INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials {e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps. Each original is also photographed in
one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9” black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

UMI

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600






Eigensystem Analysis of a Numerical Method for Fluid Dynamics

Isabelle Hemmings

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science
Graduate Department of Aerospace Science and Engineering
University of Toronto

© Copyright by Isabelle Hemmings 1998



i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliotheque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your Me Votre relerence

Ou. hig Notre relérence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propnété du
copyright in this thesis. Neither the droit d’auteur qui protege cette thése.
thesis nor substantial extracts from it  Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-40897-3

Canada



Abstract

Eigensystem Analysis of a Numerical Method for Fluid Dynamics

[sabelle Hemmings
Master of Applied Science
Graduate Department of Aerospace Science and Engineering

University of Toronto
1998

Arnoldi’s method was implemented to approximate the semi- and fully-discrete
eigenvalues of ARC1D, a quasi-one-dimensional Euler solver. Three test cases were run
to see the effects of different CFL numbers on the convergence rate and the approxima-
tions of the largest fully-discrete eigenvalue. Verification of the eigenvalue approximations
was performed and an appropriate subspace size for Arnoldi's method was determined. A
subspace size of about 40% of the original matrix size yields good results for the largest
eigenvalues. The asymptotic convergence rate of the solver was found to agree closely with
the largest eigenvalue of the fully-discrete operator matrix, confirming the linear behaviour
of the operator. Similarly, a good correlation between the eigenvectors of the largest fully-
discrete eigenvalues and the remaining error at a right-hand-side residual value of 1010
was found. Overall, these results indicate that, while Arnoldi’s method is a very useful tool
for obtaining the maximum eigenvalues of large matrices, it can require large subspace sizes

which could be prohibitive in two and three dimensions.
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Chapter 1

Introduction

[n computational fluid dynamics, there is a search for faster, more efficient Navier-
Stokes equation solvers. To this end, the study of stability and convergence rates of a solver
and its time-marching and spatial discretization methods is necessary. One of the tools
to study these methods is eigensystem analysis of the linearized semi- and fully-discrete
operator matrices. Since the matrices involved are so large, approximations are used. In
1951. Arnoldi [2] created a method that was based on Lanczos’s method of minimized
iterations. This method approximates eigenvalues of large matrices and is guaranteed to
finish in a finite number of iterations. Using a Krylov subspace, this method creates a
Hessenberg matrix whose eigenvalues approximate those of the original matrix. Several
researchers have implemented Arnoldi’s method into their stability analysis and as a tool
to study new techniques added to the solvers over the years.

Eriksson and Rizzi (5] use Arnoldi’s method combined with Frechet derivatives to
approximate the eigenvalues of their solution method. From the eigenvalues, they could
determine a method for improving their convergence rates. They realized the benefits of

eigensystem analysis, which include the following:

o the effects of the boundary conditions and artificial dissipation can be seen in detail

by their eigensystem decomposition

o the eigensystems may be able to show the strengths and weaknesses of computational

meshes

o the eigensystem analysis is general so it can analyze any method
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Several other authors have used this same technique to analyze their problems
and offer refinements of the solutions techniques. The techniques have included Wynn's
e-algorithm. eigenvalue annihilation and shifting operators in one and two dimensions [3],
[4]. [6]. [13].

Allmaras uses Arnoldi’s method in order to better analyze his multigrid develop-
ments [1]. He finds that the traditional Fourier analysis is insufficient for “real problems”
and uses algebraic smoothing analysis for a more accurate picture of developments in the
multigrid codes. Arnoldi’s method is used to solve the eigenvalue problem generated in this
method.

Cheer and Saleem [3] use Arnoldi’s method in order to create a spectrum shift
that allows for faster convergence of their solver. The shift depends on the size of the
eigenvalue spectrum of the problem at hand. This is dealt with by using Arnoldi’s method
to approximate the spectrum. Since it captures the boundaries of the spectrum well, it can

be used in the computation of the shifting operator without much error.

