theorem of algebra says that every polynomial in C, of degree 

greater than zero, has a mot) . 
On this note we conclude our account of the first period, and move to the second 

period. 

4.3.2 The Second Period - 1650 - 1800 

The second period was a period in the histoxy of mathematics in which the 

development of new mathematics and applications accelerated dramatically. This period 

began with work by John Wallis and Issac Barrow that built on the work of Descartes to 

form a geometnc foundation for the development of calculus by Newton and Leibniz. 

Proof of the fundamental theorem of algebra becarne a major objective in this period. 

In the 1700's many ingenious applications of complex numbers were found by 

people such as, Euler, Lagrange, and d'Alembert. Thus, complex numbers were used 

fluently in several representations even though they were thought to be impossible. Thus, 

as we shall see, the second period was a time of invention of many applications, but no 

real progress was made on the question of the status of complex numbers. in any case, it 

is worth looking at this penod in more detail. 

The p e n d  1650 - 1800 was, of course, dominateci by the invention of calculus by 

Newton and Leibniz. However, there was a co~ect ion between the calculus and the 

fundamental theorem of algebra, namely the method of partial fractions for integrating 

rational functions. Laugwitz 1731 reports that Leibniz was interested in the fundamental 

theorem of algebra for this fe8son. Leibniz feu into the ûap of assuming that 

polynomials with cornplex mots could be uniquely factod into factors of at most degree 
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2. He claimed that x4 + a4 had no such factorlzation, since no pair of the four linear 

fictors xi a& and x k i o 4  is reai quadntic. However, it CM be seen by direct 

caiculation that x4 + a' = (x2 + a' + fi x a l x 2  +a2 -fi xa), showing that Leibniz was 

incorrect. 

Nevertheles, accoding to Boyer [70], Leibniz did correctly conjecture that if f(z) 

is a polynomiai with reai coefficients, then f (x + f i  y) t f ( x  - f i  y) in reai. Leibniz 

was perhaps led to his conjecture by his study of equalities such as, 

da+ d m  = J6. Nahin [71] obsetves that Leibniz thought that thir quality 

was remarkable and that even though Leibniz was familiar with Bombelli's 1572 text on 

algebra, he claimed to be the fmt to notice this type of equality, or at least this particular 

equaiity . 
We have already noted that Newton evidently took complex numbers seriously 

since he tried very hard to prove the fundamental theorem of algebra. Newton's good 

fiiend De Moivre is credited with De Moivre's equation, 

(cos x  + isin x)" = cosnx t isin nx , for the case where n is a positive integer. De Moim 

apparently did not discover this equation, for example, this equation was known to 

Newton as early 1676 (Nahin, [71]), so it is not clear why this equation cames his name 

(Eaves, [72]). 

The other work of note that took place in the early part of period two was the 

many attempts by Wallis to invent a geometric representation of complex numbers. He 

attempted to extend the work of Descartes. Descartes had shown how to represent the 

mots of a quadraûc equation with real mots as points on a circle that is detennined by 



coefficients of the quadratic. Wallis searched for an extension of this idea and published 

the results in 1685 (Nahm, [71]). He was not happy with his work, however, and made 

many otber attempts, but was not successfiil. 

In the first half of the 1700's there was l e s  interest in a geometric interpretation 

of the complex number since there was generally less interest in geometric 

interpretations, Laugwitz [73]. The belief was that diagrams couid be misleading, but 

also there was a general rejection of everything elassical (as part of the socid times, but 

also with the birth of calculus), and geometry was seen to be classical. 

The eighteenth century was heavily iduenced, if not dominatecl by the work of 

Leonard Euler, and he found many results in the basic theory of camplex numbers. Euler 

is, of course, credited with inventing the equation (that bars his name) 

e' = cosx + i sin x ,  for x mal. Boyer [70] says Euler derived this equation by adding the 

series for cos x and i sin x, however, Nahin [71] notes that in a letter to Bernoulli Euler 

explains that he found two solutions to the initial value problem 

d Z y  
- + y = O ,  y ( 0 ) = 2  y'(O)=O,nameIy y=exi"+e-xJ" and y=2eosx,aohe 
'it2 

concluded that 2cos x = ezG + . By chmghg the initial conditions slightly we can 

use the same method to derive the additional result that, 2isin x = eL - e'" . Fmm these 

wo equations we can derive Euler's equation. Nahin [71] explains that Euler did not 

notice the connection with power series until later (1748). 

in any case, a year later ia a letter ta Goldbach, Euler aoted that 

*fi +2-fi 10 
+r - correct to five decimal places, Nahin [71]. This shows that Euler's 
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thinking was not confined to base e, but it is not known what led him to observe this 

result. 

Euler studied the properties of al1 the basic functions of caiculus when the 

domains were extended to complex numbm. 

We give some examples: 

Euler resolved the controversy raised by the computation, 

iog(1)' = log(-1)' * 2 log(1) = 2 log(-1) s log(1) = log(-1) = 0 , by noting that 

eix = -1, so that log(-1) = in. Then we cm see that the second equation in this sequence of 

steps is wrong because we have switch branches of the complex logarithm: 

Sa For this calculation we have used the branîh of the logarirhm with 5 < 6 < -, so in the 
2 2 

second equation on the left hand side we have to subtract 2m to stay on this branch. 

Euler knew that logarithms for al1 numbers were multivalueà, even if a is a real 

number greater than zero: in a = c, then log a = c + 2km . In addition, he showed that 

the logarithm of a complex nwnber was a complex number. He did this by expressing 

b log (a + ib) = ln dm + i tan-' - + Uni, which is a complex number for ail a + ib # 0, 
a 

A t7 provideàwedefineytobe -- ifb<Oanda=O,andy= -,ifb>Oanda=O. 
2 2 

Euler extended his work on logarithms to all the elementary functions, that 



is, he showed that al1 the elementary transcendental functions have complex ranges if the 

domains are extended to the complex numben. 

In case of exponents, Euler first solved the vexing problem of evaluating ii : 

he showed that any complex number of the form (a + ib)*id could be expressed as p + ip , 

Boyer [70]. 

Whereas Euler produceci many computational results about the complex numbers, 

another great eighteenth century mathematician, d'Alembert was less successful. 

d'Alembert attempted to show that algebraic operations on the complex numbers yieldeâ 

complex numbers. In addition, he made several attempts to prove the fiindamental 

theorem of algebra, and attempted to develop a calculus of the cornplex numbers, but did 

not have much success with any of these efforts, Boyer [70]. One success that is 

apparently due to d'Alembert is the use of the form a + ib for a complex number. Of 

course, d'Alembert did not use the symbol 'Y, (he used f i  ), but the idea of real and 

imaginary parts is what is important. 

The eighteenth century closed with the earliest inventions of what has become the 

modem complex plane. Bottazzini [75] cites an 1847 work by Cauchy that credits Henri 

Truel with the discovery of the complex plane. However, other authors, including Boyer 

1701, and Nahin [71], atûibute the discovery to Casper Wessel in 1797, while Laugwitz 

[73] believes Gauss was the inventor. Nahin agrees that Gauss could have known about 

the complex plane as early as 1796. In any case, the fuil development and popularization 

of the idea of the complex plane had to await the next century, so we will defer 



discussion until we discuss pdod  3 in the next section. Finally, at the very end of this 

pend, in 1799, Gauss showed how to prove the fundamental theotem of algebra. 

In summary, the peciod between 1650 and 1800 was characterized (for our 

purposes) by the intense search for applications of calculus (the efforts were of course, 

very successful). This was also a period of dis tut  of geomeûy, since many flaws were 

discovered in the standard proofs of Euclidean geometry (the flaws eansisted of 

statements that depend on diagrams) (Laugwitz, [73]). Thus, thanks in large part to the 

work of Euler, complex exponents, logarithms, and al1 h e  other complex transcendental 

functions were characterized and the ranges shown to be subsets of the cornplex numbers, 

but little progress was made on geometric questions until the very end of this period. 

4.3.3 The Third Period - The Nineteenth Century 

The third period of our study saw the development of complex nurnbers in four 

major areas. The development of the rudiments of the complex plane in the early part of 

the nineteenth cenhuy, the development of complex analysis, the development of the 

complex numbers as an algebraic structure ( a field), and m e r  development of the 

complex plane by Riemann in the 1850's. Perhaps more important than any of these 

developments was the growth in the general acceptance of complex nmbers by the 

mathematics cornmunity. By the end of this pend  there were stili reputable 

mathematicians who did not believe that complex numbers were correct, but these voices 

had become a srnail minonty by the 1880's. 

For our purposes, the details of the development of complex analysis and the 

advanced geometry of the complex plane are not particularly iIluminaiing, so we wilî 

focus on the development of the complex plane (without the point at infini@) aad the 
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development of the complex nurnbers as a field. 

As previously mentioned (in section 4.3.2), Cauchy attributes the development of 

the complex plane to Hënri Truel in 1786, and it is possible, even likely, that Gauss 

tfiought of the complex plane by 1796. However, the b t  clear record of the plane is due 

to Casper Wessel in 1797. Wessel expressed complex numbers in the form a + ib, where 

a and b were real. Then he let a and b be the Cartesian coordinates of points in the plane: 

a was detenined on the horizonai a i s ,  and b was detennined on the y a i s .  Of course, 

by 1797 the idea of representing negative nurnbers, then O, then positive numbers in order 

on a iine, due to Girard (1 595 - I632), and the idea of Cartesian coordinates due to 

Descartes were well known (Boyer, [70]). 

Nevwtheless, it is interesting that the idea of representing imaginary numbers on 

an axis perpendicular to the reai axis was suggested by Wallis more than 100 years 

previously (Boyer, [70]). Appatently, WalIis could not bring himself to interpret the "+'* 

in a + bi as simply the addition of Carîesian components. This is quite interesting, since 

as we saw in sections 4.2.5.2 and 4.2.5.3 it is actually incorrect to interpret "+** as 

addition of Cartesian components in îhe extended complex plane. Since at the time of 

Wallis the extended complex plane had not been invented, it would be interesthg to 

investigate his thinking in much more detail. Probably the best explanation (of why 

Wallis did not invent the complex plane when he appears to have been so close) is that it 

was not unti1 the work of Euler and d'Alembert th& it became clear that al1 complex 

numbers could be expressd in the fom a + ib, with a and b r d .  

In any case, we rehun to the development of the complex plane and the wotk of 

Wessel. Wessel was aware of îhe polar interpretation of complex numbers (due to Euler) 
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and showed that this representation fit into the geometric mode1 as complex numbers in 

polar coordinates. He used the notation used by modern electrical engineers for the polar 

representation: a + ib = Y a2 + b L tan-' ( )  . ibis expression is mi square mot 

of a squareci plus b squafed angle arctan of b over a*'. 

Wessel fiuttier argueci the product of two directed line segments with polar angles 

8 and a had to have Iength quai to the product of the two segments, and polar angle 

0 + a . His reasonhg was that the argument of the product had to differ h m  each angle 

by the other. With the new model, Wessel was able to derive DeMoivre's Theorem (see 

section 4.2.1) (Nahin, (7 11). 

Unfortunately, Wessel's work was not well publicized and the idea was 

apparently forgotten (Gauss, of course, did not forget). The complex piane was re- 

I 

invented by M Buee in 1806, in a long philosophical treatise (Bottazzini, [75], Nahin, 

[7 11). Robert Argand first printed his pamphlet on the complex plane in the same year, 

but it was not published until1813 when the work found its way into the Annales de 

Mathematiques. Argand's work had been sent to the Annales by Jaque Francais, who 

obtained a copy of the pamphlet h m  Legendre. Francais pleaded for ihe author to corne 

forward. Argand responded by publishing his pamphlet in 1814. 

The publication of a geometric interpretation of the complex plane inspireci much 

discussion about the nature of complex exponents. For example, Francais derived the 

result: 

- d l  &yfi = o b s [ d  l n ( 4  + ~ s i u [ d  h(c)]]. Of course, a result Wre this mut 



surely have been known to Euler, if not Gauss. 

Interestingly, the development of a geometric representation of the complex 

numbers did litîie, in the short term, to boost confidence in the existence of complex 

numbers. For example, Cauchy regarded complex numbers as "inexact*', in effect, a 

"bookkeeping" device one used to do the work of two real equations in single 

calculations (Bottazzini, [75]). Thus, for Cauchy, the equation, 

cos(a + b) + isin(a + b) = (cos a + isina)(cos b + isin b) was "inexact" and had no 

meaning. However, two real equations can be extracteci h m  this equation, namely, 

cos(a+b)=cosacosb-sinasinb and sin(a+b)=cosnsinb+sinacosb , 

which Cauchy regarded as exact. 

As already mentioned, during the eighteenth century and the first half of the 

nineteenth century geometry was held in suspicion, so it is perhaps not surprising that 

interest in the complex plane waned for a second tirne. The revival took place in France 

and Britain in 1828 with books by C.V. Mourey and John Warren , respectively (Nahin, 

[7 11). In Germany the plane was again popularized by publication of a paper by Gauss in 

183 1, (Nahin, [7 11) (this paper was published in 1832 according to Bottazinni, [75]). 

Warren's book was a treatise on geomeûic representations of square mts of 

negative numbers and is alledged to have inspired William Hamilton to invent a better 

approach. Gauss's paper is thought to have been the publication of work he had done as 

early as 1796. In this paper he fepresents camplex numbers in the form a + ib and as 

points in the plane. It is clear, that Gauss had fiilly accepted complex numbers by the 

thne of the 183 1 publication, but probably had accepted complex numbers much earlier. 

In 1796 he used the mots of xn - 1 to construct a reguIar 17-gon (Fauve1 and Gray, [74]). 
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In his constmction he uses i for f i ,  and recognized that the mots are given by 

in any case, Gauss's publication on complex nurnbers in 183 1 also had little short 

tenn impact on the acceptance of complex numbers amongst the mathematics 

community. For example, in his 183 1 book On the Study and Difialties of 

Mathematics, De Morgan says the symbol fi is void of meaning, or self-contradictory 

and absurd. George Airy, who was asttonomec royal f ' m  1835 to 188 1 expressed the 

view that he did not have the slightest coiifidence in results that used complex numbers 

(Nahin, [71]). in 1854, even algebraist and logician George Boole found to be 

uninterpretable in an investigation of the laws of thought. 

in any case, William Hamilton finally did do "better" than John Warren and 

introduced his forma1 approach to complex numbers in 1835 (Nahin, [71] and Laugwitz, 

[73]. Bottazzini, [75] says this paper was published in 1837). This is the approach we 

have discussed under the narne Cartesian vector representation in section 4.2.2, that is, 

complex numbers are represented by ordered pairs with two operations defined by 

(a, b) + (c, d) = (a + c, b + d) and (a, b)(c,d) = (ac - bd, bc + ad) . Hamilton's work is of 

great significance theoreticdy, since he showed that the complex numbers are a field and 

therefore are intemally consistent if any field is internally consistent. Since everyone 

assumed the real nurnber field was in tedly consistent, there was no choice but to accept 

complex numbers as well. 

Of course, this did not happen. In hct, Hamilton's work was largely ignore& 

even among those mathematicians w b  accepteci complex numbers: rnost 
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mathematicians using the complex numbers preferred the a + ib form or the polar form. 

Nevertheless, complex numbers were gradually accepted by most mathematicians. in 

1849 Cauchy haily accepted complex numbers as vectors in the complex plane 

(Bottiuzini, [75]). 

We close our history of complex numbers with a brief mention of Georg 

Riemann. in his doctoral dissertation in 185 1 Riemann intmduced many of the advanced 

ideas of the extended complex plane, such as the p in t  at infinity and Reimann surfaces. 

He developed his ideas further in the period 185 1 - 185% Riemann's work was very 

advanced and although deeply admired by Gauss, did not become well known until the 

end of the nineteenih century. 

Concluding, in the third period (the nineteenth century) the geometry of the 

complex plane was gradually popularized, and the a + ib representation and the polar 

representation for complex numbers became the prefened representations. Hamilton 

introduced the Cartesian vector representation but it was not well received. Finaily 

Riemann developed many of the modern ideas of the complex plane. In spite of the 

acceptance of complex numbers by major mathematicians such as Gauss, general 

acceptance of complex numbers was slow. Gradually acceptance grew until by the 

1850's or so most of the mathematics community, at least pdgingly accepted complex 

numbers. Nevertheless, there were regions that heldout: thus, as late as the 1880's one 

top student st Cambridge lamenteci that f l  was stiii widely regarded as suspect by bis 

teachers (Nahin, [71]). 



4.3.4 The History of Complex Numbers - Summary and Conclusion 

We have seen that complex numbers were ignored until the discovery of formulas 

for cubic and quartic equations. These formulas sometimes result in real solutions that 

are expressed in terms of complex numbers. Thus, the need to l e m  how to manipulate 

complex numbers amse in order to extract the real solutions. Nevertheless, acceptance of 

complex numbers took a long time. In the first period (antiquity - 1650) the search for a 

geometric representation of the complex numbers was substantial, but unsuccessfiil. 

In the second period (1650 - 1800), work on a geometric representation 

continued, particularly by Wallis. Newton made an intense effort to pmve the 

fiindamental tbeorem of algebra, and Euler extended al1 the elementary functions to 

functions defined on the complex numbers. Euler also defined complex logarithms and 

exponents. d'Alembert conjectured that every complex number could be expressed in the 

form a + ib, although he was unable to show this. At the end of this period, Wessel (and 

probably Gauss) discovered how to represent complex numbers in a plane, and defined 

the basic operations on complex numbers in the plane. 

In the ihird period (nineteenth century) the comptex plane was rediscaverd and 

gradually popularized by the tirne of Riemann in the 1850's. The a + ib reprentation was 

in eommon use in the m o b  fom (i instead of ). Hamilton introduced what we 

have designated the Cartesian vector representation in 1835, but this development had 

little impact on acceptance of complex numbers. Finally the idea of the complex plane 

was greatly extended by Riemann in the 1850's. 

Having briefly reviewed the histoncal development of complex numbers, we now 

discuss some of the conclusions we can make about what was hard to understand for 
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the mathematics comrnunity and why. 

First, it is obvious that there was an enornous reluctance to accept complex 

numbers, even as late as Gauss's 183 t paper re-introducing the complex plane. In this 

paper, Gauss expresses the view that the problem was the use of temiinology such as 

"impossible" or "imagina$ which has such strong connotations in ordinary language 

(Nahim, [71]). In our research of the history of complex numbers (entirely h m  

secondary sources) we have culled no clear insights into why complex numbers were so 

hard to accept. Apparently, the difficulty is entirely due to the "lcnowledge" that negative 

numbers do not have square mts. Acceptance of complex numbers was Mer delayed 

by the aversion to geometry that pervaded the second pend and the k t  part of third 

period: even the deveiopment of good geometric representations of the complex numbers 

did not immediately inspire wide acceptance of complex nurnbers. In any case, the 

difficulty the mathematics community had accepting complex n u m h  is quite sobering. 

In section 4.2 and subsequent subçections, we discussed many problems of 

understanding the details of various representations. We now tum uur attention to what 

we cm l e m  ahut  such questions h m  the historical record ihat we have recounted. 

We have previously alluded to the fact that Wallis appears tu have struggled with 

the "+" in a + ib, however in our research of the history of complex numbers we found no 

other evidence of a mathematician having difficulties with the "mechanics" of complex 

numbers. According to Nahin [7 11, even an outspoken critic such as De Morgan was 

completely fluent with aU the calculations king performed in his day (1830's). It is me 

that for example, Cardano was unable to solve complicated simplification problems, such 

as the difference between cube mots of complex conjugates, but this hardly shows a lack 
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of understanding of the basic "mechanics" of complex numbers discussed in section 4.2. 

Rather, this shows Cardano mut have had a good undetstanding to conceive of the 

problem. 

On this note we move on to the methodology used to collect the data for Our 

study. 



Chapter 5 

Methodology of Data Collection and Analysis 

5.1 Method of Data Collection 

We collected data primarily h m  attending the three classes studied, h m  

informal study sessions with students and h m  clinical interviews. We have divided this 

section into three subsections, one section for each of the three classes sîudied. 

5.1.1 Data Collection: Pilot Project - Class 1 

To get starteci with our research goals we began with a pilot project in the summer 

semester of 1996, at Simon Fraser University. Subjects were recruited h m  the regular 

Math 322 class (Introduction to Complex Analysis). This class met three times per week 

for lectures, but did not have a tutonal session (somewhat unusual at Simon Fraser 

University). Thae were about sixty students enrolled at the beginning of the class, and 

lectures were held in a small size (for Simon Fraser University) lecture hall. There was a 

teaching assistant available to mark homework, but not for tutoring, 

The instructor used two overhead projectors, but no microphone. The textbook 

for the course was Introduction to Cmplex Analysis, by H. A. Priestley [Ga]. Evaluation 

of student performance was done with eight homewark assignments and 3 one hour tests. 

Homework assignments were taken h m  the pmblems in Priestly. 

The material covered in the course consisted of the finit eight chapters of Priestly. 

These topics include complex numbers and basic topology of the complex plane, 

holomorphic hctions and power Senes, preparation for Cauchy's theorem, Cauchy's 
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theorern, logarithms, consequences of Cauchy's theorern, singularities and multivalued 

fûnctions, residues, and applications. The insüuctor followed the materiai covered in the 

textbook closely, in most cases, but fiequently used his own presentation. 

There was no use of cornputers during this course, although the instmctor gave a 

demonsiration of Maple in the last week of classes. 

We recniited ail o u  subjects for the pilot study h m  this class. At the second 

lecture we gave a brief description of the study and asked for volunteers. We circulateci 

an information sheet and consent fom (see appendix 1) to al1 of the students present. As 

compensation, we offered to help students with the material as much as they liked. We 

were available seven hours per week for ihis purpose. 

Six students volunteered for the pilot study. We conducted two separate sets of 

interviews of about one hour duration each. The first one was done during week eight of 

classes, and the second was done after the final one hour test. A total of sevm interviews 

were conducted. in addition, we gave extensive help ta ali six students. 

Finally, we collected data by attending al1 but two of the lectures, including one 

of the one hour tests. We tape recorded the h t  few lectures, and took carefûl lecture 

notes, including comments about teaching methodology, layout of the m m  and lecture 

equipment, as well as noting student responses, such as  questions, corrections to mistakes 

by the lecturer, and answers to questions by the lecturer. 

Al1 intewiews were qualitative in nature, with si&aificant questioniug hm us. In 

designhg clinical interviews we followed the recommendations of Ginsburg [77], 

Lincoln and Guba 1781, Howe and Eisenhart [79], Asiala et al [W. Intentiews consisted 
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of students working through the problems on a prcpared worksheet, wbile explahhg 

their thoughts orally. Interviews werc tape recordai. Specific questions cati be f o d  in 

appendix 3, questions and solutions chat we used in our analyçis in chapter 6 are in 

appendix 4, and two samples of complete interview transcripts (with worksheets) can be 

found in appendix 5. We did not hesitate to ask students what they were thinking about, 

and we freely helped them if they were stuck. 

We achieved four important objectives with our pilot study tbat helped us with 

our main study: 

1, We determined a large number of difficulties that students have with leaniing 
complex anaiysis. 

2. We were able to get some infornation about what level of question worked 
well in interviews. 

3. We collected specific data on how the instruction and t e x t b k  were 
iduencing student conceptions of complex nurnbers. 

4. We gained important interviewing experience. 

We abtained enough good data h m  ow pilot project to include this data in the 

overall results. For this putpase, in later chapters, we refw ta the pilot project as class 1, 

for brevity. 

5.1.2 Data Collection: Main Study - Class 2 

Our main study took place in the Fall of 1996, at Simon Fraser University. The 

class was, again, Math 322, Introàuction to Complex Anaiysis, but the textbook was 

changed to Complex Variables and Applicatiom, by Churchill and Brown [69]. This t h e  

there were about forty five students enrolled. This class met three times per week for 



lectures, and there was a tutonal once per week (conducted by the instructor). Lectures 

and tutorials were held in a large size classroom, that had no windows and had poor 

acoustics. 

Evaluation of student performance was done with weekly homework assignments, 

2 one hour tests, and a hl examination. Homewotk assignments were taken h m  the 

problems in Churchill and Brown. A teaching assistant was available for marking only. 

As in the previous clas, cornputers were not used. The instructor did present graphs 

done with MS Excel on one or two occasions. 

The material covered in the course wnsisted of the f i t  sixty sections of 

Churchill and Brown. The topics in these sections are arranged under the headings: 

complex nurnbers, anaiytic fbnctions, elementary fiuictions, integrals, series, and, 

residues and poles. In addition, there are many applications. During lectures, the 

instructor of class 2 followed the matenal covered, and the presentation given in the 

textbook very closely. Tutorials were used to discuss problems or concepts that were not 

covered in the text. During tutorials, students were asked at random to do problems at the 

board, in front of the class. 

We recruited six participants h m  class 2. At the fourth lecture we gave a brief 

description of the study and asked for volunteers. We circulated an information sheet and 

consent foms (see appendix 1 and 2) to the entire class. As compensation, we offered to 

pay student $20 per interview, and we offered to help students, with the materiai, as rnuch 

as they liked. We were available men hours per week for this purpose. 

We conducted six separate sets of interviews of about one hour duraiion each. 
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We began inte~ewing in the third week, and subsequent intewiews were held 

appmxirnately every two weeks d e r  that, up to the last week ofclasses. We conducted a 

total of tbirty interviews of these six class 2 students (two did al1 six intewiews). ln 

addition, we gave extensive help to three of the students. 

Finally, we collected data, by attending al1 but four of the lectures, not including 

the lectures turned over to taking tests. In addition, we attended al1 but one of the 

tutorials. As with our pilot project, we twk careful lecture notes, including comments 

about teaching methodology, layout of the m m  and lecture equipment, as well as, noting 

student responses, such as questions, corrections to mistakes by the lecturer, and answers 

to questions by the lecturer. 

Since we were successful using interviews in our pilot project, we chose to 

continue using this method of collecting data We used the same format that we used in 

the pilot study: a prepared worksheet with several questions (usually more than the 

student could possibly do in one hour), in three distinct categories, together with audio 

taping of students while they explained what they were thinking. As with our pilot 

pmject, we did not hesitate to ask students what they were thinking about, and we freely 

helped them if they were stuck. Specific questions cm be found in appendix 3, questions 

and solutions that we used in our aualysis in chapter 6 are in appendix 4, and two samples 

of complete interview transcripts (with worksheets) can be found in appendix 5. 



5.1.3 Data Collection: Main Study - Class 3 

The second part of our main study taak place in the Spring of 1998, at the 

University of British Columbia (UBC). The class was Math 300, introduction to Complex 

Anaiysis, and the textbook was Fundamentals of Complex Analysisfor Mathematics, 

Science, and Engineering by E.  B. Saff and A. D. Snider [65]. Math 300 is nonnally a 

year long course at UBC, but it is also possible to take it as a one semester course. We 

studied the one semester version. 

Class 3 had about forty five students enrolled. The class met three times per week 

for lectures. There were no tutorials, but there was an on-line discussion group for the 

class. Lectures were held in a large, well lit class room. The instmctor used the chalk 

board. 

Evaluation of student performance in class 3 was done with weekly homework 

assignments, 2 one hour tests, and a final examination. Homework assignments were 

taken fmm the problems in S a a n d  Snider. A teaching assistant was available for 

marking oniy. 

The material normally covered in the one semester version of Math 300 consists 

of the first six chapters of SaRand Snider: Complex numben, analytic functions, 

elementary functious, complex integration, series, and residue theory. During lectures, 

the class 3 instmctor followed the material covered, and the presentation given in the 

textbook closely. 



We recruited nine students h m  class 3. At the second lecture we gave a brief 

description of the study and asked for volunteers. We circulated an information sheet and 

consent form to al1 students in the class. As compensation, we offered to pay students 

$20 per interview, and we offered to help studenis, with the material, as much as they 

liked. We were available six hows per week for this purpose. 

Our plan for this part of the study was to obtain more detailed data on the topics 

in the early part of the course. We wanted to gather more data on our theme of 

multirepresentations of complex nurnbers. We conducted two separate sets of intewiews 

of about one hour duration each. The f ' t  interview was conducted at the end of the third 

week of classes, and the second interview was done at the end of the fifth week of classes. 

We conducted a total of seventeen interviews of these nine class 3 students. In addition, 

we gave occasional help to four of the students. 

Finally, we collected data by attending al1 but one of the lectures, until the first 

one hour test . As with the previous two classes, we took carefûl lecture notes, including 

comments about teaching methodology, layout of the room and lecture equipment, as 

well as noting student responses, such as questions, corrections to mistakes by the 

lecturer, and answers to questions by the lecturer. 

Since our objective for studying class 3 was to focus on pmblems students have 

understanding complex numbers, limits and conhuity, we dropped gmeral questions on 

ethno-graphics and affect, and also the true false format, h m  the two interviews we did 

in class 3. We did retain use of a ptepared worksheet with severai questions (more than 

. we expected the students to do in one hour), together with audio taping of students while 
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they explained what they were thinking. As with class 1 and class 2, we did not hesitate 

to ask students what they were thinking about, and we ficely helped them if they were 

stuck. In addition, we challenged students more aggressively tfian in the previous two 

classes, because we were interested in testing the robustness of their beliefs. Specific 

questions can be found in appendix 3, questions and solutions that we used in out 

analysis in chapter 6 are in appendix 4, and two samples of complete interview transcripts 

(with worksheets) can be fowid in appendix 5. 

5.2 Method of Data Aaalysis 

In this study we have allowed the data to detennine the tbeoreticai organization of 

our analysis. Hazzan [80] used this method of analysis to analyze data collected while 

studying students of absûact aigebra. As Hazzan points out, allowing the data to shape 

the theoretical h e w o r k  is especially suitable for research doue in a new field. Hazzan 

found that a broad educational theme, namely Reduction of the Level of Abstraction, 

could explain most of their data. 

We have tned to explain our data in tenns of one content related theme, namely, 

Multiple Representations. The complex nurnbers have a nurnber of representations: 

vector, algebraic, polar, and symbolic. Understanding these representations, and 

developing the ability to fluently shift between them, is an important objective for 

students in the early part of the course. In addition, we have included a finai section 

illustrating studeat problems with later materiai due ta uneven skill with basic material. 



Ttie restriction of our anaiysis of tbe daia to the one thme of multirepresentations 

has meant that much of the data was not used. S e v d  other themes emerged fkom the 

portion of the data not used in this shidy. Mer themes that ame fiam the data, such as 

"thinking real, doing complex" and 'hultivaluedness" were especially interesting, but 

had to be omitted for reasons of clarity of analysis and to keep this thesis at a reasonable 

length. 

