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Abstract 

Eigensystem Analysis of a Numerical Method for Fluid Dynamics 

Isabelle Hernrnings 

Master of Applied Science 

Gradiiate Depart ment of Aerospace Science and Engineering 

University of Toronto 

1998 

A rnoldi's met hod was implemented to approximate the semi- and fully-discrete 

eigenvalues of ARC 1 D, a quasi-one-dimensional Euler solver. Three test cases were run 

to see the effects of different CFL numbers on the convergence rate and the approxima- 

t ions of the largest fully-discrete eigenvalue. Verification of the eigenvalue approximations 

was performed and an appropriate subspace size for Arnoldi's method was determined. A 

subspace size of about 40% of the original matrix size yields good results for the largest 

eigenvalues. The asymptotic convergence rate of the solver was foiind to agree closely with 

the largest eigenvalue of the fully-discrete operator matrix, confirming the linear behaviour 

of the operator. Similarly, a good correlation between the eigenvectors of the largest fully- 

discrete eigenvalues and the remaining srror at a right-hand-side residual vdue of 10-'O 

was found. Overall. these results indicate that, while Arnoldi's method is a very useful tool 

for obtaining the maximum eigenvalues of large matrices, it can require large subspace sizes 

which could be prohibitive in two and three dimensions. 
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Chapter 1 

Introduction 

In computational fhid dynamics, there is a search for faster, more efficient Navier- 

Stokes equation solvers. To this end, the study of stability and convergence rates of a solver 

and its time-marching and spatial discretization methods is necessary. One of the tools 

to study these methods is eigensystem analysis of the linearized semi- and fully-discrete 

operator matrices. Since the matrices involved are so large, approximations are used. In 

1951. Arnoldi [2] created a method that was based on Lanczos's method of minimized 

iterations. This method approximates eigenvalues of large matrices and is guaranteed to 

finish in a finite number of iterations. Using a Krylov subspace, this method creates a 

Hessenberg matrix whose eigenvalues approximate those of the original matrix. Several 

researchers have implemented Arnoldi's method into their stability andysis and as a tool 

to study new techiques added to the solvers over the years. 

Eriksson and Rizzi [5] use Amoldi's method combined with F'rechet derivatives to 

approximate the eigenvalues of their solution method. Rom the eigenvalues, they could 

determine a method for improving their convergence rates. They realized the benefits of 

eigensystem analysis, which include the following: 

the effects of the boundary conditions and artificial dissipation can be seen in detail 

by t heir eigensystem decornposit ion 

the eigensystem may be  able to show the strengths and weaknesses of computational 

rneshes 

0 the eigensystem analysis is general so it can analyze any method 
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Several other authors have used this same technique to andyze their problems 

arid offer refinernents of the solut ions techniques. The techniques have included Wynn's 

a-algorithni. cigenvalue annihilation and shifting operaton in one and cwo dimensions [3], 

Pl7 Pl7 [13Iw 
AlIrnaras uses Arnoldi's method in order to better tuidyze his multigrid devclop 

ments [l]. He finds that the traditionai Fourier analysis is insufficient for %al problems" 

and uses algebraic smoothing analysis for a more accurate picture of developrnents in the 

niiiltigrid codes. Arnoldi's method is used to solve the eigenvalue prnblem generated in this 

Cheer and Saleern [3] use Arnoldi's method in order to create a spectrum shift 

that allows for faster convergence of their solver. The shift depends on the size of the 

eigenvaliie spectrum of the problem at hand. This is dedt with by using Arnoldi's rnethod 

to approximate the spectrum. Since it captures the boundaries of the spectrum well. i t can 

be used in the computation of the shifting operator without much error. 

Cheer, et al. [4] use Arnoldi's method to approximate the convergence rate of the 

solver and to determine if acceleration techniques are required. Saleern, Pulliarn and Cheer 

dso  examine t hc convergence rate and applications of convergence-acceleration techniques 

to ARC2D. a two-dimensional. approximately factored Navier-Stokes solver developed at 

NASA Ames Research Centre [13]. They also use Arnoldi's method to approximate the 

eigenvalues of the Jacobian rnatrix. 