Cheer, et al. [4] use Arnoldi’s method to approximate the convergence rate of the
solver and to determine if acceleration techniques are required. Saleem, Pulliam and Cheer
also examine the convergence rate and applications of convergence-acceleration techniques
to ARC2D. a two-dimensional, approximately factored Navier-Stokes solver developed at
NASA Ames Research Centre [13]. They also use Arnoldi’'s method to approximate the
eigenvalues of the Jacobian matrix.

Mahajan, et al. [9] use Arnoldi’s method to examine the effects of artificial dissi-
pation on the stability of their time marching method. They conclude that it is a useful and
efficient means of looking at stability without having to compute the very large Jacobian
matrices involved.

While Arnoldi’s method is used for analyzing algorithms, it has never been fully
explored as a research tool. This thesis examines the effectiveness of the Arnoldi method
in approximating the eigenvalues arising in a flow solver. Also, it will apply that method
of approximation to study the stability and effects of various parameters on a quasi-one-
dimensional Euler equation solver, ARC1D. This will provide a better understanding of the
effectiveness and limitations of Arnoldi's method in analyzing algorithms for fluid flow.

The purpose of this thesis is to implement and evaluate the effectiveness of Arnoldi’s

method as a tool to analyze solution methods. The main components of the thesis are:



. Create a program to run Arnoldi’s method
. Verify approximated eigenvalues against exact eigenvalues

. Examine the semi-discrete and fully-discrete eigenvalues and their associated eigen-

vectors

. Gain a better understanding of the convergence behaviour of ARC1D

. Show agreement with the A — o relationship of ARC1D



Chapter 2

Background Theory

To verify Arnoldi's method, the eigenvalues associated with ARC1D were found
and analyzed. In order to verify the accuracy of the eigenvalues in Arnoldi's method, a lin-
earized version of ARC1D was used. ARC1D was used as the testing ground for the Arnoldi
process because it is feasible to calculate exact eigenvalues in one dimension. Calculating
the approximate eigenvalues can be done in little time as well, making verification of the
accuracy of Arnoldi’s method practical. A Matlab routine was written to take the matrices
from ARCI1D and calculate the eigenvalues and compare them with the ones computed by

the Arnoldi approximations.

2.1 ARC1D

ARCI1D is a quasi-one-dimensional solver for the Euler equations based on ARC2D,
a two-dimensional approximate factorization method developed at NASA Ames Research
Centre. The information in this section is found in Pulliam’s notes on ARC2D [10] but
modified for one dimension. Adjustments for quasi-one dimensional flows are discussed later,

but for simplicity, the one-dimeusional Euler equations are used to explain the method.

The one-dimensional Euler equations have the form:

9Q OE 1)

at dz
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where
o] pu
Q=lpu |, E=| pul+p
e u(e + p)

Applying the implicit Euler timestep, we get:

Q"' =Q " +h (%%)HH (2.2)
Using 2.1, we have:

rt=anen(-2)" 2:3)
Subtract Q™ from both sides:

Q™! — Q" = —h (%f.)r”l (2.4)

Let AQ™ = Q"' — Q™. Linearize E with respect to Q to find an approximation for the

. 3E,
flux Jacobian 3Z:

EMl = E" + g—gnAQ“ + ... (2.5)
Let A" = %gn. Substitute this into 2.4 and combining like terms, the equations become:
(I + haa‘in) AQ" = —ha—:‘;— (2.6)
Apply the centred difference approximation to the first partial derivative with respect to z:
h h
(1 + 5 (Afr = A?—l)) AQ} = —5—(Efy — Efy) (2.7)

This is only good for the interior nodes; the boundaries are dealt with using the

Riemann invariant boundary conditions.