Of the many possible themes that arose h m  our study of the data we chose to 

report on the single theme of mulfirepresentations for three reasons: 1. The single 

theme with the most data in support of that theme was multirepresentations. 2. Since 

complex analysis is an alrnost entkely unstudied m a  of research in mathematics 

education, it made sense to us to focus on the beginning portions of the course. We 

believe the first stage of opening a new m a  of research in mathematics eâucation is 

building a solid body of literature on the elementary aspects of complex analysis. Once 

some of the difficulties with elementary matenal have been identifieci and studied, and 

there is some consensus by mearchers in the field about what direction to take, then it 

will be appropriate to begin reporthg on research on more advanced themes. 3. We 

believed that it was best to focus on one theme given that we were reporthg on research 

in a new area of mathematics education. 

5.3 Summary 

We collected data h m  three beginning cornplex analysis classes held at Simon 

Fraser University and the University of British Columbia Data was collecteci by 



attending classes, from individual study sessions with students, and h m  clinicai 

interviews. 

We ailowed the data to determine the theoreticai organization of our analysis. Of 

the several themes that emerged h m  our &ta, we chose to report on the &ta and 

anaiysis pertaining to the single theme of multkpresentations. 



Chapter 6 

Results and Analysis 

In this chapter we analyze the data that pertains to o u  theme of Multiple 

Representations of Complex Numbers. We begin with an overview of the subjects 

covered in several sections. Next we analyze our data on severd topics in sections 

devoted to each topic. The general format of these sections is to present the questions we 

asked, present data, usually in tables, record interview excerpts where they are 

illuminating, and then pmeed with an analysis of the results. Solutions to the questions 

we discuss in this chapter can be found in Appendix 4. 

6.1 Introduction 

We collected data on four representations of complex numbers. We have 

discussed these representations at length in Chapter 4, but we give a bief review and 

discuss some key points here. 

The first three of these representations emphasize complex numbers as the range 

of a function of two real variables. These are: the vector form, z = (x, y), the polar 

representation of complex numbers, z = res, and the algebraic extension notation, 

z = x + iy. The vector representation clearly emphasizes geometric relationships. The 

polar representation is very usehl partly because the inhereut multivaluedness of the 

complex numbers is emphasized in a naturai way in the polar format. The algebraic 

extension representation is used mainly as a vector representation (at least it was in the 

classes we studied), so the statu of îhis fonn is l e s  clear than the other fonns. The 



fourth representation, called the symbolic fonn in this thesis, emphasizes the relationships 

between complex numbers and properties of complex numbers, as opposed to the 

construction of the complex numbers h m  the real numbers. 

An important aspect of the vector, polar, and symbolic representations is that 

they have algebraic and geometric interpretations. Thus, we can think of addition of 

vectors in the z = (x, y) representation in a fonnal way (algebraic view) or we can think of 

the sum of two vectors as the diagonal of the parallelograni formeci by the two vectors 

(geomeûic view). In many cases, the problems in this study can be solved by drawing a 

rough diagram that illustrates the important relationships given in each problem, and then 

guessing (perhaps with minimal calculation) the exact answer fiom the diagram. We 

have given this solution strategy the name "geornetric methods". A example of this 

strategy is as follows: Find al1 points in the complex plane that satisfy lz -21 = lzl . Lfwe 

draw a picture with the points O and 2 marked, and we note that geometrically this 

equation means that z has to be equidistant h m  O and 2, we can "guess" that the answer 

is the set of al1 points such that x = 1. Of couse, this problem can be solved 

algebraically too: substitute z = (x, y) or z = x + iy, and apply the defintion of the 

modulus to get a real number equation in x and y. 

Since an important part of our analysis is concemed with shifting h m  one 

representation to another, we briefly describe how to do this. The shift between the 

vector representation and algebraic representation is immediate by (x, y) t, x + iy . To 

shift between the vector or aigebraic representation and the polar representation arnounts 

to shifting between Cartesian and pela cwrrlinaies: x = r cos 0 and y = r sin 8, and the 
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Y inverse transformation, r = jx'c and 0 = arctan- . To shift k m  the symbolic 
X 

representation to one of the other representations simply replace z, Z, etc with the 

representation that is preferred. Shiîling h m  the vector, polar, or aigebraic 

representation to the symbolic representation is more complicated, but can at least be 

z + z  z - z  
done in a focmai way by the substitutions x = -- 

2 
and y =  - 

2 i 
, or r = lzl and 

The contrast between the usefiilness of different representations in complex 

analysis and real variable vector calculus ( R2 + R?) is proiound. In reai variable vector 

caiculus we sometimes use a change of coordinates to make a problem easier, but there 

are no underIying'structures that are conveniently represented by one representation as 

opposed to another. Hence the problem of multiple representations is largely absent in 

real vector analysis. We found students had many difficulties with multivaiuedness and 

changing h m  one rcpresentation to another. In addition, some students struggled with 

more advanced material, because of problems with basic material, so we have included a 

separate section called Uneven Ski11 with Basic Material Afkcts Later Work that contains 

data and analysis of problems with basic calculations. 

6.2 General Considerations 

As we have already discussed, the complex numbers have several representations that are 

very useful. Students must gain some fluency with the different reprcscntations, their 



properties, and domains of utility if they wish to master complex analysis. We found that 

the task of leatning the different representations, and when to use them, was largely taken 

for granted during instruction of the three classes we studied, but that students mostly 

struggled, using only one or two representations. We have organized our data in four 

sections: Shifting Representations, i is a Unit Vector, Basic Facts and Calculations, and 

Uneven Skill with Basic Material Affects Later Work. 

Section 6.3 on Shifling Representations includes al1 the data and analysis we have 

about students' ability to decide on an appropriate representation of the complex numbers 

for a given problem. In this section we are not too concemed -4th how well students 

were able to use a particular representation. In other words, we have separated the 

process of choosing an efficient representation, h m  the process of using the chosen 

representation. 

We collected significant data that strongly suggests that many students view the 

imaginary number i as a unit vector. We discuss this phenornena in section 6.4 on i is a 

Unit Vector. 

Basic Facts and Calculations (section 6.5) includes some of the problems we 

found that students have with basic facts, such as, "Can you use the quadratic formula?", 

and "Why can you cancel a common factor h m  the numerator and denomkator of a 

hction'?". In addition, we have gathered into this section al1 the results we have on the 

problems that students had with basic calculaiions. 

Section 6.6 titled "Uneven Skill with Basic Material Mects  Later Work" consists 

of our data and analysis of three problems of an advanced nature that were difficult for 



students because they did not have sufficient grasp of basic material. 

6.3 Shifting Representations 

The first group in our Multiple Representations theme is shifting representations. 

We found that some of the students studied did not make good decisions about when to 

shift representations, and that of those students who did make ceasonable decisions, many 

could not bring their decisions to a correct conclusion. 

6.3.1 Interview Questions and Results 

To study students' abiliîy and willingness to change we asked students in classes 

1 and 2, a series of questions designeci to see how long they would persist with the 

z = x + iy or z = (x, y) formulations. In particular, by this we mean persist with the 

a+ ib 
algorithm for converting the form - to the standard forms x + iy or de. 

c + id 

The questions were as follows (these questions were in interview #1, for both 

c1asses):SimpliQ the following, i.e., express them as a + ib, or as ri* (whichever you 

2 + i  2 2 +2i a+ib ( a +  ib( -2+2i 
prefer).l. - 

2 
2. - 3. - 4. - 5. -6. - 

l+  i l t i  a-ib a+ib (1+$ 

8 2 (1 + i)' 
7. - (fi + il6 

8. 
(-2. sinlso +2- ic0s15~)~  

(Class 1) 

Solutions to these questions c m  be found in appendix 4. Five &d six snidents 

were questioned, respectively, in classes 1 and 2. We were primarily interesteci in hding 

at what stage the students would shift h m  the algebraic form, z = x + iy, or 
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Cartesian form, z = (x, y) to some o h  fom, but we also wanted to study what problems 

students had working with whaiever representation they chose. 

We expected that students would probably shift to the polar forni, z = re' at 

question 6, and that they would dehitely atternpt to do question 8 using the polar form. 

In addition, questions 4,s can be done symbolically or using geometric methads, aad 

question 3 can be done by cancellation. 'The results are tabulated in Table 6.1. The 

columns in the table are the question numbers, and the entries in the table are the number 

of student who attempted to use the z = x + iy or z = (x, y) form (using the method of 

realizing the denorninator') to simpli& the given expression. 

Table 6.1 

Number of Students who Attempted Questions Using z = x + iy 

Table 6.1 shows a clear trend by respondents to shift to other methods to do the 

last few que~tions.~ In class 1 students began to shift to other methods as early as 

question 3. Class 2 students did not shift to other methods until question 6. It is 

interesthg that question 6, appears to be a turning point for class 1 students, as well: two 

class 1 students shifted methods at question 6. Thus, al1 but one class 1 student had 

Class 
1 

' The tcrm "reaiizing" the denominaior is nor in comtnon use in complex analysis, but it should k. The 
tcrm that is usually uscd is "rationaliwag" the denorninator. Multiplying a complex numkr by ik complcx 
conjugatc always produccs a ftai number, but does w t  ncccssarily produce a rational number, so the 
accurate tcrm is W i P n g "  the denomjnamr. For example, (e + inme - in) - e2 + x', whidi is not rational. 

' One saidcnt in class 2 uscd the vector form, z = (x, y), for questions 3-8. This bas been coupted as tht 
z = x 4 iy fom for the ptcsent prapases. 118 

1. 2. 3. 4. 7. 8. 5. 
5 5 3 3 3 1 1 0  

6. 



shifted methods by question 6, whereas, it was not until question 8, that al1 but one class 

2 student shifted. 

6.3.2 Analysis of Data on Shifting Representations 

Our data can be interpreted to indicate that students in these two classes were not 

able to access symbolic or geometric methods, in effet, the shifts were almost 

exclusively behveen algebraic or Cartesian vector methods and polar vector methods. For 

la + ibl 
example, every student who attempted to sirnplifi - , (question 5) using the 

a+ib 

z = x + iy or z = (x, y) representation, worked as follows: 

In +ibl d F Z ( a -  ib) ad- i b d m '  - =  - - - 
a+ib (a+ib)(a-ib) a Z + b 2  a2+b2  ' 

(6.1) 

Some students made mistakes, and some left Ja' + b' as la + ib[, but none of îhe 

studmts cancelled the common factor of da2 + b2 . This last fact probably cornes from 

being trained in high school that (6.1) is in "standard fom". Two students (one in each 

la+ibl lzl 
class) noticed that - - - - , but didn't pursue this idea m e r .  This was a good 

a+ib z 

la+ibl lzl Z a-ib 
observation, since we cm Save work: - - - - - - 

a + &  - z - 1 2 1 - d m  
. Of course, a 

geometric sohtion was also possible, but no one atternpted it. Thus, the shift in 

representations, in these questions, that was made by al1 but one student was h m  

algebraic or Cartesian vector fom to polar vector fom. 

Table 6.1 shows a strong trend by students to shiA methods. The strong 

differences between the hvo classes, should not be taken too seriously, because class 2 



students w m  asked these question in the third week of classes, whereas dass 1 students 

were askeâ between the eightb and t w e U  weeks of classes. (Analysis of student work 

sheets t e v d s  some evidence that students became more cornfortable with the polar form 

as the course progressed.) Furthemore, one class 1 student s h i M  methods by canceling 

the comrnon factor of 1 + i h m  the numerator and denominator of question 3. 

We beiieve that the common factor of (1 + i) in the numerator and denominator of 

suggested to huo s t u d a ~  th& îhey shiR One appeared to notice 

that the numerator and denominator of this number are parailel, as vectors, in effect 

having the same argument. (We would classi@ the observation of ~parallel numbers" as 

a geometric method of solution, so this is the one instance of a geometnc appmach that 

we observed for these questions.) The arguments of the nummtor and denominator were 

the key for these two students in questions 4 and 5 as well: 
a- ib  a + ib 

both students quickly realized that the moduli of the numerator and denorninator would 

cancel (in polar fonn), and concentrated th& attention on how to find the final argument 

(having established that the modulus of the number is one). Students who did not shift 

until question 6 (2) - appeared lo be motirated by îhe daire to sm r o k .  None 

of the students who shifted at question 6 saw th& the argument of the numerator and 

denominator were related and that this fact wuld bc exploited to save work. Instead, they 

a p p e d  to base their shift on the derstanding that the polar form was easiest for a 

division problem involving an expression with an exponent. Thus, w t  have a 
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sequence of increasingly sophisticated thinking on these problems, as follows: 

Stage 1. Multiply the numerator and denominator by the complex conjugate of the 
denominator. In other words, the "realizing" algorithm is routinely applied. 

Stage 2. Cartesian form is too hard, the polar fomi should be easier for a division 
problem. In this stage the Cartesian fonn is recognized as toa difficult, but the 
polar fom is still applied routinely. 

Stage 3. The arguments of the numerator and denominator appear to be related 
(either equai or negatives), so cancellation or polar fonn sbould be easier. 

Stage 4. (For question 6) The argument of -1 + i is 3 times the argument of 1 + i, 
but the 1 + i is cubed, so the arguments will cancel, so we only need to consider the 
moduli. But these are equai, so the answer is one. In stage 4, stage 3 thinking is 
combined with a good grasp of the geometry of the plane, so that the exact 
relationships between the arguments of the numerator and denominator can be 
visualized, and used to assess whether switching to polar fonn is likely to be 
helpfùl. 

in question 7 [- ), ail but one of the studmts uho useâ the polar fom 
(fici)' 

recognized quickly that the argument of the denominator was K. Nonetheless, we do not 

think this should be taken as evidence of stage 4 thinking, because al1 the students 

appeared to stumble ont0 this result: they appeared to be motivated to use the polar 

method because the Cartesian method looks very tedious. Specifically, the exponent of 6 

in the denominator strongly suggests that Cartesian methods will be difficult, whereas * 

exponents are easily handled in the polar representation. Thus, our data gives no 

indication that students were doing anything more than applying the rules of the polar 

representation in a routine way, which is stage 2 thinking. In the case of question 7, it is 

not entirely clear how stage 4 thinking would manifest itseIf, in effect, how stage 4 

thinking would be clearly different h m  stage 2 thinking. The probkm is that in question 



7 the Cartesian method is much harder than the polar form, so the assessrnent pmcess, in 

effect, the pmess of deciding to shift to polar fonn is very brief. Our data is not detailed 

enough to reveal which students just saw the exponent of 6 in the denominator and 

shifted (stage 2 thinking), and which students looked ahead, visuaked where f i  + i is in 

the complex plane, looked for a geometnc solution, etc. (stage 4 thinking). 

Lesh, Post, and Behr [81] have identified three qualities of understanding the idea 

"1/3", that are relevent to the present discussion. Before listing these qualities, we note 

that they are not sufficient to explain our data, and that the list needs to have one 

additional quality added, as explained later in this section. Here are the three qualities 

identified by Lesh, Post and Behr: 

1. Recognition (by the student) of the idea embedded in a variety of qualitatively 
different representational systems 

2. The ability to flexibly manipulate the idea within given representational systems 

3. The ability to accurately translate the idea fiom one system to another. 

Our interpretation of our data indicates that the students studied could accurately 

use the algebraic and polar vector foms (although the polar fonn was hard for some 

students), and most could accurately represent a complex fraction in either of these foms. 

Thus, criteria 1 and 2 were met in a limited way (ignoring the geometric aspects of each 

of the vector representations and ignoring the symbolic representation completely). The 

main difficulty students had s h i h g  h m  Cartesian to polar form was not knowing basic 

tcigonomeûy, such as what arguments are possible if the eosine is &/2, or realizing that 

arctan (%) is not single vaiueâ, so that this expression doa  not uniquely specify the 



argument of a + ib. Thus, cnterium 3 was not as clearly met (as criteria 1 and 2) by most 

of the students studied. 

Lesh, Post and Behr were primady concemed with studenâs in pnmary school, so 

the idea of shifting representation may be too sophisticated for such students. 

Furthemore, a fraction such as 113 is already simplified, whereas, complex k t ions ,  by 

convention, are not in simplest form unless the denominator is real. Thetefore, complex 

fractions are inherently more complicated than rational numbers. Thus, it would be 

surprishg if the Lesh, Post, and Behr criteria were adequate to describe understanding of 

complex fractions. 

More specifically, we have been arguing (in fact, the whole set of questions was 

predicated on the assumption) that there is a fourth criterion that needs to be added to the 

Lesh, Post, and Behr list, narnely the ability to recognize when it would Save work to shift 

representations. Other authors have noted that shifting representation is an important 

aspect of understanding representations in mathematics. For example, Dreyfus [82] 

identifies four stages in the leamhg process of a general representation in mathematics: 

1. Using a single representation. 2. Using more than one representation in parallel. 3. 

Making links between parallel representations. 4. Integrating representations and 

flexible switching between them. 

It is clear from our data that if we confine our attention to Cartesian and polar fonns 

that students are able to work with the Cartesian form, the polar fom, and cm even 

translate h m  one form to the other (ceasouably weil), but that 5 out of 11 students 



questioned did a question as hard (in Cartesian fom) as question 6 [if:;) - 9 wing 

Cartesian methods. This indicates that the ability to decide when to shift representations 

is an important and separate aspect of our conception of complex fractions, and should 

not be included as one of the three criteria in the Lesh, Post, and Behr definition. 

Thus, we are suggesting that a fourth criterion needs to be added to the Lesh, Post, 

and Behr definition of understanding a fraction, the ability to decide when to shijl 

representations, and that the four stages of thinking about shifling discussed above, are 

different levels of ability within this fourth criterion. Since this section is about shifling 

representations we are only concemed with this fourth criterion, and will now analyze the 

fust three stages of thinking we have identified in more detail (recaîl that we have no data 

showing stage four thinking). 

In the analysis below we are pnrnaxily concemed with identifjmg evidence of 

process - object understanding (using the Sfard-Linchevski-Kieren reification model 

discussed in section 2.1.2.5) at each of the h t  three stages of thinking we have identified 

for shifiing representations. However, where possible, we have included a possible 

characterization of the simplification problem into the action - process - object 

understanding (using the APOS model discussed in section 2.1.2.5). A h ,  tecal1 that we 

conjectured in sections 4.2.1.3,4.2.2.3,4.2.3.3,4.2.4.3 about what activities would 

indicate process and object understandings. Since the task being considered 

(simplification of a complex frtiction) is relatively simple, we expect the dflerences 

between these levels of understanding to be subtle. Fmm ouf data, we have identified 



general characteristics of process and object understanding (reification) and action, 

Reifi cation 

Process understanding - concerned with the detaib of simplification. Uses the realizing 
algorithm routinely. Applies the polar fonn routinely. Multiplies (a + ib)(a - ib) in the 
denominator (Le., does not recognize or is unable to apply the fact that the whole point of 
multiplying by the complex conjugate of the denominator is that the product will be the 
modulus squared, which is a real number). 

Object understanding - Uses phor knowledge, such as, (a + ib)(a - ib) = a* + b2 . Lwks 
for a better way to do the problern, such as, cancellation. Uses geometry to simplifL the 
algebra where possible. Is able to use the polar form without the fomalism, e.g., can 
simplify an expression such as (6 + i)6 without converting to the form Peeie explicitly. 
Generally, indicates the ability to see simplification of a complex fraction as achievable 
in several ways, and shows evidence of consideration of more than one method. 

Action understanding - Concemed with the details of the realizing algorithm for each 
problem. Applies algorithms routinely and apparently without thought of other 
possibilities (absence of evidence of a thought process leading to a decision to perform 
the calculations that were undertaken by the student). 

Process understanding - Shifts to the polar representation at some point, but is still 
primarily concemed with the details of the simplification. Possibly uses some "short 
cuts", e.g., uses (a + ib)(a - ib) = a2 + b' without calculation. Generally fluent technique, 
Le., is able to do the simplification correctly with few obstacles. Shows that they are 
doing the calculations by decision, rather than because "it is what you do in this kind of 
problem". 

* Object understanding - Uses prior knowledge freely. Indicates consideration of more 
than one method of solution. Uses geometry to aid calculations. Freely modifies 
realizing algorithm or polar method to save work. 

Box 6.1 
Descriptions of Types of Understanding of the Simplification Problem in T m s  

of the Sfard-Lichevski-Kieren and APOS Models of Understanding. 



pmess, and object understanding (interionzation and encapsulation in APOS) in box 6.1 

(more details of these types of undersbnding are included in the analysis below). 

Although in the description above we have not described an object understandhg in 

reification and APOS in exactly the same way, as previously discussed (section 2.1.2.5) 

we are assurning these understandings to be essentially the same. Hence, in the analysis 

below we have not specifically distinguished between the two models when discussing an 

object understanding. We also have not specified which model we mean when we refer 

to a process understanding, even though this concept is not quite the sarne in the two 

models. Instead we refer to an action understanding in the APOS model when needed. 

Thus far, we have identified four stages of thinking about shifting representations. 

As well, we have attempted to identify, h m  our data, what activities and student 

thinking correspond to process and object understanding in the Sfard-Linchevski-Kieren 

reification model, and what activities and thinking correspond to action, process, and 

object understanding in the APOS rnodel. It is important to recognize that we expect to 

see al1 levels of understanding in either model, at each of the four stages we have 

identified. This is because at each of the four stages there are several concepts to 

understand, and different levels of understanding are possible dependhg on whether the 

reification or APOS models is used to describe understanding at each stage. In the 

analysis that follows we have generaily used reification, but sometimes we are able to 

separate process understanding in reification, into action and process in the APOS model. 

Stage 1 

Stage 1 thinking of shifing representations is 'hiultiply the numerator and 



denorninator by the complex conjugate of the denominator" ( r e f e d  to as the realizing 

algorithm, or just the algorithm in the following discussion). This stage is actually a nul1 

stage: a student who uses this algorithm for putting a complex fraction in standard form, 

is at best demonstrating that they have the ability described in criterion 2 of the Lest, 

Post, and Behr scheme (ability to manipulate a single representation), and at worst is 

showhg no ability to judge when to shift. Our data shows a range of thinking by students 

when they appiied the standard algorithm, so that, although table 6.1 shows rather distinct 

shift points, student thinking was more complex. 

For example, none of the students interviewed did question 1 (2 - ; ') using *e 

algorithm: in one way or another, they al1 divided 2 into 2 and 2 into 1 to get 1 + 112 i, as 

opposed to applying the algorithm by multiplying top and bottom by 2 - Oi. Thus, at least 

al1 of the students recognized that they did not have to apply the algorithm unless the 

denominator was complex. One student had doubts about using the algorithm on 

question 4 and 6, but could not think of anyhing else to do. Another student treated each 

question as a multiplication problem. Thus, for example, they did question 3 essentidly, 

2+2i  1 -1 - (zJ)(I,I)" = (25X5.y)  = (1 + 1,O) = 2. In thU calculaiion the as follows: - - 
l + i  

realizing algorithm is hidden in the formula for the inverse that this student has used, so 

we have not counted this as a shift in representations. Nevertheless, this student is 

thinking about this problem a little differently than a student who routinely applies the 

algorithm, because using the formula for the inverse is slightly easier than applying the 

algorithm (using the formula for the inverse avoids having to multiply the denominator 

127 



by its complex conjugate). Actually, West ail of the students who applied the realizing 

algorithm in a routine way, also knew that the final denominator would work out to the 

sum of the squares of the real and Unaginary parts of the original denominator, showing 

that students were attempting to be as efficient as possible. 

Thus, even though most students applied the realizing algorithm to questions 2 to 5, 

some wondered if there was not a better way, and almost everyone incorpotated some 

amount of prior knowledge in the fonn of other formulas, to make the methad simpler. 

We think that applying prior knowledge to make a procedure more efficient shows 

that these students were well passed having an action understanding (APOS). in fact, we 

believe these students either had or were well on their way to obtaining an object 

understanding of the realizing algorithm for simplification of complex fractions. By an 

object understanding of the realizing aigorithm we mean the ability to think about the 

algorithm as a whole, recognize that the aigorithm is inefficient or not the best way to do 

a particular problem, improve the algorithm, or compare the algorithm with other 

simplification strategies (such as cancellation). We believe that an object understanding 

of the methods of each representation is necessary for efficient shifls to occur, because 

students need to have an ovewiew of the problem under consideration (irrespective of 

how it has been posed), and mess the merits of each representation, before choosing a 

simplification strategy. Thus, stage 1 thinking ranges h m  routine application of the 

simplification algorithm (action understanding in NOS) to fiill object understanding of 

the simplification algorithm in Cartesian vector fonn (compare with box 6.1). Within the 

context of the classes studied, it is hard to imagine a student acquiring an object 



understanding of the Cartesian representation without learning something about the polar 

representation (so that they would have moved to stage 2 thinking in our scheme), but 

since it is possible we include the possibility of an object understanding of the realizing 

aigorithm in stage 1. Most of the students we studieâ appeared to either have a full object 

understanding of the realizing algorithm, or be close to obtaining such an understanding. 

Certainly, none of the students studied was thinking at the action level of understanding 

(NOS) .  

Stage 2 

We have described stage 2 thinking of shifiing representationî as "the Cartesian 

form is too hard, the polar form should be easier for a division problem". As previously 

rnentioned, this type of thinking appeared to be the justification for shifts by al1 students 

-2 + 2i 
who shifted at question 6 (- ). We have aùeady noted that students made a number 

(1 + i)3 

of minor mistakes when using the polar representation, such as not defining a branch of 

tan%, and when applying basic trigonometry. Thus, their thinking in the polar fom 

seemed to be l e s  advanced than in algebraic or Cartesian representations: they had a 

mostly process understanding of sirnplifjing a complex fiaction using the polar 

representation, since almost every student was preoccupied with the details of the 

caiculation (compare with box 6.1). From our data we are identifjmg aprocess 

understandhg as: concemtd with the details of the calculation, does not look ahead to 

see if the caicuiation is likely to work, does not consider possible "short cuts" in the 

calculation, and does not bring prior howledge to bear on the present caiculation. In this 



case, for a student to exhibit object understanding of the polar fonn they would have to 

show recognition of how closely the polar form is related to geometric methods, in effect 

some sign of what we have identified as stage 3 and stage 4 thinking. Some students did 

use a picture to find the angles in questions 6 and 7, but we believe this is still stage 2 

thinking in aprocess mode, because they did not use their picture to analyze the probfem 

or otherwise obtain the answer. The purpose of their picture was solely to find the angle 

using trigonometry. The best evidence of a process understanding is that those students 

who drew a "trigonometric" p i c m  faiied to rcalize that their picture could be used as 

part of a geometric solution. To these students the üigonomeüic picture was nothing 

more than a device to find the arguments, which were needed to do the rest of the 

computation. Thus, it appears that almost d l  the students interview4 had a process 

understanding of the polar fom, and certainly none had a clear object understanding. We 

have not attempted to further identifi action and process (APOS) understandings in stage 

2, because our data is somewhat obscured by the difficuhies that students had with 

trigonometry. For example, a student might have a good understanding of the polar form 

in a concepnial way, but appear to be applying thc rules routinely because they are unsure 

of the trigonometry. Thus, h m  our data, it is unclear if such a student is exhibithg 

action or process understanding in the APOS model. 

Stage 3 

Recall that stage 3 thinking was identified as "the arguments of the numerator and 

denominator appear to be related (either equal or negatives), so cancellation or polar fom 



should be easiet'. We have noted that one student did question 3 (*\+y) - using 

cancellation, and that two others began theic solutions to question 5 (-) wing a 

spbolic approach. This shows some ability, even good ability to shift representation 

wisely, as well as a knowledge of some of the symbolic methods (if we count cancellation 

as a symbolic methad). However, these students were not able to use the symbolic 

methods (except for cancellation) to finish the questions. Thus, these students appeared 

to have an awareness of symbolic methods and some kmwledge of when to shift, even 

though they could not actually use symbolic methods. 

The only conclusion we think our limited data on stage 3 thinking supports is that 

the Lest, Post, and Behr criteria (with our addition) do not have any order, in effect, a 

student rnight have any level of understanding of any one or more of the criterion. For 

example, the student who showed the most advanced thinking as far as shifüng 

representations was concerned, was one of the least able to do calculations in a particular 

representation. This would be an interesting phenomena to study in a m e r  research 

project. in any event, we have studied the method of cancellation in some detail in a later 

section in comection with another set of questions. 

6.3.3 Summary of Shifting Representations 

In summary, we have found that the students we studied were proficient with the 

Cartesian and polar forms, somewhat l e s  proficient translating h m  one form to the 

other, and at the time of the interviews, nearly half the students did not have good 



judgment about when to shift to a simpler representation. We think our data supports the 

Lest, Post, and Behr criteria for understanding fractions: 1. Awareness of several 

representations. 2. Fluency with each representation. 3. Fluent translation ability. In 

addition, our data suggests that a fourth criteria needs to be added, at least in the case of 

complex fractions: 4. Good judgment about choosing and shifting representations. 

We also believe our data shows that most students had an object understanding of 

algebraic and Cartesian vector methods, but only a process understanding of the polar 

vector methods. 

6.4 i is a Unit Vector 

We asked a number of questions dunng this study fiom which it became apparent 

that many students think of i as a unit vector in the imaginary direction. In this section 

we anaiyze the data fiom two questions that we think supports this conclusion, discuss 

what is wrong with the unit vector picture, and investigate the origins of the 

misconception. 

From our perspective the problem we are discussing in this section is 

fiindarnentally diffaent than the problem of shifting representations covered in the 

previous section: the question hm is 'Cm the idea of direction and vectors that is 

familiar h m  Calculus on R2 and Linear Algebra be extended to the Complex plane?'. 

Put another way, is it appropnate to use the analogy of R2 to understand the vector 

representations of complex numbers? This question is far more focused than the question 

of shifting representations. 

Thus ou.  analysis in this section, on i as a unit vector, is h m  the perspective of 



analogy, which we describe pnsently. In an article on the role of algorithms and analogy 

inthe history of mathematics, Phillip Jones [83] describes how 

"Many mathematical steps forward are the result of inductive leaps, spurred by 
analogy, and facilitated by eRkctive aîgorithms ..." [p. 131. 

For example, Jones explains how Robert Argand, in 1806, attempted to explain i 

and -i as mean proportions between 1 and -1, by drawing a unit circle and considering the 

proportions geomeûically. We beIieve that data presented below can be interpreted as 

showing that students are readily extending their geometric pictures of R2 to the complex 

plane. 

6.4.1 Interview Questions and Results 

Class 3, Interview #!, Question 6 

The fust question we will discuss is the most revealing indicator of student 

thinking of i as a unit vector. This question was class 3, interview #1, question 6 (we 

have only included the relevent parts): 

6. Use the diagram to fil1 in the blanks below. Select a point for each item. The 
large circle has radius R, and the mal1 circle has radius 1/R. The f i t  one is done 
for you (and tells you where z is). 



i) zis A v) Im (Z) is x) Irn z is 

ii) 121 is vii) 14 is 

The results that interest us, in this section, that came out of this question are that 

two thirds of the students in te~ewed said that In@) is point E, and that ïm z is point 1. 

We believe that the correct answers, within the context of the course are: there is no point 

that best represents im (Z), and Im z is best represented by C. The fact that there is no 

point to best represent Im (Z) was an oversight, but none of the students discovered this. 