Mahajan, et al. [9] use Arnoldi's method to examine the effects of artificial dissi- 

pation on the stability of their time marching method. They conclude that it is a useful and 

efficient means of looking at stability without having to compute the very large Jacobian 

matrices involved. 

While Arnoldi's method is used for analyzing algorithms, it has never been fuily 

explored as a research tool. This thesis examines the effectiveness of the Amoldi method 

in approximating the eigenvalues arising in a flow solver. Also, it will apply that method 

of approximation to study the stability and effects of various parameters on a quasi-one- 

dimeusional Euler equation solver, ARCID. This wiil  provide a better understanding of the 

effectiveness and limitations of h o l d i ' s  met hod in analyzing algorithms for fluid flow. 

The purpose of this thesis is to implemeot and evaluate the effectiveness of Arnoldi's 

method as a tool to analyze solution methods. The main components of the thesis are: 



1. Create a program to ruri Amoldi's metliod 

2. Verify approxirnat ed eigenvalues agains t exact eigenvalues 

3. Examine the semi-discrete and full y-discrete eigenvalues and t heir associated eigen- 

vectors 

4. Gain a better understanding of the convergence behaviour of ARClD 

5. Show agreement with the X - o relationship of ARClD 



Chapter 2 

Background Theory 

To verify Arnoldi's method, the eigenvalues associated wit h ARC lD were found 

and analyzed. In order to verify the accuracy of the eigenvalues in Arnoldi's method. a lin- 

earized version of ARClD was used. ARClD was used as the testing ground for the Arnoldi 

process because it is feasible to calculate exact eigenvalues in one dimension. Calculating 

the approximate eigenvalues can be done in little time as well, making verification of the 

accuracy of Arnoldi's method practical. A Matlab routine was written to take the  matrices 

fiom ARClD and calculate the eigendues and compare them with the ones computed by 

the Arnoldi approximations. 

2.1 ARClD 

ARC 1 D is a quasi-one-dimensional solver for the Euler equations based on ARC2D, 

a two-dimensional approximate factorization method developed at NASA Ames Research 

Centre. The information in this section is found in Pulliam's notes on ARC2D [IO] but 

modified for one dimension. Adjustments for quasi-one dimensional flows are discussed later, 

but for simplicity, the one-dimensional Euler equations are used to explain the method. 

The one-dimensional Euler equations have the form: 
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w here 

Applying the implicit Euler timestep, we get: 

Using 2.1, we have: 

Subtract Qn fro~n both sides: 

Let AQn = Q"" - Qn. Linearize E with respect to Q to find an approximation for the 
a E .  flux Jacobian a;. 

Let An = Sn. Substitute this into 2.4 and combining like terms, the equations becorne: 

Apply the centred dinerence approximation to the fist partial derivative with respect to x: 

This is only good for the interior nodes; the boundaries are dealt with using the 

Riemann invariant boundary conditions. 
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where c is the speed of sound. For the inflow boundary, Ri and R2 are determined from the 

initial conditions and R3 is extrapolated fiom the interior riodes, For the outflow boundary, 

RJ are determiued from the initiai conditions and Ri and Rz are extrapolated From the 

interior nodes. E h m  t hese invariants, the solution variables can be Founci. 

The interior scheme needs artificial dissipation to aliow for better convergence. 

Also 2i switch iu  needed to allow for good shock capturing. This switch combines fourt h and 

second difference artificial dissipation. The pressure switch is: 

Ipj+i - 2pj + pj-  i 1 Y, = (2.11) 
I P ~ + I  + 2pj f pj-il 

This pressure switch leads to the determination of the two artificial dissipation variables 

E('L)  f (d) :  

where KZ and tq are user defined parameters. The fourth order dissipation is turned off 

near the s hock regions 

stencil then becomes: 

by the pressure switch. The fourth difference artificial dissipation 

Vz ( c T ~ + ~ E ~ + ~ ' ~ )  + o ~ c ~ ( ~ ) )  AzVzAzQj (2.14) 

where a is spectral radius of the flux Jacobian, and V, indicates a backward différence 

while A, indicates a forward difference. The second difference artificial dissipation stencil 

thcn becomes: 