R = % (2.8)
2¢

R, = v+ == (2.9)

Ry = u— 2 (2.10)
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where c is the speed of sound. For the inflow boundary, R, and R; are determined from the
initial conditions and Rj is extrapolated from the interior nodes. For the outflow boundary,
R3 are determined from the initial conditions and R, and R, are extrapolated from the
interior nodes. From these invariants, the solution variables can be found.
The interior scheme needs artificial dissipation to allow for better convergence.
Also a switch is needed to allow for good shock capturing. This switch combines fourth and
second difference artificial dissipation. The pressure switch is:
= Ipj+1 — 2p; + pj-1l (2.11)
Ipj+1 + 2pj + pj-1l
This pressure switch leads to the determination of the two artificial dissipation variables

) and )

2 = k2 At max (Tj+1,Tj,Tj_1) (2.12)
) = max(0, kAt - ;) (2.13)

where &, and k4 are user defined parameters. The fourth order dissipation is turned off
near the shock regions by the pressure switch. The fourth difference artificial dissipation

stencil then becomes:
Ve (055160 +056,) 4,940, (2.14)

where o is spectral radius of the flux Jacobian, and V, indicates a backward difference
while A, indicates a forward difference. The second difference artificial dissipation stencil

then becomes:
V; (O’j+1€j+1(2) + O’jej(2)) A:Qj (2.15)

These stencils are written for the right-hand side. The left-hand side’s matrix is
filled in a similar manner. Each entry in the [1, —4, 6, —4, 1] stencil is added to the correct
block of the matrix. The first and last interior nodes are modified with an upwind and
downwind biased scheme, respectively. This makes the matrix a block pentadiagonal one,
which is easy to invert.

The quasi one-dimensional nozzle case only needs minor modifications. Since the
area varies through the nozzle, the solution and flux vectors now include the area in their
variables and a source term is added to the momentum equation:

dpuS)  deu*+p)S _ dS
5 + £ =p 7 (2.16)
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Applying the implicit Euler scheme and the linearization process as before, the

modified equations become:

n n
I+ a8 _ A AQ":—AtaE + AtP* (2.17)
oz oz
where
[ 0
P* = p% (2.18)
| 0
[ 0 0 0
B = | 3£ (%e?) {E(-(r-vw $E0-1) (2.19)
0 0 0

and the other variables have the same meaning as before.

The boundary conditions described above are explicit boundary conditions. This
changes the first and last nodes of the matrix that is inverted in each timestep. Since the
boundaries are explicit, there is no need to fill the matrix entries that are associated with
them. In order to have a matrix that is consistent throughout, we changed the boundary
conditions to fixed boundaries. This removes the influence of the boundaries from any other
node in the stencils, thus we can observe the behaviour of the interior scheme first.

Artificial dissipation in ARC1D is a mixed non-linear dissipation with a pressure
switch to improve shock capturing. This is modified to linearize the system. A fourth
difference, constant coefficient dissipation is used throughout with no pressure switch in
both the right- and left-hand side calculations. On the right hand side, this dissipation has

the form:
—€.AL[V A2 Q" (2.20)

where o is spectral radius of the flux Jacobian, €. is a user defined coefficient [10], 8t is the
time step and V; and A, are the forward and backward difference, respectively. On both
sides of the equations, the first and last interior nodes are modified by using an upwind or

downwind biased scheme for the dissipation, respectively.
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2.2 Eigenanalysis

Two sets of eigenvalues may be examined: the semi-discrete or } eigenvalues and

the fully discrete or o eigenvalues.

2.2.1 Semi-Discrete Eigenvalues

The semi-discrete formulation of the original PDE is devised by discretizing the

spatial derivatives. This has the following form:

dQ _
- = 8(@) (2.21)

where Q and R are vectors of length 3N, where N is the number of nodes. Linearizing the

right hand side. we get:

ey, GR(QT)
R(Q) = R(Q )+——3Q AQ (2.22)

where Q" is the steady state solution, and gg is the Jacobian matrix of dimension 3NV x 3N.
Therefore, R(Q*) = 0, and we only need be concerned with the second term on the right
hand side. The eigenvalues of the Jacobian matrix '?rg, defined as ), are of interest since they
describe how quickly the transient will die down and the solution will become the steady
state solution. For the transient solution to tend to zero, the A eigenvalues are required to

be in the left half of the complex plane.