We discuss the correct answers further in section 6.4.2. We have tabulated the complete 

results for parts ii), v), vii) and x) in table 6.2 . 

Table 6.2 

Results h m  Question 6, Interview #1, Class 3 

Part B C E I R  . 
2 / 6 0  O O 511 

The entries in the table before the slashes are the number of students who chose 

the point heading the column as represcnting the point deScnbed in cach part before 

rigomus questioning on our part. During interviews we challenged students quite 

vigorously on their answers to this question, al1 but telling them that they were incorrect 

in some instances. The entries after the slashes indicate the nurnber of studenîs who 

chose the point in the column as the best representation, ajer vigorous guestioning on 

ourporf. For lil and 14 one student gave the aLlSWer J C ' ,  which has not bee. 
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entered in table 6.2. In addition, one student couldn't do the question (recall that a total 

of 9 students did interview #1, in class 3). 

In addition, to the numerical data, we think the interview excerpts given below 

(taken h m  student interviews on ihis question) strongly support the conclusion that 

many students are treating the real and imaginasr parts of complex numbets as vector 

components. 

Ml. 

P. 

Ml.  

Ml. 

Ah, for the next one, the imaginary part of z, z is point A, the imaginary 
point is 1. 

W h y  is that? 

You're simply looking at the vertical component of A. 

OK. 

--, 1 don't know any better way ta explain it. 

OK, are you saying that the imaginary part is real or imaginary? 

.......... Yeh, it is a real vaiue, but in the complex direction. 

OK. The complex direction being pure imaginary? 

Yes. 

So you're saying the imaginary part of z, includes the i then? 

So, yeh, it's, the imaginary part of z is, the magnitude of the vertical part, 
in units of i. 

Times i? 

Times i. 

And the other student: 

P. Yeh. OK. - if you are thinking'about the imaginary part of z or z bar, 
whatever it is, as a compIex number where wouid it be? 
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Um, .... .... . . . . . . . .It would be E. 

E? 

Yes. E for z bar, and 1 for z. 

OK, if 1 take, if z is quai to x plus i y, 

yep. 

What is the imaginary part of z? 

It's y. 

It's y. Would that be real or imaginary? 

It's imaginary. 

The y is? 

The y is a real number, but it gets multipliai by i. 

OK. 

So it appears here, because this is the i mis. 

OK. Alright, so let's go on. 

These interviews show quite explicitly that these two students are treating i as a 

unit vector. On the other han& data firom the next question has to be analyzed in some 

detail before it becornes clear that part of the conceptuai difficulty involves thinking of i 

as a unit vector: 

Clam 3, Interview #2, Question 2 

In class 3, interview #2, question 2, we asked: 2 a) 1s 3i < Si? We expected some 

students to give the correct answer to this question, so we planneci to ask than if 

3 < 5, if they auswered comt ly  to question 2 a). 0s solutions to these questions can be 



found in appendix 4 and the results are tabulated in table 6.3. 

Table 6.3 

Results of Question 2, Interview #2, Class 3 

1 Question 

-- 

In table 6.3, the columns headed "Yes" and ?No" are the number of students who 

were sure of these answers. The column headed "Yes, Unsure" indicates the number of 

students who said yes, but were not sure why. The column headed "Analyzed" is the 

number of students who eventually concluded (with lots of help fiom us) that there was 

no order on the complex nwabers (if the usual ordering mles are to hold). Finally, 

several students found a resûîcted ordering of some sort, which is recordai in the column 

headed "Restricted". 

We believe the following interview illustrates that the bais for the 

misunderstanding heid by students who answered these questions (one or both) 

affhatively, is thinking that i is a unit vector. Notice how K repeatedly refers to the 

idea of direction, which is equivalent to thinking of the imaginary and m l  axes as having 

unit vectors associated with them. 

Excerpt of Interview #2, Class 3, K., Question 2 

K. 1s 3i l e s  thau Si? Um, less than, ..I guess, Fm not mre what they mean. What 
exactly do they mean, but the modulus of ihat is certainly less than. It's less than 
that on the imaginary axis. 

P. Weli, that is a way you could look at it, but we're not looking at the modulus, I'm 
just asking you, do you think that's reasonable that three i should be l e s  than Si? 
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Um, it loaks reasonat,le to me, but there's not reaily a definition of greater than 
and less than is in the complex plane. 

OK, weii, let me ask you this. As cornplex numbers is 3 les  than 5? 

Yes. 

It is. OK So let's write that down, 3 < 5. 

OK. 

If 1 add i to both sides is that OK? 

ï'm not sure, because if you were to multiply that by negative one, then you 
change the..... as ah, -what it needs to be when you multiply by i. 

Well, 1 just want to add i to both sides. 

Just add i? 

So that's still OK? 

Yeh. 

So i plus 3 is l e s  than 5 plus i? 

OK. So 1 guess in ihat case you are laoking at the modulus. 

OK, can 1 add three i to both sides? instead of i? 

Oh, ...[ laughs], um, go back, 1 guess if p u  can add three i, you'd just be addhg 
individual i's., right? i'm not sure you can add i's to both sides. Um, because, 
theregs once there's greater than or les  than what do you mean? 

Weli suppose we want it to be an order that obeys the usual des. 

OK. 

You might have to extend it, k a u s e  we have i now, but we just want aU the d e s  
that alnady hold to Md, we might nccd some more, but, 

OK. 
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OK, but how does l e s  than, how's Our, - d l  the niles. 

Well you meau the  les, iike, multiply through by a negative, flips the sign, it's 
got to be transitive, if 3 is less than 5, and 5 is less than 8, then three is less than 8, 

OK, so if we follow those niles, then 1 guess it's true. ..... Add three i to both sides, 
you come up with 5 + 4i, and 3 + 44 and, urn, 

So are you OK with that? Maybe, not too cornfortable, but, 

1 guess it's just the --, yeh, 1 tbink, this is --OK. 

OK. So let's backup to three less than 5, and what happens if you multiply by i? 

You have negative three l e s  than negative 5, which isn't tme. 

OK, so you're backing right up to three i less than five i? 

Yes. 

But you never agreed to that did you? 

No. 

You did agree to 3 less than 5? 

Yeh. 

So 1 suggest we multiply that one by i. 

OK, and that works. But if you multiply this by i then it doesn't work. 

OK, so? 

1 don't thhic it's possible to multiply by i. 



OK. So what arc you saying then? We cm have this order as long as we don't 
multiply i? 

Yes. Weil 1 think that order is true if you just look at nurnbers on the real axis. If 
you just go in one direction, you cm say one happens after the other. For the 
complex plane, if you just go in one direction, right? 

It doesn't matter if it's real, you can order stuff if it's like this, but you have to 
specify a direction in which to order stuff. 'Ibis is only tme if you specify an 
order. 

And um, but what happened to the multiplication rule? We found that, 1 mean i is 
certainly on the imaginary axis. So there's a number on the axis and we can't 
multiply by that to make it work. 

OK. But if you followed this in this direction y hem, then it would be hue. 

OK. 

But, 1 guess if you follow dong in this direction it wouldn't be tnie. It depends on 
what direction you go, you follow? 

Yeh, 1 understand what you mean, and in that sense 3i is less than Si, right? 

Yes. 

Ok, but we don't have a multiplication rule, is that tme? 

Yes, there is no multiplication d e .  

OK. 

If it's not, 1 guess there's stili a multiplication rule for real numbers, but it doesn't 
follow for i, 

This interview excerpt shows that K clearly is thinking about the ordering 

problem in tenns of directions, in particular, the imaginary axis is a direction, in effect a 
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unit vector. 

6.4.2 Analysis of Question 6 (Class 3, InteMew #1) 

We begin our analysis of this question by first discussing our solutions to parts v) 

(Im (z)) and parts x) (Im (2)). We have already noted that we regard the correct answers 

to be points -C and C, respectively, on the real axis, aad that most students regarded the 

correct answers to be points E and 1, respectively, on the irnaginary axis. It has been 

suggested to us that the pmblem is somewhat ambiguous, in that it is unclear if we 

wanted Im(z) interpreted as y or (0, y). In the h t  place we emphasize that class 3 did 

not use the vector form, z = (x, y): As stated in the text, "Moreover, in keeping with ow 

philosophy of avoiding pedantics, we have shunned the ordered-pairs interpretation of 

complex numbers and retained the more intuitive approach (grounded in algebraic field 

extensions)." Saff and Snider [41, p. ix]. The class 3 instmctor consistently avoided the 

z = (x, y) form. Thus, class 3 students were not faced with the problem of distinguishing 

between (O, y), y and (y,O), so that even if there is an ambiguity in this question for an 

experienced mathematician, class 3 students did not have this choice. 

On the other hand, if we consider z in the algebraic representation, z = x + iy 

(which was used as a vector reptesc~ltation in c h  3), there is little ground for arguing 

that there is an ambiguity, since there is no need to distinguish between y and (0, y) in 

this notation. There is no evidence in our data (that we can find) that any student 

confused y with iy. Accordingly, we belicve that, withia the context of class 3, the only 

correct tesponse for Im (2) is point C. 

Having said that what it all boils d o m  to is that when we plot a complex fuaction 
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do we plot the domain or the range? If we do the plot on one set of axes, as is common, 

then we plot the range, since the domain is usuaily not interesting. Therefore, plotting y 

on the imaginary axis is taotamount to plotting the domain of the im(z), whereas, the 

default procedure is to plot the range, that is h ( z )  should be plotteà on the mi axis. 

Thus, this question maybe confounded by the complications of plotting complex 

functions, but we believe the results are interesting anyway. 

As already mentioned, we believe om data on these two questions shows that 

most students intewiewed had a strongly held conception of i as a unit vector (and 1 as a 

unit vector). The arguments in favour of this conclusion that corne h m  the fkst question 

are: 

1. Al1 eight students initially chose E and 1 on the imaginary axis, for parts v) and 

x) respectively, and six out of the eight stuck to their answers even after close 

questioning. En addition, some students actually explicitly stated they were treating the 

Im(z) as having a direction dong the y axis (see two interview excerpts below). 

2. Even though five students chose R as the ansver for parts ii) (121) and vii) (Iz(), 

d e r  questioning al1 but one changed their answers to B. This suggests that students did 

understand the diagram. 

Arguments against the conclusion that the students intervieweci essentialîy think 

of i as unit vector, are: 

1. Students didn't understand the diagram as evidenced by the five students who 

said the answer to parts ii) and vii) is R 

2. It is unlikely, at this stage in the course, that students have made the conceptual 



leap fiom treating Im(z) as an object (component of z), to thinking of h(z)  as a function 

mapping C ont0 R, especially as the diagram is confined to one set of axes. If students 

were thinking in terms of the former then possibly our results on this question are 

confounded by the ambiguity mentioned above: students were not distinguishing 

between y and iy. If students understood Irn (2) as a mapping, then we cannot see any 

explanation for theu responses on this question other than that these students were 

treating i as a unit vector. Thus, depending on which understanding students had of Im(z) 

it is possible that our diagram does not fairly assess student knowledge. 

To decide amongst these arguments, we need to look fiirther. As can be seen 

h m  the interviews excerpts of the first question , we pushed students quite hard on the 

question of where h ( z )  should be in the diagram. Nevertheless, only 2 out of the 8 

students who said that the answer to Im(Z) was E, on the imaginary axis, changed their 

answers to C, on the real axis.. Since students did very well on other parts of the 

question, we think our data shows that they did understand the question, but have a 

solidly held belief that i c m  be tnzated as a unit vector (also 1 can be treated as a unit 

vector). 

6.4.3 Analysis of Question 2 (Class 3, Interview #2) 

Table 6.3 shows that only one out of eight students detinitely rejected the ordering 

on the complex numbers (using the usual des) ( R e d  that question 2 was "1s 3i < 51 ?'. 

Unfortunately, most of the shidents did npt know how to analyze this question. By this 

we mean that students did not îûink of listing the d e s  for manipulating < on the real 

numbers and attempting to apply (exteud) those d e s  to the complex numbers. 
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This meant tbat we had to help thcm substantially. For example, we had ta 

remind most students about the usual rules, such as, multiplying by a negative nuniber 

reverses the inequality. in addition, with the exception of the one student who said no to 

the whole h g ,  we had to suggest to al1 the students the idea of trymg to define how i fia 

into the ordering scheme. Three students arrived at partial orderings of some sort d e r  

we intervend by showing them the niles for < for the real numbers. Al1 of these students 

seemed to be well aware that their pmposed orderings were of little use (they realized this 

by themselves), and theu persistence with the orderings they found seemed to be due to 

ovw enthusiasm, rather than king unaware that thé ordering we choose needs to be 

compatible with the multiplication and addition operations. (For the purpose of solving 

inequalities, the ordering needs to be compatible with the addition and multiplication 

operations.) 

Anoîher important point of confusion that students had when doing this problem 

was bat at least four students had to work hard to keep h m  thinking that the moddus 

function induced an ordering on the complex numbers: these students hought that 

3i < 5i, because 13ilC [si[. The ordering induced by the modulus function is certainly 

usefûl geomeüically, for example, to dethe disks, but since it doesn't obey the usual 

niles (if la1 c lbl, it is not tnic in general tha! la +cl c Ib +cl), it doesn't q u i @  as an 

ordering on the complex numbers. We have discusseà the ordering in much more detail 

in section 4.2.5.4. 

The d t s  h m  the ordering questim, while somewhat unclear, gives Mer 

evidence to support out claim, kst made in section 6.32 that many sîudents think of the 



imaginary axis as an actual direction, in the sense of vector calculus. Notice how in the 

interview, K. concludes that the ordering on any line in the cornplex plane is preserved if 

we multiply by a real number. K is clearly trying to extend the idea of a line in R2 

(through the origin) as a subspace (over R), to the complex plane. This works in Rz 

because there is no vector product in R2, so we do not have to wony about someihing 

analogous to complex multiplication, but the extension to the complex plane just does not 

work: the only sub-fields of the complex numbm are on the reai axis (red numbers, 

rational numbers, etc.). Thus, because of complex multiptication, no line except the real 

axis is a sub-structure (fields, spaces, etc.) of the complex plane. 

Thus, on balance, we think the interview evidence (given in section 6.3.2) is 

compelling enough to condude that many students are ireating the real and imaginary 

components of complex numbers as vector components, in effect, with an actual direction 

attached to them, as opposed to scalars. We believe that the origin of this misconception 

was that, in al1 three classes studied, the algebraic representation, z = x + iy, was 

representeâ geurnetrically in a plane, so students are making the natural conceptual leap 

of assigning a direction to the x and y axis Ui the usual vector sense. In effect, i is treated 

as a unit vector. 

The problem of ordering the complex numbers is addresseci in the class 3 textbook 

@age 6, exercise 30), but was not covered in class, according to our notes. As usuai in an 

introductory complex analysis course, ihe emphasis is on what works, rather than on what 

doeso't work, so it is not sucprishg thu the frt  that the complex numbas cannot be 

ordered is not emphasized. Neverîheless, it is of some interest that students were not able 



to successfully analyze this question, without lots of help h m  us. 

The main difficulty with treating i as an unit vector arises in using the extended 

complex plane and the one point compactification topology that goes with the extended 

complex plane. These topics were covcred in ciass 1 and class 2, but we have no data on 

the one point compactification topology, so we do not know to what extent treating i as a 

unit vector is a problern iatn in the course. 

We would like to r e m  to the issue of direction in the complex plane h m  a 

topological point of view (for background to this discussion see section 4.2.5.3). We 

have already noted in the sections on vector representations of complex numbers that 

many of the students interviewed have a strongly held vector picture of complex 

numbers. In particular, the imaginary axis represents an actual direction, in the sense of a 

real coordinate mis. Geometrically, at lest  on a local scale, this makes some sense, 

because we can use the modulus ordering to order the points along 8 = constant curves. 

We have seen, however, that there is no ordering that is compatible with the 

multiplication and addition operations. So taking into account multiplication and 

addition, the usual Cartesian represcnbtion is quite misleading, because we do not have 

direction in the complex numbers. In other words, the usual vector representations give a 

label to each complex number and organizes the complex numbers in a way that gives the 

addition and multiplication operaîiom a couvenient geometrical representation, but that is 

ali: it is an incorrect extrapolation of the vector representation to infer directions in the 

sense that we have direction in, say, R2. 

The distinction we are making here is not easy for students to understand, but the 
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key to understanding that there is no inherent direction in the complex numbers, as there 

is in R2, is understanding that there is no ordering. Accordingly, it is somewbat 

surprishg that so much is made of the vector picture in an introductory course, but that 

the inevitable extrapolations that students are making are not tempered by a more in depth 

study of the ordering question. in any case, as long as the extended complex plane is not 

used too much the misconception is not too serious, since the vector representation is 

locaily adequate. 

6.4.4 Summary of i is a Unit Vector 

We have found substantiai direct and indirect evidence that students view i as a 

unit vector (dso 1 is viewed a unit vector). Most students interviewed appear to finnly 

believe that the imaghary part of a complex number should be represented on the 

imaginary axis, rather than the real a i s .  Our data is not detailed enough to determine if 

the belief is held due to confusion about plotting the domain or range of im(z), or is due 

to a beii ef that i is a unit vector. in addition, the students Uiterviewed appeared to be 

extrapolahg the notion of direction h m  R~ ont0 the complex plane. 

6.5 Basic Facts and Calculations , 

Under the ShiAing Representations section (6.3) of our Multirepcesenîations 

theme, we looked at how well students were able to judgr when to shifi to another 

representation to simpliQ a problem. We have also collected a large number of results 

about the individuai Cartesian, polar, and symbolic (or aigebraic) representations of 

complex numbers in this section. We have organized these d t s  into the headings, 

Cartesian calculations, polar calculations, and symbolic calculations. Thus, in this 
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section we will analyze results of questions that showed students having various problems 

with each of the representations of complex n u m h  studied separately. 

6.5.1 Cartesian Calculrtions 

In class 3 we attempted to investigate in detail students' understanding of several 

aspects of the z = x + iy and z = (x, y) representations. We were interested in how h l y  

students understood that these tepresentations treat the cornplex nurnbers as a vector 

space, V over a field K, where V = RI, and K = R (in other words, x and y are r d ) .  

Complex multiplication is then just a vector product that defines a field structure. 

In this section we will report on two questions that we asked about Cartesian 

calculations. The first question was intended to study how well students understood that 

x and y are teal in the z = x + iy and z = (x, y) representations. The second question was 

intended to study d e n t  understandhg of simplifling a complex ûaction by cancellation 

of a common factor h m  the numerator and denorninator of the fiaction. 

6.5.1.1 Cartesian Calculations: x and y are real 

In the first of these questions, we asked students about the vector representation, 

z = (x, y). Unfortunately, (as already mentioned in section 5.4.2) the t e x t h k  and 

instructot for class 3 did not the use the z = (x, y) representation, but the results were 

usefiil anyway. 

6.5.1.1.1 Interview Questions and Results 

This question waç asked in the third week of classes, and there were nine respondents. 

Class 3, Int&ew #1, Question 2: 

2. If we use the z = (x, y) represmtation for complex numben, which of the 
foliowing are correct statemctlts? (Chle the eomt ones) 148 



The results are tailied in Table 6.4. 

TabIe 6.4 

Results of Question 2, interview #1, Class 3 

Incorrect-Other 

The entries in the row denoteâ "Correct" show the nurnber of students who said 

the given part was correct. There were essentially three reasons given by students for 

rejecting an expression as incorrect: 1) The right hand side of the equation didn't 

simplify to something equal to the iefi hand side. 2) The expression was d e d  invalid 

because x or y, or both were Unaginary or cornplex in the given expression. 3) The 

expression was rejected by inspection because the coordinates obviously weren't qual. 

The entries in the rows denoted "Incorrect - Simplified", '%correct - Complex" and 

"Incorrect - Unmatched" record the number of students who chose these auswers, 

respectively. The "incorrect - ûther" row is the number of students who rejected the 

expression for some other reason, such as a miscaiculation or they didn't lmow. 
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The only parts that are correct are a and g. The rest ate wrong because îhey 

involve i's. In the z = (x, y) representation, i is represented by the ordered pair, (0,1), so 

expressions in this representation ihat contains i are, by definition of the representation, 

incorrect. in other words, the symbol i is not useâ for a in the z = (x, y) 

representation. 

The students intervieweci demonstrateci a wide variety of thinking on these 

questions: there was considerable variation in the exact sets of correct answers selected 

by students as well as their justification of these answers. We have included two 

interview excerpts to show how studenls thought about some parts of this question. 

Interview Excerpt 
Class 3, Interview #1, Question 2 

This one here, .................. 1 thhic there's something wrong with this [h.] 
statement where it's got 1 plus Si, because, for it to be in the imaginary, 
complex plane, both these numbers have to be real. 

Because, otherwise it's just, it has no meaning, because this would have, 
this only bas reai numbers hem, and this only has reai numbers here [K. is 
indicating the x and y components of z = (x, y)], and you have complex 
numbers in both. 

OK. So h) is wrong because these [2 + i and 1 + Si] numbers aten't real? 

Yes. 

OK. So what abut  some of the other ones, they aren't real in this one 
either [c)]. 

But when you muitiply them together they end up being real. 

Oh, OK, as long as thete's a fgctor of i out there that makes them real? 



Yes. that's fine. 

OK. Um, 1 just, one other thing, um, when you did this one [part of, I'm 
not sure if at this point you're rejecting ail of these, just because they are 
not real, but, when you did this one, you rewrote that as 1 plus 2i, and then 
multiplieci, and I'm just curious why you didn't do that with some of the 
other ones, like you could write this [part h)] as 2 + i, plus one plus Si ail 
times i. 

....... Um, 1 guess because 1 also think there is oniy an (x, y) representation 
on the complex plane, and this one here, urn, because the -, the - get r d ,  
in a reai system, but this one here is not in the vector fom, the (x, y ) 
representation. 

OK, like I'm just making sure 1 have this right. You're saying that you can 
just throw that [h.] out the window because they [the x and y components] 
are not reai. 

Yes. 
You just don't even consider it any f i e r ,  right? 

Yes. 

h) we don? consider any further because they arenlt real. 

Yes. 

But in f) x and y were real, you can put it in the f o m  1 plus two i? 1s that 
correct? 

Um, yeh, um, 1 guess, ..I guess you could put it into this fonn h m ,  -- 
algebraicaily, but this [part h)] wouldn't have any meaning geometricaily. 
1s what I'm trying to say. Whereas this one here [part f)] does have 
meaning geomeûicaliy. You c m  put this in the fonn (1,2) and (1,2) and 
both these are real, and you can multiply them together, multiply the 
rnodulus and add the angles. 

OK, so, 1 just want to get - on this, so you could put them in here just as 
an algebraic nile, but what would that mean? 1s that what you're saying? 

Well, 1 guess you could get some sort of feeling for what that meant 
geometricaily, when you did that, then you could interpret that back into 
what this function means geometricaliy. 



K. 1'11 try that ..... You still get a wrong answer. 1s that right? 

P. OK. 

K. And now if you have, so you end up with, negative 3, one, two, three, and 
positive 2. Yeh, 1 guess, 1 guess you just have some, 

P. OK, so now you're saying this fails because you don? get the right 
number? 

K. Yes. 

P. OK. OK, let's go on. We're on to question 3 a) now. 

As can be seen, K. vacillates between believing that x and y have to be real, and 

ailowing them not to be real under certain circumstances. The next interview excerpt 

gives fiuther evidence that students do not understand if the scalars in the vector 

representation are real or complex (this excerpt refers to part E) [3 + 6i = (1+2i)(l, 2)l). 

... Ah, same goes in here, ...... um , if you take a complex number and 
multiply, and you multiply by, 1 suppose it's Like multiplying, like 
multiplying a vector by a scalar, except the scalar is a complex number, so 
then for f) when you multiply your complex scalar into your vector, which 
is made-up of real numbers, you end up with complex parts in the --, x and 
y --. 

OK. 

-- notation -. 

Are you concluding in f), you're rejecting it because you're multiplying it 
by a complex number? 

By a complex number. 

Not a reai nurnber. 

Yeh. A real numôer by a complex number is going to be a complex 
number. 



P. If 1 rigged these [the question] so that the product was real, would it be 
OK? 

M2. As long as it was (3,6), yeh. 

P. OK, 

M2. --, um, yeh, then that would work. 

Here we see that M 2  does not object to multiplying by a complex scaiar, but 

rather, is arguing that the right hand side of E) cannot be equal to the left side, because the 

right side of the equation, afler multiplication, will have complex numbers in the two 

slots of z = (x, y), so this cannot be equal to (3,6). Thus, we have further evidence that 

students do not fully understand that x and y have to be real in the Cartesian vector form. 

6.5.1.1.2 Analysis of Cartesian Calculations: x and y real 

It is possible to look at this question in several ways, for example, as a question 

primarily about manipulative skills, or a question about the structure of a vector space 

(we can think of the complex numbers as a vector space consisting of vectors in Ra over 

the field R, with a vector product that defines a field on R'). But we have chosen to focus 

on the symbolic aspect of the problem. In other words, we are considering this question 

to be a question primarily of form: did students understand the z = (x, y) gresentation, 

in particular, did they understand that the scalars in this representation bave to be real? in 

this form, we expect the nurnbers appearing in the ordered pair to be real. Any scalars 

outside the parentheses are d. Thus, without any understanding of the significance of 

the form, in effaf the vecbr space structure, kdents might understaud the structure of 

the form. Finally, when analyzing our data we looked for signs that the students 



intewiewed w m  obtaining an object understanding of this representation of complex 

numbers. 

Unfortunately, we have found that there is almost no mathematics education 

litnature about the question of mathematical form in the sense we are asking. Most 

research seems to be concemed with student understanding of the significance of the form 

in question (for example, limits), or how to improve student thinking by impmving their 

understanding of the significance of the form in question. For example, Dubinsky, et al 

[53], Williams [54], White and Michelmore [SI, Thompson [56], and Confiey and Smith 

[57] are al1 of these types. 

Thus, we have devised our own classification of how students think about fonn. 

We have identified four general types of thinking about form from our data on this 

problem. 

1. A mechanical understanding. Students who thought dong this line were 

entirely concemed with whether or not the right hand side of each expression could be 

translated (mechanically, using whatever other knowledge they could bring to bear on tiie 

problem) and simplified to the left hand side. Students who followed this course, were 

unconcemeci about questions of fonn, or the nature of the z = (x, y) representation. Thus, 

this type of understanding corresponds to an action understanding in the APOS rnodel. 

2. Simplification to (3,6). We believe that students who tried to simplify the 

right hand side ta (3,6) showed slightly more insight than a mechanid understanding. 

The reason is that these students appear to be at least using their outside knowledge to 

bear on the z =(x, y) representation, as opposecl to just doing the problem however they 



could. Whereas, stage 1 thinking ignores the form of the z = (x, y) representation, stage 2 

thinking at least recognizes that therc is a new form king introduced in this question, as 

shown by the attempt to put the answers in the z = (x, y) fonn. In the APOS model this 

stage corresponds roughly to the pmcess of interioriration, that is, a student in this stage 

is acquiring a pmess understanding of the fomal structure of the z = (x, y) 

representation. 

3. In stage 3, students recognized that expressions on the right hand side were not 

correct (except for a. and g.), but attempted to correct them. These students were clearly 

stniggling with what appeared to be incomt usage of the z = (x, y) representation, but 

rather than dismiss those expressions in which there are errors, they üied to make sense 

of them. This shows a more advancd understanding than stage 1 or 2, but also shows 

that these students do not yet understand that mathematicai form cannot simply be aitered 

at will: there are precise rules that need to be followed. This last point indicates that 

these student do not yet have an object understanding of the formalism, but they have 

acquired a working knowledge, so stage 3 conesponds to aprocess understanding in the 

APOS model. 

4. In stage 4 thinking, students rcaiizcd the form was not conect, so the 

expressions were not correct (except for a and g.). The one student who exhibiteci stage 

4 thinking throughout the question, rejected parts e.), f.), and h.) without any caiculation 

or furîher consideration, because of the i's appearing in these expressions. Other sîudeats 

showed stage four thinhg in th& answers to one or two of the problems. The one 

student who rejected s e v d  parts because of improper form likely has an object 



understanding (in the APOS model) of the formalism of the z = (x, y) represcntation, 

whereas the studcnts who rejected one or two parts because of improper form are likely in 

the process of encopsulation. 

Witb these stages of thinking identified we will now give a few examples of how 

the stages can be used to analyze the results of this question. Rough results for d l  

questions are tabulated in Table 6.4, but to see examples of the four stages of thinking we 

need to look at interview transcnpts and worksheets. 

Al1 nine students h t  determined that (b) [3 + 6i = 3i(-i, -2)] was incorrect by 

simplifjing the nght hand side to get various answers not equal to 3 + 6i. None of the 

students objected to the i's on the nght hand side of this equation when they first 

attempted it (one student recovered later). Thus, al1 but one student thought about this 

part of the question as a problem of simplification, with apparently almost no 

understanding of the structure of the z = (x, y) form. Seven of the nine students 

interviewed did simplifY to z = (x, y) fom [(3, -6i) was typical], however, thereby 

exhibithg what we have called stage 2 thinking. 

It is not too surprishg that the complexity of the question affécted the level of 

thinking according to our scheme: seven or eight students wed stage 2 or 3 thinking for 

parts (a), (b), (c), and (d), but three students used stage 1 thinking for parts (e) and (0. 

Presumably this is probably best explainecl as reductionisrn: faced with complexities in 

unfamiîiar notation, some students retumed to the notation they knew best. 

Another variation of what we regard as stage 2 thinking can be seen in the second 

interview excerpt. Notice that M.2, does not objet to multiplying by a "cornplex scalar" 



if the answer cornes out to (3,6). Of course, in the vector representation of complex 

numbers we don? have "complex scalars", since complex numbers are vectors in this 

representation. 

A good exarnple of stage 3 thinking appears in the fint interview excerpts given 

above (with K). We can see h m  the excerpt that K switches back and forth, and is 

concernai with having a geometric interpretation of the misuse of the z = (x, y) form. 

Nevertheless, K does not quite reject the misuse of the z = (x, y) form altogether. Notice 

how K tries to find some reasonable interpretation of the representation with x and y 

complex, and also tries to interpret multiplication by a complex scalar. 

Another example of what might be stage 3 thinking is the case of part e.) 

[3 + 6i = (2 + i, -i + S)], 3 students decided that e.) was incorrect, because there was no 

way that 2 + i could be equal to 3, and lefi it at that. These students did not reject 2 + i 

outright, because of the i, as stage 4 thinking would require, but appeared to have 

changed their thinking fiom previous parts, where they attempted to simplify the right 

hand side. Our data does not indicate exactly why shidents chose a comparison approach 

on this problem, when they simplifiai in the previous questions. It might be because they 

sirnply did not look deeply enough ta find a way to simpiiQ the right hand side to 3 + 6i. 

(We expected some shidenis to say the right hand side was equal to 2 + i + i(-i) + Si = 3 + 

6i, and four students did do this). 