These stencils are written for the right-hand side. The Ieft-hand side's matrix is 

filled in a similar rnanner. Each entry in the [l, -4,6, -4,1] stencil is added to the correct 

block of the matrix. The h s t  and Iast interior nodes are modsed with an upwind and 

downwind biased s cheme, respect ively. This makes the matrix a block pent adiagonal one, 

which is easy to invert. 

The quasi one-dimensional nozzle case only needs minor m o ~ c a t i o n s .  Since the 

area varies through the nozzle, the solution and flux vectors now include the area in their 

variables and a source term is added to the momentum equation: 
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Applying the implicit Euler scheme and the linearization prmess as before, the 

modified equat ions become: 

and the other variables have the same meaning as before. 

The boundary conditions described above are explicit boundary conditions. This 

changes the first and last nodes of the matrix that is inverted in each tirnestep. Since the 

boiindaries are explicit? there is no need to fil1 the matrix entries that are associated with 

them. In order to have a matrix that is consistent throughout, we chamged the boundary 

conditions to fixed boundaries. This removes the influence of the bou~idaries korn any other 

node in the stencils, thus we can observe the behaviour of the interior scheme hrst. 

Artificial dissipation in ARClD is a mixed non-linear dissipation with a pressure 

switch to improve shock capturing. This is modified to linearize the system. A fourth 

difference, constant coefficient dissipation is used throughout with no pressure switch in 

both the right- and left-hmd side calculations. On the right hand side, this dissipation has 

the forni: 

where cr is spectral radius of the flux Jacobian, E, is a user defined coefficient [IO], 6t is the 

tirne step and V, and A, are the forward and backward difference, respectively. On both 

sides of the equations, the first and last interior nodes are modified by using an upwind or 

downwind biased scheme for the dissipation, respectively. 
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2.2 Eigenanalysis 

Two sets of eigenvalues may be examined: the semi-discrete or 1 eigenvalues aiid 

the fully discrete or o eigendues. 

2.2.1 Semi-Discrete Eigenvalues 

The semi-discrete formulation of the original PDE is devised by discret king the 

spatial derivatives This has the following form: 

where Q and R are vectors of length 3 N ,  where N is the number of uodes. Linearizing the 

right hand side. we get: 

wliere Q* is the steady state solution, and 8 ia the Jacobian matrut of dimension 3N x 3 N .  

Therefore. R(Q*) = 0, and we oniy need be concemed with the second term on the right 

hand side. The eigenvalues of the Jacobian rnatrix 8, defined as A: are of interest since they 

describe how qiiickly the transient will die down and the solution will become the steady 

state soliitioii. For the transient solution to tend to zero. the A eigenvalues are required to 

be in the left half of the complex plane. 

The rnatrix associated with these eigenvalues is iiot immediately available Erom 

ARClD. In order to remove this, you have to take the left band side: 

and be left wi  th A only. 

2.2.2 FuUy-Discrete Eigenvalues 

The fdy-discrete form of the original PDE is created when the time rnarchhg 

method and the spatial discretization have both been implemented. This bas the following 

form: 
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Linearizing 1, we gct: 

As in the semi-discrete form, Q* is the steady state solution; therefore f (Q*) = 0'. $?$ 

is once again a Jacobian rnatrix and its eigenvalues O are of interest. Stability of the time 

marching steps combined with spatial discretizations can be evaluated by examining the a 

eigenvalues. If they al1 lie within the unit circle on the irnaginary plane, then the solution 

method is stable. Also. the asymptotic convergence rate of the solver can be estimated to 

be the magnitude of the largest o. Therefore, the o calculations could be used to determine 

convergence rates wit hout having to record a convergence history. 