The matrix associated with these eigenvalues is not immediately available from

ARCID. In order to remove this, you have to take the left hand side:

I-hA (2.23)

and be left with A only.

2.2.2 Fully-Discrete Eigenvalues

The fully-discrete form of the original PDE is created when the time marching
method and the spatial discretization have both been implemented. This has the following

form:

Q™! = f(Q") (2.24)
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Linearizing f, we get:
1@ =@+ L@ - (2.25)
As in the semi-discrete form, Q* is the steady state solution; therefore f(Q*) = @". gé
is once again a Jacobian matrix and its eigenvalues o are of interest. Stability of the time
marching steps combined with spatial discretizations can be evaluated by examining the o
eigenvalues. If they all lie within the unit circle on the imaginary plane, then the solution
method is stable. Also. the asymptotic convergence rate of the solver can be estimated to
be the magnitude of the largest o. Therefore, the ¢ calculations could be used to determine
convergence rates without having to record a convergence history.
We have to remember that the o are really the eigenvalues of the matrix associated
with the fully discretized form. In order to get the correct eigenvalue problem for an implicit

method as used in ARC1D, we need to consider the following equation:

M(Q")AQ" = P(Q") (2.26)
where P(Q™) = hR(Q"). Let @Q**! = f(Q"). Substituting into the above, we get:
£ =Q*+ M~HQ"P(Q™) (2.27)

We'd like to linearize f at this point. This means we must expand using the Taylor theorem
about @*. In particular, we need to find gé— (Q*). Differentiating 2.27 with respect to Q
yields:

of 92" ) aM‘I(Q‘)

Of course, at steady state, P(Q") is zero and hence the last term of the equation is zero.

Using Taylor’s Theorem to linearize 2.27 about Q* with the Jacobian defined by

P(Q7) (2.28)

2.28 and making the appropriate substitution, we get:

1@ = 1@+ [r+ i@ 5 @ - @ (2.29

This is in the form up 4| = Cuy, +b, where C = I+M'_lgg (@*), so we have the eigenvalue

problem:

(I +M-YQ" )31;(3')) T =0z (2.30)
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Multiplying on the left by M (Q*), we get the following generalized eigenvalue problem:
ap
aQ
In ARC1D, M(Q*) is the left hand side matrix at the converged soiution and the

(M(Q‘)-i- (Q')) =oM(Q")z (2.31)

Jacobian of P is hA. If we use the interior scheme only and ignore the boundaries for the
moment. the result is a generalized eigenvalue problem whose eigenvalues are . In the
linearized form of ARC1D, M =1 - hA, so the generalized eigenvalue problem becomes a

regular eigenvalue problem of (I — hA)~!.

2.2.3 Arnoldi’s Method

Finding the eigenvalues of the full matrices in one dimension is feasible on a
computer, but moving to two dimensions causes some problems with memory. Arnoldi's
method (2] helps with this. It approximates the eigenvalues of the original matrix with
those of a smaller Hessenberg matrix. A considerably smaller subspace is often sufficient
for very accurate answers, at least for the largest eigenvalues [12].

The algorithm is as follows:

1) select a vector vy, which is normalized.

2) for k=1..n

hir =< vi, Avg >,i= 1.k

k
wi = Ave = {D_ higvi}

=1

b1k = |lwkll2, if Ak416 = 0 then stop

Wi
his1k

Ve+1 =

3) calculate the eigenvalues of H = [h; j].
In other words, a new vector wy is calculated as a new basis vector for the subspace

at each iteration. If Aty x = O for any iteration, that means that there are no more
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orthogonal vectors to be chosen in the subspace and the procedure must stop, as it has
created the largest basis possible. If Ay & 7 0 before the ntk step, then the first n vectors
form an orthonormal basis for the subspace K, = span{v,, Avi, ..., A" o} [11].