Aside h m  the one student who did the whoIe question using stage four thinking, 

some evidence of stage four thinking can be seen in answers to part d.) 

[3 + 6i = (3,6i)]. Ali of the students who rejected d) by inspection, did so specScally 



because of the i in 6i, and not because 6i is not quai to 6, so this is evidencc of stage four 

thinking. However, we have to be careful, because of the problem WC have alrcady noted: 

maybe these students just had not thought of some way to simplifi (3, di). hdeed, as we 

have seen in part e) 13 + 6i = (2 + i, -i + 91, only one studmt rejected this part because of 

the i's on the right hand side. The rest of the students either said thÎs part was c a m t ,  or 

rejected it because 2 + i is not qua1 to 3. Thus, it is mt  clear if the answers to part d) 

show stage four thinking. 

It is interesthg to look a litîle fiirttier on parts d) and e), because seven out of nine 

students changed their tbinking between parts d) and e). Six students who rejected part d) 

because of the i in 6i, said e) was incorrect because 2 + i was not qua1 to 3, and there was 

no way to make it qua1 (say by multiplying by a scalar). û n e  student said part d) was 

wrong by calculation, but said part e) was m n g  because of the i in 2 + i. We think that 

the six students who went h m  stage four thinking to stage two or one between parts d) 

and e), probably did so because of îhe new complications introduced in part e): x and y 

are complex numbers in this part, as opposed to teal or pure imaginary. In addition, there 

is no scalar factor. Apparently there is a clear concepnial leap between pure imaginary 

components and complex components even a- third year University level. 

We think this question could be modified in several ways to gain considerably 

more understanding into how students are ihinking about these questions. For example, 

the order of the questions could be changeà, or say, a question like part e) with a scalar 

factor could be added to the lia. 

In addition, out analysis bas ignoreû the question of whether or not this question 



is confounded by the problems students have with the quai sign. For example, students 

sometimes treat 'G*' as though it is the word "is", or k a t  '5'' as though it was a vertical 

Line between debit and credit ledgers in bookkeeping. We have ignored this question 

because we cm see no evidence in our data that students did not correctly understand the 

qua1 sign in each question. That is, it appears that al1 nine of the students interviewed 

understwd that the task was to see if the two sides of the equation were exactly the same 

complex nwnber. There were of course, various levels of success of integrating this 

understanding (of the equal sign) with other aspects of the questions, such as, how to 

handle the i's. Nevertheless, it would be interesting (and important) to investigate the 

question of the equal sign m e r  (or possibly revise the question so as to exclude the 

equal sign). 

6.5.1.13 Conclusion of Cartesian Calculations: x and y Real 

In conclusion, we have analyzed our data on Cartesian calculations - x and y real 

as a mathematical form. We have identified four stages of thinking about this particular 

form that may weli be generalizable to ail mathematicai form. in any case, we think this 

particular question has opened a door to questions of mathematicai form that warrants 

fiuther research. 

6.5.1.2 Cartesian Calculations: Cancellation 

Under Cartesian calculations in our Basic Calculations category, the second type 

of question we asked that shed light on students' understanding of the z = x +iy 

representation involved the possibility of canccling a cornmon factor h m  the numerator 



and denominatot of a rational expression. Hence, we have called this section Cartesian 

Calculations: Cancellation. 

6.5.1.2.1 Interview Questions and Results 

The questions we asked here were as foliows: 

Class 1, Intentiew #1, Part 3, Question 3 and Clas 2, Inttrview #1, Part 2, 

Question 3: 

Class 3, Interview #1, Question 3: 

3. a) Put the following into a + bi form. 

-6 + 3i 
ii) - 

1+2i 

b.) Three students did the following problem three different ways. Which 
of them are correct? (Circle the correct ones) 

6- 9i 3(î - 3i) 
iii) - - = 3 

2-3- 2-3 

c. Put the following into a + bi fom. 

6+2i 
ii) - 

-3-i 

in these questions we were interested in whether or not students would tealize that 
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they could factor out a real number from the numerator, and then cancel a cornmon 

complex factor h m  the numerator and denominator. For exarnple, we wanted to see if 

2+2i 2+2i 2(1+i) 
students would simpliQ - as follows: - - - - - - 2 . h t  another way, we 

l + i  l+ i  l+ i  

a+ib 
were interesteci in determinhg if students reaiized that - - 

a+ib -" 

in addition, this question semed to bring fonvard student confusion about basic 

facts. To see this we have two interview txcerpts taken fiom the discussion of question 3 

6- 9i 3(2 - 3i) - b iii), Interview Nurnber One, Class 3: - - = 3. In the first excerpt, Ml is 
2-3i 2-3i 

uncertain whether they can cancel a complex factor from the numerator and denominator 

of a complex fraction. in the second, C is not sure what the scalars are in the z = x + iy 

form of complex numbers. 

interview Excerpt Number One 
Question 3 b iii), interview Number One, Class 3 

Ml. 

P. 

Ml. 

P. 

Ml. 

P. 

Alright, so part 3? ..... OK, m e  quotient of complex numbers, ...... so 1 
look at the numerator, and they have factored the numerator, they've taken 
a 3 out of it, 

And theytve done that correctly. So I see thai, this 2 minus 3i cancels in 
the numerator and the denominator, to get the right answei. of three. So 
part three is correct as weU. 

OK, summarizing, in 3? 

Summarizing in three, it was not necessacy to multiply by the complex 
conjugate of the numerator, because we could factor the numerator, into 
some, and it canceled the denominator. 

And thatts, tbat's allowed? To cancel a complex number h m  top and 
bottom? 



Ml 

P. 

Ml 

P. 

Ml  

P. 

Ml 

P. 

Ml. 

. ........ Um, ........ yes. A wmplex number divided by itself is one. 

OK, are you sure? 

No, I'd have to work out a general form a + ib, and then --. 

OK. 

Intuitively, i'd Say yes, 

OK, so you, 

1 would need ta, 1 would need to check that, in a general forrn. 

OK, you can check it on the side there if you want. 

So 1 would say that part ihree is correct. You can cancel the complex 
numbers. 

During this section of the interview, M l  attempted to supply a proof of the 

cancellation rule. Although they (we have used "they" to refer to Ml and other students 

being interviewai, as a confidentiality precaution to avoid identifying gender) thought 

they were successful, they were, in fat ,  incorrect (see below). Thus, it is apparent fiom 

this excerpt that Ml is not entirely sure of the basic niles of Cartesian caiculations 

(cancellation, in particular). Having verified this d e  (for themselves, in any case), Ml's 

confidence improved, as show by the last line. In the next interview excerpt we have 

more evidence that students are not sure what the scalars are in the z = x + iy formulation 

of complex numbers. 

Interview Excerpt Number Two 
Question 3 b iii), Interview Number One, Class 3 

C. And tbis is not correct. Oh, they didn't, they um, they factod. and -, 
tbis is also correct. 



OK. So in this one, what did they do again? 

They factored the numerator, they just took the scaiar value of 3, and then 
multiplied, W r e  lefl with 2 minus 3 i, if you multiply through you get 6 
minus 9 i, and then you can just cancel these [(2-3i)] out, and you get the 
answer. 

OK. Can 1 just ask you, you refetred to 3 as a scalar, can you elaborate on 
what you mean by that? 

Oh, ah, this is jwt a mai number, You can just multiply, 6 and 9 have a 
common factor of three, 

And then you pull that out of the complex, the rectangular expression for, - 
- a lot like vectors, so this like multiplying a vector by three. 

OK* 

And that's legal as far as 1 know. [laughs] 

Can you tell me what the ailowed scdars are? Are they just real numbers 
or camplex nurnbers? 

No, [This 'no' refers to the part of Pis question: "Are they just real 
numbers?l you should be able to factor, you should be able to factor even 
complex numbers. ..both the imaginary and the real component. 

OK. So, if 1 found some way to factor this or another problem as two 
complex numbers, and then cancel that would be OK? 

Yes, -. 

From this excerpt we can see that C includes complex nurnbers amongst the 

scalars in the z = x + iy fom. 

6.5.1.2.2 Analysis of Cartesian Calculations: Cancellation 

The results for question 2, classes 1 and 2, and question 3, class 3 are summarized 

in table 6.5. 
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Table 6.s 

Number of Students who Used Cancellation to Simplify Various Questions 

Question Number 
Numbtr 3, Ciass 1 

Ycs/TotaI 
215 

L 

Number 2, Cliss 2 
Number 3 a il. Class 3 

The entries are the number of students who simplifieci by cancellation (as opposed 

016 
1 19 . . ~  ~- 

Number 3 a ii), Class 3 
Numbtr 3 c 0. C l w  3 

to realizing the denominator), followed, after the slash, by the total who attempted the 

- ~ 

019 
319 

question. The results of question 3 b) was the same for al1 nine students asked this 

question: i) and iii) are comt ,  and ii) is incomt. 

According to Ml's worksheet (and the section of the interview omitted above) he 

"proved" the cancellation nile for complex quotients as follows: 

a+ib a+ib a-ib a' +b2 
---*-- --- - 1 .  
a+ib -a+ib  a-ib aZ +bz 

a-ib 
This is not a valid proof since we neeâ to know that - - - 1, which is what we 

a-ib 

are trying to prove. Of course, at third year University level, proofs of basic algebraic 

a + b  - 1 can be quite challenging, so we cannot take Ml's inability to facts, such as, - - 
a+ib 

supply a proof as strong evidence that Ml did aot understand the canceliation d e .  The 



main evidence that Ml is not sure is that they said they were not sure during the 

interview. 

In any case, it would be interesthg to investigate how students would supply a 

a+ib 
proof of -- = 1 [To prove this we need the definition of division, which says that 

a+ib 

a+ib -- - 1, if and only if, a+ib = I(a+ib). Then we just bave to use the definition of 
a+ib  

complex multiplication to show that the multiplicative identity for the complex numbers 

is the real number 1, so that l(a+ib) is just a+ib]. 

The results show that if students are alertai to the possibility of cancellation they 

will use it. This can be seen in the increased use of this method between parts a) and c). 

One student commented that cancellation did not seem very likely in most cases, so that 

they would not nomally look for it. However, this student decided that cancellation was 

a good idea when it was available. 

As might be expected, we found that most students revealed that they had various 

misunderstandings as they worked through these problems. For example, C's interview is 

notable because it gives some indication of how student confiision about vectors and 

scalars in the vector representation appears in a practical pmblem. C's contention that we 

can cancel a common complex factor even if there are other complex factors in the 

numerator or denominator is certainly correct. But it appears that C. does not distinguish 

between "complex scalars" and real scalars, as evidence by the response to the question: 

"Can you tell me what the allowed scalars are?" 

In addition to these two samples, other students specuiated that the cancellation 



method would Save t h e  and be more accurate. Furthamore, of the six siudents (in class 

3) that we qucstioned closely on the validity of the Cancellation Method, al1 six were 

confident that the method was wmt, although just two -dents attempted to prove it for 

tiiemselves. 

Thus, it appears that students are not leaming the cancellation rule (mal1 that 

2+2i 
almost no one in classes one and two aîiempted - by cancellation). Once they are 

1 + 1 

instnicted, they tïnd it usefiil and time saving. We believe that there is not tao rnucti of a 

conceptuai problem here: students simpiy are not leaming that they can cancel and 

mostly do not think of it themselves. Of course, teaching them mi@ involve more than 

simply telling hem: one student emphatically declared that they would definitely have 

dane question 3 b iii) by cancellation, but then did bath 3 c i) and ii) by realizing the 

denorninator ! 

6.5.2 Polar Calculations 

Thus far in our Basic Calculations subtheme, we have primarily studio d Cartesian 

vector foms. In this section we look at some of the data we wllected on the Polar Vector 

Representation of complex numbers. 

The polar representation of cornplex aumbm, z = reb, where r = 14 lis the modulus 

of z, and 0 = arg 2, is one of the principal representatioas of complex nuxrtbers. Recall 

h m  section 4.2.3 that the polar representation has several advantages: 1. Multiplication 

and division arc simplest in polar f m .  2. Geomeûic ideas are aAen easily reprtsmted in 

polar fom, for example, the polar parameterization is easiest on many uscful mtours. 3. 



The inherent multivaluedness of the complex numbers is readiIy (and simply) represented 

in the polar form. 

Even though the polar repte~entation is a vector representation, we have scen in 

section 4.2.3 that there are several characteristics of the polar form that are not prtsent in 

the Cartesian forms, such as, trigommetty, polar coordinates, a new multiplication d e ,  

and exponents, so that when we were designing our study, separate questions specifically 

on the polar fom, appeared to be well founded. 

Most of the questions we asked students that hvolved the polar representation 

were intended to study other topics, such as continuity auû analyticity, or shifüng 

between Cartesian vectors and polar vectors (SN the section on shifting representations). 

Nevertheless, we did ask three sets of questions intended to directly study the 

understanding that students had of the polar representation. 

6.5.2.1 Polar Calculations: Interview Questions and Results 

The h t  set of questions cornes h m  the first interview with class 3 students. We 

asked three questions to test their ability to do basic computations in polar form: 

Class 3, Intentiew #1 (third week of classes): 

Question 4 b): Simpiify the following given that z = re'. 

.* 
1- 

ii) 3eù +Se 
.* 

iii) 3e" + k'i 

Our second set of questions has altieady been pfesented in our Shifting 

Representations section. ( R e d  that we asked class 1 and class 2 students a series of 

questions designed to see hùw complicated a question had to be before they would switch 



h m  using Cartesian metbads to polar methods.) The issue of shifting is discussed in 

that section. It is interesting, however, to study what probIems students had with the 

polar fonn in those cases where they usai it. Questions 6,7,8 h m  

intemiew #1 for class 1 and class 2 students were as follows: 

-2 + 2i 8 2(1+ i)' 
6. - 7. - <fi + il6 

; 8. 
(l+i)' ' x x (-2 SNE) + 2i 

There was a slight difference in question 8 between the two classes: in class 1 the 

TI 
argument in the denominator was written as 15" (15 degrees) , rather than - In 

12' 

addition, one student in class one got a different version of interview #1 that didn't 

hclude these questions 7 and 8. 

The third question wc asked that was specifically designed to investigate student 

ability with the polar fom, was about DeMoivre's theorem. When tutoring students we 

noticed that they sometimes assumed that DeMoivre's theorem has variations. The 

correct statement is: (cos0 I isinû)" = cos@) i isin(n0). To examine this question 

fonnally, we asked class 2 students the following question in interview #3: 

Class 2, interview #3, Part 3, Question 5: 

(i cos0 + sine)' 
5. Find the real part of 

(ws28+isin20)' ' 

6.5.2.2 Polar Cakulations: Analysis 

The overall picture that emerges h m  studying the resulîs of these three sets of 

questions is that the argument is the problem. We believe that prîor to studying cornplex 

analysis, most students have been able to ignore questions of mdtivalueQiess. No 
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doubt, many student view the problems presented by multivaluedness of the polar fom as 

a nuisance, and simply try to disregard them, rather than embracing multivaluedness as an 

essential (and very interesting) aspect of the theory. in any case, we have chosen to 

analyze this question in terms of the connections between the mrs students made and 

their understanding of multivaluedness of the polar form. 

The correct answers to ail three sets of questions can be found in appendix 4. In 

the first set of questions, four students tried to put the answer in polar fonn in part iii): 

These students found the correct answer (-3 +Si) and then tried to convert 

-3 +si  = f i e  
,,,;,+., . Al1 four students got the modulus correct but made errors in 

the argument. For example, they used arctan x instead of Arctan x, dropped the minus 

sign in fiont of -513, or dropped the phase angle of n. These kinds of mistakes in 

themselves are not enough to draw conclusions of a general nature, but they are part of an 

overall picture. For example, the difference between arctan x and Arctan x is very 

significant, but complex anaiysis is perhaps the first undergraduate course a student 

would take in which failure to understand the difference between the two would lead to 

significant cnors. 

The resuits h m  our second set of questions is summarized in TabIe 6.6 (the 

conect answers are in appendix 4). 



Table 6.6 

Results h m  Questions 6,7,8, interview #1, Classes 1 and 2 

As we have already noted, almost al1 of the dificulty with these questions was 

Question 

6 
7 
8 

computing the arguments. One student acknowledged that they did not know how to find 

the arguments, apparently not realizing that they eould use basic trigonometry (or perhaps 

they had forgotten basic trigonometry). 

Class 1 
Attempb 

4 
3 
3 

Of the three incorrect or doubtfiil answers to question 7 using polar methods, two 

Clam2 
Attempb 

3 
3 
5 

Class 1 
Correct 

3 
1 
O 

were errors in the modulus and there was one incorrect argument calculation. 

Clws2 
Correct 

2 
2 
1 

Nevertheless, the primary difficulty students had (looking at al1 the student responses) 

was finding the argument. Two used their calculators. 

Finally, the results for question 8 were certainly the worse, with only one correct 

answer out of 8 attempts. Although some of the errors were arithmetic in nature, severai 

fit into our theme for this section. For example, one student was completely confused by 

15": it did not occur to them to convert îhis into radians. 

Two students found question 8 to be just too complicated (because of the 

arguments) and gave up. Another student applied DeMoivre's theorem to the 

denominator (it is not correct to do îhis dwctly, but in tbis case it happens to work), 

without justification, but could not maice t u e r  progress. This student explaincd that 



they were trying to convert sine into cosine and vice versa using the aâdition of angles 

identities for sine and cosine (so they could apply Euler's theorem). It clearly did not 

occur to this student to factor out i, to achieve the same objective 

Thus, there were several types of emrs and difficulties on this question: students 

could not tind the argument or modulus correctly for one or more expressions, rnisused 

DeMoivre's theorem, did not realize that they could factor out i in the denominator of 

question 8, and were intimidateci by a question that looks hard, but is straight forward if 

one breaks it into parts. The main difficulty students appeared to have when finding the 

argument was not being cornfortable or fluent with the arctan x fûnction. In particular, 

they were not fluent with the multivalued qualities of this fiuiction. 

In our last question of this section, (Class 2, Interview #3, Part 3, Question 5):we 

looked at DeMoivre's theorem. We can use DeMoivre's theorem to solve this question if 

we apply it carefully: 

(icosû+ sine)' - i5(cosû- isinû)' 
= i(cos0 - i = i cos98 + sin 98 . 

(cos28 + i sin%)' - (cos0 + i sine)' 

Thus, the real part of the original expression is sinW. 

Of the five students who attempted this question, only two attempted to use 

DeMoivre's theorem, one correctly and the othet mechanicdly. This last studeat said 

(icose + sine)' = sin 50 + icos50, applying DeMoivre's theom incorrectiy, but, 

nevertheles, getting a correct equation. Evidentiy, (icosû + sine)' = sin(n0) + icos(ne), 

provided n s 1 mod 4. (When constntcting the question.we miscdcuiated, believhg that 

for this particular expression DeMoivre's theotem worked for n r O mod 4). It is clear 



h m  this student's interview transcripts and worksheet that they applied DeMoivre's 

theorem without hesitation. They fwst attempted to find a factor k, such that, 

k(co& + isinû) = (icosû + sine), so they could apply Euler's theorem. It was only when 

this attempt was unsuccessful, that they applied DeMoivre's theorem. 

There is not enough data to make too many conclusions about DeMoivre's 

theorem, and this is probably a small thing to clariQ in any case. Nevertheless, we did 

observe students misusing DeMoivre's theorem several times during our study. 

Presumably, students believe that because of the close relationship between cos0 and 

sinû, especially in complex analysis, that DeMoivre's theorem works with sinû and cos0 

interchanged. 

6.5,2,3 Polar Calculations: Summary 

in conclusion, the main difficuities that students had with the polar representation 

were lack of practice with basic trigonometry, and particularly the arctan x function, little 

or no grasp of the multivaluedness of the arctan function, and a tendency to assume that 

cos0 and sinû can be interchanged (since they are so closely related). Although some 

students had trouble calculating the moduius correctly, they made mostly arithmetic 

mistakes, so there did not appear be any conceptual pmblems with the modulus. 

6.53 Symbolic Calculations 

This section contains analysis of data we collected about how well students were 

able to do calculations involving z, using just the properties of lzl, Z, Re(z), Im(z), and 

the field properties of the complex numbers. The questions we are discussing in this 



section can be done very readily without substituting z = x + iy, or z = r@ , or without 

using a geomeûic appruach. Obtaining same skill at symùolic rnethods is very usefiil 

(but not essential) for more advanced subjects, such as, power series and contour 

intcgrals. The main result that our data d e s  clear is that students are not ob&g any 

fluency in symblic methads. We have done very littie analysis, other tban to show how 

our data supports the theme that students are not obtaining symbalic skill. The reason is 

that in most cases students did not attempt a symbolic solution. 

6.5.3.1 Symbolic Calculations: Interview Questions and Results 

We askeù a number of d i t  questions, and questions which had some other 

p n m q  fmus, to look for evidence that siudents were obtaining symbolic skill. We have 

summarized the results in Table 6.7, given below. The questions are as follows 

(questions with answers are in appendix 4): 

Class 2, Inteniew #1, Part 2, Question 11: Show that if lzl= 1, then 

CIass 2, interview #2, Part 3, Question 1: Fmd al1 solutions to lz - il = lz + 11. 

Class 2, inteMew #3, Part 3, Question 10: If 121 = 2, show that 
12-N=(zw-2J ,foraîiw. 

Class 2, Interview #5, Part 3 Question 3: Show that for y(t) = e' , iX t < 274 

Class.2, Interview #5, Part 3, Question 8: If y is a cùcle of radius 2 centered at i, 

Y 

Class 3, Intemiew #1, Question 7 a): Fid  a i l  solutions of the following 
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equations: i) 2 +2iz -1 = O ii) 2 + (1 + i)z + i = O 
Class 3, interview #2, Question 4: 

a) For which z is 1a=1 d? Explain. 
b) For which z is tZ+ ll=(z + il? Explain. 
c) For which z is lz - i[=lz+ il? 
d) For which z is liz + 1]=lZ + il 

Table 6.7 

Results of Questions Asked to Test Knowledge of Symbolic Methoàs in Classes 2 & 3 

Since there are so many questions, we have used the essence of each question to 

idenri@ it in the table, rather than identify them by class and intewiew number. The 

column headed "Symbolic Correct" is the total uumber of correct amvers using symbolic 

methods. The column headed "Symbolic Attempt" is the number of students who 



attempted to use symbolic methods, but gave-up altogether or tried another method. 

The column headed "Other" is the number of students who got the question 

correct using some other method. The other methods were usually substitution of 

Cartesian or polar vector fomi, or occasionally geometric methods. 

6.53.2 Symbolic Calculations: Analysis 

Examination of table 6.7 shows very strongly that students are acquiring very 

little proficiency in symbolic techniques. We believe that the results show that students 

do not have symbolic methods in their repertoire, as opposed to the possibility that they 

simply prefer other methods, because so rnany of the questions we asked are drarnatically 

12 - 11 
simpler to do using symbolic methods: for example, to show that f(z) = - is 

(22 - 21 

analytic everywhere except at z = 1, using the z = x +iy representation, requires 

calculation of the modulus of the numerator and denorninator, and then further 

simplification. (Using symbolic methods, we can see, alrnost by inspection, that 

f(z) = 112 if z is not equal to one.) In addition, sometirnes students would ask if there was 

an easier way to do the question, and be very impressed by the symbolic method. in other 

words, we believe that for the questions discussed in this section, most students at third 

year level would prefer to use symblic methods if they were able to use these methods. 

The only exception occurred when they were asked to solve quaciratic equations. 

Quaciratic equations are not an especidly good indicator, because of the problem of 

'WiinkUig reai, doing complexyy , it is unclear if students are thinking in terms of symbolic 

methods at dl. If they are thinking of z as just the x of real polynomial theory, then it is 



not particularly emouraging to sec them readily apply the quadratic formula During 

interviews we didn't explore this point, so it is unclear if the results of questions about 

quadratic quations indicate fluency in symbolic methods. 

Since students do not seem to be leamhg symbolic methods, for example, only 

one student out of six tried to use symbolic methods to solve an quation as elementaty as 

17=1z1, we have examined the textbooks and lecture notes for the three classes studied to 

see how much instnietion students are receiving. The question is: is this topic very 

difficult, so that even very good students are not getting it, or is there too Little instruction 

and emphasis? This is an important question, because we tutored one student who was 

not aware that symbolic methods existed. 

In class 1 the textbook (Priestley [68]) has two sections, 1.3 and 1.4, on pages 3 

and 4, that contain instruction on symbolic methods. Section 1.3 describes pmperties of 

complex conjugales, and section 1.4 uses symbolic methods to prove three inequalities. 

There are no other direct examples, and just two problems, numbers 5 and 6 on pages 11 

and 12. These are complicated problems that were assigned for homework, but which can 

be done substituthg one of the vector forms. (We have not included the problems here, 

because the point of ow discussion is that there is not enough coverage of symbolic 

methods.) Priestley is quite terse, and perhaps too difficult for an introâuctory course at 

the 300 level, but in contrast to the symbolic treatment there are several pages of 

discussion of elementary geometric results, such as, lines, circles, and inequalities. 

- 
The insûuctor in class one proposed to prove that z,z, = Z,Z, , and asked for help 

h m  the class. Substituting z = x + iy was suggested, and after commenthg that a polar 



substitution would be better for multiplication, the instructor proceeded with the proof 

using the Cartesian substitution. To prove the inequalities (triangle inequaiity) in section 

1.4 of Priestley, the instructor of class one, used geometric arguments. While students 

were assignecl the two problems mentioued above (that can be done most conveniently 

with the help of symbolic methods) for homework, we can find no examples of symbolic 

caiculations done in class. 

In class two, sections 2,3,4 of the textbook (Churchill and Brown [69]) cover the 

basic facts about complex numbers under the headings, "Algebraic Properties", 

"Geomeûic Interpretation", and "Triangle Inequality". In any case, sections 2,3, and 4 of 

this textbook establish many useful facts that can be used for symbolic manipulations. 

Some of the fats that are established in this section of Churchill and Brown, can be 

shown using symbolic methods. Although Churchill and Brown do not actually prove 

any of the results using symbolic methods, sketches are given that show how to prove 

several facts, with details left to the exercises. For example, on page 5, Churchill and 

1 -1 I Brown suggest that we can use - = z-' to show that (z,z,)-' = z, z; . Some of the 
2 

details are the subject of exercise 1 1, on page 6. Mer establishing ail these results 

(either directly or with the help of exercises) there are a number of applications or 

examples of using symbolic methods to solve problems. For example consider, exercise 

16, on page 6, and exercises 4,7-13, 15, 16 page 1 1. 

Class 3 snidents got slightly more instruction in geomeüic and symbolic 

techniques. The instnictor (and textbook Saff and Snider[65]) established basic fats  



using Cartesian substitution, but the class 3 instructor did two elementary proofs using 

1 z 
symbolic methods: i) - = - z [zJ2 

, and ii) Izwi = Iwl . Saff and Snider has four 

exercises which can be done with symbolic methods: 13., 14.- 15, and 16. on pages 1 1 - 
12. In addition, some of the parts of exercise 7, page 11 can be done symbolicaily (in 

examples, Saff and Snider use a geomeüic appmach to do the type of question that 

appears in exercise 7, so it is unlikely that many students would use symbolic methods on 

exercise 7). 

6,533 Symbolic Calculations: Conclusion 

in conclusion, students in al1 three classes received some instruction on symbolic 

methods, but not nearly enough for these methods to be accessible to them. This is a 

senous short coming of the courses we studied, since symbolic methods are very usefbl, 

and we believe that practice with symbolic methods would improve students' skills with 

the other methods, such as the Cartesian or polar methods studied in this thesis. 

6-5.4 Algebraic Methods 

We asked students in ou sîudy several questions about the complex numbers 

h m  an algebraic, but theo~tical point of view. We were interesteci in how well students 

understood concepts such as: the complex numbers as an algebraicaily complete field, 

the complex numbers as an algebraic extension of the reai numbers, the connection 

between complex nmbers and irreducible polynomiais with reai coefficients of degree 

two or les, and finaily, the a + ib representation of complex numbers as an aigebraic 

extension as opposed to a vector representation. 



We did not really expect students to gain much understanding of these concepts in 

a first course in complex anaiysis. We thought they might acquire a working knowledge 

of some of the ideas. For exarnple, we thought it would be reasonable for students to 

understand and use the fact that every polynomiai of degree n over the complex field has 

n rwts. 

Unfortunately, our data on these subjects is very limited, because there was only 

very limited coverage of these topics in class. in addition, hvo of the textbooks covered 

these aspects of complex nwnbers very briefly, sa it became simply unreasonable for us 

to expect students to have much knowledge of the algebraic structure of the complex 

numbers. Thus, we have omitted any analysis on these subjects and will confine our 

comments to a few conclusions. 

in conclusion, we found that students received very little instruction on the idea of 

complex numbers as a field extension in classes one and two, but that there was more 

coverage in class 3. A similar assessrnent holds for polynomial theory. V?r noticed that 

two students were unable to find the mots of a polynomiai using the quaciratic formula, 

because they did not know what to do with a discriminant of -2i. Student responses to 

interview questions indicate they are absorbing approximately what they are taught. 

6.6 Uneven Skill with Basic Material Afïects Later Work 

One of our main objectives in this study has been to try to identiQ ways that 

confision about basic material affects students' ability to understand later work. We 

have found many examples of students stniggling with advanced material, because they 

could not do basic manipulations. In most cases, what we are refemhg to as "basic" in 



this section is ski11 with the representations of complex numbers that we have been 

discussing throughout this dissertation. Thus, for example, how does student confusion 

about the Re f(z) cause problems for them when they attempt later topics in the course, 

such as integration or using the Cauchy-Riemann conditions. The examples presented 

here are a sample fiom a variety of topics. 

Before analyzing our data for this section we note that many other researchers 

have examined the issue of insufficient preparation affecthg later work. For example: 

Thompson [56] shows how even very mathmatically sophisticated students encountered 

severe difficulties with basic calculus questions, because the mental images they had (if 

any) of the fiuidarnental theorem of cdculus were not nch enough to help them with 

applications of this important theorem. 

Zazkis and Dubinsky 1591 have studied in great detail the problems that students 

had computing permutations of the dihedral p u p .  The particular problem they studied 

could be directly traced to these students failing to recognize that a permutation has two 

distinct interpretations which must be used consistently. Thus, a relatively small 

oversight led to perplexing (for the students) m m  later on in the course. 

White and Mitchelmore [551 study the difficulty that students have doing basic 

word problems in calculus. The hypothesis that these cesearchers tested was whether or 

not further instruction in calculus concepts would improve student performance. In other 

words, how was basic preparation affecting student ability to do word problems. They 

found that most errors could be understaod as -dents manipulating symbols as opposed 

to quantities to be related. Thus, in terms of the present discussion, sMent understanding 



of notation and symbols had not advanced to the abject understanding required to build 

the equations needed to soIve word problems. 