We have to remember that the a are really the eigenvalues of the matrix associated 

with the fully discretized form. In order to get the correct eigenvalue problem for an implicit 

nethod as uved in ARClD, we need to consider the following equation: 

where P(Qn) = hR(Qn). Let Qn+l = f (Qn). Substituting into the above. we get: 

Wetd like to Iinearize f at this point. This means we 

about Q*. In patticular, we need to find (Q*). 

yields: 

Of course, a t  steady state, P(Q' ) is zero and hence 

2.28 and 

must expand using the Taylor theorem 

Differentiating 2.27 with respect to Q 

the last term of the equation is zero. 
I Using Taylor's Theorem to linearize 2.27 about Q* 

making the appropriate substitution, we get : 

f (Qn) = f (Q*) + [r + M-'(0.) 

with the Jacobian d e h e d  by 

(Q* - 8") (2.29) 

This is in the form un+i = Cun + 6, where C = I + M-l (Q*), so we have the eigenvalue 

problem: 
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Multiplying on the left by M (Q* ) , we get the following generalized eigenvaiue problem: 

In ARClD, M(Q*)  is the left hand side mutrix at  the converged soiution and the 

.Jacobian of P is hA. If we use the interior scheme only and ignore the boundaries for the 

moment. the result is a generalized eigenvdue problern whose eigenvalues are a. In the 

linearized form of ARCID, M = I - hA, so the generalized eigenvalue problem becomes a 

regular eigenvalue problem of (1 - hA)-l .  

2.2.3 Arnoldi's Method 

Finding the eigenvalues of the full matrices in one dimension is feasible on a 

computer. but moving to two dimensions causes some problerns with rnemory. Arnoldi's 

method [2] helps with this. It approximates the eigenvaiues of the original matrix with 

those of a smaller Hessenberg matrix. A considerably smaller subspace is often sufficient 

for very accurate answers: at least for the largest eigenvalues [12]. 

The algorithm is as follows: 

1) select a vector V I ,  wtiich is normalized. 

2) for k=l..n 

3) calculate the eigenvalues of H = [h ,j]. 
In other words, a new vector wk is calculatecl as a new basis vector for the subspace 

at each iteration. If hk+~,* = O for any iteration, that means that there are no more 
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orthogonal vectors to be chosen in the subspace and the procedure must stop, as it has 

created the largest basis possible. If hiCCLYk # O before the nth step, then the first n vectors 

form an orthonormal basis for the subspace IC, = span{vl, Aui ,  ..., An- lu i }  [I l] .  

A question arises as to the choice of the fint vector VI. Saleem proves that the best 

choice for the starting vector in Arnoldi's process for the Euler equations and the ARClD 

solution technique is the solution vector Q' [14]. His results have been accurate to five 

significant figures [14]. 

2.2.4 Frechet Derivatives 

An obvious problem arises in Arnoldi's method - how to Save memory in computing 

Aui, where A is a Jacobian of either f or R. These are large matrices in one dimension 

(e.g.. 300x300 on a gid with 100 nodes) and enormous matrices in two dimensions (e.g.. 

401000x40.000 on a grid with 10,000 nodes). In order to Save memory, Frechet derivatives are 

iised to calculate the necessary matrix-vector multiplication. The idea behind t his derivative 

is very sirniiar to a finite difference method of a simple derivative. The second-order version 

of the Frechet derivative [15] is: 

This is very similar to the definition of a derivative. c is an arbitrarily mal1 number. In this 

thesis, c is chosen to be 0.001 * as suggested by Eriksson and Rizzi, as well as Saleern [5]! 

These derivatives are used to approximate the Av multipiication in Arnoldios 

method. Instead of using the Jacobian matrix? only the solution Q* is saved and used 

in the Arnoldi subroutine, which saves niernory. 