A question arises as to the choice of the first vector v,. Saleem proves that the best
choice for the starting vector in Arnoldi's process for the Euler equations and the ARC1D

solution technique is the solution vector @* [14]. His results have been accurate to five

significant figures [14].

2.2.4 Frechet Derivatives

Anobvious problem arises in Arnoldi’s method - how to save memory in computing
Av;, where A is a Jacobian of either f or R. These are large matrices in one dimension
(e.g.. 300x300 on a grid with 100 nodes) and enormous matrices in two dimensions (e.g..
40,000x40,000 on a grid with 10,000 nodes). In order to save memory, Frechet derivatives are
used to calculate the necessary matrix-vector multiplication. The idea behind this derivative
is very similar to a finite difference method of a simple derivative. The second-order version
of the Frechet derivative [15] is:

af(Q) _ f(Q+ev) - f(Q—ev)
30 v= 7 (2.32)

This is very similar to the definition of a derivative. ¢ is an arbitrarily small number. In this
thesis, € is chosen to be 0.001 * % as suggested by Eriksson and Rizzi, as well as Saleem (5],
[14].

These derivatives are used to approximate the Av multiplication in Arnoldi’s
method. Instead of using the Jacobian matrix, only the solution Q* is saved and used

in the Arnoldi subroutine, which saves memory.

2.2.5 Implementation

Arnoldi’s method was used to calculate both A and & eigenvalues. Therefore,
the Frechet derivative subroutine must be able to approximate the semi- and fully-discrete
matrices. In order to accomplish this, the Frechet subroutine calls the ARC1D subroutines
to either perform one time step or to do one right hand side calculation for each perturbation
of the vector. The non-dimensionalized results from ARCI1D are used as input for the

derivatives.
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A Matlab routine was written in order to calculate the exart eigenvalues of tho
matrices created in ARCID. These results were then compared to the Arnoldi’s method

results. The A eigenvalues were assessed by taking the A matrix from ARCI1D, while the o

eigenvalues were computed from (I — hA)~!.
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Results

Three cases were chosen to study. All were uniform flow with a Mach number
of 0.189 with 48 interior nodes, a constant dissipation coefficient of value €. = 1.25 and
Dirichlet boundary conditions. For the initial condition, the solution at the middle node
was set to 0.1Qgteady, Where Qgready is the steady state solution. Three different CFL
numbers are chosen to see the effect on the eigenvalues and the eigenvectors. Case 1 is run
with a CFL number of 5. Case 2 is run with a CFL of 2.5. Case 3 is the higher CFL number

run with a CFL of 10. All cases are run

3.1 Semi-Discrete Results

The ) eigenvalues were examined for only one CFL number, as the change in CFL

number will not affect the results of the semi-discrete form.

In terms of capturing the eigenspectrum, good results were obtained from Arnoldi’s
method using 40 iterations and even better results were obtained using 60 iterations. The
largest exact eigenvalue’s magnitude is 19.937. With 40 iterations, Arnoldi’s method gives
a largest magnitude of 19.723, and after 60 iterations, Arnoldi’s method gives 19.935 Fig-
ure 3.1 shows the effects of using 20, 40 and 60 iterations in Arnoldi’s method. When using
the maximum subspace size, Arnoldi's method captures the largest magnitude eigenvalues
quite well (see Figure 3.2), but does not capture the eigenspectrum exactly, which is because
of round-off error. Because of this, subspaces larger than 60 would be inefficient to use.

13
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3.2 Convergence Rate

The asymptotic convergence rate can be approximated by the largest magnitude
of ¢. To demonstrate this, the convergence rate of ARC1D was examined by three methods:
direct calculation based on the residual, the largest magnitude of the exact eigenvalues and
the largest magnitude of the approximate eigenvalues.

Figure 3.3 shows a linear convergence approaching the end of the run. In this area,

the convergence rate may be determined by:

log [omas] = log(Re3n+,,)p— log( Resy) (3.1)

Res 7
lomax] = (____n+p) (3.2)

Res,

where Res, is the norm of the residual of density at step n. In Case 1, we estimate the
convergence rate to be 0.838. Using Matlab, the largest exact eigenvalue for the generalized
eigenvalue problem is found to be |omax| = 0.839. This difference is 0.217%, which is very
good agreement.