To anaiyze the data for this section we have altered our format of presenting al1 

the questions first and then analyzing hem, because the questions in this section are 

unrelateci, Save for being exarnples of students stniggling with more advanced materiai 

because of insufficient ski11 with basic material. Thus, the comrnon thread between the 

questions in this section is that they are examples of students struggling with advanced 

materiai because of their difficulties with basic material. 

6.6.1 Class 2, Interview #2, Question 2 

Class 2, Interview #2, Question 2 was: Suppose f(z) = (22 - x)', where x is the 

real part of z. Where is f(z) differentiable? 

The following interview excerpt shows how much trouble one student had with 

this question, because they were not fluent with basic material. This example is atypical 

in that one student had al1 these problems, but the interview does give a good sarnple of 

typical pmblems that students had in this sîudy. 

Class 2, Excerpt of Interview #2, Question 2, K2. 

Where x is the real part of z. 

Both -. 

What are you thinking? 

I'm üying to again see it as a picture, how we've beeu doing it, drawing it, the 
usuai way with a h e ,  that's not differentiable, -. ......... [iooùs through 
textbook] ... 1 imow .......[K2 is apparently referring to the drawings of mappings 
that were doue in the textbook and in class. Presumably, K2 hopes that a picture 
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will help to decide if f(z) is differentiable. This is a carry over sûategy b m  real 
single variable calculus, that is not very usehl even in real calculus on R2.] 

What about Say, the Cauchy Riemann formula? 

Yeh. 1 know, but the only thing that 1 don? .., 1 still have a hard time taking this 
[(22 - x)'] and writing it in one fonn that 1 can do it. Like this is two times, OK, z 
..... is minus x al1 ~quared... 

OK, z is x plus one, x plus i y. 

Yeh. 

And your trying to find u and v. 

Yes. ... 

OK, so here don't you need 2 (x plus i y)? 

Like this? 

Yes. 

M i u s  x, [dl] squared. Squaring fûnctions, 1 don't have, 1 don't really understand 
...... how to do that. 

1, you square just l i e  you always do, what changes it though is the i, when you 
multiply the i's together, when you multiply the -, itls negative because of the i's. 
Since i squared is negative one. 

OK, so you just take the, so you Say that, x squared plus, this is going to have a 
minus? 

Right because of the i squared. 

OK. .A that's differentiable, P(2 is r e f d n g  to 2 + 4 i  - 4 9  as being 
differentiable] 

So what are u and v for this? 

....... Um, ...- ....... that aiidcile tenn if you square this, you get x squared, 

You have two x and minus, OK, so that's what you have, and square that, 



So you have x squared, minus 4 y squared, that's 2 times 2 times the i squared, 
and then there's a mix term of two i x y plus two i x y, so you get four i x y. [Here 
we were intervening more than we like Io, hoping to get K2 up to the point of 
applying the C-R conditions] 

OK, 1 get that, but is this considered to be part of u? Oh, this part's the imaginary 
part? 

Well, what you have so far is, 

Oh, wait a second, x squared minus, 4 y squared would be u, OK. And then this is 
just v, 4 i x y. ......... And now the derivatives, this has to be ..y is qua1 to 2 x, 
and y is equat to minus 8 y. OK, ... 2x is qua! to four x, [has found partials of v 
and is applying C-R conditions] and that can't be right .... I've done this wmng. 

What are you thinking? 

... That it's nowhere differentiable. 1 don't know, that couldn't be the right 
conclusion though. 1 don't tIiink I've done this part right. 1 haven't done this right. 

No, you're pretty close. Is there any choice of x that would make that, 

x qua1 to zero, and y qua1 to zero. So, 

Does y have to be zero? 

Oh, x is equal to zero, by those two, 2x is qua1 to four x, so x equal zero. Oh, 
this is zero anywhere, --. For the second part here, it says 4 y is equai to 8 y, sa y 
is qua1 to zero. And y equal to zero will be satisfied on the real line, so is it just 
dong here? 

Where are both of these conditions true at the same tirne? 

Outside quadrants one, two three and four, oh, at the same t h e .  x can't be quai 
to zero, oh, x has to be qua1 to zero, and y has to be equai to zero, so just at the 
origin? 

Yes. 

Hm. OK. He was doing this îhe other day. He did this part here. And without 
even going to dis, he said OK, x qua1 to zero, al1 dong here, [points to the x 
axis] 

This is the y axis. 



K2. Oh, sorry, yeh, al1 along here, isn't differentiable, and then he did this part. This is 
differentiable. It's al!, isdt this whole portion, 

P. Urn, no, the Cauchy Riemann conditions, both equations have to hold at any point 
where it's differentiable. So we need both x and y to be zero. 

K2. OK. 

The solution to this question can be found in appendix 4. In tbis question we were 

interested to see if students would conclude that f(z) was not differentiable anywhere, 

since it is a composition that involves a function that is not d i f f d a b l e  anywhere. This 

- 
is, of course, not a correct argument. For example, f(z) = (2) is a composition of two 

nowhere differentiable functions that is entire. We actually expected that most students 

would just apply the Cauchy-Riemann conditions. 

From the interview with K2, we can see a misunderstanding of what to use 

mappings for (we cannot decide differentiability fiom inspecting mapping diagrams); 

difficulties with basic computation (not realizing that complex multiplication preserves 

the usual distributive law); the belief that if "it's a polynomial in x and y, it's 

differentiable"; and confusion about how to apply the C-R conditions (both equations 

have to hold simultaneously). Although the other four students who attempted this 

question did not have as many problems as K2, two of them did conclude that f(z) was 

entire, because it was a polynomial. This is a good example of another theme that amse 

in our study thai we have named "Thinking Real, Doing Complex", but which is not 

discussed in this dissertation (this was a major theme and had to be eriminated for reasons 

of space limitations). 



6.6.2 Class 2, Interview #2, Question 5 

Our next question revealed some problems that students had because of 

insufficient understanding of the polar representation of complex nurnbers. 

Class 2, interview #2, Question 5 was: where is f(z) = z' + 0' analytic? To do this 

question students needed to identie the real and imaginary parts of flz) in polar 

coordinates. n i e  solution is given in appendix 4. 

Five students attempted this quesîion, ushg a variety of strategies. Two students 

converted into Cartesian coordinates, but could not obtain an answer. Two students could 

not interpret the Cauchy Riemann equations correctly. One said that flz) was analytic 

everywhere because it was a polynomial. None of the students recognized that f(z) is 

multivalued, so that the first step in the solution should be to define a branch of f(z). 

6.6.3 Class 2, Interview #2, Question 8 

Our next question was designed to see how lack of fluency with symbolic 

methods would effect later work. 

Class 2, interview #5, Question 8 was: If y is a cirde of radius 2 centered at i, 

what is 

The solution to this question can be found in appendix 4. Aside h m  our intended 

purpase of studying symbolic methoth, this question tumed out to be intereshg because 

of the absolute value sigas. 

For starters, noue of the four students who attempted this question noticed that the 

integrand was just one. Two students parameterized y, to get y(8) = i + 2ea . One student 
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comtly simplified the integrai and got zero. Another calculated T = i - 28, (which is 

not correct), and got an incorrect answer. 

ûne shident began this pmblem by parameterizhg y(0) = i - 2 8 .  which is an 

unusual way to parameterize a circle centered at i, but it is not incorrect, since the minus 

sign amounts to a phase shift of 0 by n. Since we are integrating over the whole circle, 

the phase shift will not matter. 

As we have mentioned, this question was intended to test students* howledge of 

symbolic methods, so we were not too interested in the details of computing the integral. 

We were primarily interested in whether or not students would notice that the integrand 

was 1 (except at z = -i), and therefore that the integral had to be zero. 

The last student to attempt this question got the correct a m e r  of zero, anaiyzing 

as follows: they found that the integrand was not defined at z = 4, which they noticed 

was on the contour of integration, but then they claimed that the integrand was analytic 

everywhere else in the complex plane, so by Cauchy's integral theorem, the integral had 

to be zero. This student was not coddent of their reasoning, but when we ûied to get 

them to think about this question correctly, they instead, revealed fiirther 

misunderstandings, such as, if f(z) is real vaiued it is analytic. 

It is surprishg to us that students at this stage in the course would ignore absalute 

value signs in their estimation of whether or not a function is anaiytic. Class 2 was 

specificaily given the fact (on several occasions) that a real valued function, defined on a 

domain D, is analytic if and only if it is constant. So something like flz) = [z 41 is not 

going to be analytic anywhere because it is rcal valued, but not constant. 
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In any case, we can see that studcnts made several basic mrs while dohg this 

question, although some of these mrs are somewhat more advanced than representation 

mrs that we are primarily concerned with in this section. 

6.6.4 Clrss 2, Interview #4, Question 9 

Class 2, Interview #4, Question 9 was: Find an upper bound for 

where the integral is to be evaluated on the contour fonned by ihe segments joining the 

points l+i, -l+i, -14. 

The idea here is to find a maximum for the integrand on y, then multiply the 

maximum by the length of the path of integraiion. This pmduct will be an upper bound 

for the modulus of the integral. There are various ways to tïnd a reasonably efficient 

upper bound for the integrand. The solution can be found in appendix 4. 

Both students who attempted this question got this result. The only difficulty, was 

that one student spent some t h e  convincing themselves that 121 = 1zI2 . This student did 

not think this was true at first. Here is another example of how a problem with basic 

material interfered with later work, and in this case, almost completely obscureci the main 

point of the exetcise, which was to study student understanding of the maximum modulus 

theorem. 

6.6.5 Uneven Ski11 with Basic Material Affects Later Work: Summary 

In conclusion, we have noted several types ofbasic misunderstandings that 

students had that affected their solutions to advanced questions we asked in this study. 

Some of these were: 8 is multivalued, jzl is real and is not constant, 121 = 1zI2, 
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polynomials in x and y are not the same as polynornials in z, and the usual distniutive 

Iaw of multiplication of real numbers holds for the complex numbers. 

6.7 Conclusion of Chapter 6 

In chapter 6 of this thesis we have considered various aspects of the 

multirepresentations of complex numbers. We discussed the problern of Shifting 

Representations, the complex number i as a Unit Vector, several aspects of Basic Facts 

and Calculations, and a final section on Uneven Skill with Basic Material Affects Later 

Work. 

Under Shifting Representations we found that the students we studied were 

proficient with the Cartesian and polar forms, could translate most expressions fiom one 

fonn to the other fairly accurately, but that nearly half the students studied did not have 

good judgment about when to translate fmm one fom to the other. We think our results 

supports the analysis of other mearchers in the field of multirepresentations, such as, the 

Lest, Post, and Behr cnteria for understanding representations or the Dreyfus critena. 

Finally, we believe most of the students interviewed showed an object understanding of 

the algebraic and Cartesian vector methods, but no more than process understanding of 

polar vector methods (using either reification or APOS models). 

In the section of this chapter on i as a Unit Vector, we found direct and indirect 

evidence that students view the complex number i as a unit vector (also 1 is viewed as a 

unit vector). Most students interviewed M y  bebeved that the im z shoufd be 

represented on the imaginary a i s .  In addition, we found evidence that students are 

extraplathg the notion of direction in R2 onto the complex plane where it is not 
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appmpnate. 

Under Basic Facts and Calculations we studied topics such as, student recognition 

that x and y are nai in the Cartesian vector fom, the cancellation rule, polar fonns, and 

symbolic calculations. 

Our 1 s t  section in this chapter was Uneven Skill with Basic Matenal Aarects 

Later Work. In this section we discussed several problems that some students sûuggled 

with because they were not fluent enough with basic materiai. 



Chapter 7 

Summary and Conclusions 

In this section we give a brief overview of the first six chapters of this thesis. 

Chapter 6 is summarized more specifically in the next section (section 7.2). 

7.1.1 Research Objectives 

We studied three complex analysis classes at two British Columbia universities. 

We found very little Mathematics Education literature on the subject of complex analysis, 

so our research objectives were relatively broad: 1. Begin recording what occurs in 

complex analysis classes at British Columbia universities. 2. Survey and catalogue what 

sort of problems students were having with this subject, paying particular attention to 

those problems that appeared to be caused by the mode of instruction. 3. Begin the 

process of identifying those learning difficulties that would be h i t h 1  to further research. 

In addition to these broad objectives, we were aiso interested in some specific issues such 

as, how does insufficient understanding of basic material affect later work, and is ihere 

evidence of students making the transition h m  a process understanding to an object 

understanding. 

7.1.2 Theoretical Framework 

We have used a research model consisting of three parts: a teachhg model, a 

l emhg  made1 and a madel of mathematical howledge. We did not have any cocltrol 



over the teaching model used, since we w m  an observer in other instnictors' classes. 

The leaming model we used has been described by Confiey. Since this mode1 involves 

radical constmctivism, we have reviewed the history of constructivism and radical 

consûuctivism as they pertain to mathematics education. We have attempted to use the 

model of mathematicai knowledge suggcsted by Burton. Finally, in chapter two we have 

described our expectations before we entered the studied. 

7.1.3 History and Epistemology of the Complex Numbers 

We examined the epistemology of each of the four representations of complex 

numbers studied in this research. By the epistemology we mean what the notations mean, 

what the + signs and x signs mean, et cetera. We alsa attempted to identifi indicators of 

process and object understandings of each of the representations. In addition, we 

exarnined some properties that the complex plane does not have such as direction and 

ordering, 

We also reviewed the history of complex nurnbers with the idea of gaining some 

insights into what kinds of problems students would have. We found that the research 

community had a very difficult tirne accepting complex numbers (taking most of three 

centuries to do so). Even the dcvelopment of good geometnc models of complex 

numbers did not lead to immediate acccptance of complex numbers. Despite conceptual 

difficulties ail the leading figures in mathematics were fluent at computations and 

applications with complex numbers. Thus, we are uncertain how the historical record 

reflects our findings. 



7.1.4 Methodology and Data Analpis 

Met hoâalagy 

We stuâied three cornplex analysis classes. The iirst was a pilot project 

conducted in the Summer semester of 1996 at Simon Fraser University. Our pilot project 

gave us many g d  insights into student dificultics as well as aiding our construction of 

a research meihod for this project. 

Our main study twk place in the faii of 1996 again at Simon Fraser University. 

We did six sets of intmiews aver the course of the semester, and collected a large 

amount of data on a wide variety of topics. We chose ta focus on the early part of the 

course for this dissertation. 

For our third class, at the University of British Columbia, we conducted two sets 

of interviews on the material covered in the h t  part of the course. The data collected 

fiam this part of the study enabled us to analyze elementary topics in considerable detail. 

Data Anaiysis 

Since complex analysis is reiatively uncharted by the mathematics education 

community, we have used a &ta driven îhnework to analyze our data. This framework 

consists of identifjing a central theme that fi$ witb most or ali of the data. In this case, 

we have chosen ta consider the &ta that we have under the iheme of 

Muitirepresmtations. 

The actuai conclusions we have drawn using this framework appear in section 7.2. 



7.1.5 Data and Analysis - Overview 

In chapter 6 we andyzed the data that we collected on our multirepresentaticns 

theme. We divided the analysis into four areas: shifting representations, i is a unit 

vector, basic facts and cdculations, and uneven ski11 with basic material affects later 

work. The analysis in each of these sections includes one or more of: the problems 

studied, results from the worksheets, interview excerpts, and analysis of the data. Al1 of 

the problems used in this study are in appendix 3. The solutions to the problems analyzed 

in chapter 6 are in appendix 4. 

7.2 Conclusions from Our Data and Analysis 

We have organized our discussion and conclusions into the categories of 

chapter 6, so that the reader can readily refer to relevant sections of chapter 6, while 

reading this discussion. 

7.2.1 Shifting Representations 

We found that the students we studied had a good grasp of the Cartesian vector 

foms (for example, z = x + iy) and polar forms, but slightly less ski11 translating h m  

one form to the other. At least half the students studied did not have good judgment 

about when to shif? h m  one fonn to another. Al1 s h i h g  was between the algebraic 

extension and polar vector forms, as we found that studeuts had almost no ski11 with other 

foms such as the symôolic form. 

ûur data supports the cnteria identified by others for understanding single 

representatioas and translating between two representations. In addition, our data 



supports inclusion of a m e r  criterion requiring good judgment of when to shift h m  

. one representation to another. These criteria cm be briefly expressed as follows: 1. 

Ability to use a single representation. 2. Abiiity to represent a problem in different 

representations. 3. Ability to translate between representations. 4. Ability to judge 

when to shiA h m  one representation to another. 

Finally, we have concluded that most students had an object understanding of the 

algebraic and Cartesian vector fonns, but only a pracess understanding of the polar vector 

form. Our evidence for this conclusion is largely based on the fact that most students 

applied prior knowledge when using the simplification algorithm to simplify complex 

fractions. Since this evidence is adrnittedly not entirely convincing, further research is 

needed in this area. in paxticular, it would be useful to have more information about how 

an object understandimg of each repreSentaiion manifests itself when working with 

problems at an elementary ievel. 

7.2.2 i is a Unit Vector 

We believe our data supports the conclusion that many student view i as a unit 

vector ( a h  1 is viewed as a unit vector). Mosî of the students interviewed believed that 

the imaginary part of a complex number s h l d  be represented on the imaginary axis. 

For example, two students specifically mentioned the "imaginary and real unit vectors" in 

interviews. We also found the most students appear to have a strong sense of âirection on 

the complex plane, for example, most students represented the imaginary part of a 

complex number on the imaginary axis, even after we questioned them intensively (recd 

that our data is possibly confounded by the issue of how to interpret Im(z)). These 



students have apparently extrapolated the notion of direction h m  R2. This 

misconception is not particularly serious, but is very useful to study since the origins of 

the misconceptions are very clear, so that the problem of correcthg this misconception 

would appear to be clearly defineci. 

7.2.3 Basic Facts and Calcula!ions 

Cartesian Methods 

We found that many students had a difficuh tirne wnsistently applying the fact 

that in the Cartesian representations, x and y are real, period. 

Caneellation 

We found that several of the students interviewai were unsure if the usual 

cancellation rule for simplifying a fraction still applied for the complex numbers. There 

was considerable confusion about what the structure of the complex numbers is, for 

example, one student considered both the cornplex numbers and the real numbers to be 

scalars. 

Polar Metbods 

Students had severai pmblems applying polar methods: 1. Lack of practice with 

basic trigonometry, particularly the arctaa x hction. 2. Little or no understanding of 

multivaluedness. 3. A tendency to interchange sin 0 and cos 8, for example, in Euler's 

formula or DeMoivre's formula Generaily the modulus did not present problems. 

Symbolic Mcthods 

Having described in some detail in chapter five the sort of instruction that 

students received on symbolic methods, we cm make two basic conclusions: 



1. The fomat of pmenting a few îheomns about symbolic properties, proved by 

substitution of either the polar or Cartesian vectar fonn for z, appears to be leaving 

students without any appreciation of the power of symbolic methods or even that they 

exist. 

2. Al1 three of the textbooks studied to some extent take symbolic methods for 

granted. There were only a féw examples on symbolic methods in ail three textbooks, 

and while the textbaoks used in the classes we snidied have numerous exemises, several 

of which were assigneci, the fact mains that students did not use symbolic methods, 

even for rudirneatary applications, such as, showing tbat [Zl=l& 

We have found that alrnost al1 the students interviewed did not have access to 

symbolic methais, with the sole exception that they were able to solve quadratic 

equations (where they may well be thinking r d ,  rather than using a symbolic approach). 

We believe that this is a reasonable reflection of the way they have been Uistnicted both 

in classes and textbooks. Spbolic methods were simpfy not emphasized in classes or in 

textbooks. We think this is a mistake since substitution of a vector form is a method of 

last tesort for anybody eXpenenced in complex analysis. 

Algebnic MMetbods 

Algebraic methods were certainiy not empbasized in the classes we studied, and 

our limited data indicates that students are leaming very little about the algebraic picture 

of the complex numbers. Of course, a one semester introductory class cannot cover 

everythuig, so perhaps questions on algebraic methods should not have been included in 

our research project. 



7.2.4 Uneven Skill with Basic Materioil Affects Later Work 

In this section we swveyed several questions h m  aur data that indicate rhat 

students are struggling with more advanced work. For example, on a question asking 

sîudents where is Qz) differentiable if qz) = (22 -x)*?, one student attempted ta decide by 

graphing, was unable to find the real and Unaginary parts of fIz), did not understand how 

to calculate the square, cancluded that fIz) was entire, since it was a polynomial, and was 

not sure how ta apply the Cauchy-Riemann conditions correctly. In another question we 

asked stuâents to evaluate the integral , where y is a circle of radius 2 centered 

at i. Ahost everyone got this correct but no one noticed that the integrand was just one, 

so that the integrai is O (recaU that the singularity at z = -i is removable). While our 

conclusions in chapter 6 were quite specific ta the questions analyzed, we believe that our 

data is a srna11 portion of a larger problem. Currently, the course content of ail three of the 

classes we studied only aitows for about one week of instruction on basic material. An 

important question for future mearch would be to detennîne if more time spent on 

instniction on basic topics would pay signifiant dividends later in the course. For 

example, if two or three weeks were spent on basic topics, could the time spent be made 

up later in the course, on the assumption that a thomugh grounding in the basics would 

make subsequent material easier to leam, and thus require less insûuction. 

In any case, for several of the students shidied uneven ski11 with basic material 

was a serious impediment to 1e-g latcr material. 



7.3 Directions for Future Researcb 

In chapter 3 we noted that very little work has been done in the area of complex 

analysis in mathematics education. Thus, our thesis essentiaily opens a new area of 

research for the mathematics education community at the university level. Since we are 

in largely "uncharted" territory there are many directions that research in this field could 

take, but we believe that several directions for future research are suggested by the data 

that we have collected and by the anaiysis in chapter 6. 

Ln the h t  place, there are many pmblems of understanding the basic 

representations that need to be beiter understood. Sorne of these are: 

To what extent does not shifting representations indicate lack of understanding as 
opposed to personal preference? 

Can we separate trigonometric difnculties h m  actual difficulties with the polar 
representation? 

How prevalent is the belief among students that there is direction in the complex 
plane and how robust is this belief? 

How well do students understand basic epistemologicaî questions about the 
complex numbers such as, what is the meaning of "+" in x + iy? 

Our analysis of what constitutes action, process and object understanding witbin 
the reification and APOS fiameworks of the four representations of complex 
nurnbers studied in this thesis is v q  lirnited. A great deal of work needs to be 
done to further clariQ how action, process and object understandings manifest 
thernselves. 

In addition to research on the represcntations at which students gainai substantiai 

pmficiency (z = x + iy and z = re?, there are many questions about why students are not 

acquiring proficiency with symbolic methais and geometric methods. Our data seems to 



suggest that most student do not d z e  that symbolic methods exist even though there 

was significant coverage of these methods in al1 three classes studied. Was there simply 

not enough coverage or are there more fundamental obstacles? If so, what are these 

obstacles and how can we help students overcome them? 

We have discussed at some length the data that we collected on how problems that 

students have with basic materid affects more advanced work. This is a big subject and 

we have only scratch4 the surface. For example, we did not atternpt to correlate the 

level of understanding within the reification or APOS fiameworks with proficiency with 

more advanced material. We collected some data that suggests that students gain 

proficiency with basic representations as the course progresses, but there are many more 

interesting questions that involve studying how understanding changes (or does not 

change) over the duration of the course. For example, we found that al1 six students in 

class 2 had a very robust belief that every polynomial in x and y was analytic. This belief 

persisted despite the many counterexamples we offered to students throughout the 

duration of the course. The question is: why? 

Aside fiom the many interathg tesearch questions on basic mataial, our data 

indicates that the theme 'Yhinking real, doing complex" is a very significant leaming 

obstacle in complex analysis. This is a major area for further research efforts, since this 

theme seems to manifest itself in so many ways. 

Another major area for mathematics education research in complex analysis at a 

more advanced level is the whole question of mdtivaluedness. Muitivaluedness is a 

crucial aspect of complex auaiysis thaî is also relaîively complicated. Our data suggests 



that students are absorbing this material with same proficimcy, but that there are many 

questions of understanding to be researched. 

Finally, we identified (but did not report in this thesis) many specific themes that 

warrant m e r  investigation. Some of these are: treathg \z - 4 as a circle rather than a 

distance; underestimating how important the c, term is in a Laurent expansion about a 

pole; "1s every function analytic?", the difference between the domain of an anaiytic 

function and the disk of convergence of the power series for the fiuiction expanded about 

a point in the &main; and the interplay between the path of integration and the integrand 

of a path integral. 

In any case, our conjecture on the feasibitity of complex analysis for research in 

mathematics education at the beginning of îhis thesis has definitely been shown to be 

correct. Having surveyed possible research direction, we now turn to the question of 

what we can say h m  our data and analysis about the question of how to better teach 

compiex analysis. 

7.4 Possible Ways to Help Students Improve their Understanding 

We ihink that our data indicates a nmber of specific ways that insûuctors of 

complex analysis could help students with some of the difficulties we bave observed. 

Within the usuai context of a course (as we obsmed) with a very fiili schedule of topics, 

by the phrase ''taking more car$ (used below), we mean do more examples, assignment 

questions, and emphasize in class. Thus, we have the foUowing suggestions: 

1. Take extra care to insure that studenîs understaud that symboiic and geometric 
techniques are actual techniques for solving problems and not just "interesthg 
fkts''. For example, WC cau use the z = x + iy repnsentation to show ibat 14 = Ir1 



for ail z. Apparently most students do not realize that they can use this "fact" to 
solve problems. 

2. Inst~ctors could take more c m  to make sure that students realize that al1 the 
field properties of the real numbers (except ordering) extend to the complex 
numbers, and show how to use this fact. 

3. We believe that since complex analysis is largely about what w o h ,  many 
students get the impression that practically any function is analytic. Thus, we 
suspect that students can be helped substantially by emphasizing, with examples 
and discovery that many seemingly ceasonable functions are not analytic. Pertiaps 
showing students how hard it is for the complex derivative to exist, in effect, 
demonstrating with the polar form the special way that f (z) - f (z,,) must change 
as z - z,  changes if f(z) is analytic. 

4. It is possible that same students rnight be greatly helped if insûuctors 
specifically discussed the techniques h m  real variable calculus that do not apply 
in complex analysis. In particular, graphing is not useful, at least in the sense of 
plotting points. Specifically cornparhg real variable functions that have one or 
more denvatives, but are not reai analytic, with complex functions might help 
emphasize how special analytic function are. In class 2 the insûuctor did mention 

r 1 -.- 
the well known function f (x) = l e  ' if # O , but this may well be too 

complicated for most students. 
5. The three classes we observai were definitely very focused on the goal of 
covering at least a few examples of residue theory applied to solving definite real 
integrals. This has certainly been an important application of complex analysis 
histoncally, but with most of these integrals easily approximated numerically, we 
have to wonder if a review of the goais of the standard h t  course in complex 
anaiysis is not long overdue. We believe that residue theory has become a 
specialty subject, and that conforniai mapping rnight be a generally more 
applicable goal of the course. 

In this section we have made some suggestions for improved instruction of 

complex analysis. We have aiso suggested that the couse content be reviewed. 
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Appendix 1 

Information Sbeet 

The foflowing information was givcn to dl students in cach of the three classes to 

introduce hem to our study, and hopefully encourage them to decide to participate. 

FORM #5 

SlMON FRASER UNIVERSITY 

INFORMATION SHEET 

INFORMATION SHEET FOR SUBJECTS 

TlTLE OF PROJECT: Teaching and Learning Complex Analysis at Simon Fraser 
University 

DESCRIPTION OF PROCEDURES TO BE FOLLOWED: 

ColIection of data for ihis study wilI consist of the following activities: 

Observations of students, professor and classroorn environment during lectures and 
tutorials. 

interviews with students and the insüuctor. Students will be paid $20 for each 
interview. 

Free tutorhg sessions with students if they wish 

Several brief written questio~ains (icludcd with interviews). 

Ali &ta will bc kept coddential until at least the third wcek of thc 97-1 semester, in 
effet, Emtil studmt grades havebeai clearly cstablishtd Names, and any iden- 
information about studcnts will be kcpt coddcntial. h addition, upon comp1etim of this 
study aii data will bc dcstioycd in accotdance with University pmcdurcs (tapes crased, 
tanscripts shreddad, etc.) 



QUESTIONS THAT STTJDENTS WILL BE ASK: (This list is not exhaustive, but 
includes the kind of questions that are of intaest. Specific mathematical questions may 
be changed.) 

1. What has your mathematics experience been? What factors have contributed to that 
experience? 
2. Can you explain complex division to me (1 will provide sample problems)? 
3. Ask students to fillsut the Williams [23] questionnairt on l i t s .  
4. What is a complex number? 
5. Specific calculation questions, for atamplc, of power series or integrais. 
6 . Explain what an analytic function is? 
7. What is going well for you in this course? What is difficult? 
8. Show me how you go about studying a new concept in this course. 
9. Questions about singutarities, zeros, memmorphic hinctions, and Laurent series. 
10. What do you think mathematics is about? 
1 1. Can you think of any ways that you are able to comect this course to other parts of 
your life? 
12. Applications of Rouch& Theorem. 

QUESTIONS FOR THE INSTRUCTOR: 

1. What do you think mathematics is about? 
2. What has your mathematics experience ken? What factors have contributed to that 
experience? 
3. What is going well for you in this course? What is difficult? 
4. What is your philosophy of Mathematical knowledge? 
5. What do you think the elements of good teaching are? 
6. What do you try to achieve in a class likt Math 322? 
7. What mode1 of teaching do you use? 

THE WILLIAMS QUESTIONNAIRE: (süghtly modifieci) 

A. Please mark the following six statements about the E t  of a complex fùuction as 
being true or false: 

l . T  F A b i t  d t s c n i  how a complex fiuiction moves as z moves 
toward a certain point. 
A limit is a nurnbcr or point past which a complex function cannot 
go. 
A limit is a number that the w-values of a complex function can be 
made arbitrariîy close to by resbicting z-values. 
A limit is a number or point the complex function gets close to but 
never reaches. 
A limit is an approximaîiion that can be made as accutate as you 
wish. 
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6. T F A limit is determined by plugging in numben closer and closcr to a 
given number until the limit is reached. 

B. Which of the above statements b a t  describes a limit as you understand it? (Circle 
one) 1 2 3 4 5 6 None 

C. Please describe in a few sentences whai you undCrstand a limit to be. That is, describe 
what it means to say that the limit of a functionflz) as z + z, is some complex nurnbcr L. 



Appendix 2 

Consent Form 

The following forms wcre disbibuted to students and instructors who chose to 

participate in our study in accordance with the University's regdations on ethical 

research. 

FORM #2 

SIMON FRASER UNIVERSITY 

CONSENT FORM 

INFORMED CONSENT BY STUDENTS TO PARTICIPATE 
IN A RESEARCH PROJECT OR EXPERIMENT 

The University and those conducting this project subscribe to the ethical conduct of 
research and to the protection at al1 tirnes of the interests, comfort, and safety of subjects. 
This form and the information it contains are given to you for your own protection and 
full understanding of the procedures of the proposeci research (specified on fonn #5). 
Your signature on this form will signify that you have received a document which 
describes the procedures of this rcsearch project, that you have teceived an adequate . 
opportunity to consider the information in the document, and that you voluntanty agree to 
participate in the projeet in the nimet noted by you an this fom. 