Arnoldi's rnethod was used to calculate both X and cr eigenvaiues. Therefore, 

the Fkecbet derivative subroutine must be able to approximate the semi- and fully-discrete 

matrices. In order to accomplish this, the Frechet subroutine calls the ARClD subroutines 

to eit her perform one t h e  step or to do one Bght hand side calculation for each perturbation 

of thi vector. The non-dimensionalized results &om ARClD are used as input for the 

derivat ives. 
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A Matlab routine was written in order to calculate the exart. eigenvalues of t!x 

matrices created in ARCID. These resdts were then compared to the Arnoldi's method 

results. The X eigenvalues were assessed by taking the A matrix from ARC ID. while the a 

eigenvalues were computed from (1 - hA)-  '. 
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Result s 

Three cases were chosen to study. Al1 were uniform flow with a Mach nimber 

of 0.189 with 48 interior nodes, a constant dissipation coefficient of vaiue é, = 1.25 and 

Dirichlet boundary conditions. For the initial condition, the solution at the middle node 

was set to O. 1QSlead,, where Qsteody is the steady state solution. Three different CFL 

numbers are chosen to see the effect on the eigenvalues and the eigenvectors. Case 1 is run 

with a CFL number of 5. Case 2 is run with a CFL of 2.5. Case 3 is the higher CFL number 

run with a CFL of 10. Al1 cases are run 

3.1 Semi-Discrete Results 

The X eigendues were examined for ody one CFL number, as the change in CFL 

number will not d e c t  the results of the semi-discrete form. 

In terms of capturing the eigenspectrum, good results were obtained h m  Arnoldi's 

method using 40 iterations and even better results were obtained using 60 iterations. The 

largest exact eigenvalue's magnitude is 19.937. With 40 iterations, Amoldi2s method gives 

a largest magnitude of 19.723, and after 60 iterations, Arnoldi's method gives 19.935 Fig- 

ure 3.1 shows the effects of using 20, 40 and 60 iterations in Arnoldi's method. When using 

the maximum subspace size, Arnoldi's met hod captures the largest magnitude eigendues 

quite well (see Figure 3.2)' but does not capture the eigenspectrum exactly, which is because 

of round-off error. Because of this, subspaces larger than 60 would be inefficient to use. 
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- -18 -16 -14 -12 -10 -0 -ô -1 -2 O 

Figure 9.1: Exact X (+) vs Arnoldi with 20 (x), 40 (O) and 60 (squares) lterations 

Figure .3.2: Exact X (+) vs Arnoldi with 144 Iterations ( O )  
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Figure 3.3: Convergence History with CFL=5 

3.2 Convergence Rate 

The asymptotic convergence rate c m  be approximated by the largest magnitude 

of a. To demonstrate this, the convergence rate of ARC lD was examined by t hree methods: 

direct calculation based on the residual, the largest magnitude of the exact eigenvalues and 

the largest magnitude of the approximate eigendues. 

Figure 3.3 shows a linear convergence approaching the end of the run. In this area. 

the convergence rate may be determined by: 

where Res, is the n o m  of the residual of density at step n. Ln Case 1, we estimate the 

convergence rate to be 0.838. Using Matlab, the largest exact eigenvalue foc the generalized 

eigenvalue problem is fomd to be lum,l = 0.839. This difference is 0.217%, which is very 

good agreement. 

To verify that Arnoldi's method works, nins were made with 20, 40 and 60 itera- 

tions of Arnoldi's method. The resdts of the eigenvalue approximations are verified versus 

the exact eigendues in Matlab. Figure 3.4 shows that as the number of iterations increase, 

the eigenvalue spectnim is better captured, although when using more than 60 iterations, 

the method faiied to capture the eigenspectrum as well as it did with 60 iterations. 60 
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Figure 3.4: Exact a (+) vs Arnoldi with 20 (x), 40 (O) and 60 (squares) Iterations. CFL=5 

iterations were used in the remaining calculations when using Arnoldi's method as seen in 

Figure 3.5. Compiired to ot her literature, this seems to be a very large nurnber of i terat ions 

to use. While most authors choose 5 to 10 iterations of Arnoldi?~ method to approxirnate 

the largest a eigenvalue, with 5 iterations, the calculations obtained were lnmax 1 = 0.8676 

compared to the exact value of 0.8394. 