To verify that Arnoldi’s method works, runs were made with 20, 40 and 60 itera-
tions of Arnoldi's method. The results of the eigenvalue approximations are verified versus
the exact eigenvalues in Matlab. Figure 3.4 shows that as the number of iterations increase,
the eigenvalue spectrum is better captured, although when using more than 60 iterations,
the method failed to capture the eigenspectrum as well as it did with 60 iterations. 60
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iterations were used in the remaining calculations when using Arnoldi’s method as seen in
Figure 3.5. Compared to other literature, this seems to be a very large number of iterations
to use. While most authors choose 5 to 10 iterations of Arnoldi’s method to approximate
the largest o eigenvalue, with 5 iterations, the calculations obtained were |omax| = 0.8676
compared to the exact value of 0.8394.

Case 1 results for eigenvalues are discussed in the section above. Good agreement
with the convergence rate was found for both the exact and the approximate eigenvalues.
The eigenvectors of the exact matrix were compared to the difference between the solutions
when the residual was at 10~!0 and 10~'4, which gives the remaining error in the solution
when the residual is 10~'%. The shape of the eigenvector and the remaining error is similar.
This indicates that the remaining error is at the outflow boundary, as seen in Figures 3.6
and 3.7. Also, the two eigenvectors associated with the two largest eigenvalues are similar
indicating that there could be multiple low frequency modes still present. The magnitude
of the two largest eigenvalues in this case are 0.8394 and 0.8346. Their eigenvectors are
shown in Figure 3.8.

Case 2 shows a slower convergence rate of 0.9159 in rough calculations. This
compares well to the exact matrix’s largest eigenvalue of 0.9195 and Arnoldi’s method ap-
proximation of 0.9203 as seen in Figure 3.9. The remaining errors and the largest eigenvector
still compare favourably as in case 1 (Figures 3.10 and 3.11).

Case 3 shows a much faster convergence rate of 0.6974. The exact and approximate
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largest eigenvalues are 0.6981 and 0.6985, respectively. These are good approximations for
the convergence rate (see Figure 3.12). The eigenvector and the remaining error are still in
good agreement as well. indicating that the outflow boundary is still the problem area (see
Figures 3.13 and 3.14).

Finally, the A — o relationship can be verified using the approximations from

Arnoldi’s method. For ARC1D, the relationship is:

1

For Case 1. the largest approximate o is 0.8146 + 0.2025:. The A associated with that is
—0.1819 + 0.33497, which is a very close agreement with the corresponding A found from
the exact calculations, 0.1819 + 0.3348i. Although this is a good correlation, it is not a
feasible means of obtaining the opax values because of problems with capturing the small
magnitude A values with Arnoldi's method. Note that the maximum o in the other cases
can be obtained from this A simply by changing h appropriately.
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Chapter 4

Conclusions

A program was written to use Arnoldi’s method to approximate the A and o
eigenvalues of ARC1D. Runs were made to verify that these approximations are accurate
and to determine appropriate subspace sizes for Arnoldi's method. Three test cases were run
to see the effects of changes in CFL number on the convergence rate and the approximations
of the largest o eigenvalue. A number of runs with Arnoldi’s method were done to find a

good approximation of the eigenspectrum.

The following specific conclusions can be drawn from the results:

¢ The maximum A and o eigenvalues are approximated very well using Arnoldi’s method

with 60 iterations. Given that the full matrices are 144 x 144, this is a surprisingly

large requirement.
e The o eigenvalues correspond well with the convergence rate of the three test cases.
e The eigenvectors of the largest few eigenvalues correspond well to the remaining error.

Overall, these results indicate that, while Arnoldi’s method is a very useful tool for obtaining
the maximum eigenvalues of large matrices, it can require large subspace sizes which could

be prohibitive in two and three dimensions.
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