Having been asked by Peter Danenbower of the Dept. of Mathemitics and Stitistics 
of Simon Fraser University to participate in a rescarch project, 1 have read and understand 
the procedm specified in the attachcd document (form #5). 

1 understand that 1 may withdtaw my participation in this research at any tirne. 

1 understand that no information h m  this study (evcn of a general nature) will be shared 
with the professor of the course until the third weck of the 96-3 semester, at the earliest. 
Any information that is shareâ with the professor, at that the, wiii be of a gencral nature, 
i.e., names or facts that tend to identiQ subjeets in this study wiii be omittcd. In addition, 
1 understand that information g a t h d  during this study will not be uscd to influence my 
grade in Math 322-3, or any furthe couses that 1 take at Simon Fraser University. 

1 also understand that 1 may rcgister any compiamt 1 might have about the tescarch 
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with Peter Danenhower, his senior supenrisor, Hirvq Gerber, or with Len Berggren, 
Chair of the Dept. of Mathematics and Statistics of Simon Fraser University. 

1 may obtain copies of the rcsults of this study, upon completion, by contacting: 
Peter Daneabower, Dept of Mithematics and Statistics, Simon Fraser University, or 
#210 - 8828 Hudson St ,  Vancouver, V6P 4N2, ph. 264-9922. 

1 understand that the research data and analysis of this study may be released for 
publication, excepting that the names and any information that might tend to idmtify 

(continuai on back) 
students participating in the study will be omitted. 1 understand that research data 
obtained during this study will be destroyed upon completion of the study in accordance 
with university procedures (tapes erased, transcripts and notes shredded, etc.). 

1 agree to participate in this study in the ways listed below (please check the appropriate 
boxes) during the 1996 summer semester at Simon Fraser University: 

By being observed during lectures and tutorials. 

1 agree to be fomally interviewai up to six times during the semester. 1 will be 
paid $20 for each interview if 1 wish (to be paid at the time of the interview). 1 
understand that these interviews will consist of the kind of questions listed in the 
infornation sheet, and may include brief questionnaires. Furthmore, 1 
understand that 1 can refuse to answer any question, end the interview, andlor any 
furthet interviews at any the .  1 understand that the interviews will be tape 
recorded, unless 1 request otherwise. 

1 agm to participate in the tutoring sessions (office hours) off& several times 
per week by the tesearcher (Peter Danenhower) in his office K5911. 1 understand 
that 1 may participate as often as 1 choose and that tutoring sessions may bc tape 
recorded, unless 1 ask that they not be recorded. 1 understand tutoring sessions art 
being used as a source of information for this nsearch project unless I state 
otherwise. 

1 agree that the researcher may use the informal convefsations 1 have with him, for 
example, while waiting for class to convene, as a source of information for this 
mdy. 

NAME @!case print): 
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ADDRESS: 
PHONE: 

SIGNATURE: 
WITNESS: 

DATE: 

Once signeci, a copy of this consent fonn and a subject fecd back form should be 
provided to you. 

FORM $2 

SIMON FRASER UNlYERSITY 

CONSENT FORM 

INFORMED CONSENT BY INSTRUCTORS TO PARTICIPATE 

The University and those conducting this project subscnbe to the ethical conduct of 
research and to the protection at al1 times of the intertsts, cornfort, and safety of subjects. 
This form and the information it contains are given to you for yow own protection and 
full understanding of the procedures of the proposed research (specified on form #5). 
Yow signature on this fom will si@@ that you have received a document which 
describes the procedures of this research project, that you have received an adequate 
opportunity to consider the information in the document, and that you voluntarily agree to 
participate in the project in the manner noted by you on this fom. 

Having been asked by Peter Danenhower of the Dept of Mathematics and Statistics 
of Simon Fraser University to participate in a research pmject experimmt, 1 have read 
and undcrstand the procedures spccified in the attached document (form #5). 

1 understand that 1 may withdraw my participation in this research at any time. 

1 also understand that 1 may register any cornplaint 1 might have about the rescarch with 
Peter Daneahower, his senior supervisor, Harvey Gerber, or with Len Berggren, 
Chair of the Dept. of Mathematics and Siatistics of Simon Fraser University. 

1 may obtain copies of tht results of this study, upon completion, by contacting: 
Peter Danenhower, Dept. of Mathematics and SWstics, Simon Fraser University, or 
#210 - 8828 Hudson St, V ~ ~ C O P V C ~ ,  V6P 4N2, ph. 264-9922. 

1 have bten informed that the nsearch data mi analysis of this study may be 
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teleascd for publication, exccpting that my name and any information that might tend to 
identifl me will be omittcd. Note, howcver, that it is possible for a third party to 
detemiine the namcs of the instnictors studied in this research, for cxample, by consulting 
the 96-2 and 96-3 cour~e ~~hedules. 

1 understand that research data obtained during this study will be destroyeà upon 
completion of the study in acconiance with univmity procedures (tapes crascd, 
iranscripts and notes shredded, etc.). 

1 agree to participate in this study in the ways listed below (please check the appropriate 
boxes) during the 1996 summer semester at Simon Fraser University: 

By being observed during lechires and tutorials. 1 also a g m  to have Icctures and 
tutonals tape recorded. 

1 agree to be fonnally interviewcd once at the end of the 96-2 semester. 1 
understand that this interview will consist of the kind of questions listed in the 
"Questions for instnictors" section of the information sheet, and that I can nhse ' 

to answer any question, andior end the interview at any time. 1 understand that the 
interviews will be tape recorded, unless 1 nquest otherwise. 

1 agree that ihc nsearcher rnay use the informai conversations 1 have with him, for 
example, after class, as a source of information for this study. 

NAME (please print): 
ADERESS : 
PHONE: 

SIGNATURE: 
WNESS:  

DATE: 

Once signed, a copy of this consent form and a subject feed back fomi should be provided 
to you. 



Appendix 3 

Interview Questions 

Appendix 3 coniains al1 of the questions that we aslced in the interviews for al1 

thm classa exccpt for the cthnographic questions. Questions markcd with an "*" beforc 

the question are questions that we have used in our analysis in chapter 6. 

A.3.1.1 Pilot Project (Class 1): FIrst Interview (Early July, 1996) 

* S i . p w  the fdlowing, Le., express thcm as a + ib, or as r 8  (whichever you prefa). 

In questions 9 and 10, by 'describe' 1 mean give some sort of a picture of what the 
function looks like. What does it do to points, curves and regions of the complex plane? 

1 1. If f(z) is a function defincd on a region G of the complex plane, what does it mean for 
fl(z) to be holomorphic in G. 

1 
12. Suppose Rz) is d e W  as f(z) = - . i-z 

a) Where is @) holomorphic? 
b.) Can you h d  a power series expansion for f(z} about zero? ïfso, what is it, 
and what is the radius of convergence? 
c.) Does your ansver in a) a g m  with the rcgion of convergence p u  found in b)? 
Why or why not? 

Alternate Questions (thcsc questions wtre &cd in one intdew) 
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10. Suppose that f: R2 + R2 is given by f(x, y) = (x2 - $, 2xy) [So fis (rd0 vector 
valued fùnction defined on the x-y plane]. 

a.) Describe this function briefly. 
b.) Whert is f(x, y) continuous? 

c.) 1s the following integrai path independent? f (x2 - y')& + (2xy)dy 
Pl 

t 1. ~ef ine  Rz): C + C by f(z)=2. 
a.) Where is f(z) continuous? Holomorphic? 

b.) 1s the following integtai paîh independent? j> z2dz 
21 

c.) Suppose f(z) = u(x, y) + i v(x, y), where u and v are real valued, is 
ho lomo~hk  in a region G (in the compîex plane). Let g: R' + R' be defineci by 
g(x, y) = (u(x, y), v(x, y)). So g is just the real function with the same 
components as f(z). 

i) Where is g continuous in G? (Thinking of G as a ngion in R2) 
C 

ii) 1s the integral, ju(x, y)dx + v(x, y)dy , qua1 to zero around every 
7 

closed path in G? 

iii) 1s the integral, lf(z) dz , equal to zero for every closed path in G? 
t 

A3.1.2 Pilot Project (Class 2): Second Interview (Early August, 1996) 

1. Let A = (z: R < 12-4 < S) (O S R < S S a), and suppose f s H(A). Then we have for 
Z E  A, 

where, 

Cm you explain why this formula far the coefficients is reasonablc? 



2. Suppose f(z) is defined as: f(z) = 
1 

z(1- z ) ~  ' 

a.) Find the Laurent Expansion of f(z) about 1. 
b.) What is the annuius of convergence? 
c.) Why do Laurent Stries converge on an annulus? 

3. a) Explain why the zeros of a holomorphic fiinction are isolated. 
b.) Explain why the poles are isolated. 

4. a.) Let rcz> = sin z. 1s Qz) holomorphic in C? - 
b.) 1s sin(;) holomorphic in C? - 
c.) Suppose qz) is holomorphic in C. 1s f 6 )  holomorphic in C? Explain why or 
why not. 

5. a.) Explain why a meromorphic function with no essential singularities in the 
extcnded complex plane is a rational fiinction. 

(z2 +z+2)(z3 -i) 
b.) Suppose f(z) = . What is the total order of the zeros in the 

(z' + 2)(z7 - 6) 
extended complex plane? What is the total order of the ples in the extended 
plane? 
c.) Suppose f(z) has a finite number of poles in the extended complex plane and 
no other singularities. 1s the total order of al1 pales of f'z) equal to the total order 
of ai l  the zems? Explain why or why not. 

6. C m  you use Rouche's Theorem to find out how many zeros 7? + 9z - 1 has in the 
region 112 < lzl< 312? 

1 
7. a) Evaluate d z .  I,.4, (z2 + 1x2 - i) 

ex 
b.) Evaluate &. 

A3.2.1 Main Study - Faiî 1997 (Class 2): Interview Number 1 

Part 2 

Simplify îhe following, i.e., express îhmi as a + ib, or as ma (which mr you prfa)). 



2 + i  
*1. - 

2 
*2. - . 2+2i a + ib 

, '3. - . , $4. - . la + ibI 
2 ' l + i  l + i  a-ib 

, *S .  - ; 
a+ib 

In questions 9 and 10 1 mean give some sort of a pichire of what the function looks like. 

Part 3 

A. Please mark the following six statements about complex numbers as being tme or 
false: 

1. T F A complex number is a vector in the plane. 

2. T F A complex number is a number of the form a + ib, where a and b 
are real numbers, and i2 = -1. 

3. T F A complex number is a zero of a polynomial with real coefficients. 

4. T F A complex number is a number of the form (x, y), where x and y 
are real numbers. 

5. T F A complex number is an element of the complex number field. 
6. T F A complex number is a number of the form rei . 

B. Which of the above statements best describes a complex number as you understand it? 
(Circle one) 1 2 3 4 5 6 None 

C. Please describe what you understand a complex number to be. 



A3.2.2 Main Study - Fa11 1997 (Class 2): Interview Number 2 

Part 2 

A. Please mark the following six statements about the limit of a complex fiuiction as 
king tnie or faise: 

l . T  F A limit describes how a complex function moves as z moves 
toward a certain point. 

2. T F A b i t  is a nurnber or point p s t  which a complex fimction cannot 
go. 

3 .T  F A limit is a number that the w-values of a complex function can 
be made arbitrarily close to by resûicting z-values. 

4. T F A limit is a number or point the complex fimction gets close to but 
never reaches. 

5. T F A limit is an approximation that can be made as accurate as you 
wish. 

6. T F A lirnit is determined by plugguig in numbers closer and closer to 
a given number until the limit is reached. 

B. Which of the above staternents best describes a limit as you understand it? (Circle 
one) 1 2 3 4 5 6 None 

C. Please descnbe in a few sentences what you understand a lirnit to be. That is, describe 
what it means to Say that the limit of a function f@) as z z, is some complex number L. 

Part 3 

Answer the following questions. Remember whatever solution you h d  or however you 
think about these problems is perfect! Feel fk to use the textbook. 

* 1. Find al1 solutions to 12 - il = 12 + 1 \ . 

*2. Suppose f(z) = (22 - x)?, where x is the real part of z. Where is f(z) differentiable? 

3. Where is f(z) = 32' + z + 4 continuous? 

4. Find ali solutions of le" - 11 = i 

*S. if0 = arg z, where is filz) = 2 + 0' analytic? 

6. if z = re', where is f(z) = # diffetentiable? 

7. If z = rea, where is f(z) = deje continuos? 



8. Find a11 solutions of 21z - 31 = [z - 61. 
9. Suppose flz) = 2, if Retz) 2 O, md f(z)= O, if Re@) < O. Where is f(z) d i f f d a b l e ?  

10. Where is flz) = x' - J - 2ixy anaiytic? 

i 1. Let f(z) = O if lzl< 1, and flz) = 2 - 1 if 1211.1. Where is f(z) analytic? 

12. Suppose fi(z) is anaiytic on D and real valued. Explain why or prove that f(z) is 
constant. 

A3.2.3 Main Study - Fa11 1997 (Class 2): Interview Number 3 

Part 2 

A. Please mark the followiag six statements about analytic functions (of a complex 
variable) as king tnie or fdse. 

1. T F Any polynomiai in x and y will be entire. 
2. T F An analytic function is a bction that is differentiable 

everywhere in an open disk. 
3. T F Anaiytic functions are special because the limit forrned by the 

derivative has to hold h m  my direction. 
4. T F Any rational function of eZ is entire. 
5. T F Complex multiplication (division) is key to understanding anaiytic 

functions. 
6. T F An anaiytic hct ion  satisfies the Cauchy - Riemann conditions in 

the domain of the function. 

B. Which of the above statements about analyîic functions is most accurate? 
1 2 3 4 5 6 None 

C. Which of the above statements about analytic functions is most useful to you? 
t 2 3 4 5 6 None 

D. Please describe, in a few sentences, what you understand an anaiytic fûnction to be. 

Do each of the following questions anyway you wish. 



2. Find the hatmonic conjugate of u(x, y) = eYcos x . 

3. If z = rea, where is f(z) = 8èir analytic? 

4. Ver@ that liKl = lcos z + i sin zl 

(i cos0 + sine)' 
' 5 .  Find the real part of 

(cos28 + i sin20)' 

6. Find al1 solutions to 132 + 1 - il = 132 - 41 
7. if f(z) = (x - y)' + i(x + y)' , where is f(z) differeniiable? 

8. Find al1 solutions to lz- il=]Z - il . 

9. if f(z) is defined as: f(z) = O for Irn(z) < 0, and fi[z) = 2 for Im(z) 2 0, where is f(z) 
anal ytic? 

*IO. If lzl= 2, show that 12 -Xl=lnv - 21 , for al1 W. 

11. Find ail solutions to sin z = 3. What is cos z for these values of z? 

A3-2.4 Main Study - Fa111997 (Class 2): Interview Number 4 

Part 2 

A. Please mark the following six statements about branches of multivalued hctions as 
being ûue or false. 

1. T F A branch of a multivaiued function restricts the values to make a 
single valued function. 

2. T F A branch cut of a multivalued function is a ray or curve which the 
function cadt cross. 

3. T F A branch cut of a multivdued function is a restriction of the 
domain to make it single valued. 

4. T F A branch of a multivaiued function is a restriction on the argument 
of z to a 6xed interval less than or equal to 2 in length. 
5. T F The branches of a multivalutd function have the same value (in 

the cxtcnded complex plane) at a branch point. 
6. T F Branch points aud points on a bmch cut are points at which the 

multivalued function is not analytic. 

B. Which of the above statements best dcscr i i  the prppaties of branches of 



multivaîued functions as you understand them? (Circle at most one from 1-4, and at most 
one h m  5 and 6) 

1 2 3 4 5 6 None 

C. Please describe in a few sentences what you understand a branch of a multivalued 
hrnction to be. Include branch cuts and branch points in your description. 

Part 3 

Do the following problems any way you wish. 

1. Show by dUen caiculation that f(y(t))yt(t)dt i f(y(t))y'(t)ldt ,where Rz) = z + 2, 

and y(t) = (1 + i)t . 
1 %  II 

2. Find sin zdz , where y is the segment h m  O to 1 on the x mis, followed by the I 
vertical &ment k m  1 to 1 + i. 

1 
3. For which closed contours, y, does [z + -dz = la ? 

Y 2 Y 2 

4. Find ez dz , where y is the square with vertices at O, 1,I + i, and i. 
Y 

5. Find Log(-1 + i)' . 1s this equal to 3Log(-1 + i)? 

6. If a, b, and c are complex nurnbers is a' x bc = (ab)' ? 

7. Find al1 solutions of cos z = 3i. 

.8. Find x dx + ydy + i(xdy - y dx) , where y is the upper semichle connecting O and 
Y 

$9. Find an upper bound for where the integral is to be evaiuated on the 

contour formed by the two segments joining the points 1 + i, -1 + i, and -1 - i . 

A3.2.5 Main Study - Fa11 1997 (Class 2): Interview Number 5 and SA 

Part 2 

A. Please mark the following six statements about contour integrals of complex fuitctions 
223 



as being true or false. 
1. T F A contour integral of a complex function, f(z), is roughly equal to 

Rz) times the length of the path. 
2. T F If the integral of the complex function f(z) over every closed 

contour in a domain D is zero, then Qz) is anaiytic. 
3. T F If f(z) is a complex fûnction, analytic on and inside a contour, , 

then for al1 z inside , f(z) is detcnnined by it values on . 
4. T F The modulus of a contour integral is always less than or equal to 

the maximum of the integraad on the contour times the length of 
the contour. 

5. T F Contour integrals are useful for calculating the value of a function, 
for example, using Cauchy's integral formula. 

6. T F Contour integrals are detineà in ternis of two real valued line 
integrals. 

B. Which of the above staternents best describes the way you think of a contour integral? 
Circle one. 

1 2 3 4 5 6 None 

C. Please describe in a few sentences what you understand a contour integrai to be. 

Part 3 

Do the following questions any way you wish. 

1. Find 1 3x2 + iydz , where y is the square fomcd by the points O, 1, l  + i. and i . 
t 

dz , where y is the unit circle centered at the origin. 
2 

1 
*3. Show tbat for y(t) = 2, O S t < 2n, - - Zdz is zero. 1s - - Z analytic? G z 

4. Suppose f(z) is entire, and has the property that for some real constants, a and b, + 0, 
f(z + a) = Qz), and f(z + ib) = fcz). Use Liouville's Theorern to show that f@) is constant. 
(A function with this property is called doubly periodic.) 

S. Let D be the whole complex plane. What's m g  with the following argument: 
Since f(z) = 112 has an ad-derivative, the integral of flz) over any closed contour is zero, 
so by Morera's îheorem, @) is analytic in D, Le., 112 is entire? 

6. Suppose y is a closed contour in the complex plane that contains complex numbers a 

224 



and b in its interior. Can you use the <ML technique to find an upper bound for the 

following integrai? What do you conclude? 
1 

[[z-a)'(z- b) d z .  

1 
7. 1s the results of problem 6 changed if we changed the integral to 

[(z-a)2\z- bl dz ? 
Why or why not? 

$8. If y is a circle of radius 2 centered at i, what is krjl -& ? 

9. Find the following integral for y(t) = 1 + i + 28, O 5 t (; 2n, 
e2' 

d z .  
z(z-5i)(z - n) 

Interview SA differed fiam interview 5 in the foiiowing questions: 

1 
5. Let f(z)=- . i) What is the domain of @)? ii) Expand f(z) into a power series 

1-2 
about z = O, What is the radius of convergence? 1s it the same as the Domain of f(z)? 
Why or why not? 

7. Suppose q, is reai, and Iet f(z) = & , ( z  - 2,)" be defmed for 12 - c R. 1s f(Z) 
- 

defined? What is it? 1s it analytic? What about f(Z) ? 

A3.2.6 Main Study - Fa11 1997 (Class 2): Interview Number 6 

Part 2 

A. Please mark the following six statements about Taylor series as being tme or 
fdse. 

1. T F if f(z) is defined by a Taylor series, convergent on a disk D, then 
f(z) is analytic on D. 

2. T F If f(z) is andytic in a domain D, and z, is in D, the power series 
for Rz), expanded about q, is convergent for ail z in D. 

3. T F If the power series for Qz) diverges at q, then Qz) is not analytic 
at z,. 

4. T F The product of the Taylor series for @) and g(z), expanded about 
q, converges at each point where flz) and g(z) are analytic. 

5. T F if f(z) and g(z) have Taylor Senes expanded about the point z, 
with rad5 of convergence R, and R,, respectively, then the Taylor 
series for f(z)g(z), expanded about z, , has radius of convergence 
R,. 



6.  T F If @) is entire, then the Taylor series for fCz), expanded about any 
point, converges in the whole complex plane. 

B. W c h  of the above statements best describes the behaviour of analytic functions 
and their Taylor series. Circle one. 

1 2 3 4 5 6 None 

C. Please describe in a few sentences what you understand about convergence of 
Taylor series of analytic fiinctions. 

Part 3 

Answer the following questions anyway you wish. 

1 
1. Let f(z) = - . i) What is the domain, D, of f(z)? ii) Expand i(z) into a power 

i -z  
series about z = O. What is the radius of convergence? 1s the domain of convergence of 
the series the same as D? Why or why not? 

2. Suppose f(z) = x c , ( z -  2,)" is a Taylor series and z, is real. Ifz is inside the di& - 
of convergence is f(Z) defined? 1s f(Z) analytic at z? What about f(Z) ? 

3. Suppose fiz) is entire, and m is a postitive real number such that the lim f(z) 
Z+ZO (2 -  z * ) ~  

exists and is not zero. Can m be 1/2? what do you conclude? 

1 
4. Let f(z) = - . Fiad the Taylor series of f(z) about O. What is the radius of 

cosh z 
convergence? 

5. Why do power series converge on disks, and Laurent series converge on annuli? 

6. Suppose g(z) is an entire function, such that g(x) = sin x. Use power d e s  to show 
that g(z) = sin z. 

cosh z 
7. Find the Laurent senes for f(z) = , expanded about -1. 

(z + i)(l + z) 



A3.3.1 Main Study - Spring 1998 (Class 3): Interview Number 1 

* 1. What is the real part of the following? 

*2. If we use the z = (x, y) representation for complex numbers, which of the 
fol1owing are correct statements? (Circle the correct ones) 

*3. a) Put the following into a + bi form. 

-6 + 3i 
ii) - 

1+2i 

b.) Three students did the following pmblem three different ways. Which of 
them are correct? (Circle the correct ones) 

6-9i 3(2-3i) - iii) - - = 3  
2-3i 2 - 3  

c. Put the following into a + bi forrn. 

-4 + 2i 6+2i 
il 2-1 ii) - -3-i 

4. a) Sinipli@ the following expressions, given that z = (x, y). 

(32) ii) - 
(194) 



*b) Simplity the following given that z = re'. 

.1 
i) 3eix x sei: ii) 3eia +Se' 2 iii) 3eix + 5eif 

5. a) Mark the following six statements about complex numbers as true or false. 

1) A complex number is a point in the complex plane. 
2) A complex number consists of a real part, a, and an imaginary part, b, 
that are added togeiher (with a factor of i in h n t  of b) to get z = a + ib. 
3) A complex number is the endpoint of an amw that starts at the origin 
of the cornplex plane. 
4) A complex number is an ordered pair, such as, z = (x, y). 
5) A complex number is a vector in the complex plane. 
6) IfRezisx,aadImzisy,thez=x+iy. 

b) Which of the above six statements best describes how you think of a complex 
number? (Circle one) 1 2 3 4 5 6 

c) Describe how you think about complex number in your own words. 



*6. Use the diagram to fil1 in the blanks below. Select a point for each item. The large 
circle has radius R, and the mal1 circle has radius 11' .  The first one is done for you (and 
tells you where z is). 

i) z is A vii) )z bad is 

ii) lzl is ix) l/(z bar) is 

iii) z bar is x) imzis 

iv) l/z is xi) Re (z bar) is 

V) Im (z bar) is xii) -z is 

vi) Re z is 

*7. a) Find the solutions of the following equations: 

i) z2+2iz-  1 = O  ii) 2 + (1 + i)z + i = O 

b) Are your solutions complex conjugates? When are the solutions of a quadratic 
equation complex conjugates? More generally, given that w is a root of the 
P(z), what conditions on P(z) assure that w bar is also a mot? 

8. Find the solutions of the followhg equations: 

A3.2.1 Main Study - Spring 1998'(Class 3): Interview Number 2 

1. In this question a, b, c, and d are reai numbers. 
a) For which b is it true that, i) Ibl= )2i) ii) 13 + ibl = 13 + 2il 



b) Find al1 b and c for which i) 13 + ibl = 13 + ici ii) lb - 2il= lc -24 

c) Find al1 combinatim of a, b, and c for which i) libl= la + icl ii) 13 - ibl = [a + 
ic 1. 

d) Does la.+ ibl = Ic + id( always imply that la1 = Ici, and Ib( = Id(? Wby or why not? 

$2. a) Is 3i < Si? 

b) Suppose we define a lexicographie ("dictionary'') order on the complex numbers 
as 

follows: a + ib S c + id if and only if either a < c, or a = c, and b S d. Does this 
ordering preserve the usual des  of multiplication and addition on both sides of an 
inequality? 

(2+i)-3i+(I+i)i 
c) Find the real and imaginary parts of 

(2-i)i-2+3i ' 

3. Which of the following functions are continuous? Why or why not? 

d) f(z) = O if Re z 2 0, and 2 if Re z < 0. 

I 

f) f(z) = e-7 if z z O, and O if z = O. 

*4. a) For which z is IZI = lzl? Explain. 

b) For which z is 1 t + 1 ( = lz + 1 I? Explain. 

For which z is It - il = (z + il? 

For which z is liz + 11 = IF+ il? 

If- 11 
Where is f(z) = - anal ytic? 

P-21 



S. a) Does [sin(&) + icos(#)] = (si& + iws0)' ? 

b) Does [sin(nû) + icos(nû)] = (sine + icosû)" for all n? 

6. a) Find al1 roots of 2' = -2i 

b) Find al1 mots of z4 + 3 = -2i 



Appendix 4 

Interview Questions and Solutions 

The solutions given in this appendix are simply solutions, and are not necessarily 

the solutions we expected students to give. Only the solutions to questions used in our 

analysis in chapter 6 are included in this appendix. 

A.4.1.1 Pilot Project (Class 1): First Interview (Early Juby, 1996) 

Simplify the following, i.e., express them as a + ib, or as ree (whichcvcr you 
prefer). 

2+i 2 2+2i a+ib la + ibl 
1. - 

2 
2. - 3. - 4. - 

1 + i 5. - l + i  a-ib a +  ib 

Solutions: 



A.4.2.1 Main Study - FaII 1997 (Class 2): Interview Number 1 

Part 2 

Simplify the followiag, i.e., express them as a + ib, or as re" (which ever you 
prefer). 

2 + i  2 2  +2i a+ib la + ibl 
1. - . 

2 ' 
2. - . 3. - . , 4 . - ;  5. - 

l t i  ' l + i  a-ib a+ib ' 

A.4.2.2 Main Study - FaU 1997 (Clrss 2): Interview Number 2 

Part 3 

Answer the following questions. Remember whatever solution you find or 
however you think about these pniblems is perfect! Feel fiee to use the textbook. 

1. Find al1 solutions to )z - il = )z + 11 . 

Solution: 

The solution to this equation is the set of al1 points that are quidistant between i and -1. 

So z = t(1-i), for al1 real t. 

2. Suppose f(z) = (22 - x)', where x is the real part of z. Where is f(z) 
differentiable? 

Solution: 

In this case, f(z) = (x + 2 i ~ ) ~  = x2 - 4J + 4iiy. Taking partial derivatives, and applying 

the Cauchy-Riemann equations, y = 2x, u, = -8y, v, = 4y, and v, = 4x. So we require, 

2x = 4x, and 8y = 4y. Thus, qz) is differentiable oaly at (O, O) (the partials are continuous 



5. If 0 = arg z, where is 42)  = 2 + OZ analytic? 

Solution: 

The first thing we have to do with this function is define a branch, because the O2 term 

makes this fbnction multivalued. So we choose O 5 0 < 2n. Then it is convenient to use 

the polar form of the C d  conditions: ni, = ve , and rv, = - ue . Then 

f(z) = hos28 +û2 + iIsin28, so u = +cos28 +û2 and v = r%in20. Computing the partials, 

q = 2r%os20, = -2?sin20 + 20, rv, = 22sin28, and va = 2x%os28. So we require 

23cos20 = 2hos20 , and 21sin20 = 2?sin28 + 20. The first equation is an identity, but 

the second only holds if 0 = O. Thus, flz) is differentiable on the ray, Re z > 0, but is 

nowhere analytic. 

A.4.2.3 Main Study - Falt 1997 (Class 2): Interview Number 3 

Part 3 

Do each of the following questions anyway you wish. 

(i cos0 + sine)' 
5. Find the real part of 

(co~28+isin20)~ ' 

Solution: 

(i cos0 + sine)' ie-" --- 
CM - ie9" = ~(COS% - i s i n ~ )  = i c o s ~  t s i n ~ .  so the mi part (cos20 + i sin 20) ' - 



Solution: 

This question has a mistake in it: 12 -nul = p l  = 12 - ml = lm - 21 for ail w and z. 

We do not need the restriction on z given in the question. 

A.4.2.4 Main Study - Fa111997 (Class 2): Interview Number 4 

Part 3 

Do the following problems any way you wish. 

9. Find an upper bound for z + 2 where the integral is to be evaiuated on II2 4 
the contour formed by the two segments joining the points 1 + i, -1 + i, and -1 - i . 

Solution: 

The idea in this problem is to find a reasonable upper bound for z2 + 2, then multiply by 

the length of the paih. Since the entire path is contained in the disk centered at the ongin 

of radius f i ,  and the maximum of an analytic function occurs on the boundary, we can 

take the maximum value of 2 + 2 to be the maximum on the circle centered at the ongin 

of radius f i ,  narnely 2 + 2 = 4. The length of the path is 2 + 2 = 4, so an upper bound for 

the modulus of the integral is 4 spuared, or 16. 

A.4.2.5 Main Study - FaU 1997 (Class 2): Interview Number 5 

Part 3 

Do the following questions any way you wish. 

1 
3. Show that for y(t) = ek, O I t < 27t, - Zdz is zm. 1s - - z adytic? 

2 



Solution: 

1 
For the contour given the integrand is identically zero, since - = Z on the unit circle. So 

Z 

the integral is zero. We cannot conclude that the integrand is analytic (Morerays 

theorem), because we have only checked one very special contour. In fact, the integrand 

is nowhere analytic (using the Cauchy-Riemann conditions). 