Case 1 results for eigenvalues are discussed in the section above. Good agreement 

with the convergence rate was found for both the exact and the approximate eigenvalues. 

The eigenvectors of the exact matrix were compared to the difference between the solutions 

when the residual was at 10-l0 and 10-14, which gives the remaining error in the solution 

when the residual is 10-Io. The shape of the eigenvector and the remaining enor is similar. 

This indicates that the remaining error is at the outflow boundary, as seen in Figures 3.6 

and 3.7. Also, the two eigenvectors associated with the two largest eigenvalues are similar 

indicating that there could be multiple low fkequency modes still present. The magnitude 

of the two largest eigenvalues in this case are 0.8394 and 0.8346. Their eigenvectors are 

shown in Figure 3.8. 

Case 2 shows a slower convergence rate of 0.9159 in rough calcuiations. This 

compares well to the exact matrix's largest eigenvalue of 0.9195 and Arnoldi's method a p  

proximation of 0.9203 as seen in Figure 3.9. The remaining mors and the largest eigenvector 

still compare favourably as in case 1 (Figures 3.10 and 3.11). 

Case 3 shows a much faster convergence rate of 0.6974. The exact and apprmrimate 
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-0.51 1 
O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Fiyre  3.5: Exact (x) vs Arnoldi (O) cr Eigenvalues. CFL=5 

Figure 3.6: Real Part of First Eigenvector. CFL=5 
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Figure 3.7: Rernaining Error, CFL=5 

F i p e  3.8: Real Parts of First (x) and Second (O) Eigenvectors, CFL=5 
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Figure 3.9: Exact (x) vs Arnoldi (O) a Eigenvalues. CFL=2.5 

Figure 3.10: Real Part of First Eigenvecton, CFL=2.5 
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Figure 3.1 1: Remaining Error, CFL=2.5 

largest eigenvalues are 0.6981 and 0.6985, respectively. These are good approximations for 

the convergence rate (see Figure 3.12). The eigenvector and the remaining error are still in 

good agreement as well. indicating that the outflow boundary is still the problem area (see 

Figures 3.13 and 3.14). 

Finally, the X - n relationship can be verified using the approximations from 

Arnoldi's method. For ARClD, the relationship is: 

For Case 1. the largest approximate a is 0.8146 + 0.20252'. The A associated with that is 

-0.1819 + 0.3349i, which is a very close agreement with the corresponding X found h m  

the exact calculations, 0.1819 + 0.33481. Although this is a good correlation, it is not a 

feasible means of obtaining the a,, values because of problems with capturing the s m d  

magnitude X values wit h Arnoldi's method. Note that the maximum a in the other cases 

can be obtained £iom t his X simply by changing h appropriately. 



Section 3.2. Convergence Ra te 

Figure 3.12: Exact (x) vs Arnoldi (O) a Eigenvalues, CFL= 10 

Figure 3.13: Red Part of First Eigenvector, CFL=10 
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Figure 3.14: Remaining Error, CFL= 10 



Chapter 4 

Conclusions 

A program was written to use Arnoldi's method to approximate the X and n 

eigenvdues of ARClD. Runs were made to verify that these approximations are accurate 

and to determine appropriate subspace sizes for Arnoldi's met hod. Three test cases were run 

to see the effects of changes in CFL number on the convergence rate and the approximations 

of the largest a eigenvalue. A nurnber of nins with Arnoldi's method were done to find a 

good approximation of the eigenspectnim. 

The following specific conclusions can be drawn fiorn the results: 

The maximum A and a eigenvalues are approxîrnated very well usirig Arnoldi's method 

with 60 iterations. Given that the full matrices are 144 x 144, this is a surprisingly 

large requirement , 

0 The o eigenvalues correspond weiI with the convergence rate of the three test cases. 

The eigenvectors of the largefit few eigenvalues correspond well to the remaining error. 

Overall, these results indicate that, while ArnoIdi's method is a very usefd tool for obtaining 

the maximum eigenvalues of large matrices, it can require large subspace sizes which could 

be prohibitive in two and t hree dimensions. 
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