8. i f y  is a circle of radius 2 centered at i, what is ? 
&-il 

Solution: 

The integrand is just one, except at the point z = -i where thcre is a removable singularity 

(the numerator and denominator are equal, since they are the moduli of complex 

conjugates). Since the singularity is removable, we can ignore it, and Cauchy's integral 

theorem still applies. So the integral is zero, since f(z) = 1 is entire. 

A.4.3.1 Main Study - Spring1998 (Class 2): Interview Number 1 

1. What is the real part of the following? 

Solution: 

a) The Re(4 + 2i) = 4. b) 3 - (I+i)i = 3 - i + 1 = 4 - i, so Re (3 - (l+i)i) = 4. 

2. If we use the z = (x, y) rcpresentation for complex numbers, which of the 
following are correct statements? (Circle the correct ones) 



Solution: 

in the z = (x, y) representation, there is no i, so any expression that contains i is 

automatically incorrect. Thus, only part a and part g are correct. 

3. a) Put the following into a + bi form. 

-6+3 
ii) - 

1 + 2i 

b.) Three students did the following problern three different ways. Which 
of them are correct? (Circle the correct ones) 

6-9i 3(2 -3i) - iii) - - = 3  
2-3i 2 - 3  

c. Put the following into a + bi form. 

6+2i 
ii) - 

-3-i 

Solution: 

2 +4i 2(1+2i) - -6 + 3i 3i(l+ 2i) 
P&a), i) l+2i- l+2i = 2 .  ii) -- - = 3i. 

1+2i (1+2i) 

Part b), i) is correct, ü) is incorrect (the cross terms in the numerator have been calculated 

by adding: -9i + 2 'e' -1 li, and 6 + 3i '*' 9i), and iii) is correct. 

Part c), i) 

4. b) Simplify the following 23 -$ '~  that z =ma. 



Solution: 

.K i(x+Afcmz) 5 - iii) 3e" + kt? = -3 + 5i = &e 

6. Use the diagram to fil1 in the blanks below. Select a point for each item. 
The large circle has radius R, and the small circle has radius l/R. The h t  one 
is done for you (and tells you where z is). 

i) z is A 

ii) is 

iii) z bar is 

iv) l/zis 

V) Im (z bar) is 

vi) Re z is 

vii) lz b 4  is 

ix) l/(z bar) is 

x) Im z is 

xi) Re (z bar) is 

xii) -z is 

Solution: 

ü) lzl= R ; iii) Z is D; iv) 1/z is G; v) h ( Z )  is -C (no point for this); vi) Re(z) is C; 

vii) lZl is R; ix) l/(Z) is H; x) Im(z) is C; Re@) is C; -z is F. 



7. a) Find the solutions of the following equations: 

i) 7?+2iz- 1 = O  ii) 2 + (1 + i)z + i = O 

b) Are your solutions cornplex conjugates? When are the solutions of a 
quadratic equation complex conjugates? More generally, given that w is a 
mot of the P(z), what conditions on P(z) assure that w bar is aiso a mot? 

Solution: 

Part a) i) 2 + 2iz - 1 = (z + i)' = 0, z = -i. ii) 2 + (1 + i)z + i = (z + l)(z + i) = O, so 

Part b) The mots are not complex conjugates in either case. The solutions of a quadratic 

equation will be cornplex conjugates (we regard reai roots as their own complex 

conjugates) if and only if P(z) = cQ(z) where c is any constant, and Q(z) is a quadratic 

with real coefficients. The general case will be similar, since any polynomial with reai 

coefficients can be factored into polynomiais with real coefficients, and of degree at most 

equal to 2, in effect, quadratics. This theorem is not too hard to prove, but we will oniy 

sketch it here: If the roots are conjugates then the complete factoriztion of the polynomial 

(in C) will have factors, such as, (z-a)@-à) which can be multiplied out to a quadratic 

with real coefficients. So we will get a proâuct of polynomials with real coefficients (up 

to the constant c). On the other hand if Q(z) has real coefficients, then it can be factored 

into factors that are of at most degree 2, so the mots will either be real or cornplex 

conjugates. 

A.43.2 Main Study - Spring 1998 (Class 2): Interview Number 2 

2. a) 1s 3i <Si? 



b) Suppose we detine a lcxicographic (Wctionary") order on the complex 
numbers as follows: a + ib S c + id if and only if either a < c, or a = c, 
and b 5 d. Does this ordering preserve the wud niles of multiplication 
and addition on both sidcs of an incquaüty? 

(2+i)-3i+(l+i)i 
c) Find the r d  and imaginary parts of 

(2 - i)i - 2 + 3i 

Solution: 

Part a) 3i < 5i makes no sense, in the usual sense of an ordering, because we cannot 

define the relationship between O and i: If  i < O, then i2 > 0, but -1 c O. Or if i > O, then 

i2 > 0, but - 1 < O. Thus, we cannot define an order that presewes the usual rules when 

multiplication is applied. 

Part b) We can order the complex nurnbers as a set with the lexicographic ordering, but 

this ordering does not follow consistent d e s  for multiplication: for example, by this 

ordering ûi S li, but then (multiplying by i) O S -1, so, apparently, we need to change the 

order when multiplying by i. But then, since 1 5 2, we would have 2i I i, which 

contradicts the ordering rule. We conclude that the lexicographic ordering does not work 

(if we want to use multiplication). 

4. a) For which z is = Izl? Explain. 

b) For which z is IZ + 11 = lz + il? E x p k .  

c) For which z is lz - il = lz + il? 

d) For whkh z is liz + I /  = IF+ il? 

IF- 11 
e) Where is f;lz) = - anai ytic? 

pz - 21 



Appendix 5 

Two Complete Interview Transcripts with Worksheets 

In this appendix we have included two complete interview transcripts, including 

photocopies of the sections of the worksheet that go with each question. We have 

selected these interviews simply as average in length, and one h m  class 2 and one h m  

class 3. Here a series of periods "....." means there was a pause of length proportional to 

the number of periods: 2 or 3 periods means a few seconds, haif a Iine of periods means a 

few minutes. Also a series of "***" or "---" means untranscribed phrase. The number of 

stars or dashes is equal to the approximated number of words missing. 

Interview #3, Class 2, FaII 1996 

Part 1 

Question 1 

1) How do you like University (as a leaming and social environment)? 

F. How do 1 like University? As a learning and social, well it depends, like, um, 1 
don? like SFU as a social environment very much, it could be better, ****, much 
better, but that's OK, um, as a leiuning environment, 1 don't know, it " what I've 
done 1 guess, **. 1 suppose 1 like it, else 1 wouldn't be here. [laughs] I'm not 
doing this because 1 have to, because 1 want to, so suppose 1 like it in that respect. 
Sociaily, 1 don? think this particular University **. 

Question 2 

2) Do you agree that the University mathematics environment puts women at a 
disadvantige? Why or why not? 



F. Do 1 a g m  that the University mathematics environment puts wamen at a 
disadvantage? Oh, weli, no 1 don? think so, really. Um, in some ways 1 guess, 
that 1 a p .  In my earlier cornes, whm 1 dacided to go on, I jwt got lmks of 
surprise, from many, you know, um, but besides tbat, you know, 1 faund that 
then's so many more women involved in it now than, 1 think, mer before, so i 
don't thÎnk it does at dl. 

Question 3 

3) Do you agree that the university mathematics environment supports male 
attitudes? Why or why not? 

Do 1 ihink it supports maie attitudes? What kind of male attitudes? [laughs] 
What do you mean by that? 

OK, it's bard to describe, 1 may not find the best way, but, um, it's the idea that, 
um, the mathematics enWonment bas been set by saciai patterns that they act out. 
They aren't necessarily destructive pattern or bad patterns, it's just the way men 
are. 

Unhun. Oh, 1 dan? knuw. *** [laughs] Well, I suppose it would in the fact that 
it's suppose to be, you know, mathematics is a relatively traditional kind of thing. 
You know, in that respect I would say so. But at the same thne* the more females 
get into it, and the more there's, un, f a d e s  instructing it and that kind of thing, 
then there's going to be, you know, nut nearly so much of that, 1 guess. But, um, 1 
don't kmw, it does, but it doesn't. E think it does, but ** word **, 1 suppose, a 
Iittle more, and as well just because of the way math is, ***, kind of like any 
science ***. 

Can you think of any specifics that corne to mind? 

Like how it supports male attitudes? 

Yes. 



Oh, my goodness. 1 can't ***. This is one of those **, you know. I'd say that, uh, 
.... um, 1 don7 know, it sounds to me like, urn, if you're tallring about male 
attitudes, then, 1 suppose, you're, 1 don't really know. Really, that's a tough 
question. Like we, nght now we found that, uh, in class it's kind of nice to find 
that the text books seems to be Witten more with males in mind samehow. But 
how it was, because 1 was just taking a text, that we, you know, 1 don't find the 
text very easy to follow a lot of times. But males seem to be able to look at thcm 
and read hem, and it's no problem. You know, so 1 don't know if tbat has 
something to do with it, that kind of thing, because they'n mostly going to be 
Witten by males, so it's being aimed at people at xx, if theylre saying that you 
know that males think differently than fernales, or whatever, then it could be in 
that respect. And that could ****. 

OK, so 

Be even more specific? 

Yeh, can you tell me specifically about the text, how it's different? 

Well, 1 find 1 leam best by examples, 

Learn mathematics, 

1 leam best by examples, and 1 h d  that the textbook, the earlier level textbooks 
are find, there's lots of examples, but as you move-up the textbooks get a lot more 
explanation based as opposed to example based. And so 1 have a bard tirne taking 
the explanations and tuming it into, and doing a question, from that. I'd rather 
have an example, because then, 1 leam a lot better that way. 

OK. al1 right you've picked out something and can you explain, I'm not 
challenging you at dl, I'm just asking. 

Oh, no, that's al1 right. 

So can you explain how you veri& that these are male patterns or male attitudes? 



F. Well, just h m  the discussion with other people, even 1, but, um 1 just find that 
most of the fernales I've been talking to lem bettcr by example, and the male 
attitude, 1 don? know if it may be that, um, 1 don't how, like 1 don't even know 
how, it's just that wheu it's explain to me, it just sams to, like to xx know 
explain, it just seems to go on and on and on, and, ah, and the sarne thing could 
easily be done, you know by showing an example, and explaining an example, as 
opposed to explaining a lot mon abstractly, 1 ifünk. 1 know if that's a male thing, 
you know that males are, you know l e m  easier that way, by taking something 
that's a little more abstract to, you Irnow, to dohg examples, and pcrhaps in that 
sense, *****, but that's just h m  tsiUring with other people, they have the same 
kind of knack. 1s that specific cnough? 

P. Yes. 

F. OK! [laughs] 



Part 2 

Section A 

Question 1 

F. Oh no, ** a number of things. OK. Um, OK, will yeh, a polynomial is entire 
because it's analytic everywhen, right, so, if 1 reminber concctly. 

Question 2 

F. A fùnction that is diEctclltiable cvcrywhere in an open disk. Um, .... oh, thatts 
ri& oh, right, sure. 

Question 3 



Question 4 

Um, a stupid question, what's a function of e to the z? 

It's not stupid at dl. 

[laughs] OK. So will you tell me, or [laughs] 

Yes. Rational hctions are, they're fiinctions of the fonn q of z over p of z, whm 
q and z [q and p] are polynomials. 

OK. 

And so a rational function of e to the z, you put e to the z in instead of z. 

Oh. 

That's a polynomial in ** 

In z, oh, so, oh. Oh, OK. Will if ifs still a polynomial it would be entire, 
although it's e to the z. Ifs a polynomial though? 

It's a polynomial in e to the z over a polynomial in e to the z. So it's something 
like, here's an example e to the two z, that's e to the z al1 squared, plus 2i times e 
to the z, plus 4 al1 over e to the z d l  to the sixth power minus 1. 

Oh, OK. So would that be entire? Oh, ..... well the bottom could wind up being 
zero or something, couldn't it? So then it wouldn't be, because it wouldn't exist at 
that point. That's what I'd say, so. 

Question 5 

F. 1s key to understanding anaiytic hctions .... I'd say false because, urn, I'm not 
quite sure why, it just doesn't make good sense. 

Question 6 

F. An analytic function satisfies the Cauchy - Riemann conditions, yeh, well it's 
analytic at that point, anyway. So 1 bet you they're ail true, right? 

P. No, some of them are false. 

F. Oh, wow! Because last t h e  they wcre ail hue. [laughs] 



Section B 

F. Which of the above statements about analytic functions is most accurate? ....... 
.....Ah, 1 bave ta chwse just one? 

P. Yeh. 

F. OK, .... l'd say two, and 

Section C 

F. Then i'd Say the rnost useful to me would be the Cauchy-Riemann conditions. 

Section D 

F. What do you understand an analytic fiinction to be? Do 1 Say ii out loud or write 
it dom. 

P. Either one. 

F. Well, OK, 1 just bave to think about it for a second. This is al1 çtuff from the 
midterm. B a d  on what 1 can remember is that an analytic fünction is, wait let me get 
this, um, ... 1 do actudly know this, I just can't think of it right now. An analytic function 
is at a point and it's differentiable at any points around that parîicular point in the plane, 
and um, and ihat the Cauchy Reimann conditions hold at *** [the point] where it's 
diatitiable,  amund that point. Does that make sense? And if it's analytic at every 
point, on the function, or whatever, then it's entire. That's what I remembw. And I 
should bave said something about continuity too, I just can't remember where it goes. 
Well that's what the Cauchy Riemann stuff i'm talking about there ***. But that xx 
analytic, so. Yeb, 1 guess, *** understand the prnctical end of things. All right, OK, that 
was a g d  question, **. 



Do each of the following questions anyway you wish. 

Question 1 

F. Oh, god, OK., simpliQ, what do you mean simplify, like just, 

P. Put it, 

F. Into another fonn? 

P. Put it into a fom simpler than that. 

F. Then that. 

P. a plus ib form or r e to the i theta 

F. Oh, OK. Wcll, 1 guess i'11 try the good old complex conjugate of this......How 
about that. 

P. OK. 

F. Right? Ycs? 

P. Yes. 



2. Firid the hannmic mjugate of u(x, y) = é'cobx 

Question 2 

Oh, 1 can't remember how to do this. ..... Oh, geez ... OK, um, u x equals ... v y, is 
that nght? It's ** cosine x, negative sine x, 1 always get those mixed-up, OK. 
Um, and so u x equals, um v y, u y equals negative v x, that's right isn't it? 

Yes. 

OK, so then that means this quais u y, so 1 get, 1 used that and equatc this....then 
that's just a constant, that's just *** itself **. OK, should I go on? ..... OK, Oh, 
**. ..... And then 1 have to take u y, because 1 want to get that, 1 am suppose to 
compare them. 1s that right? 

Yes. 

Yeh, OK. It's al1 coming back now. OK so u y is going to quai um, e to the y 
cos x, and then that would ***. So we get cos, minus e to the y cos x. So, hm, 
... Then wing this, OK, so I've got ihis v x equals, oh, 1 can't remember, ... 1 think 
*** say this is the same as that. 1 have to find out whaî this is. 1 know what 1 
have to do, I just can't rernemba how to do it. xx, um, 

V x is negative e to the y cosinc x. 

And whatid you get for v x hm?  
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Oh, so it's, oh, thank you. [laughs] OK. negative e to the y cosine x pius ..., and 
so these are the same, so that means that's [phi prime] just a constant, nght 
because that goes to, nght, yeh. 

That's constant? 

So, now, just wait. Oh, no, ah, oh, that's zero, so that means rhat's a constant? 

Yes. 

Yeh, OK, So then that means that um, is that nght? Do 1 ** the whole thing, no, 
OK. 

Just for the tape, you were saying phi prime is zero, 

So therefor phi is a constant. 

OK. 

OK. 



Question 3 

F. Um, if z equals r e i theta, where is ***? ..... Hm, .... So 1 just want to find where 
this is analytic basically. 

P. Yes. 

F. So youtre just saying this is, this is just saying rhat it's in polar fonn **, oh. 

P. Yes. 

F. OK, so that means that, um this f of z equals theta times cosine r ..., so since that's 
negative, Itm just going to Say this is negative r. OK, um, so u of r, theta q u a i s  
...A couldn't rernemk when thete's a negative sign in then if that makes cosine 
negative, so I'll just leave it [laughs]. Just in case you'tc wondering why Itm doing 
that, because 1 know one of thm is going to wind up being negativc and one of 
them positive. ***. -Um, OK so, u r is ****. And v r is ........ OK, it's um, oh, gee, 
comct me if rm wrong hete, 1 caa't rcmernk this part, u r, is it u r cquals one 
over, 1 thought it was sometbing redy unusual. 

F. OK, 1 ** it was like one over r, or something, xx, OK. r u r equals v thcta, 25 1 



.... OK, um r times u r is r theta sin equals ..., and cos .. cquals r ... OK, so, ah, well 
this is true when r and theta both quai one, ***, so itls analytic when r quais one 
and theta equals ... these have to be equal for this to work. So the only way that's 
going to work is if r and theta both equal one, or r times theta equals one. 

r tirnes theta. 

OK. So r theta if that equals one then ifs analytic, right? 

Are there any other possibilitics? 

1 bet there are since you are asking. Ah, oh, if mine  negative r is equal to zero. 
So 1 mean, r is a value that ifs going to equal zero, then both these would be equal 
to zero, right? Does that make sense? 

Say that again. 

Sony, if it ends up both side are equal to zero, so sin of some value of r is gohg to 
equal zero, and so ***. Um, sin of zen, is zero, isn't it, and cos of one is zero, is 
that right? 

Remember r can't be zero, 

Oh, no, because that this point, oh. Oh, so it has to ..., so zero, so it would be any 
multiple of, would it be two pi? 

OK. 

So if r equals two pi here, ihen it would be like any multiple of that, right? 

So this one would be, well, cosine, cosine one is zero, isnlt it? If we let r be one, r 
be negative one? 

That docsn't make sense. 

r is two pi plus a multiple, so what's cos of that? 

What's cosine of two pi? 

Yes. 



Um, oh, it's one. OK. so then if 1, I'm ***. So, if um, so, 1 want to get zero so, i s  
that, 

1s one there and one there. 

So you're saying 1 have to put two pi in, right? What I'm 1 going to qua1 if 1 put 
2 pi **, oh so the whole thing doesn't work. So i have to find an r that satishes al1 
of these, but there isn't one. 1s that right? Like 1 made this one work, for that, but 
then that one doesn't work. 

Are you sure? 

Oh, OK, wn, [laughs] If 1 put two pi in here these aren't equal. 

What do you get if you put two pi in there? 

This is one. 

OK, cos of two pi is one. 

This is one, and then would be two pi theta. 

OK, equaIs? 

One. 

OK. 

Oh, OK, if IWO pi theta equals one, then um, theta wouid equd one over two pi, 
oh so it would be two pi and one over two pi, right? 

OK, what about this case and this case? Are they different? 

Oh, look at that they are the same thing. OK, so, [laughs] what do you know? So 
then it wouid be basicdly like say r and one over r. Like that? 

ûr I couid say Like one over theta, theta. Isn't that the same thing? So, basicaily 
that would be the points, where it's analytic. 

So go back to the beginning, what was the question? 

Where is it analytic? 
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And what is your answer? 

It's analytic when theta equals one over r. 

1s that right? That's not exactly what youv'e shown. 

What have you shown? ... What do you mean what have I shown? Like what did 1 
do? 

Yes, when you do the Cauchy Riemann conditions, what does that show. 

What does it show? Oh, what does that show? It shows that it's differentiable at 
those points. And k a u s e  of that it's analytic, right? No? 

1s there any difference between differentiability and anaiyticity? 

I'm sure there is since youtre asking. [laughs] I've just got to think about it. 1s 
there any âifference beween those two? Um, I don't know, my guess would be 
not .... because if it's diffmtiable then, if it's differentiable then it's going to be 
anaiytic, right, isn't that right? Because it's not differentiable unless the Cauchy 
Riemann conditions hold. 

OK, you've definitely found where itts diff~entiable. 

1 don't know. 

You have. 

Oh, 1 have, OK, OK. So thatts where it's differentiable, these points right? 

Yes. 

OK, so then 1 want to find where ifs anaiytic, right? OK, is there something 
really obvious I'm missing here? 

No. 

OK, just checking. Um, ..... 1 don? how, it's anaiytic where ever it's diffmtiable, 
that's what 1 would say. 

OK, let's go on, PU tell you at the end. 



Question 4 

F. Oh, gce, OK, um, ..... vcrifj it? Weil 1 just kind of know that ....... 
P. What are you thinking? 



F. What am I thinking? I"m thinking 1 just know this. [laughs] 1 can't thinù of what 
1 could pssibly do to veri@ it. Short of, 1 don't even know. If 1 ....... I assume 
that this is tme. 

Yeh. So that now ....... Can 1 do it the oîher way around? 

Yeh. OK, so maybe I'11 try it by puîîing cos z and sin z in the other fom, with the 
e to the i z. Would that be a g d  idea? And then I add it dl togeiher and then 1 
would hop to get that. 

OK. 

OK. Ah, so cos z is, oh gee, 1 canlt remember, e to ihe.....I can't remember what it 
is. ***, that's minus, is it just e to the minus z? I can't remember, is that right? 1 
can't remember what it is. 

Right, you don't want botb ***. 

So that one's positive? 

Yes. 

It doesn't matter which one? And so in this case, 

And that is a **. OK, then these cancei, the i's cancel on this side, and we're left 
over two, so, ...... ...... I lost the i, where's the i? ***, what did 1 do m n g ?  1 
rnissed something, is that i? 1s it e to the i z? 

e to the i z. 

OK. There's one of thcm wherc there's no i, *** there1s no i **. OK, so that 
makes a littIc more sease. OK, so two e to the i z equals e to the i z. That's what 
I'd do. I'm doing it backwards. 

OK. 

1 suppose, acnially then's something else 1 codd do with it. 

P. So, lei me give p u  in alternative, 256and you can "tique tbis. 



wow. 

Instead of doing that, you say e to the i z is equal to e to the i times x plus iy, 

1s equal ta, OK. 

And so that's e to the minus y times e to the i x, right, because it's i times x, 

Oh* right, OK. 

And the modulus of that is just e to the minus y, this is one [modulus of e to the i 
XI* 

1 never thought that 1 should just take the modulus of that. OK. 

And then the other side is, we just square, so it's qua1 to the square mot of cos 
square z plus sin squared z, 

OK. 

And that's one. 

So, what did 1 do wrong? This is e to the minus y, and that's one. 

Yeh, they're different. Oh, ........ don't you have to include the imaginary part in 
the ***, or the, 1 see not, that part you go h m  here to here. ..... so ,... 
So which one of these do you think is correct? 

Oh, that one looks fine. Fat the modulus is one] 

That one's good? 

Yes. It's going h m  this to that, [the rnodulus of e to the minus y times e to the i 
x equals e to the minus y] because if you went, so you're taking the modulus of 
that, you have to, you just took tint patt, you just took the real part. 

No, rernember that's in polar form, it's r e to the i theta. 

This is theta [x is theta], ad r is c the minus y. 



Oh, OK, ... OK, well, ........ But you're taking the modulus of the whole thing, not 
just of that. 

OK, well how would you find the modulus? 

Well, that's what i'm mg to figure out. And I would try to write it something 
like that forin **, and do it that way. 

OK, what's e to the i x? 

e to the i x is cosine, oh, OK, e to the i x is cosine x plus i sin x, and that's tirne e 
to the negative y. And so then e to the minus y cos x, and so that's the real part 
and that's the irnaginary part. And so then you square that, ....... and hopehlly that 
cornes out to one. [laughs] 

***? 

Well, 1 squared the whole thing. 

Oh, OK. 

You want me to finish what I was doing. So that's going to be ........... this is one, 
wait a minute, i'm getting e to the negative y. So there must be something wrong 
with this one. 

You're right. e to the minus y is definitely correct. 

OK, so there's something wrong with that. Oh, because z has a real and imaginary 
part, so 1 have to figure out what those are, ri@. OK, do 1 achially have to do it, 
or is it enough to just show it. 

That's ***. 

OK, i'rn kind of annoyed with rnyseif for xx, [laughs] OK, 

That step is ***. 

Yeh, 1 ***, but, y&, that &es sense though, that once you put x plus i y in that 
form, um and jurnbd it around it's going to be different **. OK, so that's my **. 



Question 5 

F. Find the real part of that, ....*** midterm. 

P. So what's your b t  hought about that question? 

F. It's a lot of multiplying. [laughs] That's my h t  thought. Or, um, you know 
because this is just, oh it's not. .... This looks iike it'd be samething dong the 
lines of that [Euler's f o d a ] ,  but it's not the same thing. The i's mt cight. But if 
i, say I multiply this by i, right, in the brackets hm, un the whole thing, **, then 
i wouid get, negative wsinc theta plus i sin theta But then 1 stiU have that 



negative there, so ***. 1s that on the right track, to do sometùing dong those 
lines? 

Sounds good to me. 

But then 1 just, well ........... Well if 1 just multiply this by i, right, 1 mean it has to 
be to the fifth power. ïhat's why I'm just having a few problems getting my mind 
around **. Yeh, you know, 1 can't just multiply by i, because thete's going to 
be ..., you how, you have to multiply the bottom by i also. 1s there some i 
missing here or, .... Am 1 just generally confused, Otherwisc Pl1 just multiply the 
whole stupid thing out, but I'm sure that's not the line of thinking you want. 
[laughsl 

I'm sure it has somethhg to do with getting this in a form such that 1 cm write e to 
the whatever. That's nght isn't it? 

Yes. 

Yeh, but I can't just figure out how 1 would do that, um with out, un, .... Cm I just 
do that, if 1 multiply by i, it's going to end up going ail in the brackets **, is that 
what you want me to do. 1 can do that? You're just going to let me do it. OK, 
well, we'll try that and see what happens. OK, so it's going to be negative cosine 
theta plus i sin theta ...... 

What exactly did you do? 

1 muhiplied top and bottom by i. 

Top and bottom by i. 

1 can do that can't 1. 1 can put that into the bracket, right? I can do that? That's 
what I'm not sure of either. 

What happens? 

Because it ends up king to the fifth power. 

OK, and what's i to the fi&? 

Oh, That's an odd one, it's just i, oh, so that's the same ciifference, so it doesn't 
matter then. 



Right, OK, ...so then, this can't just be e to the i theta, because there's a negative in 
front of cos theta, so ***. Or, .... if, isn't cos theta minus i sin theta e to the 
negative i theta? 

OK, say 1 take negative one out of that [laugh] I'rn doing al1 sorts of illegai stuff. 
Al1 these simple rules that 1 just forget ....... Oh, but one over i is negative i isn't it? 
xx, OK, so then 1 can just ***. ..... Ah, e to ihe negative i theta to the fifb over, 

Sony what was that step there? 

Oh, which one? 

You canceled the i. 

No, 1 took the i up, so one over i equals negative one, right? And 1 have a 
negative there, 

OK. 

And so, negative one times negative one there is positive, that's what 1 did. 

OK, but what happened to the i? 

It's gone, because it equais, oh, it equals negative i, oh, xx, thank you. Sorry, OK, 
ah, actually that's going to be e to the ..... i two theta, OK, um, I'rn still trying to 
h d  the real part, aren't I? Oh, right, 1 forgot what 1 was trying to do ..... I'm not 
sure that's very helpw myself, what's it do, we still have i over here. 

M a t  is different now? 

Well, I'rn trying, I forgot that I'rn ûying to find the real part [laughs] 1 just 
remembered, and ah, Ive now got it in a form where, um, I'rn just going to put it 
back in to sines and cosines, um, unless, could this equal, e to the negative 5 i 
theta, 1 can just take that in there can i? 

Yes. 



OK. And this will be to the four i theta, OK, if this is being divided, 1 have to 
subtract, is that right? So 1 have i times e to the, this is just to the negative nine, 
OK. And then i times cos nine theta minus i sin nine theta, that would be i cosine, 
oops, doesn't matter, ah, yes. Well, 1 found the rcal part but 1 don? know if I'm 
correct. So the d part was sin nine theta 1 got. 

Yes. 

1s that right? Wow! 

Well done. 

Way to go! Just got a little confiising. Al1 right. [tape change] 

6. Find al1 soiuüorir to 1% + 141 = pz - 41 



Question 6 

..... ..... plus one, I'm trying to find what z has to be equal, or what x and y have to 
be equal? 

Either. 

.... OK, I'm going to put in x plus i y ......... *** ...... Well, x c m  be, well, x can be 
anything 1 suppose, it doesn't matter what ** goes in here. 

But the y that has to be, so then, oh, why dont 1 if 1 take the modulus of both 
sides, isn't absolute value, sort of like that's what the length so 1 always forget that 
1 can actually do that. 

Yes. 

OK, um, .............. I'm not sure that helped me any, um, ......... Now 1 don't know 
what, OK, **** ...., 

Sorry, what's the problem? 

1 don? know! [laughs] 1 don't, 1 am not quite sure what to do about this, like 1 
want to make them equal to each other, so 1, um, 

You have the square root of that whole thing, and you have the square mot on the 
other side, 

Oh, 1 could square both sides. Um, OK, ......... these al1 cancel, un, OK, and, xx, 
.... OK, 1 ***. Ah, well short of saying, you know, x, and then this thing as the y, 
right, that would be it. Wouldn't that be al1 the solutions? No? Yes? 

Yes. 

So that just an odd looking answer. 

What does this look like? What kind of solution is this? 

What kind of solution set? Like what does it look like, or? 

Ah, ..... So if 1 were, 1 guess, ***, um, would it be, Fm not very good at xx things 
in **. Um, weli it's just going to &e, un, .... 1 don't how,  rd have to Wre 



draw, lilre I'd have to sketch points and draw, and see what it looked like. Do you 
want me to do that? 

P. No. 

F. 1 just thought thosc other things xx, just knowing. So can we go on? 

P. Yes. 

Question 8 

P. Why don? you do this one. 

F. OK. 

P. Try 8 now. 

F. 1s that an i? 

P. This is, thai's i, z minus i qua is  z bar minus i. 

F. .............. Um, **, ...... ** these cancel, and you get negaiive two y equals two y. 
This is odd, negative y quais y, so that means thai, oh, that makes sense, um, so 
the oniy time ncgativc y quais is 264y U m. Is haî nght? So y is mo ..... So 



y equals zero, x can just be imything, can't it? ***. 

Well, y equals zero here b i d e  absolute value signs, aAer substituthg z = x plus 
iy] means they're going to be equal so, x cm be anything. Right? 

Do you agree? 

That's what I'm sayhg. 

OK. 

[laughs] 1s tha! comt?  

Y es. 

Yes. OK. 

So, when you got that, you said something made sense, what was that? 

Oh, because there was a bar on z, and that means one of the y's is going to be 
negative on one side and positive on the other side. 

Because of the z bar? 

Yes. It's the complex conjugation. Right? 

OK. 

OK, now 1 have to do ihis thing, it doesn't Iaok good, does it? 

Well, let me just ask you, when you look at this, do you have any geomeûic 
picture at dl? 

Ah, probably not. Um, well if1 wrote it out into uh, no that doesn't work 
ei ther..... no. 1 told you Z'm awful at that, 1 mlly don't think geomeûically. 

No 1 have no ides what that look's like. 1 guess it would ah,... 1 suppose it would 
just be on the x ais .  Because of that ly = O], right? 

Yes. 
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F. OK. I'm not sure if that helps. [laughs] 

P. OK. 

F. OK, tirne to try this one. 

9. lf'f(z) is defineâ as: f(z) = O far lm@) c O. and f(s) = 9 for h(z) r O. 
where is f(z) analvüc? 

Question 9. 

p. OK, now 1 have to do thîs thing, it doesn't look good, does it?, comment made 
above as part of interview during question 81 

F. ......... You how, Tm not even sure how to approach it. 

P. OK, ta start with do you understand what this is? It's a function that's defincd 
différently on, 

F. On the two parts. Yts. 
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OK. So what's this part saying? 

It's saying when the imaginary part of z is less than zero then f of z is going to be 
equal to this. 

OK, so in the lower half pIane it's always going to quai zero. 

Yes, so basically, 1 waut to do it separately for each and see where the whole thing 
is anaiytic? 

Yes. 

1s that the idea? OK, so um, well this part then, well, that's anaiytic everywhere, 
because, yeh, the real and imaginary part are, theytre both, well the imaginary part 
can't be equal xx? Uh, ...... Well, if f of z is just equal to zero, then it's analytic. 
OK, so then that's analytic everywhere in that domain. And this one is ........[ finds 
u and v for f(z) = z squared, and checks C-R conditions] OK, 2x equals 2x, that's 
fine, so in this case, îhen it's striking me that, y would have to qua1 zero, then. 
[F. first got 2y = - 2y, for second C-R condition] or else they can't be, because see 
again 1 got that y equah negative y. Sa then, what have 1 done? 

U is? 

U is x squareâ plus y squared. 

U is x squared minus y squared. 

OK, u y is, then it's tme. So that's tme. So this is anaiytic everywhere also, on 
this, so it's anaiytic on both regions. Right? 

On both? 

It's anaiytic on al1 of z plane. 

OK. 

You're going to tell me if rm ri# or not. [laughs] Well, that's what i'd say, 
because if it's andytic al1 on this part for imagînary z, and 1 just found thai, 
because these hold at al1 points x and y, that this is anaiytic at aii points, then it's 
going to be analytic on the aih irnaghary **. 

OK, are you sure? 

Sure as Pm going to be, yeh. 267@aughs] 



OK, so what happens on the x axis? 

On the x a i s ?  

What if z was eight? 

Was eight? Then that's what x is. So x would be eight. 

Sony, if z is eight? 

Oh, if z is eight then x is, no the real part is eight, and there's no imaginary part. 

OK. 

And su the ah, so that would be where, z is eight. So that would use, xx on the x 
ais? 

Well, I'm just picking z equal to eight. 

OK, if z we're equal to eight, then that would be, urn, 1 know what xx look like, 
**** 

What would the limit be of f  of z, as z approaches 8, fiom the upper half of the 
plane? 

Well the limit as z approached 8 would be, good question, 1 don't know. 

So what's f of z do in the upper half plane? 

In the upper half plane. It would be 16. 

1 6? 

No, it would be 64. [laughs] OK, yeh, it would be 64. 

OK, and what's the limit as z approaches 8 h m  the lower half? 

That 's gohg to be zero, because it's f of z. 

It'd be zero. So, 

Oh, so it wouldn't be, it wouidn't be differcntiable and d y t i c  at a point where z 
quais zero. No where z cquals, no, oh, my goodness. Uh, basically, 1 guess it's 



not going to be analytic where you approach the same point from the top and the 
bottom. Right? 

Yes. 

So that would be the rd part only. If the i m a g e ,  su itts analytic on al1 the 
imaEinary, but not on the m i s .  Right? 

1 think you've got the idea 

Does that make sense? I'm ûying ta think through in my own head. 

So the imaginary part got to be zero. 

And the real part, it just can't approach the same point h m  top to bottom. 

Right, so w h m  are the points w h m  that's possible? 

Where are the points? Som where what's possible? 

Where you can approach from bth top and bottom? 

Oh, the reals. 

The r d  line? 

Yeh. 

It's analytic everywhere else. 

Except on tbe reai line. Oh, OK. 



Interview #1, Clrus 3, Spring 1998 

1. What is the real part of the following? 

Question 1 

OK, so we're starting with problem 1, part a). 

So, 1 can write on this? 

Yes. 

Al1 nght. So the real part is 4. 

OK. 

And I'd multiply i through in the second part, so 1 get, 3 minu 
equals 3 and i squared is minus one, so the real part is 4. 

s i, minus i squareci, 

OK, 1 just want to back up, in part a, you could just read it off? 1s that nght? You 
could just read off the real part? 

Um, yes. 

And in part b), why couldn't you just read it off? 

Um, well xx, there is a real and haginary part in the second part, OK, 1 guess, for 
a complex nurnber, you have, it's rcai part is simply a real number, 

OK. 

And the imaginary part is just a rcal numbet multiplieci by i, 

So 1 can set, that then is going to be a mixture in tùcn. 
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OK. 

So that's why 1 evaluate that. 

OK, so you had to multiply this out. Al1 right. 

1 checked my algebra. 

that's not the point, the point is that you couldn't just read it off. 

Oh, no. No it didn't jump out at me that that was 4. 

Sony, that's not what I'm after either. The point is that, it looks like you had to 
change this [(l+i)] back into a real number, is that right? You haâ to convert? 
You had to have a real number in h n t  of the i before you could be sure what the 
real part was? 

Um, yes. 

OK. 

I'm still not clear on your question. 

OK, Um, let's back up. When you chose to multiply through by i, it was because 
why? 1 mean why couldn't you just like the first part, a) where you had something 
multiplied by i, and something not multiplied by i, why couldn't you just take the 
real part to be the part not multiplied by i? Three in this case. 

Well, because there's also a teal part in here. 1 see, the i multiplied by i, which 1 
lmow will give a real value. 

OK. So that's how you're tbinking about it. 

Yes. 

OK. So you just look at it and you see this looks like there a real part there, so 
you're going to multiply it out. 

Yes. 

To find out what that is. 

Yes. 



M. 1 mean, 1 don't, a faster way doesn't jump out at me. 

P. Oh, that's OK, 1 ** how fast you go. Question 2. 

M. Al1 right. 

P. Part a) 

2. If we use the z = (x, y) repaes«imtion for cornplex numbers. which of the 
following an comct statmmts? (Ciriele the comct ones) - 

Question 2 

M. ...... Um, al1 ri&$ so I would look at the nal part ofthis, and sec that it is the rd 
part of this notation, and 1 s e  dut the imaginary parts correspond WU. So a) 
is correct. 



... well, 1 guess i'11 go to b) next. 

Yeh, it would help me on the tape if you did them in the right order. So in part b) 

So for b), again 1 would need to muitiply it out, expand it to see, 

OK, go ahead. 

**...so that would be, so that one is not correct. 

You got 3 i tiraes, 

Oh, wait, ...... 

OK. 

Did 1 do ihat right? Yeb, minus 6 i. So that is not correct. 

OK, it's not correct, because, 

Because the imaginary parts don't match. 

OK. They dont match because it's minus 6 instead of 6? 

Yeh. 

O tbat looks right. ................................................. 

OK, so in part c), again you multiplieci the 3 i through? 

Yes. 

And that came to (3,6)? i squared is minus one, OK. Al1 right, 

So they match, the real and i m a m  parts match. 

ai l  right this is not correct, because the second place in the bracket ** is 
imaginary, so to p u  an i in th= i~~,~hco~e~t. 



OK. 

so that would be the equivalent of, well this wouldn't have an imaginary part. So 
it's not right. If 1 just saw that, 1 would think that that meant 3 minus 6. so that 
should be completely real. 

OK. ** [both talking] 

** And this is obviously complex. 

OK. So parte). 

............................................ 1 my initial reaction is that it is wrong. 1 can't 
see how 2 plus i wiSl qua1 3. 1 don't see how, **...................No, that's not correct. 

How corne? 

Well, it's not possible to make 3 equal to 2 plus i ............... Um, wait a second. 2 + 
i, +, so I'm simply taking the second part, and multiplying it by i. 

OK. 

............. 2 + i + 1 + 5i, OK, so that's, so 1 was wrong this tirne, it is correct, 

OK. 

But it definitely is not a form I've seen before. So the only way to do it is actually 
by working it out. 

So what exactly do you think is wrong with it in that fonn? It's obvious it bothers 
you, m. 

Yeh, well for me a complex number should be, in this notation, you should simply 
have real parts in the brackets. 

OK. 

So again Ill have to expand this one, I'll have to multiply out the second part of 
that. 
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OK. 

............ Al1 right, 1 multiply it out .......... So that's, they do not seem to be quai. 
Neither the imaginary or the real parts are the sarne. 

OK. **, you wmte (1,2) equals (1 + 2i) and then just multiplied it. 

Yes. 

OK. 

Al1 right for g), 1 take one comma, 2 in brackets as 1 plus 2i, and then multiply the 
three through. 

Hmhm. 

That give me 3 plus, 6 i which is correct. 

OK. 

And for part h), that's in a similar fom to part e), ..so, **, ..... actually work out 
what the right side is, so 1 take 2 plus i, to be a real part, + 1 plus Si to be the 
imaginary part, and multiply that by i, 

OK. 

So that will get, .............. so, that appears to be m n g .  neither the real or the 
imaginaxy parts are the same. 

So you multiplied, no you added 2 plus i, to 1 plus Si, al1 times i, 

Right. 

And got, i minus 5 [for 1 plus Si times il, so it worked out to minus 3 plus 2i, 
which doesn't equal3 plus 6i, OK. 

Right. 

So you reject it. 

Hmhm. 



P. oK,so*um *..... 

M. Should 1 move on to number 3? 

P. Um, for the time being let's go on to thrcc. 

Question 3 a) 

M. Al1 nght number 3 a), part i), OK, so 1 sec that I nced to put it in a simpler fonn 
than it already is,. 

M. So 1 sec that thm is an i in the denominator, and you can get rid of it by 
muitiplying through by the complex conjuggtt of thc denominator. 



M. ** multiply by one minus 2i over one minus 2i. **..., so 1 know the denominator 
won't **, 1 plus 4, and multiplying by the top, ............. this is, 10 ,... 2. 

M. 

a ii) 

M. 

OK. So you top and bottom by tbe conjugate, of the denominator, and woriced it 
out, and it came out to 2. 

Yes. 

Part 2, so i'll do the same thuig as in part one, I'11 multiply, the expression by the 
complex conjugate of the denominator, so 1 get one minus 2i, over one minus Si, 
so one plus 4 in the denominator, .. 

That's OK. 

Al1 nght, so 1 multiplied the denominators, and that gives me 5 on the bottom, and 
multiplying the top through, you get minus six, ...p lus 12i, plus 3i, minus 6i 
squared. Now 1 combine the real parts, so minus 6, minus 6 i squared, is minus 6, 
plus 6, zero for the real part, and the imaginary parts give 12i, plus 3i, is 15 ,  over 
5, equals 3i. 

OK. 

Makes sense? 



b.) îhrec students did the following prnblirn ducc diffennt ways. Whish of 
them arc correct? (Circle the comct ones) 
-7 

Question 3 b i) 

Part b number one, so 1 look at the k t  lefi most expression, and it is the quotient 
of two complex nurnbers, and 1 check to sec if they multipliecl by the complex 
conjugate of the denominator, and it appears they have, and now 1 check theu 
multiplication. OK, the denominaior is correct, ......so I can't do al1 of it in my 
head, 1'11 have to write it out. 

Go ahead. 

The real part is right, plus 12, then you have 18 i, minus 18 i, so those cancel, 
the& no imaginary part, that's ri@. 

And we have, minus 27 i squareâ, equals plus 27, wbich is nght, and, ......**, 39 
over 13 is, 3, so that's correct. Ili circle that one, 



P. OK sa you just, worked through theu conjugation operation and you decided it 
was correct. 

b ii) 

M. Part 2, again, you have, the same quotient of complex numbers, 

M. I see that they have multiplied by the complex conjugate of the denominator, the 
denominator gets the same answer **, 13, that's fine. 

M. And, 1 see, this time they have included extra stuff in the, in the multiplication of 
the cornpiex numbers in the numerator, and, ......... 1 see that they've made a 
mistake, in rnultiplying the imaginary parts, ........... so it's seems the second part is 
wrong, in that thete should be no imaginary part. 

P. OK, do you icnow, 

M. The imaginary parts do not cancel. 

P. OK. 

M. So îhey multiplied 6 by 3i, wrong .... 

P. OK. 

M. As well as multiplied 2 by minus 9i wrong. 

P. OK. 

b üi) 

M. Al1 right, so part 3? ..... OK, same quotient of complex numbers, ...... so 1 looked at 
the numerator, and they have factord the nmerator, they've taken a 3 out of it, 

M. And they've doue that correct. So 1 see that, this 2 minus 3i cancels in the 
numerator and the denominaior, to get the right answer of thm. So part three is 
correct as weU. 



Summarizing in iii), it was not necessary to multiply by the complex conjugate of 
the numerator, because we could faetor the numerator, in to some, and it canceled 
the denominator. 

And that's, that's allowed? To cancel a complex nurnber h m  top and bottom? 

......... Um, ........ yes. A complex number divided by itself is one. 

OK, are you sure? 

No, Td have to work out a general fiom a + ib, and then **. 

OK. 

Intuitively, I'd say yes, 

OK, so you, 

1 would need to, 1 would need to check that, in a general form. 

OK, you can check it on the side there if you want. 

Al1 right, so try, a general complex number z, which a plus ib, 

Hmhm. 

Over a plus ib, multiply through by the complex conjugate, which is a minus ib, 
top and bottom, 

Hmhm. 

Which gives, in the denominator, a squared plus b s q d ,  and in tbe aumerator it 
is, a squared plus b squared, so the numerator and the denominator are the same, a 
squareâ plus b square, is equal to one, so therefore, a complex numbet divided by 
itself is one. 

You're sure this [a squared plus b squared, over a squared plus b squared] is one 
how come? 

Because the numerator and denominatm are equal. 

They're equal what kind of nuxnbers? 

Real numbers. 



P. Real numh.  

M. One. And a real number divided by itseif is one ws proof, of course, uses what 
WC are tqing to prove, i.t., whcn multiplying by a minus ib, over a minus ib, wc 
have to know this is one.]. 

P. OK, thatls good. So now you h w  that they are correct. 

M. So 1 would say that part thret i s  comct. You can cancel the complex nwnbers. 

6+2i ii) - 
-3-1 

C -Z 

Question 3 c i) 

M. Sa part c) number i). So again we have the quotient of two cumplcx numbers, 
which 1'11 put in the fonn of a single complex number, 

M. So again 1 have to, I chbase to get rid of the of the imaginary part of the 
denominator, so 1 would multiply through by the complex conjugate of the 
dcnominator, which is 2 plus i, 

M. And multiplying out, the 
281 denominator is 4, um, plus one would be 5, 



and numerator is minus 8, minus 4i, plus 4i, so the ixnaginary parts cancel in the 
numerator, plus 2 i squared equals, minus 8 plus 2 fifths. Minus 2, over 5, which 
is equal to minus 8 fifths for the real part, minus 2 fifths for the imaginary part. 
Ah, **!, **,justonesecond,there isnoimaginarypart,itisminus 10over5,so 

. 

it's minus 2. 

P. 1s there an easier way to do that one? 

M. Well, you could, factor minus 2 h m  the numerator and that would make it 
quicker. 

P. What would that look like? 

M. So factor out a minus two h m  the numerator would give you, minus two times, 
in brackets, 2 minus i, 2 minus i is a h  what the denominator is, so 2 minus i 
would cancel leaving you with minus 2, which is what 1 got the f h t  method. 

P. OK. 

M. So 1 didn't look for a way to simpli@ it. 1 simply use brute force. 

P. OK. 

3 c ii) 

M. So for the second one, my brain has already ben  primed to think of 
simplification, 

P. Your brain is what? 

M. Primed. 

P. Oh, it is primed. 

M. Yeh, it's been primecl, **, h m  the previous question. OK, 1 see that the 
numerator of part ii) can be simplifieci, from 6 plus 2i, to 2 times in brackets, um, 
take out the 2, to 3 plus i, and the denominatm as weU can be, simplifieci by 
pulling out a minus one, to give minus one times in brackets, 3 plus i, the 3 plus 
i's cancel in the numerator and the denominator, give you minus 2 as the answer. 

P. OK. 

M. So this time 1 looked for simpiification îkt. 

P. 1s this a useh1 thing to do? 282 



In this format it is faster. 

It's faster. 

It involves less steps. 

I'm just looking back on part a), could these be done that way? 

Well, 1 see that both part a), number i), and part a), number ii) can be simplified. 
The numerators can both be simplibed. 1 mean can be nwitten, by pulling out, a 
fâctor of two h m  the numerator in part i), and a factor of, um, 3 ûom part ii). 
But we c m  see h m  part ii) that won't help. 

Pardon? 

In pulling out a 3 h m  the numerator in part ii), three a) part ii), 

Hmhrn. 

Will leave you with, something that is not equai ta the denominator, so, it won? 
cancel ............................ So I see that pulling a factor out of the numerator, 3 a) 
part i), will help. 

OK. And it's less clear in part ii)? 

That's nght, yeh, in part ii), *** in my head, 1 can see that it won't get you 
anywhere, you will not be able to cancel out anything. 

OK. Ali right so we c m  go on to part 4, problem 4. 



4. a) Sirnplify the following exp~aions, giwn tliu z = (x. y). 

3 4  = I3 +z ; ) ( I+Y(  ) 

(32) ii) - 
(1.4) 

Question 4 a i) 

Part a), part i)? 

Yes. 

Al1 right h m  we have two complex number multiplied together in this bracket 
notation, 

OK. 

So the way 1 witl do this is I will wite out each of the brackets, in the fom a plus 
ib, to get 3 plus 2i, times, 1 plus 4i, which give 3 p h  12i, plus 2i , plus 8 i 
squared, quals, 3 minus 8, is minus 5 for the real part, and plus 14i, 14 for the 
imaginary part. 

Al1 right part ii)? 

So just nviewhg again, you convertcd into, 

notation wiîh a comma. to a plus ib form, I convaad h m  the brackets 284 



4 a ii) 

for each of the complex numbers, and then simply multiplied them out. 

And you did that for what teasan? 

Um, that seemed to me, as 1 said, to be the best way ta do it. Maybe you cm 
multiply the brackets out, directly, 1 don't know. I'11 look and see. 

OK. 

It dom't feel natural to do it îhat way. So the way rve done it is the way 1 would 
& it. 

OK, that's goad. 

So part ii)? 

yep- 

So here we have the quotient of two complex nurnbers in this bracket comma 
notation. 

So 1 rewrite both of those in a plus ib, ..... so 3,2 will be 3 plus 2i, the denominator 
will be 1 plus 4, and I don? see any factors that cm be pulled out of either of the 
numerator or denominator, so I will simply multiply through by the complex 
conjugate of the dcnominator, so that will be 1 minus 4i, and multiplying you get 
a denominator of one plus 4 is five, the numerator will be 3 minus 12 i, plus 2i, 
minus 8 i squared, which is qua1 to 11 for the real part, minus 10 i ail over 5, 
....... and thatts pmbably how 1 would leave it. 

OK, what's the denominator? 

Oops, um, that should not be 4 in the denominator, it should be 16, yes, 1 didn't 
square 4. 

Yes, OK. 

AU right that gives a denominatot of 17, instead of 5. 

OK. That's it. 



b) Sirnplifjr the following given that 2 = rc". 

iii) 3cix + seif I , = 3 (c4~  t l S i 4  T) 

Question 4 b i) 

M. OK, so number 4 b)? 

P. 4 b). 

M. Number i), .,.OK, so here WC have complex numbers in exponcnt, sorry in polar 
form, OK, so we have two numbers, complex numbets in polar fonn multiplied 
together, so, what i'ii do is I'iî multiply, the coefficients of these exponcntials, 3 
tiws five gîvcr you 15, and add 286îhe expanents of exponentiais, to get i, the 



exponent is i times pi plus pi over 2, to get, 3 pi by 2, so it would be 15 times e to 
the 3 pi by 2 i, 

P. OK. 

....... M. So part ii)? 

P. Yes. 

4 b ii) 

M. All right, now the quotient of two complex numbers in polar form, 1 see that 1 
divide the coefficients now, of the polar numbers, and that 3 fifths, and 1 subtract 
the expanents, so 3 fifths, e to the i pi minus pi over 2, which is pi over two, so it's 
3 fifths e to the i pi over 2. 

P. OK. 

4 b iii) 

M. And, in the thiud part, the, we have two complex numbers in polar fom, but they 
are added together, so we can't operate on it directiy, 1 would convert this into, 
um, 1 would convert it into complex numbers, of fonn r, theta. 

P. OK, go ahead and do it that way. 

M. ............. the left side is 3 cos of pi, plus sin of pi, and the right complex number is 
5 and cos of pi by two plus sin of pi by 2, ...... al1 right, **, 3 times cos pi is minus 
1, plus sine pi is zero, plus 5 times cos of pi by 2, is 0, and sin pi by 2 is 1, so that 
gives us, multiplying the coefficients, minus three plus five i, 

P. OK. 

M. ................. OK, 1 guess 1 could bave done this differently too, 1 could have 
recognized the e to the i pi, as minus one, 

P. OK. 

M. And that e to the i pi over 2, is e to the i pi, er, to the, to the half, 1 square mot it, 
so that would be the square root of minus one, so, that would be i. So that would 
be an alternative way to do it. 1 saw that second 

P. OK. Let's go on to pmblem 5. 



5. a) Mark Miithe following six statemcnts aboui cornplex nmbar u truc or hlr 

1) A compllex number is a point in the comp1x phne. 
7 2) A s n i 3 p l e x m i m b a c w r i r o o f r d p ~ & d i d ~ ~ b ,  

that an added togctk (with 8 Mot of i in b t  of b) to get z = r + ib. 
7 3) A corilplex numba ir Ibc codpoint of an m w  dut smts at the on@ 

of the complex plrile. 
7 4) A ~ o m p l ~ o m i k i s m a d a c d ~ r ~ s w h . ~ z - ( & y ) .  
7 5) A complex nmber is 8 wctot in tbe complex pline. 
T 6) I fRaisx ,dImzUy,tbez=x+iy .  

Question 5 a) 

Part a), al1 right, so a complex number is a point in the complex plane. True. 

....,.. A complex number consists of a real part, a, and an irnaginary part, b, with a 
factor of i in h n t  of b, to gct z = a + ib. True. 

A complex number is the endpoint of an arrow that siarts at the origin of the 
complcx plane ....... 1 guess if you reprcsent complex numbcrs as vcctors, that 
would be tme. If you took thcm to be vectors, so 1 would say truc. 

A wmplex numbcr is an o r d d  pair, such as z = (x, y). Tm. 



M. A complex number is a vector in the complex plane. Well, h m  3 above, if 3 is 
hue then, 5 will be hue. 

P. This 5 **, just independently is 5, do you like 5? 

M. ........ Um, I'd Say 1 like it as much as 3, given that I've seen 3 **, I'm more likely 
to accept 5. 

P. OK. 

M. ...... If the Rez is x and Imz is y, then z = x + iy. True. xx five a) is tme. Pari b)? 

P. OK. 

b) Which of the above six how you thir~I~ of a complex 
number? (Circle one) 

Question 5 b) 

M. Al1 right so, 1 think of a complex number z where there is a component r d ,  plus s 
an imaginary component, so 1 think of it mostly as parts, where z is x plus i y, 

P. OK. 



c) Describe bow you tbink huâ compkx nimkr in yau wordr 

Question 5 c) 

M. ........ Part c), How do 1 think about compltx numbcrs. 1 think of theni as, **, as 
an ordcr paired, exccpt you definc the vertical axis to bc-imaginary, so, and yu, 
thcn you, how wouid you say, vertical value, reptcscntcd by that value times i, 

P. OK, you can write that dom. 
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So 1 would 
comwnent 
- & 

component 

Say, a complex number is an odered pair in a plane with the horizontai 
king the real part of z, the complex number, and the vertical 
is the imaginary part of z. 

Number six? 

Can 1 go back here a minute? 

Sure. 

A complex number is an ordered pair in the plane, with the horizontal component 
being the real part of z, and a vertical component king the imaginary part of z, 

So horizontal, being the x cornponent, and the vertical being the y component. 

OK. 

So looking at it, it's just a regular, point, in R two, 

OK. 

Where you have x and y. 

OK. 

x is **, y is not. 

OK. 

Next one? 



6. Use the diagram to Al l  in the blnnks below. Select a point For each item. The large 
circle has radius R and the small cirlce has radius liR. The fiin one is done for o u  (and 
tells you where z is). 

0 iii) z bar is 

iv) I/Z is G 
c V) lm (z bar) is 

vi) Re r ir C 

ix j 1 i(r bar) is& 

xi) Re (z bar) is C 
xii) -2 is F 

Question 6 

M. Number six. Use the diagiam to fil1 in the blanks below, select a point for each 
item. The large circle has a radius R, and the small circle has a radius of 1 over R 
The first one is done for you, and t e k  you when z is. So I'U look at number i), z 
is point A. 



ii) 

M. 

9- 

iii) 

M. 

iv) 

M. 

vi) 

M. 

vii) 

M. 

P. 

It lies on the perimeter of the outer circle, al1 right, so, urn the modulus of z is, the 
distance, or 1 should say it's just the radius of the circle, so R. 1 don't see a 
specific point, so ifs just R. 

z bar, the complex conjugate of z, would be a flip, in the, in the nal axis, or a 
reflection over the real axis, 1 should say. So the correspondhg point to A, is D. 

one over z, .... is, ..... one over the magnitude of z, so that would be one over R, and 
the polar angle will be the negative of the polar angle for z. 

So it should be in line witb point D, but on the imer circle cf radius one over R, 
so it should be point G. 

OK. 

So the irnaginary part of z bar, that's the imaginary part of complex conjugate of z, 
....... OK, so, .......... sorry, my mind has gone blank. OK, I'm now thinking about 
the question again. OK, z bar, is point Dy the imaginary part of point D, is point 
E. 

Al1 right, the real part of z, is point C. 

The modulus of z bar shoutd be the same as the modulus of z, which is R 

So if there's a point on tbere to represent this [the modulus of z bar], then what 
would be the best point? 

OK, so we pick z is A, z bar is D, ........ the modulus of z bar, ........ weii the 
modulus is a scalar, 04 so I pas 29jpoint B is purcly real. 



P. 

M. 

P. 

M. 

P. 

M. 

P. 

ix) 

M. 

OK. 

It's going to be at the same distance to the origin as point B. 

OK. And why, 

It's going to be real. 

OK, why isn't it K? 

Because the modulus is not negative. 

OK. 

Al1 right, one over z bar, again z bar has the same moduius as z, so the modulus of 
one over z bar quais the moduhs of one over z, which is one over R, so it will be 
on the inner circle ........ and, OK, z bar is point D, so ** take the negative of that 
angle will bring you back to point A, which will be ***. 

Sorry, one over z bar is, can you go through that reasoning again? 

I'm actually going to write it al1 on paper. 

OK. 

AU right, so FI1 wcite z in x plus i y fom, so you have one over z bar, which is one 
over x minus i y, 

But that's not **, so i'11 write it in polar form. So that wodd be one over, 1, 
modulus of z, e to the minus i theta, so that brings you, oh, one over z bar is one 
over, r times e to the minus i times theta, and one over an exponential that is 
negative is just an exponential, so you invert it again, and that wouid give you one 
over r, e to the i theta, 

AU right, so it has the same argument as z, [tape change] 



So again, one over z bar should be on the inner circle, the modulus is one over the 
madulus of 2, 

Hmbm. 

But it has the same argument as z. So it should be point H. 

ûops, that was one over z bar. 

Which, ..OK. So for part ix) is H. 

OK. 

Ah, for the next one, the imaginary part of z, z is point A, the imaginary point is 1. 

Why is that? 

You're simply looking at the vertical component of A. 

OK. 

xx, 1 don? know any better way to explain it. 

OK, are you saying that the imaginary part is real or imaginary? 

.......... Yeh, it is a real value, but in the complex direction. 

OK. The complex direction king pure imaginary? 

Yes. 

so you're saying the imaginary part of z, includes the i then? 

So, yeh, ifs, the imaginary part of z is, the magnitude of the vertical part, in units 
of i. 

Times i? 

Times i. 

OK. 

Yeh. 



P. 

M. 

xii) 

M. 

Part eleven, the real part of z bar, so you know z bar is point D, and the real part 
of that is the horizontal component, of point D, is just point C. It's the point on 
the real axis, which comsponds to point D. 

OK. 

1 guess that is a better way of explainhg the answer, So point C on the reat axis. 

Number 12, negative z, .... would mean you are simply taking the negative part of 
ihe magnitude, so that should be point F ........... Yes. 

OK. 

Yeh, thatls the negative of both the horizontal and vertical components. 

OK. Al1 right, unless you want to go on you c m  stop. 

Oh, is it that time? 1 can keep going if you like. 

OK. Try this one. 

For five more minutes? 

Yeb. OK. 



7. a)  Find the solutions of the folloning equations: 

Question 7 a) 

M. Find the solutions of the follawing equations. z squareci plus 2iz minus one 
equals zero. ............... So my reaction is to apply the quadratic equation dinctly to 
it. 

P. OK. 

M. So wetU do that. 

P. See what happens. 

M. z quals negative of b which equals minus 2 i, plus or minus the square mot of b 
squarcd which is 4 i squarecl, minus 4 times one, times c which is minus one, al1 
ovcr 2 a which is 2 tirna one. Simplifjing, th&, minui 2 i plus or minus, the 
square mot of minus 4 plus 4, so the square mot is zero, over two, so wc have 
minus 2 i over 2, quais, minus i. 



OK, so h t  of all, the quadratic formula still wotks? It's a valid way of doing it? 

1 can't say for sure, no, I'm not 100% cornfortable. And probably on the test 1 
would work through it with z expresseci in x plus i y form, and see if the aigebra 
still holds. 

OK, so is it OK that we only have one mot? 

Um, ........ let me see if, .... I'm not sure if we can factor this like you can factor a 
real polynomial, but 1 assume so, 1'11 see what happens. 

OK, let's see what happens. 

So ** z minus i, squared, that's z minus i, times z minus i, which would corne 
down and give you one mot as well, i......Did 1 do this wrong, oh, sorry, it should 
be z plus i squared. OK, so that would give you a mot of minus i, which is 
consistent with **. 

OK, so, do you, have any more confidence in the quadratic formula now? 

1 have more confidence that it works, 1 get the same results two different ways. 

OK. Why dont we stop. Thank-you very much. 

End of Tape 




